JP2001286866A - Purifying method of water containing soluble organic matters and trace harmful substance and device thereof - Google Patents

Purifying method of water containing soluble organic matters and trace harmful substance and device thereof

Info

Publication number
JP2001286866A
JP2001286866A JP2000029570A JP2000029570A JP2001286866A JP 2001286866 A JP2001286866 A JP 2001286866A JP 2000029570 A JP2000029570 A JP 2000029570A JP 2000029570 A JP2000029570 A JP 2000029570A JP 2001286866 A JP2001286866 A JP 2001286866A
Authority
JP
Japan
Prior art keywords
oxide
titanium
water
metal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000029570A
Other languages
Japanese (ja)
Other versions
JP4429451B2 (en
Inventor
Takaaki Maekawa
孝昭 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000029570A priority Critical patent/JP4429451B2/en
Publication of JP2001286866A publication Critical patent/JP2001286866A/en
Application granted granted Critical
Publication of JP4429451B2 publication Critical patent/JP4429451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46175Electrical pulses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To provide a method for decomposing and purifying harmful substances in various waste water by oxidation or reduction. SOLUTION: Liquid mixed fine particles of titanium oxide, cobalt oxide, tin oxide, iridium oxide, nickel oxide, iron oxide, or vanadium oxide or metallic fine particles of titanium, cobalt, nickel, silver, or gold or these mixture with the same kind of metallic salt solution is coated on a surface of ceramics consisting essentially of feldspar or silicon, titanium, iron, or stainless steel, and is dried, then sintered at 500-1500 deg.C temperature range, thus a produced positive electrode consisting of the metal oxide, metal, or these mixture, and a negative electrode consisting of platinum, titanium or stainless steel are arranged to face each other to form a radical generation part. Waste water is made to continuously flown between both the electrodes facing each other, and pulse discharge is generated between both the electrodes, and the organic matters dissolved in water and the intermediate products are oxidized or reduced and decomposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタン発酵消化
液、生活排水、下水、上水、養殖池水、活性汚泥法排
水、食品工業廃水などの浄化方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for purifying methane fermentation digested liquor, domestic wastewater, sewage, tap water, aquaculture pond water, activated sludge wastewater, food industry wastewater, and the like.

【0002】[0002]

【従来の技術】酸素ラジカルやヒドロキシラジカルを発
生する方法として、オゾンの送入、超音波や電磁超音波
の照射がある。また、オゾンとチタンによる光触媒反応
を用いる方法が開発されているが、入力電力が大きい割
にラジカルの発生量が少なく、有害物質の分解効率が低
く、装置コストも割高となる。またオゾンは、臭素やマ
ンガンが多い海水では有効とされているが、真水では有
効でない。
2. Description of the Related Art As a method for generating oxygen radicals and hydroxyl radicals, there are feeding of ozone and irradiation of ultrasonic waves or electromagnetic ultrasonic waves. Although a method using a photocatalytic reaction of ozone and titanium has been developed, the amount of generated radicals is small in spite of the large input power, the efficiency of decomposing harmful substances is low, and the cost of equipment is relatively high. Also, ozone is effective in seawater rich in bromine and manganese, but not in fresh water.

【0003】またコバルトやマンガンなどの遷移金属と
過酸化水素の併用が着目されている。この方法は、ラジ
カル発生効率がオゾンに比べて高いことが知られている
が、過酸化水素が生物に対する変異性を有しているた
め、食品添加にも使用が禁止されるほどなので、取り扱
い難しく、流出口での過酸化水素の最終処理が必要とな
る。
Attention has been paid to the combined use of transition metals such as cobalt and manganese with hydrogen peroxide. This method is known to have a higher radical generation efficiency than ozone, but it is difficult to handle because hydrogen peroxide has mutability to organisms, so it is prohibited to use it for food addition. , Final treatment of hydrogen peroxide at the outlet is required.

【0004】光触媒法は、酸化チタン、酸化スズ、酸化
ルビジウム、白金などの微粒子で構成される素材の表面
に存在する空洞に電子が進入すると、酸素ラジカルやヒ
ドロキシルラジカルが10μs〜100μs の寿命で
発生することが知られている(特願平11−68862
号の明細書参照。以下、先願明細書という。)。このラ
ジカルは水中に含まれている炭素源、窒素源を含む有機
系物質や芳香族の難分解性物質を酸化分解させることが
知られている。
In the photocatalytic method, when electrons enter a cavity existing on the surface of a material composed of fine particles such as titanium oxide, tin oxide, rubidium oxide, and platinum, oxygen radicals and hydroxyl radicals are generated with a lifetime of 10 to 100 μs. (Japanese Patent Application No. Hei 11-68862)
See the description of the issue. Hereinafter, this is referred to as the prior application specification. ). It is known that these radicals oxidize and decompose organic substances and aromatic hardly decomposable substances containing a carbon source and a nitrogen source contained in water.

【0005】先願明細書には、金属酸化物表面に発生す
る酸素ラジカル及びヒドロキシラジカルを効率よく発生
させ、より永く持続させるには、電極間に印加する電場
について特定の条件が存在すること及び廃水と金属酸化
物表面との接触時間を長くする必要があること、排水中
に浮遊性懸濁物が多量に含まれている場合には、超音波
発信による電極面洗浄が必要であること、及びラジカル
の発生には、電圧、電流、電場周波数が酸化金属面や金
属表面の電子移動に左右されることが示されている。
[0005] In the specification of the prior application, in order to efficiently generate oxygen radicals and hydroxyl radicals generated on the surface of a metal oxide and maintain the radicals for a longer time, there are specific conditions for an electric field applied between the electrodes. That the contact time between the wastewater and the metal oxide surface needs to be lengthened, and that if the wastewater contains a large amount of suspended solids, it is necessary to clean the electrode surface by ultrasonic transmission, It has been shown that the voltage, current, and electric field frequency of the generation of radicals depend on the electron transfer on the metal oxide surface and the metal surface.

【0006】[0006]

【発明が解決しようとする課題】先願明細書に記載され
た発明には、スーパーオキシドラジカルの発生が高周波
域で不足し、低周波域で過剰となること、さらにイオン
を多量に含む廃水処理では電流が不安定であるなどの問
題があり、また消費電力の面から低周波―低電流、高周
波―微少電流の組み合わせにおける処理方法の確立と、
原水の電気抵抗が処理中に変化する時、電圧パルスの印
加の安定化をという課題があった。
SUMMARY OF THE INVENTION The invention described in the specification of the prior application discloses that generation of superoxide radical is insufficient in a high frequency range and excessive in a low frequency range, and furthermore, wastewater treatment containing a large amount of ions. There are problems such as unstable currents, and from the viewpoint of power consumption, the establishment of processing methods in the combination of low frequency-low current, high frequency-minute current,
When the electric resistance of raw water changes during processing, there is a problem of stabilizing the application of a voltage pulse.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、請求項1の発明は、長石やケイ素を主体
とするセラミックスの表面に酸化チタン、酸化コバル
ト、酸化スズ、酸化イリジュウム、酸化ニッケル、酸化
鉄や酸化バナジュウムの微粒子又はチタン、コバルト、
ニッケル、銀、金の金属微粒子又はこれらの混合物に、
同一種類の金属塩溶液を混合した液体を塗布し、乾燥処
理後500℃〜1500℃の温度域で焼結した前記金属
酸化物又は金属又はこれらの混合物を正極電極とし、白
金、又はチタン、又は不銹鋼を陰極とする電極を陽極に
対向するように配設して、これらをラジカル発生部と
し、この対向する電極の両極間に廃水を連続的に流し、
両極間に電圧0.2kV/cm〜20kV/cm、電流
0.1μA/cm2〜10mA/cm2、周波数5Hz〜
50MHzの条件下でパルス放電をさせ、水の部分分解
によってラジカルを発生させ、水中に溶存する有機物や
その中間生成物を酸化・還元分解させることを特徴とす
る水の浄化方法であり、請求項2の発明は、請求項1の
発明の長石やケイ素を主体とするセラミックスの替わり
にチタン、鉄、不銹鋼を用いた水の浄化方法であり、請
求項3の発明は、請求項1の発明の電極間にパルス放電
させる替わりに、両極間に電圧10V/cm〜500V
/cm、電流0.1mA/cm2〜100mA/cm2
直流を流すことを特徴とする水の浄化方法であり、請求
項4の発明は、請求項3の発明の長石やケイ素を主体と
するセラミックスの替わりにチタン、鉄、不銹鋼を用い
た水の浄化方法である。
According to the present invention, in order to solve the above-mentioned problems, the invention according to claim 1 is directed to a method for producing titanium oxide, cobalt oxide, tin oxide and iridium oxide on the surface of a ceramic mainly composed of feldspar or silicon. , Nickel oxide, fine particles of iron oxide or vanadium oxide or titanium, cobalt,
Nickel, silver, gold metal fine particles or a mixture thereof,
A liquid in which the same kind of metal salt solution is mixed is applied, and after the drying treatment, the metal oxide or metal or a mixture thereof sintered in a temperature range of 500 ° C to 1500 ° C is used as a positive electrode, and platinum, or titanium, or An electrode having stainless steel as a cathode is disposed so as to face the anode, these are used as radical generators, and wastewater is continuously flowed between both electrodes of the facing electrode.
Voltage between both electrodes: 0.2 kV / cm to 20 kV / cm, current: 0.1 μA / cm 2 to 10 mA / cm 2 , frequency: 5 Hz to
A method for purifying water, comprising: performing pulse discharge under a condition of 50 MHz, generating radicals by partial decomposition of water, and oxidatively and reductively decomposing organic substances and intermediate products dissolved in the water. The invention of claim 2 is a method of purifying water using titanium, iron, or stainless steel instead of the ceramic mainly composed of feldspar or silicon of the invention of claim 1, and the invention of claim 3 is of the invention of claim 1 Instead of pulse discharge between electrodes, voltage between 10V / cm-500V between both electrodes
/ Cm, a method for purifying water, characterized in that applying a direct current 0.1mA / cm 2 ~100mA / cm 2 , the invention of claim 4 includes a main feldspar or silicon in the third aspect of the present invention This is a water purification method that uses titanium, iron, and stainless steel instead of ceramics.

