JP2003300083A - Waste water treatment method using iron powder - Google Patents

Waste water treatment method using iron powder

Info

Publication number
JP2003300083A
JP2003300083A JP2002107422A JP2002107422A JP2003300083A JP 2003300083 A JP2003300083 A JP 2003300083A JP 2002107422 A JP2002107422 A JP 2002107422A JP 2002107422 A JP2002107422 A JP 2002107422A JP 2003300083 A JP2003300083 A JP 2003300083A
Authority
JP
Japan
Prior art keywords
iron powder
reaction tank
tank
cod
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002107422A
Other languages
Japanese (ja)
Inventor
Tooru Shiomichi
透 塩道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Exeo Corp
Original Assignee
Kyowa Exeo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Exeo Corp filed Critical Kyowa Exeo Corp
Priority to JP2002107422A priority Critical patent/JP2003300083A/en
Publication of JP2003300083A publication Critical patent/JP2003300083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating COD and chromacity of industrial waste water produced from a plant or a livestock farm, etc., at low cost. <P>SOLUTION: In the waste water treatment method for reducing COD of raw water using the iron powder, an oxidant is added to a reaction vessel containing the iron powder so as to get to at least a concentration of 1/20-1 times as the amount of oxygen with respect to the COD concentration of the raw water and the stirring is performed. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はCOD及び色度除去
に適した廃水処理方法に関し、特に、工場や畜産農場等
から発生する産業廃水の高度処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment method suitable for COD and color removal, and more particularly to a method for advanced treatment of industrial wastewater generated from factories, livestock farms and the like.

【0002】[0002]

【従来技術】廃水のCODや色度を低下させる方法とし
て、従来から活性炭吸着法、凝集沈殿法、オゾン酸化
法、紫外線酸化法などが知られているが、これらは何れ
もコスト高である。これに対し、コストの安い方法とし
て、第1鉄イオンの存在下で過酸化水素を作用させ、有
機物を酸化分解するフェントン反応法が知られている
(例えば、特開平6−106173号公報、同6−18
2362号公報、同7−136408号公報)。このフ
ェントン反応は、Fe2++H→Fe3++OH
+OH・の反応によって生じたOH・ラジカルが汚水
中の有機物と反応し、該有機物を酸化分解するものであ
り、CODの値に相当する酸素量の1.2〜1.5倍の
過酸化水素(酸素量として)を加えてゆっくり撹拌し、
2〜3時間酸化反応させるものである。尚、上記「酸素
量として」とは有効酸素量を意味し、過酸化水素「H
」の場合には、そのうち実際に酸化反応に寄与する
1個の「O」の量を意味する。
2. Description of the Related Art Activated carbon adsorption method, coagulation-sedimentation method, ozone oxidation method, ultraviolet oxidation method and the like have been conventionally known as methods for reducing COD and chromaticity of waste water, but all of them are expensive. On the other hand, as a low cost method, a Fenton reaction method in which hydrogen peroxide is allowed to act in the presence of ferrous ions to oxidatively decompose organic matter is known (for example, Japanese Patent Application Laid-Open No. 6-106173, the same. 6-18
2362 and 7-136408). This Fenton reaction is Fe 2+ + H 2 O 2 → Fe 3+ + OH
- + OH OH - radicals generated by the reaction of-reacts with organic matter in sewage, is intended to oxidize and decompose the organic matter, 1.2 to 1.5 times the peroxide oxygen amount corresponding to the value of COD Add hydrogen (as oxygen content) and stir slowly,
The oxidation reaction is carried out for 2 to 3 hours. In addition, the above "as oxygen amount" means an effective oxygen amount, and hydrogen peroxide "H 2
In the case of “O 2 ”, it means the amount of one “O” that actually contributes to the oxidation reaction.

【0003】即ち、従来のフェントン反応処理の概念は
図1に示され、反応槽、中和槽、沈殿槽では下記
の作業がなされる。 反応槽 ・滞留時間が数十分〜数時間となる流量で原水を流入さ
せる。 ・第一鉄イオン(硫酸第一鉄など)を、COD濃度に応
じ50〜5000mg/lの範囲で添加する。 ・原水のCOD量に対して0.1〜2倍の過酸化水素
(酸素量として)を添加する。 ・硫酸(又はそれに変わるpH調整剤)を注入し、pH
を2〜5に調節する。 中和槽 ・苛性ソーダ(又はそれに変わるpH調整剤)を添加し
pHが6〜8となる迄中和し、沈殿物を生成させる。 ・必要な場合には高分子凝集剤などの凝集剤を添加す
る。中和槽後に凝集剤を添加する凝集槽を設置すること
もある。 沈殿槽 ・中和槽で生成した沈殿物と上澄み水を分離する。上澄
み水は処理水として流出させ、沈殿物は余剰汚泥として
排出する。
That is, the concept of the conventional Fenton reaction treatment is shown in FIG. 1, and the following operations are performed in a reaction tank, a neutralization tank and a precipitation tank. Raw water is flowed in at a flow rate such that the reaction tank / residence time is several tens of minutes to several hours. -Add ferrous ions (such as ferrous sulfate) in the range of 50 to 5000 mg / l depending on the COD concentration. -Add 0.1 to 2 times the hydrogen peroxide (as oxygen amount) to the COD amount of raw water.・ Inject sulfuric acid (or pH adjuster that changes to it) to adjust pH
Is adjusted to 2-5. Neutralization tank ・ Add caustic soda (or a pH adjuster to change it) and neutralize until the pH becomes 6 to 8 to form a precipitate. -If necessary, add a flocculant such as a polymer flocculant. A coagulation tank for adding a coagulant may be installed after the neutralization tank. Separate the precipitate produced in the settling tank / neutralization tank from the supernatant water. The supernatant water is discharged as treated water, and the sediment is discharged as excess sludge.

【0004】しかしながら、これらのフェントン反応を
利用した処理の場合でも、比較的高濃度の有機性廃水の
場合には、使用する過酸化水素水、鉄塩、その他の使用
薬剤の消費量が多くなる為に、処理コストが高くなると
いう欠点があった。斯かる欠点は、酸化処理時にアルミ
系化合物を使用することによって改善された(特開平9
−1162号公報)が、この場合にはアルミ系化合物を
使用する為に、処理コストの低減は大きなものではなか
った。
However, even in the case of these treatments utilizing the Fenton reaction, when the organic wastewater having a relatively high concentration is used, the consumption amount of the hydrogen peroxide solution, iron salt and other chemicals used increases. Therefore, there is a drawback that the processing cost becomes high. Such drawbacks have been ameliorated by using an aluminum-based compound during the oxidation treatment (Japanese Patent Laid-Open No. Hei 9 (1999) -96945).
However, since an aluminum compound is used in this case, the reduction in processing cost was not significant.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明者等は、
更に処理コストを低減させるべく鋭意検討した結果、鉄
イオン原として鉄粉を用いると共に、適当量の酸化剤を
使用した場合には、アルミ系化合物を共存させなくて
も、安価に、排水のCOD及び色度を低下させることが
出来ることを見出し、本発明に到達した。従って本発明
の目的は、工場や畜産農場等から発生する産業廃水のC
OD及び色度を安価に処理するための方法を提供するこ
とにある。
Therefore, the present inventors
As a result of diligent studies to further reduce the treatment cost, when iron powder was used as the iron ion source and an appropriate amount of oxidizing agent was used, COD of the wastewater was obtained inexpensively without coexisting with an aluminum compound. Further, they have found that the chromaticity can be reduced and have reached the present invention. Therefore, the object of the present invention is to provide C for industrial wastewater generated from factories and livestock farms
It is to provide a method for inexpensively processing OD and chromaticity.