【0008】請求項5の発明は、請求項1、2、3、4
の発明を実施するための水の浄化装置であり、請求項6
の発明は、前記正極は、金属酸化物を塗布、焼結する際
に、2mm〜100mm間隔の網目状に白金又は金の細
線を張り付け、これらの網目状の金属が金属酸化物の表
面に埋設されるように配設され、該網目状の金属の端線
にチタン、銅、不銹鋼からなる正極端子を接続し、該正
極端子に電源から導かれる正の電圧が確実に付加される
ことを特徴とし、請求項7の発明は、前記正極電極に対
向する陰極側に10μm〜1mmの厚さのポーラスセラ
ミックス膜又は0.1〜100μmのフッ素樹脂膜、硬
質ポリエチレン膜、フッ素系樹脂膜を溶着又は塗布した
電極を配設し、安定したラジカル発生によって廃水中の
有機物やその中間生成物を酸化・還元分解させることを
特徴とし、請求項8の発明は、前記正極電極を中心線に
対し全頂角5°〜40°の角度からなる円筒また円錐台
の構造とし、この円筒内側面と外側面は前記酸化金属粉
末、これと同一の金属粉末又はこれらの混合物及び同一
金属塩からなる混合液を塗布、焼結した金属面で構成
し、円筒状円錐台の中心部を白金、チタン、不銹鋼から
なる丸棒又は角棒状の陰極を配設し、さらにこの円筒状
円錐台の外側をチタン、ステンレス等の金属容器からな
る外套容器によって密閉し、該外套容器を廃水の流入口
と流出口及び発生ガス流出口に配設して陰極を構成し、
かつ円筒状円錐台の内側面及び外側面をラジカルの発生
部とし、有機廃水を円筒状円錐台の内側の直径の大きい
な部分から送入し、直径の小さな部分に出て、再度円筒
状円錐台の外側部を内側部と逆方向に流れ、発生するラ
ジカルによって廃水を酸化・還元処理する構造を持つこ
とを特徴とし、請求項9の発明は、前記正極電極を鉛直
面に対して2.5°〜20°の角度に傾けた平板とし、
平板の厚さ方向に対して直角に位置する2つの平板を前
記酸化金属粉末又は金属粉末又はこれらの混合物及び同
一金属塩からなる混合液を両面に塗布して、焼結した金
属面で構成し、これを2枚用いて金属面を面対称となる
ように配設し、さらに2枚の平板の酸化金属面でない側
面はチタン又は不銹鋼又は同一金属面を片側に有する平
板で接合し、陽極の電圧が均一になるように角錐台に構
成し、角錐台の中心である金属面と面対称の位置にチタ
ン板、不銹鋼板、白金線の網又は白金丸棒からなる陰極
電極並びに角錐台の外側をチタン、ステンレス容器で密
閉して外套容器を構成し、該外套容器を廃水の流入口、
流出口及び発生ガス流出口に配設して、陰極を構成し
て、金属酸化物を塗布した2枚の平板の内側面及び外側
面をラジカルの発生部とし、有機系廃水を角錐台の内側
の直径又は長さの大きな部分から送入し、直径又は長さ
の小さい部分に出た廃水は再度角錐台の外側部を内側部
と逆方向に流れる間に、発生するラジカルによって含ま
れる有機物や有害物質を酸化・還元分解処理する構造を
有することを特徴とし、請求項10は、前記正極電極の
円筒状円錐台を2段以上重ね、相互の円錐台の間に不銹
鋼又はチタンで構成する円筒状陰極を交互に配設し、さ
らに全体を不銹鋼又はチタンからなる外套容器で密閉
し、該外套容器を廃水の流入口、流出口及びガスの流出
口を配設して、陰極を構成して、廃水は酸化金属面を正
極電極、不銹鋼又はチタンを陰極とするラジカル発生電
極をセル構造上に配設できるようにして発生するラジカ
ルによって廃水に含まれる有機物や有害物質を酸化・還
元分解処理することを特徴とし、請求項11の発明は、
前記正極電極側の筒状角錐台を2段以上重ね、角錐台の
間に不銹鋼又はチタンで構成する筒状角錐台陰極を交互
に配置し、さらに不銹鋼又はチタンで構成する外套容器
で全体を密閉し、該外套容器を廃水の流入口、流出口及
びガスの流出口を配設して、陰極を構成し、酸化金属面
を正極電極、不銹鋼又はチタンを陰極とするラジカル発
生電極をセル構造状に配設できることを特徴とする発生
するラジカルによって廃水を酸化・還元分解処理するこ
とを特徴とする水の浄化装置である。
[0008] The invention of claim 5 is based on claims 1, 2, 3, 4
An apparatus for purifying water for carrying out the invention of claim 6, wherein
The invention is characterized in that, when applying and sintering a metal oxide, a platinum or gold fine wire is attached to the positive electrode in a mesh shape at intervals of 2 mm to 100 mm, and these mesh metals are embedded in the surface of the metal oxide. A positive terminal made of titanium, copper, stainless steel is connected to the end of the mesh-like metal, and a positive voltage derived from a power supply is reliably applied to the positive terminal. The invention according to claim 7 is characterized in that a porous ceramic film having a thickness of 10 μm to 1 mm or a fluororesin film of 0.1 to 100 μm, a hard polyethylene film, or a fluororesin film is welded to the cathode side facing the positive electrode. The coated electrode is disposed to oxidize / reduce and decompose organic substances and intermediate products thereof in wastewater by stable radical generation. Angle 5 ° -4 A cylindrical or frusto-conical structure with an angle of °, the inner and outer surfaces of the cylinder were coated with the metal oxide powder, the same metal powder or a mixture of these mixtures and the same metal salt, and were sintered. It is composed of a metal surface, and the center of the cylindrical truncated cone is provided with a round or square rod-shaped cathode made of platinum, titanium, or stainless steel, and the outside of the cylindrical truncated cone is formed of a metal container such as titanium or stainless steel. Sealed by a mantle container, the mantle container is disposed at the inlet and outlet of the wastewater and the generated gas outlet to constitute a cathode,
In addition, the inner and outer surfaces of the cylindrical truncated cone are used as radical generating parts, and organic wastewater is fed into the cylindrical truncated cone from the large diameter portion, exits to the small diameter portion, and re-enters the cylindrical cone. The invention according to claim 9 is characterized in that it has a structure in which wastewater is oxidized and reduced by the radicals generated by flowing the outer part of the table in the opposite direction to the inner part, and the positive electrode is placed on a vertical surface with respect to a vertical surface. With a flat plate inclined at an angle of 5 ° to 20 °,
The two flat plates positioned at right angles to the thickness direction of the flat plate are formed of a metal surface obtained by applying the mixed solution comprising the metal oxide powder or the metal powder or a mixture thereof and the same metal salt on both surfaces, and sintering the metal plate. The two metal plates are arranged so that the metal surfaces are plane-symmetric, and the two non-metallic side surfaces of the two flat plates are joined by titanium or stainless steel or a flat plate having the same metal surface on one side. A truncated pyramid so that the voltage becomes uniform Is sealed with a titanium, stainless steel container to form a mantle container, the mantle container is an inlet for wastewater,
Disposed at the outlet and the generated gas outlet to form a cathode, the inner and outer surfaces of the two flat plates coated with metal oxide are used as radical generating parts, and the organic wastewater is placed inside the truncated pyramid. The wastewater introduced from the large diameter or length portion of the wastewater and discharged into the small diameter or length portion flows again through the outer portion of the truncated pyramid in the opposite direction to the inner portion. Claim 10 is characterized in that it has a structure for oxidizing and reducing decomposition of harmful substances, wherein a cylindrical truncated cone of the positive electrode is stacked in two or more stages, and a cylinder formed of stainless steel or titanium between the truncated cones. The cathodes are alternately arranged, and the whole is hermetically sealed with a jacket made of stainless steel or titanium, and the jacket is provided with an inlet for wastewater, an outlet, and an outlet for gas to constitute a cathode. The wastewater is treated with a metal oxide surface as a positive electrode, stainless steel or stainless steel. Down was characterized by oxidation and reduction decomposing organic matter and toxic substances contained in the waste water by radicals generated as a radical-generating electrode can be disposed on the cell structure of the cathode, the invention of claim 11,
Two or more cylindrical truncated pyramids on the side of the positive electrode are overlapped, cylindrical truncated pyramid cathodes made of stainless steel or titanium are alternately arranged between the truncated pyramids, and the whole is hermetically sealed with a jacket made of stainless steel or titanium. The mantle vessel is provided with an inlet, an outlet, and a gas outlet of the wastewater to constitute a cathode, and a radical generating electrode having a metal oxide surface as a positive electrode and stainless steel or titanium as a cathode has a cell structure. A water purifying apparatus characterized in that waste water is subjected to oxidation and reductive decomposition treatment by generated radicals, which can be disposed in the water.

【0009】請求項12の発明は、前記コバルト、金、
ニッケル、チタンの金属微粒子及び同一金属塩の混合液
で焼成した金属面をもつ正極電極及び、チタン又は白金
で構成する陰極電極からなるラジカル発生部への送入水
中に0.1mg/l〜1000mg/lの濃度範囲で過
酸化水素を注入することを特徴とする下水道処理水、水
道水原水又は水道水中間処理水、養殖場の用廃水、及び
各種生物的処理水に含まれる外因性内分泌攪乱化学物質
の酸化・還元分解処理を行うことを特徴とする水の浄化
方法であり、請求項13の発明は、前記正極並びに陰極
電極を構成する電極構造の最上縁部の空隙が10%〜3
0%小さくなるように突起状とし、この部分の放電監視
が可能となるように収納した水の浄化装置内に400n
m〜470nmの波長の蛍光検出器の配設、並びに発生
するガスの排出口までの配管又は両電極の直上の空間に
水素ガス検出器を配設し、蛍光の検出によって電圧を制
御し、水素の検出によって電流を制御することが可能と
なるように発振器への信号のフィードバックを自動又は
手動によって行うことを特徴とし、請求項14の発明
は、前記正極並びに陰電極においてパルス波を用いず直
流電圧を流す電極構成を有するものにおいて、H2ガス
の濃度変化のモニターによって電流の大きさを制御する
ことが可能となるように直流電源部への信号のフィード
バックを自動又は手動によって行うことを特徴とする水
の浄化装置である。 〔発明の詳細な説明〕
A twelfth aspect of the present invention relates to the above-mentioned cobalt, gold,
0.1 mg / l to 1000 mg in the water to be fed into the radical generating part consisting of a positive electrode having a metal surface fired with a mixed solution of nickel and titanium metal fine particles and the same metal salt and a cathode electrode composed of titanium or platinum. / L of hydrogen peroxide in a concentration range of 1 / l, extrinsic endocrine disruption contained in sewage treated water, tap water raw water or tap water intermediate treated water, aquaculture wastewater, and various biologically treated waters A method for purifying water, comprising performing oxidation / reduction decomposition treatment of a chemical substance. The invention according to claim 13, wherein a gap at the uppermost edge of an electrode structure constituting the positive electrode and the cathode electrode is 10% to 3%.
400 n in a water purifying device housed in a protruding shape so as to be 0% smaller and housed so as to enable discharge monitoring of this portion.
A fluorescence detector having a wavelength of m to 470 nm is provided, and a hydrogen gas detector is provided in a pipe extending to a discharge port of generated gas or in a space immediately above both electrodes. The feedback of the signal to the oscillator is performed automatically or manually so that the current can be controlled by the detection of the current, and the invention according to claim 14 is characterized in that the positive electrode and the negative electrode use a direct current without using a pulse wave. In a device having an electrode configuration for passing a voltage, feedback of a signal to a DC power supply unit is automatically or manually performed so that the magnitude of current can be controlled by monitoring a change in concentration of H 2 gas. It is a water purification device. [Detailed description of the invention]

【0010】[0010]

【発明の実施の形態】まず、本発明の概要を以下に述べ
る。本発明者は、先願明細書の発明に検討を加え、パル
ス電圧印加に対して周波数と電圧との関係を遷移金属に
ついて実験的に調べて行った結果、低周波、高周波とも
安定した電場処理が可能な金属を検討し、Ti、V、C
r、Mn、Fe、Ni、Cu、Zn、Rb、 St、Z
r、Ru、Sn、W、Ir、Pt、Au、Pb、Co及
びこれらの酸化物が有効であることを見いだした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the outline of the present invention will be described below. The present inventor studied the invention of the specification of the prior application and examined the relationship between frequency and voltage with respect to pulse voltage application experimentally on transition metals. Consider possible metals, Ti, V, C
r, Mn, Fe, Ni, Cu, Zn, Rb, St, Z
It has been found that r, Ru, Sn, W, Ir, Pt, Au, Pb, Co and oxides thereof are effective.

【0011】用水や水道原水など金属溶解が生じてはな
らないことや酸化塩の耐久性を考慮すると、前記金属に
その種類が絞られてくる。さらに、これらの金属を詳し
く検討すると、共通性は遷移金属及びその酸化物である
ということであり、これらのもつ原子の電子準移がラジ
カル発生に極めて強い相関を持つことが分かった。これ
らの金属及び金属酸化物にプラズマ放電やコロナ放電以
下の電子照射を行い、ラジカル捕捉剤を用いて電子スピ
ン共鳴装置で、発生ラジカルの大きさと化学構造を検討
したところヒドロキシラジカル、スーパオキシドラジカ
ルやジフェニールーパラーピクリルヒドラル等のいわゆ
る活性酸素やフリーラジカルが発生することを確認でき
た。
In view of the fact that metal dissolution such as service water or raw tap water must not occur and the durability of oxide salts, the types of metals are narrowed down. Further examination of these metals in detail shows that the commonalities are transition metals and their oxides, and that the electron quasi-transfer of these atoms has a very strong correlation with radical generation. These metals and metal oxides were subjected to electron irradiation below plasma discharge or corona discharge, and the size and chemical structure of the generated radicals were examined using an electron spin resonance apparatus with a radical scavenger. It was confirmed that so-called active oxygens and free radicals such as diphenyl-para-picryl hydral were generated.

【0012】さらに直流から50MHzまでのパルス波
について純水を用いて電圧を0.2kV/cm〜20k
V/cmまで変化させて検討した結果、直流ではスーパ
オキシドラジカルが低電圧、低電流(0.1mA/cm
2〜100mA/cm2)で効率良く発生した。これは低
周波領域5Hz〜10kHzの周波数領域でアンモニア
やポリフェノールの酸化分解が卓越していることに一致
している。また5kHz〜50MHzでは電極間の電子
移動速度とイオン移動速度の関係を計算したところ、約
1μs以下のパルス照射でイオン移動を伴わないことが
分かり、この領域、即ち1MHz以上では、どのような
電気伝導度の廃水でもパルス電圧の印加は安定すること
が分かった。特にこの領域では電流密度0.1mA/c
2 〜10mA/cm2、電圧0.2kV/cm〜20
kV/cmの範囲でヒドロキシルラジカルが卓越し、高
電圧ほどヒドロキシルラジカル量が多くなる傾向があっ
た。
Further, for a pulse wave from DC to 50 MHz, the voltage is increased from 0.2 kV / cm to 20 k using pure water.
As a result, the superoxide radical has a low voltage and a low current (0.1 mA / cm
2 to 100 mA / cm 2 ). This is consistent with the fact that the oxidative decomposition of ammonia and polyphenol is excellent in the low frequency range of 5 Hz to 10 kHz. Also, when the relationship between the electron transfer speed and the ion transfer speed between the electrodes was calculated in the range of 5 kHz to 50 MHz, it was found that the ion irradiation was not accompanied by pulse irradiation of about 1 μs or less. It was found that the application of the pulse voltage was stable even in the wastewater having conductivity. Especially in this region, the current density is 0.1 mA / c.
m 2 to 10 mA / cm 2 , voltage 0.2 kV / cm to 20
In the range of kV / cm, hydroxyl radicals were dominant, and the higher the voltage, the greater the amount of hydroxyl radicals.

【0013】また、ラジカル発生に関しては、ストリー
マ放電といわれるH2ガスが僅かに発生する領域で 急激
に電流が低下するのでこの電圧の変化から、電極部の最
適電圧を周波数に応じて選定することができ、安定した
電場照射制御技術を確立した。直流電圧10〜80V、
電流密度0.1mA/cm2〜100mA/cm2の間で
は上記金属やその酸化物のスーパオキシドラジカルの発
生は非常に安定した。超純水では2.07V付近以上で
ラジカルの発生が見られた。しかしながら、通常のイオ
ンを含む場合には約5倍以上の電圧を必要とし、若干の
水素の発生を伴うストリーマ放電の維持が操作上必要で
あることを確認した。さらにこの現象は5Hz〜1MH
zでも電圧の選択によって可能であったが、パルス放電
の間隔をイオン移動速度の5〜20倍ほど保持する必要
が生じ、パルス発信器と電極との関係を厳密に設計・計
算する必要があることと、手動操作及び自動制御の方法
をストリーマ放電の特性から解決した。
Regarding radical generation, the current drops rapidly in a region called H 2 gas, which is called streamer discharge. Therefore, from this voltage change, the optimum voltage of the electrode portion should be selected according to the frequency. And established a stable electric field irradiation control technology. DC voltage 10-80V,
Generation of superoxide radical of the metal or its oxide between the current density 0.1mA / cm 2 ~100mA / cm 2 is very stable. In ultrapure water, generation of radicals was observed at around 2.07 V or more. However, when normal ions were contained, a voltage about 5 times or more was required, and it was confirmed that operation required to maintain streamer discharge accompanied by generation of some hydrogen. Furthermore, this phenomenon is 5Hz-1MH
Although it was possible by selecting the voltage for z as well, it was necessary to maintain the interval between pulse discharges about 5 to 20 times the ion moving speed, and it was necessary to strictly design and calculate the relationship between the pulse generator and the electrodes. And the method of manual operation and automatic control were solved from the characteristics of streamer discharge.

【0014】適正なパルス周波数の選定は正極電極面金
属のパルスによる溶解性を検討しておく必要があり、上
記主な金属について検討したところ高電圧、高周波領域
では、金属表面の若干の電蝕がみられる条件があるの
で、金属酸化物を不銹鋼の表面で焼結したものと、セラ
ミックスの表面に焼結したものとでは、金属の溶出量が
異なったので、耐久性、互換性、維持の面でセラミック
スをコアにした参加金属表面から構成される正極電極が
有用である。なお、セラミックスは、広義には、非金属
無機材料からなるものをいい、例えば、ガラスも含まれ
る。
In order to select an appropriate pulse frequency, it is necessary to consider the solubility of the metal on the positive electrode surface by the pulse. Because of the conditions under which the metal oxides are sintered on the surface of stainless steel and those sintered on the surface of ceramics, the amount of metal eluted is different. Positive electrodes composed of a participating metal surface with a ceramic core as its surface are useful. In a broad sense, ceramics include those made of nonmetallic inorganic materials, and include, for example, glass.

【0015】本発明の実施の形態を図に従って、詳細に
説明する。図2は、請求項1、2、3、4の発明の電極
部の正極部と陰極部とを対向させて配設した時の断面を
示したものである。図2の1は正極であって2で示す流
水方向に延びた溝を有している。正極部1は、長石やケ
イ素を主体とするセラミックス(ガラスを含む非金属無
機材料)の表面に酸化チタン、酸化コバルト、酸化ス
ズ、酸化イリジュウム、酸化ニッケル、酸化鉄や酸化バ
ナジュウムの微粒子、又はチタン、コバルト、ニッケ
ル、銀、金の金属微粒子又はこれらの混合物に、同一種
類の金属塩溶液を混合した液体を塗布し、乾燥処理後5
00℃〜1500℃の温度域で焼結した前記金属酸化物
又は金属又はこれらの混合物から形成されている。陰極
部3は、白金、又はチタン、又は不銹鋼から形成されて
いる。
An embodiment of the present invention will be described in detail with reference to the drawings. FIG. 2 shows a cross section when the positive electrode part and the cathode part of the electrode part according to the first, second, third, and fourth aspects of the invention are arranged to face each other. Reference numeral 1 in FIG. 2 denotes a positive electrode having a groove 2 extending in the flowing water direction. The positive electrode 1 is made of fine particles of titanium oxide, cobalt oxide, tin oxide, iridium oxide, nickel oxide, iron oxide or vanadium oxide, or titanium oxide, cobalt oxide, tin oxide, iridium oxide, nickel oxide, iron oxide or vanadium oxide on a surface of ceramic (a nonmetallic inorganic material including glass) mainly composed of feldspar or silicon. , Cobalt, nickel, silver, gold metal fine particles or a mixture thereof is coated with a liquid obtained by mixing the same type of metal salt solution,
It is formed from the above-mentioned metal oxide or metal sintered in the temperature range of 00 ° C to 1500 ° C or a mixture thereof. Cathode unit 3 is formed of platinum, titanium, or stainless steel.

【0016】正極電極1と陰極電極3は対向させて配置
され、これを外部セル4によって包み込んだ構造であ
る。水処理は、処理水を外部セル4の下部(矢印)から
上部に送り、対向する電極双方の天頂角を5°〜40°
に設定することによって、処理水中の汚染物質の大部分
は確実に正極に接触する。処理水は、正極部1に発生し
たラジカルによって、処理水中の汚染物質が効率よく分
解される。また電極部から流出するラジカルも確実に消
滅する。なお、外部セルと正極の電源供給部の配線は、
碍子やポリエチレン樹脂などによって完全な電気的絶縁
がなされる(図示なし)。外部セル4の材質は、アクリ
ル樹脂やポリエチレン樹脂などの高分子樹脂が望まし
い。
The positive electrode 1 and the negative electrode 3 are arranged so as to face each other, and are wrapped in an external cell 4. In the water treatment, the treated water is sent from the lower part (arrow) of the outer cell 4 to the upper part, and the zenith angles of both the opposing electrodes are set to 5 ° to 40 °.
, It is ensured that most of the contaminants in the treated water are in contact with the positive electrode. In the treated water, contaminants in the treated water are efficiently decomposed by radicals generated in the positive electrode section 1. In addition, radicals flowing out of the electrode portion are surely extinguished. The wiring between the external cell and the positive power supply is
Complete electrical insulation is provided by insulators or polyethylene resin (not shown). The material of the outer cell 4 is desirably a polymer resin such as an acrylic resin or a polyethylene resin.

【0017】また、この外部セル4の材質を陰極3の材
質と同じ金属とすることもできるが、正極部と外部セル
との間の電気的絶縁を完全にする必要があり、さらに対
地アースも完全でなければならない。
The material of the external cell 4 can be the same metal as the material of the cathode 3, but it is necessary to complete the electrical insulation between the positive electrode and the external cell. Must be complete.

【0018】この電極部1、3に供給する電源装置から
送られるパルス波又は直流の電気が電極部に負荷される
と、陰極部3の表面に微量の水素ガスの気泡が発生し始
めると、僅かに水素ガスの気泡が上昇し始める。この状
態からさらに水素ガスを上昇させると図1に示すような
電圧の上昇に伴い急激な電流上昇がみられる。さらに電
圧を上昇させると急激に電圧の降下する電圧の範囲があ
る。この電圧が下降する電圧領域ではストリーマ放電が
見られ、蛍光が発生する。この時に最も効率よくラジカ
ルが発生している。
When a pulse wave or direct current electricity sent from a power supply unit supplying the electrodes 1 and 3 is applied to the electrodes, a slight amount of hydrogen gas bubbles start to be generated on the surface of the cathode 3. The bubbles of hydrogen gas begin to rise slightly. When the hydrogen gas is further increased from this state, an abrupt increase in current is observed with an increase in the voltage as shown in FIG. When the voltage is further increased, there is a voltage range in which the voltage drops sharply. Streamer discharge is observed in a voltage region where this voltage decreases, and fluorescence is generated. At this time, radicals are most efficiently generated.

【0019】図3は、ヒドロキシルラジカルを捕捉する
N、N’−ジメチルーPーニトロソアニリン(以下、R
NOと表記する)溶液中における反応を、周波数10k
Hzにおいて、波長440nmにおける吸光度と電力×
時間/電極面積との関係でその反応の状態を示したもの
である。正極電極金属はTi、SnO2、Alを、陰極
電極としてTiを用いたときの例である。Alを正極金
属としたとき、ヒドロキシルラジカルが多量に発生して
いるように見えるが、図4に示すとおり原子吸光分析結
果ではAlはヒドロキシラジカルによって水酸化アルミ
として溶出したものと考えられた。したがって、本発明
では電極材料としてAlを考えないことにした。
FIG. 3 shows N, N'-dimethyl-P-nitrosoaniline (hereinafter referred to as R) for trapping hydroxyl radicals.
The reaction in the solution (expressed as NO) was carried out at a frequency of 10 k.
In Hz, absorbance at 440 nm and power ×
The state of the reaction is shown in relation to time / electrode area. This is an example in which Ti, SnO 2 , and Al are used as the positive electrode metal and Ti is used as the negative electrode. When Al was used as the positive electrode metal, a large amount of hydroxyl radicals appeared to be generated. However, as shown in FIG. 4, the results of atomic absorption analysis indicated that Al was eluted as aluminum hydroxide by the hydroxyl radicals. Therefore, in the present invention, Al was not considered as an electrode material.

【0020】その他の金属は、図4に示すとおり、ヒド
ロキシラジカルによる酸化溶出は非常に少ないので、ラ
ジカル発生用電極として有用である。なお、リンや浮遊
性懸濁粒子の沈降分離には、AlやFeイオンを主とす
る凝集沈殿剤を用いることができるが、これは直流電圧
を印加する電解溶出法においてみられ、公知となってい
る。本発明は、この方法とも完全に異なる原理から成立
していることが、この実験例から分かる。
As shown in FIG. 4, the other metals are very little oxidized and eluted by hydroxyl radicals, and thus are useful as radical generating electrodes. For the sedimentation and separation of phosphorus and suspended suspended particles, an aggregating and precipitating agent mainly containing Al or Fe ions can be used. ing. It can be seen from this experimental example that the present invention is based on a completely different principle from this method.

【0021】図5は直流電圧400V、1000V、1
500Vで電流を0.1Aに制御して、正極をPt、陰
極にTi又はPtを用いた場合のラジカル捕捉剤DMP
Oを用いてスーパーオキシドラジカルの発生を吸光度の
変化として示したもので、金属材料の組み合わせと電圧
によってスーパーオキシドラジカルの発生が異なること
が分かる。また、DMPOラジカル捕捉剤を用いて、電
子スピン共鳴装置によりスーパーオキシドラジカルとヒ
ドロキシラジカルの発生が卓越して発生する傾向を調べ
たところ、遷移金属電極に直流電圧を印加したときには
スーパーオキシドラジカルの発生が卓越し、遷移金属酸
化物電極にパルス波の印加がヒドロキシルラジカルの発
生を卓越させることが分かった。
FIG. 5 shows DC voltages of 400 V, 1000 V, and 1 V.
A radical scavenger DMP in the case of using Pt for the positive electrode and Ti or Pt for the cathode by controlling the current to 0.1 A at 500 V
The generation of superoxide radicals is shown as a change in absorbance using O, and it can be seen that the generation of superoxide radicals differs depending on the combination of metal materials and the voltage. We also investigated the tendency of superoxide radicals and hydroxyl radicals to be generated by an electron spin resonance apparatus using a DMPO radical scavenger. When a DC voltage was applied to the transition metal electrode, superoxide radicals were generated. It was found that application of a pulse wave to the transition metal oxide electrode was superior in generating hydroxyl radicals.