【0006】[0006]

【課題を解決するための手段】本発明の上記の目的は、
原水のCODを低減させる廃水処理方法において、少な
くとも、鉄粉入りの反応槽中に前記原水のCOD濃度に
対して酸素量として1/20〜1倍の濃度となるように
酸化剤を添加し、撹拌することを特徴とする、鉄粉を用
いた廃水処理方法によって達成された。上記処理方法に
おいては、pHを2〜5とすることが好ましく、反応槽
中の鉄粉の量は0.2〜500g/リットルであること
が好ましい。また、酸化剤は過酸化水素であることが好
ましい。
The above objects of the present invention are as follows.
In a wastewater treatment method for reducing the COD of raw water, at least an oxidizing agent is added to a reaction tank containing iron powder so that the oxygen concentration is 1/20 to 1 times the COD concentration of the raw water. It was achieved by a wastewater treatment method using iron powder, characterized by stirring. In the above treatment method, the pH is preferably 2 to 5, and the amount of iron powder in the reaction tank is preferably 0.2 to 500 g / liter. Further, the oxidizing agent is preferably hydrogen peroxide.

【0007】[0007]

【発明の実施の形態】本発明で処理の対象とする排水
は、工場又は畜産農場等から発生する着色した廃水であ
るが、この廃水をそのまま原水として使用しても、BO
Dが高い場合には、活性汚泥処理等によってBODを低
下させた処理水を原水として使用しても良い。本発明で
使用する鉄粉は、反応槽内で徐々にFe2+イオンを供
給するものであれば良く、特にその組成が限定されるわ
けではない。槽内の鉄粉量は溶出により徐々に減少する
ので、随時追加して槽内の鉄粉量がほぼ一定となるよう
にする。鉄粉の粒径が小さければ溶解し易いので、反応
槽内中の鉄粉量を少なくすることが出来る。従って、粒
径によっても異なるが、本発明においては反応槽中に鉄
粉を0.2〜500g/リットル存在させることが好ま
しく、特に1〜50g/リットル存在させることが好ま
しい。Fe2+の溶出量は反応槽内に存在する鉄粉の表
面積に比例するので鉄粉の存在量を増やすことにより反
応時間を短縮し、結果的に反応槽を小型化することも可
能である。
BEST MODE FOR CARRYING OUT THE INVENTION The wastewater to be treated in the present invention is colored wastewater generated from factories or livestock farms. Even if this wastewater is used as it is as raw water, BO
When D is high, treated water whose BOD is lowered by treatment with activated sludge may be used as raw water. The iron powder used in the present invention may be any one as long as it gradually supplies Fe 2+ ions in the reaction tank, and the composition thereof is not particularly limited. The amount of iron powder in the tank gradually decreases due to elution, so additional iron powder should be added at any time so that the amount of iron powder in the tank becomes almost constant. If the particle size of the iron powder is small, the iron powder is easily dissolved, so that the amount of iron powder in the reaction tank can be reduced. Therefore, in the present invention, iron powder is preferably present in an amount of 0.2 to 500 g / liter, and particularly preferably 1 to 50 g / liter, although it varies depending on the particle size. Since the elution amount of Fe 2+ is proportional to the surface area of the iron powder existing in the reaction tank, the reaction time can be shortened by increasing the existing amount of the iron powder, and as a result, the reaction tank can be downsized.

【0008】本発明で使用する酸化剤は、廃水処理に使
用される公知のものの中から適宜選択して使用すること
が出来るが、本発明においては特に過酸化水素を使用す
ることが好ましい。また、その使用量は、原水のCOD
濃度に対して酸素量として1/20以上である事が必要
である。また、原水のCOD濃度に対して酸素量として
1倍以上となってもその添加効果が飽和するので、本発
明においては1/20〜1倍とする。
The oxidizing agent used in the present invention can be appropriately selected from known ones used for treating wastewater, and is preferably hydrogen peroxide in the present invention. In addition, the amount used is the COD of the raw water.
It is necessary that the oxygen amount is 1/20 or more with respect to the concentration. Further, even if the COD concentration of the raw water becomes 1 time or more, the effect of addition becomes saturated, so in the present invention, it is set to 1/20 to 1 time.