【0022】したがって、酸化型で水に含まれる汚染物
質の分解を促進するときには、前者の遷移金属に直流の
電圧印加を、還元型が必要な時には後者の遷移金属酸化
物にパルス波の電圧印加をさせる水の浄化方法が有効で
ある。しかしながら、正極と陰極との間に汚染水が介在
する時の電気抵抗の調整が必要であることから、酸化物
金属粉末と金属粉末との混合物より電極を作ることがよ
り有効であり、電極はどちらかのラジカルが卓越するこ
とになる。このような電極の特性から、両方のラジカル
のうち、それぞれ卓越した電極を汚濁水の特性に合わせ
て組み合わせをすることになる。
Therefore, when accelerating the decomposition of pollutants contained in water in an oxidized form, a DC voltage is applied to the former transition metal, and a pulse wave voltage is applied to the latter transition metal oxide when a reduced form is required. Water purification method is effective. However, since it is necessary to adjust the electric resistance when contaminated water is interposed between the positive electrode and the cathode, it is more effective to make an electrode from a mixture of an oxide metal powder and a metal powder, and the electrode is Either radical will prevail. From the characteristics of such an electrode, an excellent electrode of both radicals is combined in accordance with the characteristics of polluted water.

【0023】図6は、汚濁水のTi−Ti電極部に30
分間電圧400Vを印加した時の全窒素の除去率を示し
たものである。アンモニアや硝酸が酸化され除去される
ことが分かる。図15(a)に図6の実験で発生したガ
スの組成を示す。ガス組成からこれらの物質が酸化され
ていることが分かる。図15(a)は、硝酸態窒素由来
と考えられるN2Oの発生も見られている。これを減少
させるためには還元型のヒドロキシルラジカルの発生を
誘導する必要がある。そこで、過酸化水素を汚濁水に加
えたところ、N2Oの発生が抑制できた。これはMを記
号で金属とすると、以下の反応が促進され、ヒドロキシ
ルラジカルが過酸化水素より誘導され、ヒドロキシルラ
ジカルの還元作用によってN2Oの発生が抑制されたも
のと考えられる。
FIG. 6 shows that the Ti-Ti electrode portion of the polluted water has 30
It shows the removal rate of total nitrogen when a voltage of 400 V is applied for one minute. It can be seen that ammonia and nitric acid are oxidized and removed. FIG. 15A shows the composition of the gas generated in the experiment of FIG. It can be seen from the gas composition that these substances are oxidized. FIG. 15A also shows generation of N 2 O, which is considered to be derived from nitrate nitrogen. In order to reduce this, it is necessary to induce generation of a reduced hydroxyl radical. Then, when hydrogen peroxide was added to the contaminated water, generation of N 2 O could be suppressed. This is presumably because, when M is a metal, the following reaction was promoted, a hydroxyl radical was derived from hydrogen peroxide, and the generation of N 2 O was suppressed by the reducing action of the hydroxyl radical.

【0024】反応式1 M + N22→ M++ ・OH+OH- 22 + OH- → HOO- +H2O M+ + HOO- → M + HOO・[0024] Scheme 1 M + N 2 O 2 → M + + · OH + OH - H 2 O 2 + OH - → HOO - + H 2 O M + + HOO - → M + HOO ·

【0025】次にパルス放電の安定化について述べる。
電極間に超純水を流して放電させる場合の本発明の実施
の態様の1例の回路図を図7に示す。図7の回路におい
て、5はスライダック、6は高電圧トランス、7は高電
圧ダイオード、8は高電圧抵抗、9は充放電コンデン
サ、10は電極部、11は高電圧プローブ、12は高電
圧オシロスコープをそれぞれ示す。図7の回路では、高
い電圧でもかなり安定した放電が得られる。しかし、汚
濁した水、汽水や海水域のアンモニア除去に対する場
合、対象処理水の電気伝導度が放電中に変化して、安定
した電流が得られない。発信回路側の電圧を一定とする
と電流は汚濁水の電気伝導度と正極側の金属酸化物の電
気伝導度によって変化する。そこで本発明では、正極側
の金属酸化物粉末に同じ金属の粉末と混合することであ
る程度正極側の電気伝導度を調整し電流を安定化するこ
とができる。なお、電流の変化のためにラジカルの発生
量に影響するので、この金属混合法には比率の制約があ
る。このために、安定したストリーマ放電の条件は汚濁
水の電気伝導度変化によって大きく影響される。
Next, stabilization of pulse discharge will be described.
FIG. 7 is a circuit diagram showing an example of an embodiment of the present invention in a case where ultrapure water is caused to flow between the electrodes to cause discharge. In the circuit shown in FIG. 7, 5 is a sliderac, 6 is a high-voltage transformer, 7 is a high-voltage diode, 8 is a high-voltage resistor, 9 is a charge / discharge capacitor, 10 is an electrode section, 11 is a high-voltage probe, and 12 is a high-voltage oscilloscope. Are respectively shown. In the circuit of FIG. 7, a considerably stable discharge can be obtained even at a high voltage. However, in the case of removing polluted water, brackish water or ammonia from seawater, the electric conductivity of the target treated water changes during discharge, and a stable current cannot be obtained. If the voltage on the transmitting circuit side is constant, the current changes depending on the electric conductivity of the polluted water and the electric conductivity of the metal oxide on the positive electrode side. Therefore, in the present invention, by mixing the same metal powder with the metal oxide powder on the positive electrode side, the electric conductivity on the positive electrode side can be adjusted to some extent to stabilize the current. Since the amount of radical generation is affected by a change in current, the ratio of the metal mixing method is limited. For this reason, stable streamer discharge conditions are greatly affected by changes in the electrical conductivity of polluted water.

【0026】放電の安定化のために、本発明では以下の
2点を組み合わせることで、問題を解決した。 1)電圧印加周波数の選定 2)陰電極側の放出電子量の制御
In order to stabilize the discharge, the present invention solves the problem by combining the following two points. 1) Selection of voltage application frequency 2) Control of amount of emitted electrons on the cathode side

【0027】電圧印加周波数の選定の理由は発信器側の
発信特性と汚濁水中のイオンの移動速度との関係の中
で、電子量の制御を実施する考え方である。即ち、パル
スの立ち上がりと立下り時間遅れを考慮する。これは出
力電圧の大きさと周波数に影響される。パルスの与え方
として水に溶解するイオンの移動を律速する1μs以内
の電圧を与える方法がある。また、次のパルスが来る時
間中を電極間を通過する電子の移動速度1x107 m/
sから算出し、最適な電圧の印加と周波数を選定するこ
とになる。図8は10KVパルスの時、パルス発生器の
スルーレート(立ち上がり、又は立下り時間(V/μ
s))から算出されると、パルス休止時間は10μs〜
1msが選択できる。1MHz以上及び10KV−P以
上では電気回路側の制御した安定した印加電流が確保で
きる。
The reason for selecting the voltage application frequency is to control the amount of electrons in relation to the transmission characteristics of the transmitter and the movement speed of ions in the polluted water. That is, the rise and fall time delays of the pulse are considered. This is affected by the magnitude and frequency of the output voltage. As a method of applying a pulse, there is a method of applying a voltage within 1 μs that controls the movement of ions dissolved in water. Also, the moving speed of electrons passing between the electrodes during the time when the next pulse comes is 1 × 10 7 m /
s to determine the optimal voltage application and frequency. FIG. 8 shows the slew rate (rise or fall time (V / μ) of the pulse generator when the pulse is 10 KV.
s)), the pulse pause time is between 10 μs and
1 ms can be selected. At 1 MHz or more and 10 KV-P or more, a stable applied current controlled on the electric circuit side can be secured.

【0028】しかしながら、1MHz以下ではパルス波
の頂上部の時間が1μs以上となり、電極間のイオン移
動を促進して、電流が変化する(実際の汚染水はこのイ
オン移動が増加する傾向が強い)。このために電極間移
動電子量を一定にさせるための電圧制御をパルス発信回
路で行うか、又は電極間の電子移動量のマスキングをす
る。このために請求項6の発明に示すとおり陰極側にポ
ーラスセラミックス膜の焼結や高分子樹脂膜の塗布を施
すことにおいて放電の安定化が可能とする。実際の制御
では高めの電圧から低い電圧へ少しずつ低下させていく
ことで電流を一定にすることができる。
However, at 1 MHz or less, the time at the top of the pulse wave becomes 1 μs or more, which promotes ion transfer between the electrodes and changes the current (actual contaminated water tends to increase this ion transfer). . For this purpose, voltage control for making the amount of electrons moving between the electrodes constant is performed by a pulse transmission circuit, or the amount of electrons transferred between the electrodes is masked. Therefore, the stabilization of the discharge can be achieved by sintering the porous ceramic film or coating the polymer resin film on the cathode side as shown in the invention of claim 6. In actual control, the current can be made constant by gradually decreasing the voltage from a higher voltage to a lower voltage.

【0029】高圧パルス放電では、図2に示すような電
極部において放電部が水の流れ方に対し、長くする場
合、この場合水の放電接触時間を15〜30分とするこ
とになるが、水の浄化に従って入り口部と出口部の水の
電気伝導度が大きくなり、放電の安定性を見ても、放電
不足又は過放電となる。入り口部の電圧が高く、出口付
近は低めの電圧となるように、正極側の電圧の傾斜を与
える必要がある。そこで、セラミックスに金属酸化物の
塗布・焼結した場合、金属酸化面の電気抵抗は比較的大
きくすることができるので、この金属酸化物表面の電圧
を水の入り口部と出口部とでは変えるようにするために
は、電源部の電圧損失を防止すれば良いので、金属酸化
物の表面に2mm〜100mm網目状の白金線又は金線
のネット等を取り付け、金属酸化物の表面にこれが埋設
された状態で焼結する。この金属ネットの端子部と電源
部端子を直接結線する。入り口と出口部の電圧傾斜は数
十ボルトから数百ボルトに達するが、処理する水の電気
伝導度の変化を回分実験より割り出して対応させる。
In the high-pressure pulse discharge, when the discharge portion is made longer in the electrode portion as shown in FIG. 2 with respect to the flow of water, the discharge contact time of water in this case is 15 to 30 minutes. As the water is purified, the electrical conductivity of the water at the entrance and the exit increases, and the discharge becomes insufficient or overdischarged even in view of the discharge stability. It is necessary to give a positive voltage gradient such that the voltage at the entrance is high and the voltage near the exit is low. Therefore, when the metal oxide is applied and sintered on the ceramics, the electric resistance of the metal oxide surface can be made relatively large, so that the voltage of the metal oxide surface is changed between the inlet and the outlet of the water. In order to reduce the voltage loss in the power supply unit, a net of platinum wire or gold wire having a mesh shape of 2 mm to 100 mm is attached to the surface of the metal oxide, and this is buried in the surface of the metal oxide. And sinter it. The terminal of the metal net and the power supply terminal are directly connected. Although the voltage gradient at the inlet and outlet reaches several tens of volts to several hundreds of volts, the change in the electrical conductivity of the water to be treated is determined from batch experiments and taken into account.

【0030】図9は、請求項7、8の発明で開示されて
いる実用的電極部の構造を示し、13は原水流入口、1
4は正極電極部、15は陰極電極部、17は処理水流出
口、18は生成ガス排出ポートを示す。円錐台状及び角
錐台状の場合の全頂角は5o〜40oまでが有用であっ
た。平板を鉛直面に対し2.5〜20 oに傾斜させ、こ
の平板のいずれかを陰極として、正極と対向させること
もできる。図10は金属及び金属酸化物を正極とする角
錐台状の電極部構造を断面図で示したもので、13は原
水流入口、14は正極電極部、15は陰極電極部、16
は外套部(陰極兼用)、17は処理水流出口、18は生
成ガス排出ポート、19は電気絶縁体である。金属及び
金属酸化物からなる正極14を金属性陰極15の外套部
16に入れ、さらに、中心部にチタン板、白金板や白金
棒を置き、これと外套部と結び電極とし、これに水の出
入口をつければ水の浄化装置となる。
FIG. 9 shows the structure of a practical electrode unit disclosed in the seventh and eighth aspects of the present invention.
Reference numeral 4 denotes a positive electrode portion, 15 denotes a cathode electrode portion, 17 denotes a treated water outlet, and 18 denotes a product gas discharge port. The total apex angle in the case of a truncated cone and a truncated pyramid was useful up to 5 ° to 40 ° . The flat plate may be inclined at 2.5 to 20 ° with respect to the vertical plane, and one of the flat plates may be used as a cathode and opposed to the positive electrode. FIG. 10 is a cross-sectional view showing a truncated pyramid-shaped electrode structure having a metal and a metal oxide as a positive electrode, 13 is a raw water inlet, 14 is a positive electrode, 15 is a cathode, and 16 is a cathode.
Denotes a jacket (also used as a cathode), 17 denotes a treated water outlet, 18 denotes a product gas discharge port, and 19 denotes an electric insulator. A positive electrode 14 made of a metal and a metal oxide is placed in a jacket 16 of a metallic cathode 15, and a titanium plate, a platinum plate or a platinum rod is placed at the center, and the electrode is connected to the jacket and used as an electrode. If you add an entrance, it becomes a water purification device.