【0009】従来技術において「鉄屑等の金属鉄や鉄イ
オンをイオン交換樹脂等で固定した固定鉄イオン」を使
用することが出来ることは知られている(特開平9−1
162の
It is known in the prior art that "fixed iron ions obtained by fixing metallic iron such as iron scraps or iron ions with an ion exchange resin or the like" can be used (JP-A-9-1).
162's

【0013】)が、鉄粉を積極的に使用することによっ
て、安価な処理を行うべきことについては記載はもとよ
り示唆もされていない。確かに、鉄粉を単に硫酸第一鉄
等の場合と同様に反応槽に投入しても、鉄イオンの溶出
には時間がかかる為、未溶解の鉄粉が反応槽から流出
し、鉄粉が有効に利用されないだけでなく、余剰汚泥量
が増すことになるので、コストを下げることが出来ない
ことはもとより、かえってコスト高になる場合もある。
[0013] However, there is no description or suggestion that an inexpensive treatment should be carried out by positively using iron powder. Certainly, even if iron powder is added to the reaction tank just as in the case of ferrous sulfate, elution of iron ions takes time, so undissolved iron powder flows out of the reaction tank, Not only is it not used effectively, but the amount of excess sludge increases, so not only can the cost not be reduced, but in some cases the cost may increase.

【0010】そこで、本発明においては、下記(1)〜
(3)の少なくとも1つの手段を採用することが好まし
い。 (1)反応槽内に、鉄粉の流出を防止する為の沈殿室を
設ける(図2)。 (2)反応槽と中和槽の間に、鉄粉を沈殿分離する沈殿
槽を設け、沈殿した鉄粉を反応槽に返送する(図3)。 (3)中和槽の底部に沈殿した鉄粉を反応槽に返送する
(図4)。
Therefore, in the present invention, the following (1)-
It is preferable to employ at least one means of (3). (1) A precipitation chamber for preventing the outflow of iron powder is provided in the reaction tank (Fig. 2). (2) A settling tank for settling and separating iron powder is provided between the reaction tank and the neutralization tank, and the precipitated iron powder is returned to the reaction tank (Fig. 3). (3) The iron powder precipitated at the bottom of the neutralization tank is returned to the reaction tank (Fig. 4).

【0011】上記(1)の場合の処理フローは図2に示
した通りである。この場合の沈殿室は反応槽内に設けら
れるので、鉄粉分離室として機能する。具体的には、反
応槽の壁面の一部に囲いを設置したり、円筒形又は逆円
錐形等の沈殿管を設置すれば良い。この場合、反応後の
液が分離室の底部より流入し、分離室内を上昇した後流
出する構造とすることが好ましい。また、鉄粉の重力沈
降を妨げないように反応液の撹拌が行われることが好ま
しい。更に、分離室内における液の上昇速度(水面積負
荷)は10m/時間以下であることが好ましく、特に
0.5〜5m/時間であることが好ましい。
The processing flow in the case of the above (1) is as shown in FIG. Since the precipitation chamber in this case is provided in the reaction tank, it functions as an iron powder separation chamber. Specifically, an enclosure may be installed on a part of the wall surface of the reaction tank, or a precipitation tube having a cylindrical shape or an inverted conical shape may be installed. In this case, it is preferable that the liquid after the reaction flows in from the bottom of the separation chamber, rises in the separation chamber, and then flows out. Further, it is preferable to stir the reaction liquid so as not to interfere with gravity settling of the iron powder. Furthermore, the rising speed (water surface load) of the liquid in the separation chamber is preferably 10 m / hour or less, and particularly preferably 0.5 to 5 m / hour.

【0012】前記(2)の場合の処理フローは図3に示
した通りである。この場合の沈殿槽は鉄粉分離槽として
機能する。ここで沈殿した鉄粉は反応槽に返送する。こ
の方式は、処理量が多く、反応槽内に分離室を設置する
ことが困難な場合に有効である。尚、鉄粉分離槽におけ
る水面積負荷は、前記鉄粉分離室の場合と同様である。
The processing flow in the case of the above (2) is as shown in FIG. The sedimentation tank in this case functions as an iron powder separation tank. The iron powder precipitated here is returned to the reaction tank. This method is effective when the processing amount is large and it is difficult to install the separation chamber in the reaction tank. The water area load in the iron powder separation tank is the same as in the iron powder separation chamber.