【0031】図11は請求項9、10の発明に開示され
ているセル型の円錐又は角錐台状の正極電極を同様な形
状をもつ陰極電極を交互に重ね、さらに、処理水がこの
中を1パスで流出するような構造を持たせたもので、1
3は原水流入口、14は正極電極部、15は陰極電極
部、16は外套部(陰極兼用)、17は処理水流出口、
18は生成ガス排出ポートである。廃水によっては入り
口と出口との電気伝導度が極端に変化する場合はこれら
電極の段数を大きくできない制約がある。さらに1段の
場合も正極電極の片面の滞留時間を15分以上に設定で
きない場合がある。実用上は1段ないし2段以上の電極
部を直列、又は並列相互に各々の電極の電圧が異なるよ
うに電力発生部の電圧の調整を必要とする。
FIG. 11 shows a cell-shaped conical or truncated pyramid-shaped positive electrode disclosed in the ninth and tenth aspects of the present invention, in which cathode electrodes having a similar shape are alternately stacked. It has a structure that flows out in one pass.
3 is a raw water inlet, 14 is a positive electrode portion, 15 is a cathode electrode portion, 16 is a jacket (also used as a cathode), 17 is a treated water outlet,
18 is a product gas discharge port. When the electric conductivity between the entrance and the exit changes extremely depending on the wastewater, there is a restriction that the number of these electrodes cannot be increased. Furthermore, even in the case of one stage, the residence time on one side of the positive electrode may not be set to 15 minutes or more. Practically, it is necessary to adjust the voltage of the power generation unit so that the voltage of each electrode differs in series or in parallel with one or more stages of electrode units.

【0032】図12は、外因性内分泌撹乱化学物質を含
む各種処理水や用水の処理装置で、20は攪拌機、21
は原水槽、22は過酸化水素タンク、23は定量ポンプ
(P 1)、24は送水ポンプ(P2)、25は電場処理装
置、26は沈殿槽、27は処理水流出口、28は沈殿物
排出口である。金属溶出が少ないコバルト、ニッケル、
金、銀、チタンを電極として用いる。こちらは過酸化水
素に対しヒドロキシラジカルの発生がそれ自身にある
(上記反応式1参照)ので、この電極に入る前に過酸化
水素を0.1mg/L〜1000mg/Lを流入させ
る。これに請求項1、2、3、4の発明に開示されてい
るパルス源や直流電圧を加え、ヒドロキシルラジカルの
発生度を増加させて、その還元力により、ジフェニール
フタル酸、ノニルフェノールないし難分解性物質でかつ
環境ホルモンとして特定されている物質の酸化分解や用
水に含まれる菌やカビの殺菌を行う。図15(b)にH
22の添加効果を示したがAgを用いた場合の添加効果
をアンモニア分解について図15(c)に示す。
FIG. 12 contains exogenous endocrine disrupting chemicals.
20 is a treatment device for treating various kinds of treated water and water, 20 is a stirrer, 21
Is a raw water tank, 22 is a hydrogen peroxide tank, 23 is a metering pump
(P 1) And 24 are water pumps (PTwo), 25 are electric field processing equipment
26, sedimentation tank, 27 is treated water outlet, 28 is sediment
It is an outlet. Cobalt, nickel with low metal elution,
Gold, silver, and titanium are used as electrodes. This is peroxide water
Hydroxyl radical is generated by itself
(Refer to the above reaction formula 1.)
Hydrogen is introduced at a concentration of 0.1 mg / L to 1000 mg / L.
You. This is disclosed in the invention of claims 1, 2, 3, and 4.
Pulse source or DC voltage to
Increasing the occurrence, diphenyl
Phthalic acid, nonylphenol or a hardly decomposable substance, and
Oxidative degradation and use of substances identified as environmental hormones
Sterilizes fungi and mold contained in water. FIG.
TwoOTwoShowed the effect of addition, but the effect of addition when Ag was used
Is shown in FIG. 15C for ammonia decomposition.

【0033】本発明では、水の電気伝導度の変化が処理
中に大きい汚水や水については安定した放電及び定電流
の確保が困難である場合がある。これを克服するための
本発明の実施の態様を図13に示す。図13は、高感度
CCDカメラ29、高電圧パルス発生装置30、から構
成され、電極部の最上縁部の間隙32を電極間間隙
(d)31より10%〜30%狭くなるような構造とす
るために突起状とする。さらにこの部分の液体放電監視
が可能となるように蛍光の検出のため400〜470n
mのフィルターを施した光学的システムの焦点部にCC
D検出器を配置し、この電流量から適正印加電圧を発振
器側にフィードバックし、さらにこの電極上部の気相部
又はこれと接続される配管などに赤外式又は半導体型水
素検出器を施し、この濃度と気体流量を発振器にフィー
ドバックし、主に電流の制御を行うことができる。
In the present invention, it may be difficult to ensure stable discharge and constant current for sewage or water whose electrical conductivity changes greatly during treatment. An embodiment of the present invention for overcoming this is shown in FIG. FIG. 13 shows a structure including a high-sensitivity CCD camera 29 and a high-voltage pulse generator 30 such that the gap 32 at the uppermost edge of the electrode portion is narrower by 10% to 30% than the gap (d) 31 between the electrodes. In order to achieve this, it is formed in a projecting shape. Further, 400 to 470 n for detecting fluorescence so that liquid discharge monitoring of this portion is enabled.
m at the focal point of the filtered optical system
A D detector is arranged, an appropriate applied voltage is fed back to the oscillator side from the amount of current, and an infrared or semiconductor type hydrogen detector is applied to a gas phase portion above the electrode or a pipe connected thereto, and the like. The concentration and the gas flow rate are fed back to the oscillator to control mainly the current.

【0034】電極部に突起を施した場合の電流と電圧の
変化を図14に示す。図14において、33は電極突起
部分の放電開始点、34は電極突起部分の放電最小電流
を示す電圧、35は突起部のない電極の放電電流、36
は電極突起部分の放電最小電流を示す電圧の20%増の
電圧、37は電極突起部分の放電最小電流を示す電圧の
20%増の電圧に対応する突起部のない電極の放電電流
を示している。図13に示すように間隙の小さい方が早
めに電流が上昇する。その下降点の値34、36を設定
すると、広い部分の間隙の放電が適正になされることに
なる。この放電では青い放電色が特徴で、プラズマ放電
やコロナ放電の一歩手前のストリーマ放電といわれてい
る状況に類似している。なお、コロナ放電やプラズマ放
電では電極の溶出が大きく、実用に耐えられないことが
判明している。図14の33の点と36の点は狭い側の
突起部分の放電領域であり、35の点、37の点はこれ
に対応した電流と電圧であるので、33の点の電圧でス
トリーマ放電を検出された場合、これにバイアスをかけ
た印加電圧をセットし、空隙の狭い側に電圧を34の点
の位置にシフトさせると広い部分の電極の全体が35の
点の電流でストリーマ放電が行われることになる。間隙
の狭い側のストリーマ放電は強くなるが、電流が低くな
る。このように間隙を狭くした側を設けた電極はストリ
ーマ放電のパイロットの役割を担う。実際には蛍光の検
出感度に依存するので、集光率の高いレンズ口径の大き
い光学系と感度の良いCCDの組み合わせがこの制御の
精度を決めることになる。
FIG. 14 shows changes in current and voltage when a projection is formed on the electrode portion. In FIG. 14, reference numeral 33 denotes a discharge starting point of the electrode protrusion, 34 denotes a voltage indicating the minimum discharge current of the electrode protrusion, 35 denotes a discharge current of the electrode having no protrusion, 36
Indicates a voltage which is 20% higher than the voltage indicating the minimum discharge current of the electrode protrusion, and 37 indicates the discharge current of the electrode without protrusion corresponding to the voltage which is 20% higher than the voltage indicating the minimum discharge current of the electrode protrusion. I have. As shown in FIG. 13, the smaller the gap, the earlier the current rises. When the values 34 and 36 of the descending points are set, the discharge in the gap in the wide portion is properly performed. This discharge is characterized by a blue discharge color, and is similar to a situation called a streamer discharge just before plasma discharge or corona discharge. It has been found that elution of the electrode is large in corona discharge or plasma discharge, and the electrode cannot be practically used. The points 33 and 36 in FIG. 14 are discharge areas of the protruding portion on the narrow side, and the points 35 and 37 are currents and voltages corresponding thereto. If it is detected, a biased applied voltage is set to this, and the voltage is shifted to the position of the point 34 on the narrow side of the gap, so that the entire electrode of the wide part performs streamer discharge with the current of the point 35. Will be The streamer discharge on the narrower side of the gap is stronger, but the current is lower. The electrode provided with the narrowed side plays a role of a streamer discharge pilot. Actually, it depends on the fluorescence detection sensitivity, and therefore, the combination of an optical system having a high light-collecting rate and a large lens aperture and a CCD having high sensitivity determines the accuracy of this control.

【0035】[0035]

【実施例】次に実施例に用に本発明をさらに詳細に説明
する 実施例1 生活廃水中のTOC、T−N、T−Pの除去の効果を示
すために周波数10KHz、繰り返しパルス1KHz、
電圧12kV、電流密度50μA/cm2の発振条件、
電極は正極部酸化チタンーセラミック板、陰極部をチタ
ンとし、電極間間隙1cmとし、この間に1l/min
〜2l/min生活廃水を流し、30分間処理した結果
を図16(a)に表として示す。この表から還元分解、
即ちヒドロキシルラジカルの卓越が見られ、T−Nの除
去率が若干良くなかったがTOC、T−Pの除去率は高
かった。また流量の増加による除去率の低下があまり見
られなかった。
EXAMPLES The present invention will now be described in more detail by way of examples. Example 1 In order to show the effect of removing TOC, TN and TP from domestic wastewater, a frequency of 10 KHz, a repetition pulse of 1 KHz,
Oscillation conditions of a voltage of 12 kV and a current density of 50 μA / cm 2 ,
The electrode is made of a positive electrode part titanium oxide-ceramic plate, the cathode part is made of titanium, and the gap between the electrodes is made 1 cm.
FIG. 16 (a) shows a table of the results obtained by flowing domestic wastewater of 22 l / min and treating for 30 minutes. From this table, reductive decomposition,
That is, hydroxyl radical excellence was observed, and although the removal rate of TN was slightly poor, the removal rate of TOC and TP was high. Also, the removal rate did not decrease much due to the increase in the flow rate.

【0036】実施例2 メタン消化脱離液はT−Nのうち、大部分がアンモニア
態窒素を占めており、スーパオキシドラジカルをさせて
酸化分解をすることが望ましく、また、TOCも高い。
一方、T−P濃度は余り大きくないので、酸化分解型を
狙うことと、浮遊性懸濁物質による電気的減衰を防止す
るために直流電圧250Vと大きめの電流密度4.0m
A/cm2を与えることを狙い、スーパオキシドラジカ
ルの発生が強い正電極として酸化スズーチタン板を用
い、陰極にはチタンを用い、電極間隙2cmとし、送液
量3l/minで、電圧印加時間を30分間とした結果
を図16(b)に示す。酸化型のためにアンモニア態窒
素、TOCの除去率が非常に高い値となった。その反面
T−Pの除去率は余り高くなかった。
Example 2 The methane digestion-desorbed solution occupies most of the ammonia nitrogen in the TN, and it is desirable that the methane digestion-desorbed solution is oxidatively decomposed by superoxide radicals, and the TOC is high.
On the other hand, since the TP concentration is not so large, a DC voltage of 250 V and a relatively high current density of 4.0 m are used in order to aim at the oxidative decomposition type and to prevent electric attenuation due to suspended suspended substances.
Aiming to give A / cm 2 , a tin oxide-titanium plate was used as the positive electrode, which has strong generation of superoxide radicals, titanium was used as the cathode, the electrode gap was 2 cm, the amount of liquid sent was 3 l / min, and the voltage application time was FIG. 16B shows the result obtained after 30 minutes. The removal rate of ammonia nitrogen and TOC was very high because of the oxidation type. On the other hand, the removal rate of TP was not so high.