【0013】前記(3)の場合の処理フローは図4に示
した通りである。この場合、反応槽では、鉄粉をけん濁
する為に、比較的強い撹拌を行うが、中和槽ではフロッ
クを生成させる為、穏やかな撹拌を行うことが好まし
い。これによって、反応槽から流出した鉄粉の一部は中
和槽底部に沈殿する。中和槽に沈殿した鉄粉を連続的又
は間欠的に引き抜いて反応槽に返送する。尚、(1)の
沈殿室、(2)の沈殿槽、(3)の中和槽内に電磁石を
設置し、鉄粉の分離効率を上げることも可能である。
The processing flow in the case of the above (3) is as shown in FIG. In this case, in the reaction tank, relatively strong stirring is performed in order to suspend the iron powder, but in the neutralization tank, it is preferable to perform gentle stirring in order to generate flocs. As a result, a part of the iron powder flowing out from the reaction tank is deposited on the bottom of the neutralization tank. The iron powder precipitated in the neutralization tank is continuously or intermittently withdrawn and returned to the reaction tank. It is also possible to increase the separation efficiency of iron powder by installing electromagnets in the precipitation chamber (1), the precipitation tank (2) and the neutralization tank (3).

【0014】[0014]

【発明の効果】本発明の処理方法においては、安価な鉄
粉を無駄なく使用するだけでなく、余剰汚泥の発生量を
低減することが出来るので経済的である。また、本発明
の処理によって、色度はもとよりCODを低減させるこ
とが出来る上、SS、BOD及びリンの除去にも有効で
あるので、河川などの環境水への応用も可能である。
The treatment method of the present invention is economical because not only is it possible to use inexpensive iron powder without waste, but it is also possible to reduce the amount of excess sludge generated. In addition, the treatment of the present invention can reduce COD as well as chromaticity, and is effective for removing SS, BOD and phosphorus, so that it can be applied to environmental water such as rivers.

【0015】[0015]

【実施例】以下、実施例によって本発明を更に詳述する
が、本発明はこれによって限定されるものではない。色
度測定に際しては、けん濁物質の影響を除く為、試料を
孔径0.22μmのシリンジフィルターでろ過した後測
定した。色度は、工業用水試験法(JIS K 010
1)に示された白金・コバルト法(水1L中に白金・コ
バルト色度標準液1mlを加えたときの色を白金・コバ
ルト色度1度とする)に準じ、波長455nmの吸光度
を測定することにより求めた。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited thereto. In measuring the chromaticity, the sample was filtered through a syringe filter having a pore size of 0.22 μm in order to remove the influence of suspended substances. The chromaticity is measured by the industrial water test method (JIS K 010).
Measure the absorbance at a wavelength of 455 nm according to the platinum-cobalt method shown in 1) (the color when 1 ml of platinum-cobalt chromaticity standard solution is added to 1 L of water is platinum-cobalt chromaticity 1 degree). I asked for it.

【0016】実施例1.沈殿室を有する容積1L(リッ
トル)の反応槽を用い、CODが約200mg/Lの牛
舎廃水2次処理水を原水として処理した。原水の反応槽
への流入量を1L/時間とし、過酸化水素注入量を10
0mg/時間とした。反応槽内のpHが3.3となるよ
うにpHコントローラーを用いて硫酸の自動注入を行っ
た。また、鉄粉分離室の断面積を2.25cm、水面
積負荷を4.4m/時間とし、実験開始時に反応槽に原
水1Lと鉄粉(粒径50〜150μm)3gを投入し、
該投入後1時間は原水の流入を行わず、pH調整と過酸
化水素の注入のみを行った。反応槽内は、鉄粉がけん濁
状態になるように撹拌機で撹拌した。1時間経過後から
原水の流入を開始し、1時間おきに流出水の色度を測定
した。結果は図5に示した通りである。
Example 1. Using a reaction tank having a settling chamber and a volume of 1 L (liter), COD was treated as secondary water with barn wastewater secondary treatment water of about 200 mg / L. The flow rate of raw water into the reaction tank was 1 L / hour, and the hydrogen peroxide injection rate was 10
It was set to 0 mg / hour. Sulfuric acid was automatically injected using a pH controller so that the pH in the reaction tank was 3.3. Moreover, the cross-sectional area of the iron powder separation chamber was 2.25 cm 2 , the water area load was 4.4 m / hour, and 1 L of raw water and 3 g of iron powder (particle size 50 to 150 μm) were added to the reaction tank at the start of the experiment.
For 1 hour after the addition, the raw water was not introduced, but only pH adjustment and hydrogen peroxide injection were performed. The inside of the reaction tank was stirred by a stirrer so that the iron powder was suspended. The inflow of raw water was started after 1 hour, and the chromaticity of the outflow water was measured every 1 hour. The results are as shown in FIG.

【0017】比較例1.反応槽に沈殿室を設置しなかっ
た他は実施例1と同様にして色度を測定した。結果は図
5に示した通りである。図5の結果から明らかなよう
に、沈殿室を設置した実施例の場合には、6時間経過後
も流出水の色度上昇はみられなかったのに対し、沈殿室
を設置しなかった比較例では3時間経過後(流出開始よ
り2時間後)より色度上昇がみられた。即ち、沈殿室が
ある場合は、鉄粉の流出が少ない為、鉄粉の追加を行わ
なくても十分な脱色が行われていたのに対して、沈殿室
が無い場合は、3時間後に十分な脱色を行うのに必要最
低限の鉄粉量に達し、それ以降さらに鉄粉が流出した
為、色度除去能が低下した。
Comparative Example 1. The chromaticity was measured in the same manner as in Example 1 except that the precipitation chamber was not installed in the reaction tank. The results are as shown in FIG. As is clear from the results of FIG. 5, in the case of the example in which the precipitation chamber was installed, no increase in the chromaticity of the outflow water was observed even after 6 hours, whereas the comparison in which the precipitation chamber was not installed was made. In the example, the chromaticity increased after 3 hours (2 hours after the start of outflow). That is, when the precipitation chamber is provided, the iron powder is less outflowed, so that sufficient decolorization was performed without adding the iron powder. The minimum amount of iron powder required for effective decolorization was reached, and further iron powder flowed out thereafter, resulting in a decrease in chromaticity removal ability.

【0018】実施例2.容積が1Lの反応槽、0.5L
の中和槽、及び1Lの沈殿槽をそれぞれ図2の様に配し
た処理装置を用い、CODが、約400mg/Lの豚舎
廃水2次処理水を原水として、下記の条件で連続的に処
理した。 原水流入量:1L/時間 反応槽のpH:3.4 過酸化水素流入量:200mg/時間 実験開始時に、反応槽に鉄粉(粒径50〜150μm)
5gを投入し、それ以上追加せずに実験を行った。反応
槽の撹拌を、鉄粉がけん濁状態になるように行い、中和
槽内の撹拌は、フロックがけん濁状態になるように行っ
た。中和槽のpHを6.2に調整し、沈殿室を通過して
中和槽底部に溜まった微少量の鉄粉を、1時間に一度の
割合で引き抜いた汚泥と共に反応槽に戻した。6時間連
続的に原水を供給し、6時間経過後に、沈殿槽から流出
した処理水のサンプリングを行い、pH、色度、CO
D、SS、全リン濃度を測定し、それぞれ原水のものと
比較した。結果は下記表1に示した通りである。
Example 2. Reaction tank with a volume of 1 L, 0.5 L
Using the treatment equipment in which the neutralization tank of 1 and the precipitation tank of 1 L are arranged as shown in FIG. 2, the COD is about 400 mg / L, and the secondary treated water of pig house wastewater is treated as raw water continuously under the following conditions. did. Raw water inflow: 1 L / hour Reaction tank pH: 3.4 Hydrogen peroxide inflow: 200 mg / hour At the start of the experiment, iron powder (particle size 50-150 μm) was added to the reaction tank.
The experiment was conducted by adding 5 g and adding no more. The stirring in the reaction tank was carried out so that the iron powder was in a suspended state, and the stirring in the neutralization tank was carried out so that the flocs were in a suspended state. The pH of the neutralization tank was adjusted to 6.2, and a small amount of iron powder that had passed through the precipitation chamber and accumulated at the bottom of the neutralization tank was returned to the reaction tank together with the sludge extracted once per hour. Raw water was continuously supplied for 6 hours, and after 6 hours, the treated water flowing out from the settling tank was sampled to obtain pH, chromaticity, CO
The D, SS and total phosphorus concentrations were measured and compared with those of raw water. The results are as shown in Table 1 below.