【0037】実施例3 下水処理場の初沈槽上澄み液について処理例を示す。2
段処理を行い、初段にはスーパオキシドラジカルが卓越
し易い。酸化スズーチタン板を正極電極に用い、陰極を
チタン板とし、直流電圧250V、電流密度3.0mA
/cm2、電圧印加時間30分とした。第2段はヒドロ
キシルラジカルが卓越する酸化チタンーセラミックス板
を正極電極とし、陰極にはチタンを用い、周波数5kH
z、パルス電圧印加15kV、繰り返しパルス2kH
z、電流密度30μA/cm2とし、流量2l/min
で初段と2段目を直列に結んで処理した。この結果を図
16(c)に表として示す。2段処理することによっ
て、除去率が非常に高くなることが分かる。また実施例
1と実施例2に示した方式の弱点を補足できることも分
かった。
Example 3 An example of treatment for the supernatant of the first settling tank in a sewage treatment plant will be described. 2
Step treatment is performed, and superoxide radicals are easily predominant in the first step. A tin oxide-titanium plate was used as a positive electrode, a negative electrode was a titanium plate, a DC voltage of 250 V, and a current density of 3.0 mA.
/ Cm 2 and a voltage application time of 30 minutes. The second stage uses a titanium oxide-ceramics plate where hydroxyl radicals dominant as the positive electrode, titanium as the cathode, and a frequency of 5 kHz.
z, pulse voltage application 15 kV, repetition pulse 2 kHz
z, current density 30 μA / cm 2 , flow rate 2 l / min
The first and second stages were connected in series for processing. The results are shown as a table in FIG. It can be seen that the two-stage processing significantly increases the removal rate. It was also found that the weak points of the methods shown in the first and second embodiments can be supplemented.

【0038】実施例4 米洗浄廃水を1mmスクリーンで粗粒子を除去した後、
周波数を5kHz、繰り返しパルス1kHz、電圧1k
V、電流密度30μA/cm2の発振条件で正極電極を
酸化スズーチタン板、陰極をチタンとし、30分間電圧
を印加して、TOC及び一般細菌数の減少を見たとこ
ろ、流量1l/min〜5l/minで、TOCは80
%〜90%除去でき、細菌数は99.9%の減少が見ら
れた。
Example 4 After removing coarse particles from rice washing wastewater with a 1 mm screen,
Frequency 5kHz, repetition pulse 1kHz, voltage 1k
V, under the oscillation conditions of a current density of 30 μA / cm 2 , a positive electrode was made of tin oxide-titanium plate and a negative electrode was made of titanium, and a voltage was applied for 30 minutes to observe a decrease in TOC and the number of common bacteria. / Min, TOC is 80
% To 90%, and the bacterial count was reduced by 99.9%.

【0039】[0039]

【発明の効果】本発明は、スーパーオキシドラジカルの
発生が高周波域及び低周波域でも安定して発生し、さら
にイオンを多量に含む廃水処理においても電流が安定し
て流れ、また消費電力を低減するため、低周波―低電
流、高周波―微少電流の組み合わせにおいても、安定し
た処理を行うことができる。また、原水の電気抵抗が処
理中に変化する場合であっても、電圧パルスの印加を安
定して行うことができる。
According to the present invention, superoxide radicals are generated stably even in high and low frequency ranges, and the current flows stably even in wastewater treatment containing a large amount of ions, and the power consumption is reduced. Therefore, stable processing can be performed even in a combination of low frequency and low current and high frequency and minute current. Further, even when the electric resistance of the raw water changes during the treatment, it is possible to stably apply the voltage pulse.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置で電圧を印加した場合の、放電に至
るまでの電圧と電流の変化を示す図。
FIG. 1 is a diagram showing changes in voltage and current up to discharge when a voltage is applied by the device of the present invention.

【図2】図2は、本発明の電極部の正極部と陰極部とを
対向させて配設した時の断面図を示したものである。
FIG. 2 is a cross-sectional view of a case where a positive electrode portion and a cathode portion of an electrode portion of the present invention are disposed so as to face each other.

【図3】図3は、RNO溶液によるヒドロキシラジカル
の発生を示す図である。
FIG. 3 is a diagram showing generation of a hydroxyl radical by an RNO solution.

【図4】液層の金属濃度の変化を処理時間、濃度の相関
によって示す図。
FIG. 4 is a diagram showing a change in metal concentration of a liquid layer by a correlation between a processing time and a concentration.

【図5】DMPOラジカル補捉剤によるスーパオキシド
ラジカルの発生を示す図。
FIG. 5 is a diagram showing generation of a superoxide radical by a DMPO radical scavenger.

【図6】図6は、汚濁水のTi−Ti電極部に30分間
電圧400Vを印加した時の全窒素の除去率を示したも
のである。
FIG. 6 shows the removal rate of total nitrogen when a voltage of 400 V is applied to the Ti—Ti electrode portion of the polluted water for 30 minutes.

【図7】本発明の実施の態様の1例を示すの回路図で電
極間に超純水を流して放電させる場合を示す。
FIG. 7 is a circuit diagram showing an example of an embodiment of the present invention, showing a case in which ultrapure water flows between electrodes to cause discharge.

【図8】10KVパルスの時のパルス波形の例を示す
図。
FIG. 8 is a diagram showing an example of a pulse waveform at the time of a 10 KV pulse.

【図9】本発明の円筒状円錐台電極部の構造を示す図。FIG. 9 is a diagram showing a structure of a cylindrical truncated conical electrode portion of the present invention.

【図10】本発明の角錐台電極部の構造を示す断面図。FIG. 10 is a cross-sectional view showing the structure of a truncated pyramid electrode section of the present invention.

【図11】本発明のセル形電極部の構造を示す図。FIG. 11 is a diagram showing a structure of a cell-shaped electrode portion of the present invention.

【図12】本発明の処理方法のフローを示すフローチャ
ート。
FIG. 12 is a flowchart showing the flow of the processing method of the present invention.

【図13】本発明の適正印加電圧制御システムを示す構
成図。
FIG. 13 is a configuration diagram showing an appropriate applied voltage control system of the present invention.

【図14】本発明の放電部の電極突起の有無による放電
特性の違いを示す図。
FIG. 14 is a view showing a difference in discharge characteristics depending on the presence or absence of an electrode projection of a discharge portion of the present invention.

【図15】本発明の実施による各種実験結果を示す図。FIG. 15 is a diagram showing various experimental results according to the implementation of the present invention.

【図16】本発明の実施による各種実験結果を示す図。FIG. 16 is a view showing various experimental results according to the implementation of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミックス金属又は遷移金属、 2 金属粒子又
は酸化金属又はこれらの混合物の焼結部(正極)、 3
陰極電極、 4 外部セル、 5 スライダック、
6 高電圧トランス、 7 高電圧ダイオード、 8
高電圧抵抗、9 充放電コンデンサ、 10 電極部、
11 高電圧プローブ、 12 高電圧オシロスコー
プ、 13 原水流入口、 14 正極電極部、 15
陰極電極部、 16 外套部(陰極兼用)、 17
処理水流出口、 18 生成ガス排出ポート、 19
電気絶縁体、 20 攪拌機、 21 原水槽、 22
過酸化水素タンク、 23 定量ポンプ(P1)、 2
4 送水ポンプ(P2)、 25 電場処理装置、 2
6 沈殿槽、 27 処理水流出口、 28 沈殿物排
出口、 29 高感度CCDカメラ、 30 高電圧パ
ルス発生装置。
1 ceramic metal or transition metal, 2 sintered part (positive electrode) of metal particles or metal oxide or a mixture thereof, 3
Cathode electrode, 4 external cells, 5 slydac,
6 High voltage transformer, 7 High voltage diode, 8
High voltage resistance, 9 charge / discharge capacitors, 10 electrodes,
11 High voltage probe, 12 High voltage oscilloscope, 13 Raw water inlet, 14 Positive electrode, 15
Cathode electrode part, 16 Mantle part (also used as cathode), 17
Process water outlet, 18 Product gas discharge port, 19
Electric insulator, 20 stirrer, 21 raw water tank, 22
Hydrogen peroxide tank, 23 Metering pump (P 1 ), 2
4 Water pump (P 2 ), 25 Electric field treatment device, 2
6 sedimentation tank, 27 treated water outlet, 28 sediment outlet, 29 high sensitivity CCD camera, 30 high voltage pulse generator.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25B 11/08 Fターム(参考) 4D061 DA01 DA02 DA03 DA06 DA08 DB01 DB15 DB19 DC06 DC08 EA03 EA04 EA13 EB01 EB04 EB07 EB17 EB19 EB28 EB30 EB31 EB33 EB35 EB37 EB39 ED02 ED10 GA11 GA30 GC11 GC12 GC14 4K011 AA04 AA21 AA22 AA24 AA50 AA51 AA52 AA68 DA10 DA11 4K021 AB25 BA02 BA17 BB03 BB04 BC01 CA06 CA09 DA05 DA06 DA09 DA10 DA11 DA13 DA15 DC15 Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) C25B 11/08 F term (Reference) 4D061 DA01 DA02 DA03 DA06 DA08 DB01 DB15 DB19 DC06 DC08 EA03 EA04 EA13 EB01 EB04 EB07 EB17 EB19 EB28 EB30 EB31 EB33 EB35 EB37 EB39 ED02 ED10 GA11 GA30 GC11 GC12 GC14 4K011 AA04 AA21 AA22 AA24 AA50 AA51 AA52 AA68 DA10 DA11 4K021 AB25 BA02 BA17 BB03 BB04 BC01 CA06 CA09 DA05 DA06 DA09 DA10 DC11 DA13

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 長石やケイ素を主体とするセラミックス
の表面に酸化チタン、酸化コバルト、酸化スズ、酸化イ
リジュウム、酸化ニッケル、酸化鉄や酸化バナジュウム
の微粒子又はチタン、コバルト、ニッケル、銀、金の金
属微粒子又はこれらの混合物に、同一種類の金属塩溶液
を混合した液体を塗布し、乾燥処理後500℃〜150
0℃の温度域で焼結した前記金属酸化物又は金属又はこ
れらの混合物を正極電極とし、白金、又はチタン、又は
不銹鋼を陰極とする電極を陽極に対向するように配設し
て、これらをラジカル発生部とし、この対向する電極の
両極間に廃水を連続的に流し、両極間に電圧0.2kV
/cm〜20kV/cm、電流0.1μA/cm2〜1
0mA/cm2、周波数5Hz〜50MHzの条件下で
パルス放電をさせ、水の部分分解によってラジカルを発
生させ、水中に溶存する有機物やその中間生成物を酸化
・還元分解させることを特徴とする水の浄化方法。
1. Fine particles of titanium oxide, cobalt oxide, tin oxide, iridium oxide, nickel oxide, iron oxide or vanadium oxide or titanium, cobalt, nickel, silver or gold metal on a surface of ceramics mainly composed of feldspar or silicon. A liquid in which the same type of metal salt solution is mixed is applied to the fine particles or a mixture thereof, and after the drying treatment, is performed at 500 ° C.
The above-mentioned metal oxide or metal sintered at a temperature of 0 ° C. or a mixture thereof is used as a positive electrode, and an electrode using platinum, titanium, or stainless steel as a cathode is disposed so as to face the anode. As a radical generator, wastewater is continuously flowed between both electrodes of the opposed electrode, and a voltage of 0.2 kV is applied between both electrodes.
/ Cm-20 kV / cm, current 0.1 μA / cm 2 -1
Water characterized by causing a pulse discharge under the conditions of 0 mA / cm 2 and a frequency of 5 Hz to 50 MHz, generating radicals by partial decomposition of water, and oxidizing and reductively decomposing organic substances and intermediate products dissolved in the water. Purification method.
【請求項2】 チタン、鉄、不銹鋼の表面に酸化チタ
ン、酸化コバルト、酸化スズ、酸化イリジュウム、酸化
ニッケル、酸化鉄や酸化バナジュウムや微量の微粒子又
はチタン、コバルト、ニッケル、銀、金の金属微粒子又
はこれらの混合物に、同一種類の金属塩溶液を混合した
液体を塗布し、乾燥処理後500℃〜1500℃の温度
域で焼結した前記金属酸化物又は金属又はこれらの混合
物を正極電極とし、白金、又はチタン、又は不銹鋼を陰
極とする電極を陽極に対向するように配設して、これら
をラジカル発生部とし、この対向する電極の両極間に廃
水を連続的に流し、両極間に電圧0.2kV/cm〜2
0kV/cm、電流0.1μA/cm2〜10mA/c
2、周波数5Hz〜50MHzの条件下でパルス放電
をさせ、水の部分分解によってラジカルを発生させ、水
中に溶存する有機物やその中間生成物を酸化・還元分解
させることを特徴とする水の浄化方法。
2. Titanium oxide, cobalt oxide, tin oxide, iridium oxide, nickel oxide, iron oxide, vanadium oxide and trace particles or fine particles of titanium, cobalt, nickel, silver and gold on the surface of titanium, iron and stainless steel. Or a mixture thereof, a liquid mixed with the same type of metal salt solution is applied, and after drying treatment, the metal oxide or metal or a mixture thereof sintered in a temperature range of 500 ° C to 1500 ° C is used as a positive electrode, An electrode having platinum, titanium, or stainless steel as a cathode is disposed so as to face the anode, and these are used as radical generators.Waste water is continuously flowed between the electrodes of the facing electrode, and a voltage is applied between the electrodes. 0.2 kV / cm-2
0 kV / cm, current 0.1 μA / cm 2 -10 mA / c
Water purification characterized by pulse discharge under conditions of m 2 and frequency of 5 Hz to 50 MHz, generating radicals by partial decomposition of water, and oxidatively and reductively decompose organic substances dissolved in water and intermediate products thereof. Method.
【請求項3】 長石やケイ素を主体とするセラミックス
の表面に酸化チタン、酸化コバルト、酸化スズ、酸化イ
リジュウム、酸化ニッケル、酸化鉄や酸化バナジュウム
の微粒子又はチタン、コバルト、ニッケル、銀、金又は
チタンの金属微粒子又はこれらの混合物に、同一種類の
金属塩溶液を混合した液体を塗布し、乾燥処理後500
℃〜1500℃の温度域で焼結した前記金属酸化物又は
金属又はこれらの混合物を正極電極とし、白金、又はチ
タン、又は不銹鋼を陰極とする電極を陽極に対向するよ
うに配設して、これらをラジカル発生部とし、この対向
する電極の両極間に廃水を連続的に流し、両極間に電圧
10V/cm〜500V/cm、電流0.1mA/cm
2〜100mA/cm2の直流を流し、水からラジカルを
発生させ、水中に溶存する有機物やその中間生成物を酸
化・還元分解させることを特徴とする水の浄化方法。
3. Fine particles of titanium oxide, cobalt oxide, tin oxide, iridium oxide, nickel oxide, iron oxide or vanadium oxide or titanium, cobalt, nickel, silver, gold or titanium on a surface of ceramics mainly composed of feldspar or silicon. A liquid in which the same kind of metal salt solution is mixed is applied to the metal fine particles or a mixture thereof,
The metal oxide or the metal or a mixture thereof sintered in a temperature range of from 1500 ° C to 1500 ° C is used as a positive electrode, and an electrode using platinum, titanium, or stainless steel as a cathode is disposed so as to face the anode, These are used as radical generators, and wastewater is continuously flowed between both electrodes of the opposing electrode. A voltage of 10 V / cm to 500 V / cm and a current of 0.1 mA / cm are applied between the two electrodes.
A method for purifying water, comprising flowing a direct current of 2 to 100 mA / cm 2 , generating radicals from water, and oxidizing and reductively decomposing organic substances and intermediate products dissolved in the water.
【請求項4】 チタン、鉄、不銹鋼の表面に酸化チタ
ン、酸化コバルト、酸化スズ、酸化イリジュウム、酸化
ニッケル、酸化鉄や酸化バナジュウムの微粒子又はチタ
ン、コバルト、ニッケル、銀、金の金属微粒子又はこれ
らの混合物に、同一種類の金属塩溶液を混合した液体を
塗布し、乾燥処理後500℃〜1500℃の温度域で焼
結した前記金属酸化物粉末又は金属粉末又はこれらの混
合物を正極電極とし、白金、又はチタン、又は不銹鋼を
陰極とする電極を陽極に対向するように配設して、これ
らをラジカル発生部とし、この対向する電極の両極間に
廃水を連続的に流し、両極間に電圧10V/cm〜50
0V/cm、電流0.1mA/cm2〜100mA/ c
2の直流を流し、水からラジカルを発生させ、水中に
溶存する有機物やその中間生成物を酸化・還元分解させ
ることを特徴とする水の浄化方法。
4. Fine particles of titanium oxide, cobalt oxide, tin oxide, iridium oxide, nickel oxide, fine particles of iron oxide or vanadium oxide or fine metal particles of titanium, cobalt, nickel, silver, gold or the like on titanium, iron, or stainless steel. A mixture of the same type of metal salt solution was applied to the mixture of the above, and the metal oxide powder or the metal powder or a mixture thereof sintered in a temperature range of 500 ° C to 1500 ° C after the drying treatment was used as a positive electrode. An electrode having platinum, titanium, or stainless steel as a cathode is disposed so as to face the anode, and these are used as radical generators.Waste water is continuously flowed between the electrodes of the facing electrode, and a voltage is applied between the electrodes. 10V / cm-50
0 V / cm, current 0.1 mA / cm 2 -100 mA / c
A water purification method characterized by flowing an m 2 direct current, generating radicals from water, and oxidizing and reductively decomposing organic substances and intermediate products dissolved in the water.
【請求項5】 長石やケイ素を主体とするセラミックス
又はチタン、鉄、不銹鋼の表面に酸化チタン、酸化コバ
ルト、酸化スズ、酸化イリジュウム、酸化ニッケル、酸
化鉄や酸化バナジュウムの微粒子又はチタン、コバル
ト、ニッケル、銀、金の金属微粒子又はこれらの混合物
に、同一種類の金属塩溶液を混合した液体を塗布し、乾
燥処理後500℃〜1500℃の温度域で焼結した前記
金属酸化物又は金属又はこれらの混合物からなる正極電
極と、白金、又はチタン、又は不銹鋼からなる陰極電極
と互いに対向するように配設したラジカル発生部とから
なり、 この対向する電極の両極間に廃水を連続的に流し、両極
間に所定の電圧、電流、周波数の条件下でパルス放電を
させ、水の部分分解によってラジカルを発生させ、水中
に溶存する有機物やその中間生成物を酸化・還元分解さ
せることを特徴とする水の浄化装置。
5. A fine particle of titanium oxide, cobalt oxide, tin oxide, iridium oxide, nickel oxide, iron oxide or vanadium oxide, or fine particles of titanium, cobalt or nickel on the surface of ceramics mainly composed of feldspar or silicon or titanium, iron or stainless steel. , Silver, gold metal fine particles or a mixture thereof, a liquid obtained by mixing the same type of metal salt solution, and after the drying treatment, sintering in a temperature range of 500 ° C. to 1500 ° C. or the metal oxide or the metal And a radical generator disposed so as to face the cathode electrode made of platinum, titanium, or stainless steel, and a continuous flow of wastewater between the two electrodes of the facing electrode. Pulse discharge between the two electrodes under the conditions of the prescribed voltage, current and frequency, radicals are generated by partial decomposition of water, and dissolved in water. Water purification device, characterized in that the oxidation-reduction decomposition goods and intermediate products.
【請求項6】 前記正極は、金属酸化物を塗布、焼結す
る際に、2mm〜100mm間隔の網目状に白金又は金
の細線を張り付け、これらの網目状の金属が金属酸化物
の表面に埋設されるように配設され、該網目状の金属の
端線にチタン、銅、不銹鋼からなる正極端子を接続し、
該正極端子に電源から導かれる正の電圧が確実に付加さ
れることを特徴とする請求項5記載の水の浄化装置。
6. The positive electrode, when applying and sintering a metal oxide, attaches platinum or gold fine wires in a mesh at intervals of 2 mm to 100 mm, and these mesh metals are attached to the surface of the metal oxide. It is disposed so as to be buried, and a positive electrode terminal made of titanium, copper, stainless steel is connected to an end line of the mesh-like metal,
6. The water purifier according to claim 5, wherein a positive voltage derived from a power supply is reliably applied to the positive terminal.
【請求項7】 前記正極電極に対向する陰極側に10μ
m〜1mmの厚さのポーラスセラミックス膜又は0.1
〜100μmのフッ素樹脂膜、硬質ポリエチレン膜、フ
ッ素系樹脂膜を溶着又は塗布した電極を配設し、安定し
たラジカル発生によって廃水中の有機物やその中間生成
物を酸化・還元分解させることを特徴とする請求項5記
載の水の浄化装置。
7. 10 μm is applied to the cathode side facing the positive electrode.
a porous ceramic film having a thickness of 0.1 to 1 mm or 0.1
An electrode on which a fluororesin film, a hard polyethylene film, or a fluororesin film of about 100 μm is welded or coated is provided, and organic substances in wastewater and intermediate products thereof are oxidized and reduced by stable radical generation. The water purification device according to claim 5, wherein
【請求項8】 前記正極電極を中心線に対し全頂角5°
〜40°の角度からなる円筒また円錐台の構造とし、こ
の円筒内側面と外側面は前記酸化金属粉末、これと同一
の金属粉末又はこれらの混合物及び同一金属塩からなる
混合液を塗布、焼結した金属面で構成し、円筒状円錐台
の中心部を白金、チタン、不銹鋼からなる丸棒又は角棒
状の陰極を配設し、さらにこの円筒状円錐台の外側をチ
タン、ステンレス等の金属容器からなる外套容器によっ
て密閉し、該外套容器を廃水の流入口と流出口及び発生
ガス流出口に配設して陰極を構成し、かつ円筒状円錐台
の内側面及び外側面をラジカルの発生部とし、有機廃水
を円筒状円錐台の内側の直径の大きいな部分から送入
し、直径の小さな部分に出て、再度円筒状円錐台の外側
部を内側部と逆方向に流れ、発生するラジカルによって
廃水を酸化・還元処理する構造を持つことを特徴とする
請求項5記載の水の浄化装置。
8. The positive electrode has a total apex angle of 5 ° with respect to a center line.
A cylindrical or frusto-conical structure having an angle of about 40 ° is formed, and the inner and outer surfaces of the cylinder are coated with the above-mentioned metal oxide powder, the same metal powder or a mixture thereof and the same metal salt. A cylindrical or frustoconical center is provided with a round or square rod-shaped cathode made of platinum, titanium or stainless steel. The outside of the cylindrical frustum is made of a metal such as titanium or stainless steel. The container is hermetically sealed by an outer container, and the outer container is disposed at the inlet and outlet of the wastewater and at the outlet of the generated gas to form a cathode, and the inner and outer surfaces of the cylindrical truncated cone are formed with radicals. The organic wastewater is fed from the large-diameter portion inside the cylindrical truncated cone, exits to the small-diameter portion, and flows again through the outer portion of the cylindrical truncated cone in the opposite direction to the inner portion, and is generated. Wastewater is oxidized and reduced by radicals Water purification device according to claim 5, characterized by having a structure.
【請求項9】 前記正極電極を鉛直面に対して2.5°
〜20°の角度に傾けた平板とし、平板の厚さ方向に対
して直角に位置する2つの平板を前記酸化金属粉末又は
金属粉末又はこれらの混合物及び同一金属塩からなる混
合液を両面に塗布して、焼結した金属面で構成し、これ
を2枚用いて金属面を面対称となるように配設し、さら
に2枚の平板の酸化金属面でない側面はチタン又は不銹
鋼又は同一金属面を片側に有する平板で接合し、陽極の
電圧が均一になるように角錐台に構成し、角錐台の中心
である金属面と面対称の位置にチタン板、不銹鋼板、白
金線の網又は白金丸棒からなる陰極電極並びに角錐台の
外側をチタン、ステンレス容器で密閉して外套容器を構
成し、該外套容器を廃水の流入口、流出口及び発生ガス
流出口に配設して、陰極を構成して、金属酸化物を塗布
した2枚の平板の内側面及び外側面をラジカルの発生部
とし、有機系廃水を角錐台の内側の直径又は長さの大き
な部分から送入し、直径又は長さの小さい部分に出た廃
水は再度角錐台の外側部を内側部と逆方向に流れる間
に、発生するラジカルによって含まれる有機物や有害物
質を酸化・還元分解処理する構造を有することを特徴と
する請求項5記載の水の浄化装置。
9. The method according to claim 1, wherein the positive electrode is set at 2.5 ° with respect to a vertical plane.
A flat plate inclined at an angle of up to 20 °, and two flat plates positioned at right angles to the thickness direction of the flat plate are coated on both surfaces with a mixed solution comprising the metal oxide powder or the metal powder or a mixture thereof and the same metal salt. Then, it is composed of sintered metal surfaces, two of them are arranged so that the metal surfaces are plane-symmetric, and the other side of the two flat plates that is not a metal oxide surface is made of titanium or stainless steel or the same metal surface. With a flat plate having one side on one side, and configured in a truncated pyramid so that the voltage of the anode is uniform, and a titanium plate, stainless steel plate, platinum wire net or platinum The outside of the cathode electrode and the truncated pyramid made of a round bar is sealed with titanium and a stainless steel container to form a mantle container, and the mantle container is disposed at the wastewater inlet, the outlet and the generated gas outlet, and the cathode is formed. The two flat plates coated with metal oxide The side and outer sides are radical generators, and organic wastewater is fed in from the inside of the truncated pyramid with a large diameter or length. The water purification apparatus according to claim 5, characterized in that the apparatus has a structure for oxidizing and reducing decomposition of organic substances and harmful substances contained in the generated radicals while flowing in the opposite direction to the inner part.
【請求項10】 前記正極電極の円筒状円錐台を2段以
上重ね、相互の円錐台の間に不銹鋼又はチタンで構成す
る円筒状陰極を交互に配設し、さらに全体を不銹鋼又は
チタンからなる外套容器で密閉し、該外套容器を廃水の
流入口、流出口及びガスの流出口を配設して、陰極を構
成して、廃水は酸化金属面を正極電極、不銹鋼又はチタ
ンを陰極とするラジカル発生電極をセル構造上に配設で
きるようにして発生するラジカルによって廃水に含まれ
る有機物や有害物質を酸化・還元分解処理することを特
徴とする請求項5記載の水の浄化装置。
10. The cylindrical frustum of the positive electrode is overlapped in two or more stages, and cylindrical cathodes made of stainless steel or titanium are alternately arranged between each other, and the whole is made of stainless steel or titanium. It is sealed with a mantle vessel, and the mantle vessel is provided with an inflow port, an outflow port and a gas outflow port of the wastewater to constitute a cathode, and the wastewater has a metal oxide surface as a positive electrode and a stainless steel or titanium as a cathode. 6. The water purifying apparatus according to claim 5, wherein the radical generating electrode can be disposed on the cell structure to oxidize and reductively decompose organic substances and harmful substances contained in the wastewater by generated radicals.
【請求項11】 前記正極電極側の筒状角錐台を2段以
上重ね、角錐台の間に不銹鋼又はチタンで構成する筒状
角錐台陰極を交互に配置し、さらに不銹鋼又はチタンで
構成する外套容器で全体を密閉し、該外套容器を廃水の
流入口、流出口及びガスの流出口を配設して、陰極を構
成し、酸化金属面を正極電極、不銹鋼又はチタンを陰極
とするラジカル発生電極をセル構造状に配設できること
を特徴とする発生するラジカルによって廃水を酸化・還
元分解処理することを特徴とする請求項5記載の水の浄
化装置。
11. A cylindrical truncated pyramid on the side of the positive electrode is overlapped in two or more stages, and cylindrical truncated pyramid cathodes made of stainless steel or titanium are alternately arranged between the truncated pyramids, and a jacket made of stainless steel or titanium is further arranged. The whole is sealed with a container, the mantle container is provided with an inflow port, an outflow port and a gas outflow port of the wastewater, a cathode is formed, a radical is generated using a metal oxide surface as a positive electrode, and stainless steel or titanium as a cathode. The water purification apparatus according to claim 5, wherein the wastewater is subjected to an oxidation / reduction decomposition treatment by generated radicals, wherein the electrodes can be arranged in a cell structure.
【請求項12】 前記コバルト、金、ニッケル、チタン
の金属微粒子及び同一金属塩の混合液で焼成した金属面
をもつ正極電極及び、チタン又は白金で構成する陰極電
極からなるラジカル発生部への送入水中に0.1mg/
l〜1000mg/lの濃度範囲で過酸化水素を注入す
ることを特徴とする下水道処理水、水道水原水又は水道
水中間処理水、養殖場の用廃水、及び各種生物的処理水
に含まれる外因性内分泌攪乱化学物質の酸化・還元分解
処理を行うことを特徴とする請求項1、2、3、4記載
の水の浄化方法。
12. A positive electrode having a metal surface fired with a mixture of the fine particles of cobalt, gold, nickel, and titanium and the same metal salt, and a cathode generating electrode comprising titanium or platinum. 0.1mg /
External factors contained in sewage treated water, tap water raw water or tap water intermediate treated water, cultivation farm waste water, and various biologically treated water characterized by injecting hydrogen peroxide in a concentration range of 1 to 1000 mg / l. 5. The method for purifying water according to claim 1, wherein the oxidative / reductive decomposition treatment of the sex endocrine disrupting chemical substance is performed.
【請求項13】 前記正極並びに陰極電極を構成する電
極構造の最上縁部の空隙が10%〜30%小さくなるよ
うに突起状とし、この部分の放電監視が可能となるよう
に収納した水の浄化装置内に400nm〜470nmの
波長の蛍光検出器の配設、並びに発生するガスの排出口
までの配管又は両電極の直上の空間に水素ガス検出器を
配設し、蛍光の検出によって電圧を制御し、水素の検出
によって電流を制御することが可能となるように発振器
への信号のフィードバックを自動又は手動によって行う
ことを特徴とする請求項5記載の水の浄化装置。
13. An electrode structure constituting the positive electrode and the cathode electrode is formed in a protruding shape so that a gap at an uppermost edge portion is reduced by 10% to 30%, and water stored so as to enable discharge monitoring of this portion. A fluorescence detector having a wavelength of 400 nm to 470 nm is provided in the purifying device, and a hydrogen gas detector is provided in a pipe extending to a discharge port of generated gas or in a space immediately above both electrodes, and a voltage is detected by detecting fluorescence. 6. The water purification apparatus according to claim 5, wherein the feedback of the signal to the oscillator is performed automatically or manually so that the control can be performed and the current can be controlled by detecting hydrogen.
【請求項14】 前記正極並びに陰電極においてパルス
波を用いず直流電圧を流す電極構成を有するものにおい
て、H2ガスの濃度変化のモニターによって電流の大き
さを制御することが可能となるように直流電源部への信
号のフィードバックを自動又は手動によって行うことを
特徴とする請求項5記載の水の浄化装置。
14. In a positive electrode and a negative electrode having an electrode configuration in which a DC voltage flows without using a pulse wave, the magnitude of current can be controlled by monitoring a change in the concentration of H 2 gas. The water purification apparatus according to claim 5, wherein the feedback of the signal to the DC power supply unit is performed automatically or manually.
JP2000029570A 2000-01-31 2000-02-07 Water purification equipment containing dissolved organic matter and trace amounts of harmful substances Expired - Fee Related JP4429451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000029570A JP4429451B2 (en) 2000-01-31 2000-02-07 Water purification equipment containing dissolved organic matter and trace amounts of harmful substances