【0019】[0019]

【表1】 表1の結果から明らかな如く、本発明の方法によれば、
従来よりも低コストで、廃水の色度除去、COD、S
S、リン除去を効率良く行うことの出来ることが実証さ
れた。
[Table 1] As is clear from the results in Table 1, according to the method of the present invention,
Lower cost than before, removal of chromaticity of wastewater, COD, S
It was demonstrated that S and phosphorus can be removed efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のフェントン反応処理装置の概念図であ
る。
FIG. 1 is a conceptual diagram of a conventional Fenton reaction processing apparatus.

【図2】反応槽内に沈殿室を設けた、本発明の処理装置
の概念図である。
FIG. 2 is a conceptual diagram of a processing apparatus of the present invention in which a precipitation chamber is provided in a reaction tank.

【図3】反応槽と中間槽の間に沈殿槽を設けた、本発明
の処理装置の概念図である。
FIG. 3 is a conceptual diagram of a processing apparatus of the present invention in which a precipitation tank is provided between a reaction tank and an intermediate tank.

【図4】中和槽の底部に沈殿した鉄粉を反応槽に返送す
る、本発明の処理装置の概念図である。
FIG. 4 is a conceptual diagram of a processing apparatus of the present invention for returning the iron powder precipitated at the bottom of the neutralization tank to the reaction tank.

【図5】実施例1及び比較例1における、処理時間に対
する処理水の色度依存性を表すグラフである。
FIG. 5 is a graph showing the chromaticity dependence of treated water with respect to treatment time in Example 1 and Comparative Example 1.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年4月12日(2002.4.1
2)
[Submission date] April 12, 2002 (2002.4.1)
2)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】[0019]

【表1】 表1の結果から明らかな如く、本発明の方法によれば、
従来よりも低コストで、廃水の色度除去、COD、S
S、リン除去を効率良く行うことの出来ることが実証さ
れた。
[Table 1] As is clear from the results in Table 1, according to the method of the present invention,
Lower cost than before, removal of chromaticity of wastewater, COD, S
It was demonstrated that S and phosphorus can be removed efficiently.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原水のCODを低減させる廃水処理方法
において、少なくとも、鉄粉入りの反応槽中に前記原水
のCOD濃度に対して酸素量として1/20〜1倍の濃
度となるように酸化剤を添加し、撹拌することを特徴と
する、鉄粉を用いた廃水処理方法。
1. A wastewater treatment method for reducing the COD of raw water, which comprises oxidizing at least a COD concentration of the raw water in a reaction vessel containing iron powder to an oxygen concentration of 1/20 to 1 times. A method for treating wastewater using iron powder, which comprises adding an agent and stirring.
【請求項2】 原水のpHを2〜5に調整する、請求項
1に記載された鉄粉を用いた廃水処理方法。
2. The method for treating wastewater using iron powder according to claim 1, wherein the pH of the raw water is adjusted to 2-5.
【請求項3】 前記pHの調整が反応槽内で行われる、
請求項2に記載された鉄粉を用いた廃水処理方法。
3. The pH adjustment is performed in a reaction tank,
A wastewater treatment method using the iron powder according to claim 2.
【請求項4】 反応槽中に存在する鉄粉が0.2〜50
0g/リットルである、請求項1〜3の何れかに記載さ
れた、鉄粉を用いた廃水処理方法。
4. The iron powder present in the reaction tank is 0.2 to 50.
The wastewater treatment method using iron powder according to any one of claims 1 to 3, which has a concentration of 0 g / liter.
【請求項5】 反応槽内に沈殿室を設置するかまたは反
応槽の後工程に沈殿槽を設置し、沈殿した鉄粉を反応槽
に返送する、請求項1〜4の何れかに記載された鉄粉を
用いた廃水処理方法。
5. The method according to claim 1, wherein a precipitation chamber is installed in the reaction tank or a precipitation tank is installed in a subsequent step of the reaction tank, and the precipitated iron powder is returned to the reaction tank. Wastewater treatment method using iron powder.
【請求項6】 前記酸化剤が過酸化水素である、請求項
1〜5の何れかに記載された鉄粉を用いた廃水処理方
法。
6. The method for treating wastewater using iron powder according to claim 1, wherein the oxidizing agent is hydrogen peroxide.
JP2002107422A 2002-04-10 2002-04-10 Waste water treatment method using iron powder Pending JP2003300083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002107422A JP2003300083A (en) 2002-04-10 2002-04-10 Waste water treatment method using iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002107422A JP2003300083A (en) 2002-04-10 2002-04-10 Waste water treatment method using iron powder

Publications (1)

Publication Number Publication Date
JP2003300083A true JP2003300083A (en) 2003-10-21

Family

ID=29391444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002107422A Pending JP2003300083A (en) 2002-04-10 2002-04-10 Waste water treatment method using iron powder

Country Status (1)

Country Link
JP (1) JP2003300083A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239507A (en) * 2005-03-01 2006-09-14 Kobe Steel Ltd Organic arsenic compound-containing water treatment method and apparatus
JP2011212511A (en) * 2010-03-31 2011-10-27 Sekisui Chem Co Ltd Method and apparatus for treating water to be treated
JP2011251275A (en) * 2010-06-04 2011-12-15 Sekisui Chem Co Ltd Water treatment method and water treatment apparatus used for water treatment method
JP2012115803A (en) * 2010-12-03 2012-06-21 Fuji Xerox Co Ltd Apparatus and method for water treatment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239507A (en) * 2005-03-01 2006-09-14 Kobe Steel Ltd Organic arsenic compound-containing water treatment method and apparatus
JP2011212511A (en) * 2010-03-31 2011-10-27 Sekisui Chem Co Ltd Method and apparatus for treating water to be treated
JP2011251275A (en) * 2010-06-04 2011-12-15 Sekisui Chem Co Ltd Water treatment method and water treatment apparatus used for water treatment method
JP2012115803A (en) * 2010-12-03 2012-06-21 Fuji Xerox Co Ltd Apparatus and method for water treatment

Similar Documents

Publication Publication Date Title
US20110127220A1 (en) Method for Treating Water by Advanced Oxidation and Ballasted Flocculation, and Corresponding Treatment Plant
KR20030062324A (en) Method and apparatus for treatment of water and wastewater
KR101026734B1 (en) Apparatus and method of treating discharge water for re-use
JP2007029826A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
JPH01228599A (en) Two-stage batchwise waste water treatment
CN109574387A (en) A kind of combined technical method handling high concentration hard-degraded organic waste water
JP4997724B2 (en) Organic wastewater treatment method
JP2020058984A (en) Water treatment system and water treatment method
JP2007029825A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
KR100707975B1 (en) Treatment method for livestock waste water including highly concentrated organic materials
CN107840495A (en) A kind of processing method of crude oil electric desalting waste water
JP2003300083A (en) Waste water treatment method using iron powder
KR101646590B1 (en) Method for treating recycle water of wastewater treatment
JP2005199248A (en) Raw water treatment process
KR100368951B1 (en) Method of Treating Highly Concentrated Organic Waste Water using Recycled Steeler&#39;s Dust as Catalysts
JP2001149998A (en) Sludge treating method and sludge treating device
CN110540336A (en) treatment method and application of ammoximation wastewater
JP4166881B2 (en) Wastewater treatment method and apparatus
CN1179895C (en) Sewage purifying treatment method
JPH11319889A (en) Treatment of selenium-containing waste water and device therefor
JP2010162493A (en) Method and device for flocculation and sedimentation treatment of low organic compound concentration wastewater
JP2021074663A (en) Wastewater treatment method and wastewater treatment system
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
JP2008055324A (en) Sewage cleaning tank
JP2016163863A (en) Waste liquid treatment method, and waste liquid treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040220

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20050318

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050325

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050527