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000022858 2000-01-31
JP2000-22858 2000-01-31
JP2000029570A JP4429451B2 (en) 2000-01-31 2000-02-07 Water purification equipment containing dissolved organic matter and trace amounts of harmful substances

Publications (2)

Publication Number Publication Date
JP2001286866A true JP2001286866A (en) 2001-10-16
JP4429451B2 JP4429451B2 (en) 2010-03-10

Family

ID=26584554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000029570A Expired - Fee Related JP4429451B2 (en) 2000-01-31 2000-02-07 Water purification equipment containing dissolved organic matter and trace amounts of harmful substances

Country Status (1)

Country Link
JP (1) JP4429451B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053504A1 (en) * 2000-12-28 2002-07-11 Takaaki Maekawa Apparatus for purifying water containing dissolved organic matters and trace harmful substances
WO2004031450A1 (en) * 2002-09-30 2004-04-15 Honda Giken Kogyo Kabushiki Kaisha Hydrogen activating apparatus
WO2005024097A1 (en) * 2003-09-09 2005-03-17 Kansai Technology Licensing Organization Co., Ltd. Electrode for hydrogen peroxide production, method for producing same, and method for producing hydrogen peroxide
KR100708618B1 (en) 2005-12-28 2007-04-18 제주대학교 산학협력단 Treatment apparatus of dyeing wastewater by using electrical discharge to wastewater surface
KR100770736B1 (en) 2006-04-18 2007-10-26 전치중 Ceramic Electrode for Water Treatment And Making Method of The Same and Electrode Apparatus using The Same
JP2008502802A (en) * 2004-06-18 2008-01-31 エス.イー.アール.エル. サイエンス トラスティ リミテッド Hydrogen gas electrolysis and supply apparatus and method
WO2012017729A1 (en) * 2010-07-31 2012-02-09 Hosokawa Kanji Brown's gas generation system
JP2015217358A (en) * 2014-05-20 2015-12-07 国立大学法人 熊本大学 Organic substance-containing water processing unit and method
EP3848332A4 (en) * 2018-09-03 2021-10-20 Dayuan Environmental Technology (Xiamen) Co., Ltd. Plasma denitriding device and use method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320696B (en) * 2011-05-17 2013-06-05 华英伦水科技(宁波)有限公司 Large water treatment equipment and control method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756739B2 (en) * 2000-12-28 2011-08-24 株式会社筑波バイオテック研究所 Water purification equipment containing dissolved organic substances and trace amounts of harmful substances
JP2002200490A (en) * 2000-12-28 2002-07-16 Takaaki Maekawa Apparatus for purifying water containing dissolvable organic matter and a very small amount of toxic substance
US6811660B2 (en) 2000-12-28 2004-11-02 Takaaki Maekawa Apparatus for purifying water containing dissolved organic matters and trace harmful substances
WO2002053504A1 (en) * 2000-12-28 2002-07-11 Takaaki Maekawa Apparatus for purifying water containing dissolved organic matters and trace harmful substances
WO2004031450A1 (en) * 2002-09-30 2004-04-15 Honda Giken Kogyo Kabushiki Kaisha Hydrogen activating apparatus
US7410557B2 (en) 2002-09-30 2008-08-12 Honda Motor Co., Ltd. Hydrogen activating apparatus
WO2005024097A1 (en) * 2003-09-09 2005-03-17 Kansai Technology Licensing Organization Co., Ltd. Electrode for hydrogen peroxide production, method for producing same, and method for producing hydrogen peroxide
JP2008502802A (en) * 2004-06-18 2008-01-31 エス.イー.アール.エル. サイエンス トラスティ リミテッド Hydrogen gas electrolysis and supply apparatus and method
KR100708618B1 (en) 2005-12-28 2007-04-18 제주대학교 산학협력단 Treatment apparatus of dyeing wastewater by using electrical discharge to wastewater surface
KR100770736B1 (en) 2006-04-18 2007-10-26 전치중 Ceramic Electrode for Water Treatment And Making Method of The Same and Electrode Apparatus using The Same
WO2012017729A1 (en) * 2010-07-31 2012-02-09 Hosokawa Kanji Brown's gas generation system
JP2012031488A (en) * 2010-07-31 2012-02-16 Kanji Hosokawa Brown's gas generation system
JP2015217358A (en) * 2014-05-20 2015-12-07 国立大学法人 熊本大学 Organic substance-containing water processing unit and method
EP3848332A4 (en) * 2018-09-03 2021-10-20 Dayuan Environmental Technology (Xiamen) Co., Ltd. Plasma denitriding device and use method thereof

Also Published As

Publication number Publication date
JP4429451B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
Vanraes et al. Electrical discharge in water treatment technology for micropollutant decomposition
US5766447A (en) Method and device for treating an aqueous solution
CN107848616B (en) Method and system for applying superimposed time-varying frequency electromagnetic waves for marine ballast water biofouling control
US9352984B2 (en) Fluid treatment using plasma technology
US6811660B2 (en) Apparatus for purifying water containing dissolved organic matters and trace harmful substances
US20040084382A1 (en) Method and system for purification and disinfection of water
US7413667B1 (en) Water decontamination apparatus and method
US6358398B1 (en) Waste water treatment method and apparatus
US20180186671A1 (en) Electronic Water Pre-Treatment Equipment and Methods
EP3268315B1 (en) System and method to treat fluids by sonoelectrochemistry
JP2005058887A (en) Waste water treatment apparatus using high-voltage pulse
US9409800B2 (en) Electric arc for aqueous fluid treatment
JP4429451B2 (en) Water purification equipment containing dissolved organic matter and trace amounts of harmful substances
WO2002026635A1 (en) Electrochemical cell and electrochemical treatment of contaminated water
DE102018121551A1 (en) Process and plant for the oxidative treatment of drinking, industrial and waste water
DE19951117A1 (en) High voltage direct current corona discharge in gas parallel to liquid surface breaks down organic impurities such as textile dye in waste water
US20220048795A1 (en) System and method for treatment of wastewater fluids

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees