JP4429451B2 - Water purification equipment containing dissolved organic matter and trace amounts of harmful substances - Google Patents

Water purification equipment containing dissolved organic matter and trace amounts of harmful substances Download PDF

Info

Publication number
JP4429451B2
JP4429451B2 JP2000029570A JP2000029570A JP4429451B2 JP 4429451 B2 JP4429451 B2 JP 4429451B2 JP 2000029570 A JP2000029570 A JP 2000029570A JP 2000029570 A JP2000029570 A JP 2000029570A JP 4429451 B2 JP4429451 B2 JP 4429451B2
Authority
JP
Japan
Prior art keywords
titanium
metal
positive electrode
stainless steel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000029570A
Other languages
Japanese (ja)
Other versions
JP2001286866A (en
Inventor
孝昭 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RESEARCH INSTITUTE OF TSUKUBA BIO-TECH CORPORATION
Original Assignee
RESEARCH INSTITUTE OF TSUKUBA BIO-TECH CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RESEARCH INSTITUTE OF TSUKUBA BIO-TECH CORPORATION filed Critical RESEARCH INSTITUTE OF TSUKUBA BIO-TECH CORPORATION
Priority to JP2000029570A priority Critical patent/JP4429451B2/en
Publication of JP2001286866A publication Critical patent/JP2001286866A/en
Application granted granted Critical
Publication of JP4429451B2 publication Critical patent/JP4429451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46175Electrical pulses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、メタン発酵消化液、生活排水、下水、上水、養殖池水、活性汚泥法排水、食品工業廃水などの浄化方法及び装置に関する。
【0002】
【従来の技術】
酸素ラジカルやヒドロキシラジカルを発生する方法として、オゾンの送入、超音波や電磁超音波の照射がある。また、オゾンとチタンによる光触媒反応を用いる方法が開発されているが、入力電力が大きい割にラジカルの発生量が少なく、有害物質の分解効率が低く、装置コストも割高となる。またオゾンは、臭素やマンガンが多い海水では有効とされているが、真水では有効でない。
【0003】
またコバルトやマンガンなどの遷移金属と過酸化水素の併用が着目されている。この方法は、ラジカル発生効率がオゾンに比べて高いことが知られているが、過酸化水素が生物に対する変異性を有しているため、食品添加にも使用が禁止されるほどなので、取り扱い難しく、流出口での過酸化水素の最終処理が必要となる。
【0004】
光触媒法は、酸化チタン、酸化スズ、酸化ルビジウム、白金などの微粒子で構成される素材の表面に存在する空洞に電子が進入すると、酸素ラジカルやヒドロキシルラジカルが10μs〜100μs の寿命で発生することが知られている(特願平11−68862号の明細書参照。以下、先願明細書という。)。このラジカルは水中に含まれている炭素源、窒素源を含む有機系物質や芳香族の難分解性物質を酸化分解させることが知られている。
【0005】
先願明細書には、金属酸化物表面に発生する酸素ラジカル及びヒドロキシラジカルを効率よく発生させ、より永く持続させるには、電極間に印加する電場について特定の条件が存在すること及び廃水と金属酸化物表面との接触時間を長くする必要があること、排水中に浮遊性懸濁物が多量に含まれている場合には、超音波発信による電極面洗浄が必要であること、及びラジカルの発生には、電圧、電流、電場周波数が酸化金属面や金属表面の電子移動に左右されることが示されている。
【0006】
【発明が解決しようとする課題】
先願明細書に記載された発明には、スーパーオキシドラジカルの発生が高周波域で不足し、低周波域で過剰となること、さらにイオンを多量に含む廃水処理では電流が不安定であるなどの問題があり、また消費電力の面から低周波―低電流、高周波―微少電流の組み合わせにおける処理方法の確立と、原水の電気抵抗が処理中に変化する時、電圧パルスの印加の安定化をという課題があった。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するために、長石やケイ素を主体とするセラミックス又はチタン、鉄、不銹鋼の表面に酸化チタン、酸化コバルト、酸化スズ、酸化イリジュウム、酸化ニッケル、酸化鉄や酸化バナジュウムの微粒子又はチタン、コバルト、ニッケル、銀、金の金属微粒子又はこれらの混合物に、同一種類の金属塩溶液を混合した液体を塗布し、乾燥処理後500℃〜1500℃の温度域で焼結した前記金属酸化物又は金属又はこれらの混合物からなる正極電極と、白金、又はチタン、又は不銹鋼からなる陰極電極と互いに対向するように配設したラジカル発生部とからなり、この対向する電極の両極間に廃水を連続的に流し、両極間に所定の電圧、電流、周波数の条件下でパルス放電をさせ、水の部分分解によってラジカルを発生させ、水中に溶存する有機物やその中間生成物を酸化・還元分解させるとともに、前記正極は、金属酸化物を塗布、焼結する際に、2mm〜100mm間隔の網目状に白金又は金の細線を張り付け、これらの網目状の金属が金属酸化物の表面に埋設されるように配設され、該網目状の金属の端線にチタン、銅、不銹鋼からなる正極端子を接続し、該正極端子に電源から導かれる正の電圧が確実に付加されることとした。
【0008】
請求項2の発明は、前記正極電極に対向する陰極側に10μm〜1mmの厚さのポーラスセラミックス膜又は0.1〜100μmのフッ素樹脂膜、硬質ポリエチレン膜、フッ素系樹脂膜を溶着又は塗布した電極を配設し、安定したラジカル発生によって廃水中の有機物やその中間生成物を酸化・還元分解させることを特徴とし、
請求項の発明は、前記正極電極を中心線に対し全頂角5°〜40°の角度からなる円筒また円錐台の構造とし、この円筒内側面と外側面は前記酸化金属粉末、これと同一の金属粉末又はこれらの混合物及び同一金属塩からなる混合液を塗布、焼結した金属面で構成し、円筒状円錐台の中心部を白金、チタン、不銹鋼からなる丸棒又は角棒状の陰極を配設し、さらにこの円筒状円錐台の外側をチタン、ステンレス等の金属容器からなる外套容器によって密閉し、該外套容器を廃水の流入口と流出口及び発生ガス流出口に配設して陰極を構成し、かつ円筒状円錐台の内側面及び外側面をラジカルの発生部とし、有機廃水を円筒状円錐台の内側の直径の大きいな部分から送入し、直径の小さな部分に出て、再度円筒状円錐台の外側部を内側部と逆方向に流れ、発生するラジカルによって廃水を酸化・還元処理する構造を持つことを特徴とし、
請求項の発明は、前記正極電極を鉛直面に対して2.5°〜20°の角度に傾けた平板とし、平板の厚さ方向に対して直角に位置する2つの平板を前記酸化金属粉末又は金属粉末又はこれらの混合物及び同一金属塩からなる混合液を両面に塗布して、焼結した金属面で構成し、これを2枚用いて金属面を面対称となるように配設し、さらに2枚の平板の酸化金属面でない側面はチタン又は不銹鋼又は同一金属面を片側に有する平板で接合し、陽極の電圧が均一になるように角錐台に構成し、角錐台の中心である金属面と面対称の位置にチタン板、不銹鋼板、白金線の網又は白金丸棒からなる陰極電極並びに角錐台の外側をチタン、ステンレス容器で密閉して外套容器を構成し、該外套容器を廃水の流入口、流出口及び発生ガス流出口に配設して、陰極を構成して、金属酸化物を塗布した2枚の平板の内側面及び外側面をラジカルの発生部とし、有機系廃水を角錐台の内側の直径又は長さの大きな部分から送入し、直径又は長さの小さい部分に出た廃水は再度角錐台の外側部を内側部と逆方向に流れる間に、発生するラジカルによって含まれる有機物や有害物質を酸化・還元分解処理する構造を有することを特徴とし、
請求項は、前記正極電極の円筒状円錐台を2段以上重ね、相互の円錐台の間に不銹鋼又はチタンで構成する円筒状陰極を交互に配設し、さらに全体を不銹鋼又はチタンからなる外套容器で密閉し、該外套容器を廃水の流入口、流出口及びガスの流出口を配設して、陰極を構成して、廃水は酸化金属面を正極電極、不銹鋼又はチタンを陰極とするラジカル発生電極をセル構造上に配設できるようにして発生するラジカルによって廃水に含まれる有機物や有害物質を酸化・還元分解処理することを特徴とし、
請求項の発明は、前記正極電極側の筒状角錐台を2段以上重ね、角錐台の間に不銹鋼又はチタンで構成する筒状角錐台陰極を交互に配置し、さらに不銹鋼又はチタンで構成する外套容器で全体を密閉し、該外套容器を廃水の流入口、流出口及びガスの流出口を配設して、陰極を構成し、酸化金属面を正極電極、不銹鋼又はチタンを陰極とするラジカル発生電極をセル構造状に配設できることを特徴とする発生するラジカルによって廃水を酸化・還元分解処理することを特徴とする水の浄化装置である。
【0009】
請求項7の発明は、前記正極並びに陰極電極を構成する電極構造の最上縁部の空隙が10%〜30%小さくなるように突起状とし、この部分の放電監視が可能となるように収納した水の浄化装置内に400nm〜470nmの波長の蛍光検出器の配設、並びに発生するガスの排出口までの配管又は両電極の直上の空間に水素ガス検出器を配設し、蛍光の検出によって電圧を制御し、水素の検出によって電流を制御することが可能となるように発振器への信号のフィードバックを自動又は手動によって行うことを特徴とする水の浄化装置である。
【0010】
【発明の実施の形態】
まず、本発明の概要を以下に述べる。
本発明者は、先願明細書の発明に検討を加え、パルス電圧印加に対して周波数と電圧との関係を遷移金属について実験的に調べて行った結果、低周波、高周波とも安定した電場処理が可能な金属を検討し、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Rb、 St、Zr、Ru、Sn、W、Ir、Pt、Au、Pb、Co及びこれらの酸化物が有効であることを見いだした。
【0011】
用水や水道原水など金属溶解が生じてはならないことや酸化塩の耐久性を考慮すると、前記金属にその種類が絞られてくる。さらに、これらの金属を詳しく検討すると、共通性は遷移金属及びその酸化物であるということであり、これらのもつ原子の電子準移がラジカル発生に極めて強い相関を持つことが分かった。これらの金属及び金属酸化物にプラズマ放電やコロナ放電以下の電子照射を行い、ラジカル捕捉剤を用いて電子スピン共鳴装置で、発生ラジカルの大きさと化学構造を検討したところヒドロキシラジカル、スーパオキシドラジカルやジフェニールーパラーピクリルヒドラル等のいわゆる活性酸素やフリーラジカルが発生することを確認できた。
【0012】
さらに直流から50MHzまでのパルス波について純水を用いて電圧を0.2kV/cm〜20kV/cmまで変化させて検討した結果、直流ではスーパオキシドラジカルが低電圧、低電流(0.1mA/cm2〜100mA/cm2)で効率良く発生した。これは低周波領域5Hz〜10kHzの周波数領域でアンモニアやポリフェノールの酸化分解が卓越していることに一致している。また5kHz〜50MHzでは電極間の電子移動速度とイオン移動速度の関係を計算したところ、約1μs以下のパルス照射でイオン移動を伴わないことが分かり、この領域、即ち1MHz以上では、どのような電気伝導度の廃水でもパルス電圧の印加は安定することが分かった。特にこの領域では電流密度0.1mA/cm2 〜10mA/cm2、電圧0.2kV/cm〜20kV/cmの範囲でヒドロキシルラジカルが卓越し、高電圧ほどヒドロキシルラジカル量が多くなる傾向があった。
【0013】
また、ラジカル発生に関しては、ストリーマ放電といわれるH2ガスが僅かに発生する領域で 急激に電流が低下するのでこの電圧の変化から、電極部の最適電圧を周波数に応じて選定することができ、安定した電場照射制御技術を確立した。
直流電圧10〜80V、電流密度0.1mA/cm2〜100mA/cm2の間では上記金属やその酸化物のスーパオキシドラジカルの発生は非常に安定した。超純水では2.07V付近以上でラジカルの発生が見られた。しかしながら、通常のイオンを含む場合には約5倍以上の電圧を必要とし、若干の水素の発生を伴うストリーマ放電の維持が操作上必要であることを確認した。さらにこの現象は5Hz〜1MHzでも電圧の選択によって可能であったが、パルス放電の間隔をイオン移動速度の5〜20倍ほど保持する必要が生じ、パルス発信器と電極との関係を厳密に設計・計算する必要があることと、手動操作及び自動制御の方法をストリーマ放電の特性から解決した。
【0014】
適正なパルス周波数の選定は正極電極面金属のパルスによる溶解性を検討しておく必要があり、上記主な金属について検討したところ高電圧、高周波領域では、金属表面の若干の電蝕がみられる条件があるので、金属酸化物を不銹鋼の表面で焼結したものと、セラミックスの表面に焼結したものとでは、金属の溶出量が異なったので、耐久性、互換性、維持の面でセラミックスをコアにした参加金属表面から構成される正極電極が有用である。なお、セラミックスは、広義には、非金属無機材料からなるものをいい、例えば、ガラスも含まれる。
【0015】
本発明の実施の形態を図に従って、詳細に説明する。
図2は、請求項1、2、3、4の発明の電極部の正極部と陰極部とを対向させて配設した時の断面を示したものである。図2の1は正極であって2で示す流水方向に延びた溝を有している。正極部1は、長石やケイ素を主体とするセラミックス(ガラスを含む非金属無機材料)の表面に酸化チタン、酸化コバルト、酸化スズ、酸化イリジュウム、酸化ニッケル、酸化鉄や酸化バナジュウムの微粒子、又はチタン、コバルト、ニッケル、銀、金の金属微粒子又はこれらの混合物に、同一種類の金属塩溶液を混合した液体を塗布し、乾燥処理後500℃〜1500℃の温度域で焼結した前記金属酸化物又は金属又はこれらの混合物から形成されている。陰極部3は、白金、又はチタン、又は不銹鋼から形成されている。
【0016】
正極電極1と陰極電極3は対向させて配置され、これを外部セル4によって包み込んだ構造である。水処理は、処理水を外部セル4の下部(矢印)から上部に送り、対向する電極双方の天頂角を5°〜40°に設定することによって、処理水中の汚染物質の大部分は確実に正極に接触する。処理水は、正極部1に発生したラジカルによって、処理水中の汚染物質が効率よく分解される。また電極部から流出するラジカルも確実に消滅する。なお、外部セルと正極の電源供給部の配線は、碍子やポリエチレン樹脂などによって完全な電気的絶縁がなされる(図示なし)。外部セル4の材質は、アクリル樹脂やポリエチレン樹脂などの高分子樹脂が望ましい。
【0017】
また、この外部セル4の材質を陰極3の材質と同じ金属とすることもできるが、正極部と外部セルとの間の電気的絶縁を完全にする必要があり、さらに対地アースも完全でなければならない。
【0018】
この電極部1、3に供給する電源装置から送られるパルス波又は直流の電気が電極部に負荷されると、陰極部3の表面に微量の水素ガスの気泡が発生し始めると、僅かに水素ガスの気泡が上昇し始める。この状態からさらに水素ガスを上昇させると図1に示すような電圧の上昇に伴い急激な電流上昇がみられる。さらに電圧を上昇させると急激に電圧の降下する電圧の範囲がある。この電圧が下降する電圧領域ではストリーマ放電が見られ、蛍光が発生する。この時に最も効率よくラジカルが発生している。
【0019】
図3は、ヒドロキシルラジカルを捕捉するN、N’−ジメチルーPーニトロソアニリン(以下、RNOと表記する)溶液中における反応を、周波数10kHzにおいて、波長440nmにおける吸光度と電力×時間/電極面積との関係でその反応の状態を示したものである。正極電極金属はTi、SnO2、Alを、陰極電極としてTiを用いたときの例である。Alを正極金属としたとき、ヒドロキシルラジカルが多量に発生しているように見えるが、図4に示すとおり原子吸光分析結果ではAlはヒドロキシラジカルによって水酸化アルミとして溶出したものと考えられた。したがって、本発明では電極材料としてAlを考えないことにした。
【0020】
その他の金属は、図4に示すとおり、ヒドロキシラジカルによる酸化溶出は非常に少ないので、ラジカル発生用電極として有用である。なお、リンや浮遊性懸濁粒子の沈降分離には、AlやFeイオンを主とする凝集沈殿剤を用いることができるが、これは直流電圧を印加する電解溶出法においてみられ、公知となっている。本発明は、この方法とも完全に異なる原理から成立していることが、この実験例から分かる。
【0021】
図5は直流電圧400V、1000V、1500Vで電流を0.1Aに制御して、正極をPt、陰極にTi又はPtを用いた場合のラジカル捕捉剤DMPOを用いてスーパーオキシドラジカルの発生を吸光度の変化として示したもので、金属材料の組み合わせと電圧によってスーパーオキシドラジカルの発生が異なることが分かる。
また、DMPOラジカル捕捉剤を用いて、電子スピン共鳴装置によりスーパーオキシドラジカルとヒドロキシラジカルの発生が卓越して発生する傾向を調べたところ、遷移金属電極に直流電圧を印加したときにはスーパーオキシドラジカルの発生が卓越し、遷移金属酸化物電極にパルス波の印加がヒドロキシルラジカルの発生を卓越させることが分かった。
【0022】
したがって、酸化型で水に含まれる汚染物質の分解を促進するときには、前者の遷移金属に直流の電圧印加を、還元型が必要な時には後者の遷移金属酸化物にパルス波の電圧印加をさせる水の浄化方法が有効である。しかしながら、正極と陰極との間に汚染水が介在する時の電気抵抗の調整が必要であることから、酸化物金属粉末と金属粉末との混合物より電極を作ることがより有効であり、電極はどちらかのラジカルが卓越することになる。このような電極の特性から、両方のラジカルのうち、それぞれ卓越した電極を汚濁水の特性に合わせて組み合わせをすることになる。
【0023】
図6は、汚濁水のTi−Ti電極部に30分間電圧400Vを印加した時の全窒素の除去率を示したものである。アンモニアや硝酸が酸化され除去されることが分かる。図15(a)に図6の実験で発生したガスの組成を示す。ガス組成からこれらの物質が酸化されていることが分かる。図15(a)は、硝酸態窒素由来と考えられるN2Oの発生も見られている。これを減少させるためには還元型のヒドロキシルラジカルの発生を誘導する必要がある。そこで、過酸化水素を汚濁水に加えたところ、N2Oの発生が抑制できた。これはMを記号で金属とすると、以下の反応が促進され、ヒドロキシルラジカルが過酸化水素より誘導され、ヒドロキシルラジカルの還元作用によってN2Oの発生が抑制されたものと考えられる。
【0024】
反応式1
M + N22→ M++ ・OH+OH-
22 + OH- → HOO- +H2
+ + HOO- → M + HOO・
【0025】
次にパルス放電の安定化について述べる。電極間に超純水を流して放電させる場合の本発明の実施の態様の1例の回路図を図7に示す。図7の回路において、5はスライダック、6は高電圧トランス、7は高電圧ダイオード、8は高電圧抵抗、9は充放電コンデンサ、10は電極部、11は高電圧プローブ、12は高電圧オシロスコープをそれぞれ示す。図7の回路では、高い電圧でもかなり安定した放電が得られる。しかし、汚濁した水、汽水や海水域のアンモニア除去に対する場合、対象処理水の電気伝導度が放電中に変化して、安定した電流が得られない。発信回路側の電圧を一定とすると電流は汚濁水の電気伝導度と正極側の金属酸化物の電気伝導度によって変化する。そこで本発明では、正極側の金属酸化物粉末に同じ金属の粉末と混合することである程度正極側の電気伝導度を調整し電流を安定化することができる。なお、電流の変化のためにラジカルの発生量に影響するので、この金属混合法には比率の制約がある。このために、安定したストリーマ放電の条件は汚濁水の電気伝導度変化によって大きく影響される。
【0026】
放電の安定化のために、本発明では以下の2点を組み合わせることで、問題を解決した。
1)電圧印加周波数の選定
2)陰電極側の放出電子量の制御
【0027】
電圧印加周波数の選定の理由は発信器側の発信特性と汚濁水中のイオンの移動速度との関係の中で、電子量の制御を実施する考え方である。即ち、パルスの立ち上がりと立下り時間遅れを考慮する。これは出力電圧の大きさと周波数に影響される。パルスの与え方として水に溶解するイオンの移動を律速する1μs以内の電圧を与える方法がある。また、次のパルスが来る時間中を電極間を通過する電子の移動速度1x107 m/sから算出し、最適な電圧の印加と周波数を選定することになる。図8は10KVパルスの時、パルス発生器のスルーレート(立ち上がり、又は立下り時間(V/μs))から算出されると、パルス休止時間は10μs〜1msが選択できる。1MHz以上及び10KV−P以上では電気回路側の制御した安定した印加電流が確保できる。
【0028】
しかしながら、1MHz以下ではパルス波の頂上部の時間が1μs以上となり、電極間のイオン移動を促進して、電流が変化する(実際の汚染水はこのイオン移動が増加する傾向が強い)。このために電極間移動電子量を一定にさせるための電圧制御をパルス発信回路で行うか、又は電極間の電子移動量のマスキングをする。このために請求項6の発明に示すとおり陰極側にポーラスセラミックス膜の焼結や高分子樹脂膜の塗布を施すことにおいて放電の安定化が可能とする。実際の制御では高めの電圧から低い電圧へ少しずつ低下させていくことで電流を一定にすることができる。
【0029】
高圧パルス放電では、図2に示すような電極部において放電部が水の流れ方に対し、長くする場合、この場合水の放電接触時間を15〜30分とすることになるが、水の浄化に従って入り口部と出口部の水の電気伝導度が大きくなり、放電の安定性を見ても、放電不足又は過放電となる。入り口部の電圧が高く、出口付近は低めの電圧となるように、正極側の電圧の傾斜を与える必要がある。そこで、セラミックスに金属酸化物の塗布・焼結した場合、金属酸化面の電気抵抗は比較的大きくすることができるので、この金属酸化物表面の電圧を水の入り口部と出口部とでは変えるようにするためには、電源部の電圧損失を防止すれば良いので、金属酸化物の表面に2mm〜100mm網目状の白金線又は金線のネット等を取り付け、金属酸化物の表面にこれが埋設された状態で焼結する。この金属ネットの端子部と電源部端子を直接結線する。入り口と出口部の電圧傾斜は数十ボルトから数百ボルトに達するが、処理する水の電気伝導度の変化を回分実験より割り出して対応させる。
【0030】
図9は、請求項7、8の発明で開示されている実用的電極部の構造を示し、13は原水流入口、14は正極電極部、15は陰極電極部、17は処理水流出口、18は生成ガス排出ポートを示す。円錐台状及び角錐台状の場合の全頂角は5o〜40oまでが有用であった。平板を鉛直面に対し2.5〜20 oに傾斜させ、この平板のいずれかを陰極として、正極と対向させることもできる。図10は金属及び金属酸化物を正極とする角錐台状の電極部構造を断面図で示したもので、13は原水流入口、14は正極電極部、15は陰極電極部、16は外套部(陰極兼用)、17は処理水流出口、18は生成ガス排出ポート、19は電気絶縁体である。金属及び金属酸化物からなる正極14を金属性陰極15の外套部16に入れ、さらに、中心部にチタン板、白金板や白金棒を置き、これと外套部と結び電極とし、これに水の出入口をつければ水の浄化装置となる。
【0031】
図11は請求項9、10の発明に開示されているセル型の円錐又は角錐台状の正極電極を同様な形状をもつ陰極電極を交互に重ね、さらに、処理水がこの中を1パスで流出するような構造を持たせたもので、13は原水流入口、14は正極電極部、15は陰極電極部、16は外套部(陰極兼用)、17は処理水流出口、18は生成ガス排出ポートである。廃水によっては入り口と出口との電気伝導度が極端に変化する場合はこれら電極の段数を大きくできない制約がある。さらに1段の場合も正極電極の片面の滞留時間を15分以上に設定できない場合がある。実用上は1段ないし2段以上の電極部を直列、又は並列相互に各々の電極の電圧が異なるように電力発生部の電圧の調整を必要とする。
【0032】
図12は、外因性内分泌撹乱化学物質を含む各種処理水や用水の処理装置で、20は攪拌機、21は原水槽、22は過酸化水素タンク、23は定量ポンプ(P1)、24は送水ポンプ(P2)、25は電場処理装置、26は沈殿槽、27は処理水流出口、28は沈殿物排出口である。金属溶出が少ないコバルト、ニッケル、金、銀、チタンを電極として用いる。こちらは過酸化水素に対しヒドロキシラジカルの発生がそれ自身にある(上記反応式1参照)ので、この電極に入る前に過酸化水素を0.1mg/L〜1000mg/Lを流入させる。これに請求項1、2、3、4の発明に開示されているパルス源や直流電圧を加え、ヒドロキシルラジカルの発生度を増加させて、その還元力により、ジフェニールフタル酸、ノニルフェノールないし難分解性物質でかつ環境ホルモンとして特定されている物質の酸化分解や用水に含まれる菌やカビの殺菌を行う。図15(b)にH22の添加効果を示したがAgを用いた場合の添加効果をアンモニア分解について図15(c)に示す。
【0033】
本発明では、水の電気伝導度の変化が処理中に大きい汚水や水については安定した放電及び定電流の確保が困難である場合がある。これを克服するための本発明の実施の態様を図13に示す。図13は、高感度CCDカメラ29、高電圧パルス発生装置30、から構成され、電極部の最上縁部の間隙32を電極間間隙(d)31より10%〜30%狭くなるような構造とするために突起状とする。さらにこの部分の液体放電監視が可能となるように蛍光の検出のため400〜470nmのフィルターを施した光学的システムの焦点部にCCD検出器を配置し、この電流量から適正印加電圧を発振器側にフィードバックし、さらにこの電極上部の気相部又はこれと接続される配管などに赤外式又は半導体型水素検出器を施し、この濃度と気体流量を発振器にフィードバックし、主に電流の制御を行うことができる。
【0034】
電極部に突起を施した場合の電流と電圧の変化を図14に示す。図14において、33は電極突起部分の放電開始点、34は電極突起部分の放電最小電流を示す電圧、35は突起部のない電極の放電電流、36は電極突起部分の放電最小電流を示す電圧の20%増の電圧、37は電極突起部分の放電最小電流を示す電圧の20%増の電圧に対応する突起部のない電極の放電電流を示している。図13に示すように間隙の小さい方が早めに電流が上昇する。その下降点の値34、36を設定すると、広い部分の間隙の放電が適正になされることになる。この放電では青い放電色が特徴で、プラズマ放電やコロナ放電の一歩手前のストリーマ放電といわれている状況に類似している。なお、コロナ放電やプラズマ放電では電極の溶出が大きく、実用に耐えられないことが判明している。図14の33の点と36の点は狭い側の突起部分の放電領域であり、35の点、37の点はこれに対応した電流と電圧であるので、33の点の電圧でストリーマ放電を検出された場合、これにバイアスをかけた印加電圧をセットし、空隙の狭い側に電圧を34の点の位置にシフトさせると広い部分の電極の全体が35の点の電流でストリーマ放電が行われることになる。間隙の狭い側のストリーマ放電は強くなるが、電流が低くなる。このように間隙を狭くした側を設けた電極はストリーマ放電のパイロットの役割を担う。実際には蛍光の検出感度に依存するので、集光率の高いレンズ口径の大きい光学系と感度の良いCCDの組み合わせがこの制御の精度を決めることになる。
【0035】
【実施例】
次に実施例に用に本発明をさらに詳細に説明する
実施例1
生活廃水中のTOC、T−N、T−Pの除去の効果を示すために周波数10KHz、繰り返しパルス1KHz、電圧12kV、電流密度50μA/cm2の発振条件、電極は正極部酸化チタンーセラミック板、陰極部をチタンとし、電極間間隙1cmとし、この間に1l/min〜2l/min生活廃水を流し、30分間処理した結果を図16(a)に表として示す。この表から還元分解、即ちヒドロキシルラジカルの卓越が見られ、T−Nの除去率が若干良くなかったがTOC、T−Pの除去率は高かった。また流量の増加による除去率の低下があまり見られなかった。
【0036】
実施例2
メタン消化脱離液はT−Nのうち、大部分がアンモニア態窒素を占めており、スーパオキシドラジカルをさせて酸化分解をすることが望ましく、また、TOCも高い。一方、T−P濃度は余り大きくないので、酸化分解型を狙うことと、浮遊性懸濁物質による電気的減衰を防止するために直流電圧250Vと大きめの電流密度4.0mA/cm2を与えることを狙い、スーパオキシドラジカルの発生が強い正電極として酸化スズーチタン板を用い、陰極にはチタンを用い、電極間隙2cmとし、送液量3l/minで、電圧印加時間を30分間とした結果を図16(b)に示す。酸化型のためにアンモニア態窒素、TOCの除去率が非常に高い値となった。その反面T−Pの除去率は余り高くなかった。
【0037】
実施例3
下水処理場の初沈槽上澄み液について処理例を示す。2段処理を行い、初段にはスーパオキシドラジカルが卓越し易い。酸化スズーチタン板を正極電極に用い、陰極をチタン板とし、直流電圧250V、電流密度3.0mA/cm2、電圧印加時間30分とした。第2段はヒドロキシルラジカルが卓越する酸化チタンーセラミックス板を正極電極とし、陰極にはチタンを用い、周波数5kHz、パルス電圧印加15kV、繰り返しパルス2kHz、電流密度30μA/cm2とし、流量2l/minで初段と2段目を直列に結んで処理した。この結果を図16(c)に表として示す。2段処理することによって、除去率が非常に高くなることが分かる。また実施例1と実施例2に示した方式の弱点を補足できることも分かった。
【0038】
実施例4
米洗浄廃水を1mmスクリーンで粗粒子を除去した後、周波数を5kHz、繰り返しパルス1kHz、電圧1kV、電流密度30μA/cm2の発振条件で正極電極を酸化スズーチタン板、陰極をチタンとし、30分間電圧を印加して、TOC及び一般細菌数の減少を見たところ、流量1l/min〜5l/minで、TOCは80%〜90%除去でき、細菌数は99.9%の減少が見られた。
【0039】
【発明の効果】
本発明は、スーパーオキシドラジカルの発生が高周波域及び低周波域でも安定して発生し、さらにイオンを多量に含む廃水処理においても電流が安定して流れ、また消費電力を低減するため、低周波―低電流、高周波―微少電流の組み合わせにおいても、安定した処理を行うことができる。また、原水の電気抵抗が処理中に変化する場合であっても、電圧パルスの印加を安定して行うことができる。
【図面の簡単な説明】
【図1】本発明装置で電圧を印加した場合の、放電に至るまでの電圧と電流の変化を示す図。
【図2】図2は、本発明の電極部の正極部と陰極部とを対向させて配設した時の断面図を示したものである。
【図3】図3は、RNO溶液によるヒドロキシラジカルの発生を示す図である。
【図4】液層の金属濃度の変化を処理時間、濃度の相関によって示す図。
【図5】DMPOラジカル補捉剤によるスーパオキシドラジカルの発生を示す図。
【図6】図6は、汚濁水のTi−Ti電極部に30分間電圧400Vを印加した時の全窒素の除去率を示したものである。
【図7】本発明の実施の態様の1例を示すの回路図で電極間に超純水を流して放電させる場合を示す。
【図8】10KVパルスの時のパルス波形の例を示す図。
【図9】本発明の円筒状円錐台電極部の構造を示す図。
【図10】本発明の角錐台電極部の構造を示す断面図。
【図11】本発明のセル形電極部の構造を示す図。
【図12】本発明の処理方法のフローを示すフローチャート。
【図13】本発明の適正印加電圧制御システムを示す構成図。
【図14】本発明の放電部の電極突起の有無による放電特性の違いを示す図。
【図15】本発明の実施による各種実験結果を示す図。
【図16】本発明の実施による各種実験結果を示す図。
【符号の説明】
1 セラミックス金属又は遷移金属、 2 金属粒子又は酸化金属又はこれらの混合物の焼結部(正極)、 3 陰極電極、 4 外部セル、 5 スライダック、 6 高電圧トランス、 7 高電圧ダイオード、 8 高電圧抵抗、 9 充放電コンデンサ、 10 電極部、 11 高電圧プローブ、 12 高電圧オシロスコープ、 13 原水流入口、 14 正極電極部、 15 陰極電極部、 16 外套部(陰極兼用)、 17 処理水流出口、 18 生成ガス排出ポート、 19 電気絶縁体、 20 攪拌機、 21 原水槽、 22過酸化水素タンク、 23 定量ポンプ(P1)、 24 送水ポンプ(P2)、 25 電場処理装置、 26 沈殿槽、 27 処理水流出口、 28 沈殿物排出口、 29 高感度CCDカメラ、 30 高電圧パルス発生装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purification method and apparatus for methane fermentation digestive fluid, domestic wastewater, sewage, clean water, aquaculture pond water, activated sludge wastewater, food industry wastewater, and the like.
[0002]
[Prior art]
As a method for generating oxygen radicals and hydroxy radicals, there are ozone delivery, ultrasonic irradiation and electromagnetic ultrasonic irradiation. In addition, a method using a photocatalytic reaction between ozone and titanium has been developed. However, the amount of radicals generated is small for a large input power, the decomposition efficiency of harmful substances is low, and the apparatus cost is also high. Ozone is effective in seawater rich in bromine and manganese, but not in fresh water.
[0003]
Further, the combined use of transition metals such as cobalt and manganese and hydrogen peroxide has attracted attention. This method is known to have higher radical generation efficiency than ozone, but it is difficult to handle because hydrogen peroxide has a variability to living organisms and is prohibited from being used for food addition. The final treatment of hydrogen peroxide at the outlet is necessary.
[0004]
In the photocatalytic method, when electrons enter a cavity existing on the surface of a material composed of fine particles such as titanium oxide, tin oxide, rubidium oxide, and platinum, oxygen radicals and hydroxyl radicals may be generated with a lifetime of 10 μs to 100 μs. It is known (see the specification of Japanese Patent Application No. 11-68862, hereinafter referred to as the prior application specification). This radical is known to oxidatively decompose organic substances and aromatic persistent substances including carbon sources and nitrogen sources contained in water.
[0005]
In the specification of the prior application, in order to efficiently generate oxygen radicals and hydroxy radicals generated on the surface of the metal oxide and sustain them for a longer time, there are specific conditions for the electric field applied between the electrodes, and waste water and metal. It is necessary to lengthen the contact time with the oxide surface, and when there is a large amount of suspended suspension in the drainage, it is necessary to clean the electrode surface by ultrasonic transmission, and It has been shown that voltage, current, and electric field frequency depend on the movement of electrons on the metal oxide surface or metal surface.
[0006]
[Problems to be solved by the invention]
In the invention described in the specification of the prior application, the generation of superoxide radicals is insufficient in the high frequency range and becomes excessive in the low frequency range, and the current is unstable in wastewater treatment containing a large amount of ions. There are problems, and in terms of power consumption, the establishment of a treatment method for the combination of low frequency-low current, high frequency-minute current, and stabilization of voltage pulse application when the electrical resistance of raw water changes during treatment There was a problem.
[0007]
[Means for Solving the Problems]
  In order to solve the above problems, the present inventionCeramic oxides mainly composed of feldspar and silicon or titanium, iron, stainless steel, titanium oxide, cobalt oxide, tin oxide, iridium oxide, nickel oxide, iron oxide or vanadium oxide fine particles or titanium, cobalt, nickel, silver, gold A positive electrode comprising the metal oxide or metal or a mixture thereof obtained by applying a liquid in which the same kind of metal salt solution is mixed to the metal fine particles or a mixture thereof and then drying and sintering in a temperature range of 500 ° C. to 1500 ° C. An electrode and a radical generator disposed so as to face each other and a cathode made of platinum, titanium, or stainless steel, and waste water is allowed to flow continuously between both electrodes of the facing electrode, Organic substances dissolved in water and their intermediates by generating a radical by partial decomposition of water by pulse discharge under conditions of voltage, current and frequency In addition to oxidizing and reductively decomposing the product, the positive electrode is coated with fine metal wires of platinum or gold in a 2 mm to 100 mm interval when a metal oxide is applied and sintered. A positive electrode terminal made of titanium, copper, and stainless steel is connected to the end line of the mesh-like metal so as to be buried in the surface of the oxide, and positive voltage led from the power source is surely connected to the positive electrode terminal It was decided to be added.
[0008]
  The invention of claim 2An electrode on which a porous ceramic film having a thickness of 10 μm to 1 mm or a fluororesin film having a thickness of 0.1 to 100 μm, a hard polyethylene film, or a fluorine resin film is deposited or applied on the cathode side facing the positive electrode is disposed. It is characterized by oxidizing and reductive decomposition of organic matter and its intermediate products in wastewater by stable radical generation,
  Claim3According to the present invention, the positive electrode has a cylindrical or truncated cone structure with a total apex angle of 5 ° to 40 ° with respect to the center line, and the inner side surface and the outer side surface of the cylinder are the metal oxide powder and the same metal as this. It consists of a metal surface coated and sintered with powder or a mixture of these and the same metal salt, and a round or square bar cathode made of platinum, titanium, stainless steel at the center of the cylindrical truncated cone. Further, the outside of the cylindrical truncated cone is sealed with an outer casing made of a metal container such as titanium or stainless steel, and the outer casing is disposed at an inlet, an outlet, and a generated gas outlet to constitute a cathode. In addition, the inner side surface and the outer side surface of the cylindrical truncated cone are used as radical generating parts, and organic waste water is fed from the large diameter part inside the cylindrical truncated cone, exits to the small diameter part, and is again cylindrical. Flows in the opposite direction to the inner part , Characterized by having a structure that oxidizes and reduces wastewater by the generated radicals,
  Claim4According to the present invention, the positive electrode is a flat plate inclined at an angle of 2.5 ° to 20 ° with respect to the vertical plane, and two flat plates positioned perpendicular to the thickness direction of the flat plate are the metal oxide powder or metal A mixed liquid composed of powder or a mixture thereof and the same metal salt is applied to both sides and composed of a sintered metal surface, and two of them are used so that the metal surface is symmetrical with respect to the surface. The side surfaces of the flat plate that are not metal oxide surfaces are joined with titanium, stainless steel, or a flat plate having the same metal surface on one side, and the anode voltage is made uniform to form a pyramid, and the metal surface that is the center of the pyramid Titanium plate, stainless steel plate, cathode electrode made of platinum wire net or platinum round bar and outer side of the pyramid are sealed with titanium and stainless steel containers in a plane-symmetrical position to form an outer container. Disposed at the inlet, outlet and generated gas outlet, cathode The inner surface and the outer surface of the two flat plates coated with metal oxide are used as radical generating parts, and organic waste water is fed from the inner diameter or length of the truncated pyramid, Or the wastewater that has come out in the small length part has a structure that oxidizes / reduces and decomposes organic substances and harmful substances contained by the generated radicals while it flows again in the opposite direction to the inner part of the truncated pyramid. As a feature,
  Claim5Is an outer casing made of stainless steel or titanium, in which two or more cylindrical truncated cones of the positive electrode are stacked, and cylindrical cathodes made of stainless steel or titanium are alternately arranged between the truncated cones. The outer casing is provided with a waste water inlet, outlet and gas outlet to form a cathode, and the waste water has a metal oxide surface as a positive electrode and stainless steel or titanium as a radical generating electrode. It is characterized by oxidizing and reductive decomposition treatment of organic substances and harmful substances contained in wastewater by radicals generated so that it can be placed on the cell structure,
  Claim6According to the present invention, the cylindrical pyramid on the positive electrode side is stacked in two or more stages, the cylindrical pyramid cathodes made of stainless steel or titanium are alternately arranged between the pyramids, and the outer container made of stainless steel or titanium The radical generating electrode having the outer casing sealed with a waste water inlet, outlet and gas outlet, constituting a cathode, a metal oxide surface as a positive electrode, stainless steel or titanium as a cathode. It is a water purification device characterized in that waste water is oxidized / reduced and decomposed by generated radicals, which can be disposed in a cell structure.
[0009]
  The invention of claim 7In the water purification device housed so that the gap at the uppermost edge of the electrode structure constituting the positive electrode and the cathode electrode is reduced by 10% to 30%, and this portion can be monitored for discharge. Arrangement of a fluorescence detector having a wavelength of 400 nm to 470 nm, and a hydrogen gas detector in the space immediately above the pipes or both electrodes to the discharge port of the generated gas, and the voltage is controlled by detecting fluorescence. The feedback of the signal to the oscillator is performed automatically or manually so that the current can be controlled by detecting the currentCharacterizeIt is a water purification device.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
First, the outline of the present invention will be described below.
The present inventor studied the invention of the specification of the prior application, and as a result of experimentally investigating the relationship between the frequency and the voltage with respect to the application of the pulse voltage with respect to the transition metal, stable electric field processing at both low and high frequencies. Are considered metals, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, St, Zr, Ru, Sn, W, Ir, Pt, Au, Pb, Co and their oxides Found that is effective.
[0011]
In consideration of the fact that metal dissolution such as irrigation water and tap water must not occur and the durability of oxide salts, the types of metals are narrowed down. Furthermore, when these metals are examined in detail, the commonality is that they are transition metals and their oxides, and it has been found that the electron quasi-transfer of these atoms has a very strong correlation with radical generation. These metals and metal oxides were irradiated with electrons below the plasma discharge or corona discharge, and the size and chemical structure of the generated radicals were examined with an electron spin resonance apparatus using a radical scavenger. Hydroxyl radicals, superoxide radicals, It was confirmed that so-called active oxygen and free radicals such as diphenyl looper picryl hydrol were generated.
[0012]
Furthermore, as a result of examining the pulse wave from direct current to 50 MHz by using pure water and changing the voltage from 0.2 kV / cm to 20 kV / cm, the superoxide radical has a low voltage and low current (0.1 mA / cm) in direct current.2~ 100mA / cm2). This is consistent with the outstanding oxidative decomposition of ammonia and polyphenols in the low frequency range of 5 Hz to 10 kHz. In addition, when the relationship between the electron movement speed between the electrodes and the ion movement speed was calculated at 5 kHz to 50 MHz, it was found that no ion movement was caused by pulse irradiation of about 1 μs or less. It was found that application of pulse voltage is stable even in wastewater with conductivity. Especially in this region, the current density is 0.1 mA / cm.2-10 mA / cm2The hydroxyl radicals were dominant in the voltage range of 0.2 kV / cm to 20 kV / cm, and the amount of hydroxyl radicals tended to increase as the voltage increased.
[0013]
As for radical generation, H, which is called streamer discharge.2Since the current suddenly drops in the region where gas is slightly generated, the optimum voltage of the electrode part can be selected according to the frequency from this voltage change, and stable electric field irradiation control technology was established.
DC voltage 10-80V, current density 0.1mA / cm2~ 100mA / cm2In the meantime, the generation of superoxide radicals of the above metals and their oxides was very stable. In ultrapure water, generation of radicals was observed at around 2.07 V or higher. However, when ordinary ions are included, a voltage of about 5 times or more is required, and it has been confirmed that it is necessary for operation to maintain a streamer discharge accompanied by a slight generation of hydrogen. Furthermore, this phenomenon was possible by selecting the voltage even at 5 Hz to 1 MHz, but it was necessary to maintain the pulse discharge interval about 5 to 20 times the ion movement speed, and the relationship between the pulse transmitter and the electrode was strictly designed. -Solved the need for calculation and manual operation and automatic control methods from the characteristics of streamer discharge.
[0014]
The selection of an appropriate pulse frequency requires consideration of the solubility of the positive electrode surface metal by pulses. When the above main metals are examined, there is some galvanic corrosion on the metal surface in the high voltage and high frequency range. Because there are conditions, the amount of metal elution differs between the metal oxide sintered on the surface of stainless steel and the one sintered on the ceramic surface. A positive electrode composed of a participating metal surface having a core as a core is useful. Ceramics refers to those made of nonmetallic inorganic materials in a broad sense, and includes, for example, glass.
[0015]
Embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 2 shows a cross-section when the positive electrode portion and the negative electrode portion of the electrode portions of the inventions of claims 1, 2, 3, and 4 are arranged to face each other. 2 in FIG. 2 is a positive electrode and has a groove indicated by 2 extending in the flowing water direction. The positive electrode 1 is made of titanium oxide, cobalt oxide, tin oxide, iridium oxide, nickel oxide, fine particles of iron oxide or vanadium oxide, or titanium on the surface of ceramic (non-metallic inorganic material including glass) mainly composed of feldspar or silicon. The metal oxide obtained by applying a liquid obtained by mixing the same kind of metal salt solution to metal fine particles of cobalt, nickel, silver, gold, or a mixture thereof, and sintering in a temperature range of 500 ° C. to 1500 ° C. after drying treatment Or a metal or a mixture thereof. The cathode portion 3 is made of platinum, titanium, or stainless steel.
[0016]
The positive electrode 1 and the cathode electrode 3 are disposed so as to face each other, and are structured so as to be wrapped by the external cell 4. In the water treatment, most of the pollutants in the treated water are surely sent by sending the treated water from the lower part (arrow) of the outer cell 4 to the upper part and setting the zenith angles of both opposing electrodes to 5 ° to 40 °. Contact the positive electrode. In the treated water, contaminants in the treated water are efficiently decomposed by radicals generated in the positive electrode part 1. In addition, radicals flowing out from the electrode part are also surely eliminated. Note that the wiring between the external cell and the positive power supply section is completely electrically insulated by insulators or polyethylene resin (not shown). The material of the outer cell 4 is preferably a polymer resin such as an acrylic resin or a polyethylene resin.
[0017]
The material of the external cell 4 can be the same metal as the material of the cathode 3, but the electrical insulation between the positive electrode part and the external cell must be complete, and the ground to earth must be perfect. I must.
[0018]
When a pulse wave or direct current electricity sent from the power supply device supplied to the electrode portions 1 and 3 is loaded on the electrode portion, a slight amount of hydrogen gas bubbles start to be generated on the surface of the cathode portion 3, and a slight amount of hydrogen gas is generated. Gas bubbles begin to rise. When the hydrogen gas is further raised from this state, a rapid current rise is observed as the voltage rises as shown in FIG. Furthermore, there is a voltage range in which the voltage drops rapidly when the voltage is raised. In the voltage region where this voltage drops, streamer discharge is observed and fluorescence is generated. At this time, radicals are generated most efficiently.
[0019]
FIG. 3 shows the reaction in a N, N′-dimethyl-P-nitrosoaniline (hereinafter referred to as RNO) solution for scavenging hydroxyl radicals as follows: absorbance at 10 kHz frequency and power × time / electrode area. The relationship shows the state of the reaction. The positive electrode metal is Ti, SnO2, Al is an example when Ti is used as a cathode electrode. When Al was used as the positive electrode metal, a large amount of hydroxyl radicals appeared to be generated, but as shown in FIG. 4, it was considered that Al was eluted as aluminum hydroxide by hydroxy radicals as shown in FIG. Therefore, in the present invention, Al is not considered as the electrode material.
[0020]
As shown in FIG. 4, other metals have very little oxidation elution due to hydroxy radicals, and are useful as radical generating electrodes. In addition, for precipitation separation of phosphorus and suspended suspended particles, an aggregating precipitant mainly composed of Al and Fe ions can be used, and this is known in an electrolytic elution method in which a DC voltage is applied and has become publicly known. ing. It can be seen from this experimental example that the present invention is based on a completely different principle from this method.
[0021]
FIG. 5 shows the control of the generation of superoxide radicals using the radical scavenger DMPO when the current is controlled to 0.1 A at DC voltages of 400 V, 1000 V and 1500 V, and the positive electrode is Pt and the cathode is Ti or Pt. It is shown as a change, and it can be seen that the generation of superoxide radicals differs depending on the combination of metal materials and voltage.
In addition, using a DMPO radical scavenger, we investigated the tendency of superoxide radicals and hydroxy radicals to be predominantly generated by an electron spin resonance apparatus. When a DC voltage was applied to the transition metal electrode, superoxide radicals were generated. It was found that application of a pulse wave to the transition metal oxide electrode excelled in generating hydroxyl radicals.
[0022]
Therefore, when accelerating the decomposition of pollutants contained in water in an oxidized form, a DC voltage is applied to the former transition metal, and a pulse wave voltage is applied to the latter transition metal oxide when a reduced form is required. This purification method is effective. However, since it is necessary to adjust the electrical resistance when contaminated water is present between the positive electrode and the cathode, it is more effective to make an electrode from a mixture of oxide metal powder and metal powder. Either radical will dominate. Due to the characteristics of the electrodes, the superior electrodes of both radicals are combined in accordance with the characteristics of the polluted water.
[0023]
FIG. 6 shows the removal rate of total nitrogen when a voltage of 400 V is applied to the Ti—Ti electrode part of the polluted water for 30 minutes. It can be seen that ammonia and nitric acid are oxidized and removed. FIG. 15A shows the composition of the gas generated in the experiment of FIG. It can be seen from the gas composition that these substances are oxidized. FIG. 15 (a) shows that N is considered to be derived from nitrate nitrogen.2O generation is also observed. In order to reduce this, it is necessary to induce the generation of reduced hydroxyl radicals. Therefore, when hydrogen peroxide was added to the polluted water, N2O generation could be suppressed. When M is a metal as a symbol, the following reaction is promoted, hydroxyl radicals are derived from hydrogen peroxide, and N radicals are reduced by the reducing action of hydroxyl radicals.2It is considered that the generation of O was suppressed.
[0024]
Reaction formula 1
M + N2O2→ M++ ・ OH + OH-
H2O2 + OH- → HOO- + H2O
M+ + HOO- → M + HOO
[0025]
Next, stabilization of pulse discharge will be described. FIG. 7 shows a circuit diagram of an example of an embodiment of the present invention in the case of discharging by flowing ultrapure water between the electrodes. 7, 5 is a slidac, 6 is a high voltage transformer, 7 is a high voltage diode, 8 is a high voltage resistor, 9 is a charge / discharge capacitor, 10 is an electrode section, 11 is a high voltage probe, and 12 is a high voltage oscilloscope. Respectively. In the circuit of FIG. 7, a fairly stable discharge can be obtained even at a high voltage. However, in the case of removing contaminated water, brackish water or ammonia in seawater, the electrical conductivity of the target treated water changes during discharge, and a stable current cannot be obtained. If the voltage on the transmission circuit side is constant, the current varies depending on the electric conductivity of the polluted water and the electric conductivity of the metal oxide on the positive electrode side. Therefore, in the present invention, the electric conductivity on the positive electrode side can be adjusted to some extent and the current can be stabilized by mixing the metal oxide powder on the positive electrode side with the same metal powder. In addition, since the amount of radicals generated is affected by a change in electric current, this metal mixing method has a ratio restriction. For this reason, the conditions for stable streamer discharge are greatly affected by changes in the electrical conductivity of the polluted water.
[0026]
In order to stabilize the discharge, the present invention solved the problem by combining the following two points.
1) Selection of voltage application frequency
2) Control of the amount of emitted electrons on the negative electrode side
[0027]
The reason for selecting the voltage application frequency is the concept of controlling the amount of electrons in the relationship between the transmission characteristics on the transmitter side and the movement speed of ions in the polluted water. That is, the pulse rise and fall time delays are taken into account. This is affected by the magnitude and frequency of the output voltage. As a method of giving a pulse, there is a method of applying a voltage within 1 μs for limiting the movement of ions dissolved in water. In addition, the moving speed of electrons passing between the electrodes during the time when the next pulse comes 1 × 107Calculated from m / s, the optimum voltage application and frequency are selected. FIG. 8 shows that when the pulse is 10 KV, the pulse pause time can be selected from 10 μs to 1 ms when calculated from the slew rate of the pulse generator (rise or fall time (V / μs)). At 1 MHz or higher and 10 KV-P or higher, a stable applied current controlled on the electric circuit side can be secured.
[0028]
However, at 1 MHz or less, the time at the top of the pulse wave is 1 μs or more, which promotes ion movement between the electrodes and changes the current (in actual contaminated water, this ion movement tends to increase). For this purpose, voltage control for making the amount of electrons transferred between electrodes constant is performed by a pulse transmission circuit, or the amount of electrons transferred between electrodes is masked. For this reason, as shown in the invention of claim 6, the discharge can be stabilized by sintering the porous ceramic film or coating the polymer resin film on the cathode side. In actual control, the current can be kept constant by gradually decreasing from a higher voltage to a lower voltage.
[0029]
In the high-pressure pulse discharge, when the discharge part is made longer than the flow of water in the electrode part as shown in FIG. 2, the discharge contact time of water is 15 to 30 minutes in this case. Accordingly, the electrical conductivity of water at the entrance and exit is increased, and even if the stability of discharge is observed, the discharge is insufficient or overdischarged. It is necessary to provide a voltage gradient on the positive electrode side so that the voltage at the entrance is high and the voltage near the exit is low. Therefore, when metal oxide is applied and sintered to ceramics, the electrical resistance of the metal oxide surface can be made relatively large, so the voltage on the metal oxide surface should be changed between the water inlet and outlet. In order to achieve this, it is only necessary to prevent voltage loss in the power supply section, so a 2 to 100 mm mesh platinum wire or gold wire net is attached to the surface of the metal oxide, and this is embedded in the surface of the metal oxide. Sintered in a heated state. The metal net terminal and power supply terminal are directly connected. The voltage gradient at the inlet and outlet reaches several tens of volts to several hundreds of volts, and the change in the electrical conductivity of the water to be treated is determined from the batch experiment.
[0030]
FIG. 9 shows the structure of a practical electrode part disclosed in the inventions of claims 7 and 8, wherein 13 is a raw water inlet, 14 is a positive electrode part, 15 is a cathode electrode part, 17 is a treated water outlet, 18 Indicates a product gas discharge port. The total apex angle is 5 for truncated cones and truncated pyramids.o~ 40oUntil was useful. 2.5-20 for the flat plateoAnd any one of the flat plates can be used as a cathode to face the positive electrode. FIG. 10 is a cross-sectional view of a truncated pyramidal electrode part structure having a metal and a metal oxide as a positive electrode. Reference numeral 13 denotes a raw water inlet, 14 a positive electrode part, 15 a cathode electrode part, and 16 a mantle part. (Also used as a cathode), 17 is a treated water outlet, 18 is a generated gas discharge port, and 19 is an electrical insulator. A positive electrode 14 made of a metal and a metal oxide is placed in the jacket 16 of the metallic cathode 15, and a titanium plate, a platinum plate or a platinum rod is placed in the center, and this is connected to the jacket and a jacket electrode. If the doorway is attached, it becomes a water purification device.
[0031]
FIG. 11 shows a cell-shaped conical or truncated pyramid-shaped positive electrode disclosed in the inventions of claims 9 and 10 which are alternately stacked with cathode electrodes having the same shape, and the treated water passes through this in one pass. It has a structure that flows out, 13 is a raw water inlet, 14 is a positive electrode part, 15 is a cathode electrode part, 16 is a mantle part (also used as a cathode), 17 is a treated water outlet, and 18 is a generated gas discharge. Port. Depending on the wastewater, there is a restriction that the number of electrodes cannot be increased when the electrical conductivity between the inlet and the outlet changes extremely. Further, even in the case of one stage, the residence time on one side of the positive electrode may not be set to 15 minutes or more. Practically, it is necessary to adjust the voltage of the power generation unit so that the voltage of each electrode is different from each other in series or in parallel in one or more stages.
[0032]
FIG. 12 shows various treatment water and effluent treatment devices containing exogenous endocrine disrupting chemicals, 20 is a stirrer, 21 is a raw water tank, 22 is a hydrogen peroxide tank, and 23 is a metering pump (P1), 24 is a water pump (P2), 25 is an electric field treatment device, 26 is a sedimentation tank, 27 is a treated water outlet, and 28 is a sediment discharge port. Cobalt, nickel, gold, silver, and titanium with little metal elution are used as electrodes. This is because the generation of hydroxyl radicals per se with respect to hydrogen peroxide (see reaction formula 1 above), so that 0.1 mg / L to 1000 mg / L of hydrogen peroxide is introduced before entering this electrode. The pulse source and DC voltage disclosed in the inventions of claims 1, 2, 3, and 4 are added thereto to increase the generation of hydroxyl radicals, and diphenyl phthalic acid, nonylphenol or hardly decomposed by its reducing power. It oxidizes and decomposes substances that are specified as environmental hormones and sterilizes bacteria and molds contained in water. H in FIG.2O2FIG. 15C shows the effect of addition of Ag when ammonia is used.
[0033]
In the present invention, it may be difficult to secure a stable discharge and constant current for sewage and water having a large change in the electrical conductivity of water during treatment. An embodiment of the present invention for overcoming this problem is shown in FIG. FIG. 13 is composed of a high-sensitivity CCD camera 29 and a high-voltage pulse generator 30, and has a structure in which the gap 32 at the uppermost edge of the electrode part is narrower by 10% to 30% than the gap (d) 31 between the electrodes. In order to make Furthermore, a CCD detector is placed at the focal point of the optical system with a filter of 400 to 470 nm for detecting fluorescence so that liquid discharge can be monitored in this part, and the appropriate applied voltage is determined from the current amount on the oscillator side. In addition, an infrared or semiconductor type hydrogen detector is applied to the gas phase part above this electrode or piping connected to this electrode, and this concentration and gas flow rate are fed back to the oscillator, mainly controlling the current. It can be carried out.
[0034]
FIG. 14 shows changes in current and voltage when protrusions are formed on the electrode portions. In FIG. 14, 33 is the discharge start point of the electrode protrusion, 34 is the voltage indicating the minimum discharge current of the electrode protrusion, 35 is the discharge current of the electrode without the protrusion, and 36 is the voltage indicating the minimum discharge current of the electrode protrusion. The reference numeral 37 indicates a discharge current of an electrode without a protrusion corresponding to a voltage of 20% increase of the voltage indicating the minimum discharge current of the electrode protrusion. As shown in FIG. 13, the current increases earlier when the gap is smaller. When the lowering point values 34 and 36 are set, the discharge of the wide gap is appropriately performed. This discharge is characterized by a blue discharge color, which is similar to what is said to be a streamer discharge one step before the plasma discharge or corona discharge. It has been found that the corona discharge and the plasma discharge have a large electrode elution and cannot be practically used. The points 33 and 36 in FIG. 14 are the discharge regions of the narrow protrusions, and the points 35 and 37 are the currents and voltages corresponding thereto. If it is detected, a biased applied voltage is set, and the voltage is shifted to the position of the point 34 on the narrow side of the air gap. It will be. The streamer discharge on the narrow gap side becomes stronger, but the current becomes lower. Thus, the electrode provided with the side with the narrowed gap plays a role of a streamer discharge pilot. Actually, since it depends on the detection sensitivity of fluorescence, the combination of an optical system with a high condensing rate and a large lens aperture and a highly sensitive CCD determines the accuracy of this control.
[0035]
【Example】
The present invention will now be described in more detail for the examples.
Example 1
In order to show the effect of removing TOC, TN, TP in domestic wastewater, frequency 10KHz, repetitive pulse 1KHz, voltage 12kV, current density 50μA / cm2The oscillation conditions are as follows: the electrode is a titanium oxide ceramic plate of the positive electrode part, the cathode part is titanium, the gap between the electrodes is 1 cm, and 1 l / min to 2 l / min of domestic wastewater is allowed to flow between them for 30 minutes. ). From this table, reductive decomposition, that is, excellent hydroxyl radical was observed, and the removal rate of TN was slightly poor, but the removal rate of TOC and TP was high. Moreover, the reduction of the removal rate by the increase in the flow rate was not seen so much.
[0036]
Example 2
Most of the methane digestion and desorption liquid occupies ammonia nitrogen in TN, and it is desirable to oxidize and decompose by using superoxide radicals, and the TOC is also high. On the other hand, since the TP concentration is not so large, a direct current voltage of 250 V and a large current density of 4.0 mA / cm are used in order to aim at an oxidative decomposition type and to prevent electrical attenuation by suspended suspended solids.2In this case, a tin oxide-titanium plate was used as a positive electrode with strong generation of superoxide radicals, titanium was used as the cathode, the electrode gap was 2 cm, the liquid feed rate was 3 l / min, and the voltage application time was 30 minutes. The results are shown in FIG. Due to the oxidation type, the removal rate of ammonia nitrogen and TOC was very high. On the other hand, the removal rate of TP was not so high.
[0037]
Example 3
An example of treatment is shown for the supernatant of the initial sedimentation tank in the sewage treatment plant. Two-stage treatment is performed, and superoxide radicals are easily outstanding in the first stage. A tin oxide-titanium plate is used as the positive electrode, the cathode is the titanium plate, DC voltage 250 V, current density 3.0 mA / cm.2The voltage application time was 30 minutes. The second stage uses a titanium oxide-ceramics plate with superior hydroxyl radicals as the positive electrode, titanium as the cathode, frequency 5 kHz, pulse voltage application 15 kV, repetitive pulse 2 kHz, current density 30 μA / cm.2The first stage and the second stage were connected in series at a flow rate of 2 l / min. The results are shown as a table in FIG. It can be seen that the removal rate becomes very high by performing the two-stage treatment. It was also found that the weaknesses of the methods shown in Example 1 and Example 2 can be supplemented.
[0038]
Example 4
After removing coarse particles from rice washing wastewater with 1mm screen, frequency is 5kHz, repetitive pulse is 1kHz, voltage is 1kV, current density is 30μA / cm.2Under the oscillation conditions, the positive electrode was a tin oxide-titanium plate, the cathode was titanium, and a voltage was applied for 30 minutes to observe a decrease in the TOC and the number of general bacteria. The flow rate was 1 to 5 l / min, and the TOC was 80%. ˜90% could be removed and the bacteria count was reduced by 99.9%.
[0039]
【The invention's effect】
In the present invention, the generation of superoxide radicals is stably generated even in a high-frequency region and a low-frequency region. Further, in wastewater treatment containing a large amount of ions, a current flows stably and power consumption is reduced. -Stable processing can be performed even in a combination of low current, high frequency and minute current. Moreover, even when the electrical resistance of the raw water changes during the process, the voltage pulse can be stably applied.
[Brief description of the drawings]
FIG. 1 is a diagram showing changes in voltage and current until discharge when a voltage is applied by the device of the present invention.
FIG. 2 is a cross-sectional view when a positive electrode part and a cathode part of an electrode part according to the present invention are arranged to face each other.
FIG. 3 is a diagram showing generation of hydroxy radicals by an RNO solution.
FIG. 4 is a diagram showing a change in the metal concentration of a liquid layer by a correlation between processing time and concentration.
FIG. 5 is a diagram showing generation of superoxide radicals by a DMPO radical scavenger.
FIG. 6 shows the removal rate of total nitrogen when a voltage of 400 V is applied for 30 minutes to the Ti—Ti electrode part of the polluted water.
FIG. 7 is a circuit diagram showing an example of an embodiment of the present invention, and shows a case where discharge is performed by flowing ultrapure water between electrodes.
FIG. 8 is a view showing an example of a pulse waveform at the time of a 10 KV pulse.
FIG. 9 is a diagram showing a structure of a cylindrical truncated cone electrode portion according to the present invention.
FIG. 10 is a cross-sectional view showing a structure of a truncated pyramid electrode portion according to the present invention.
FIG. 11 is a diagram showing a structure of a cell electrode portion of the present invention.
FIG. 12 is a flowchart showing the flow of the processing method of the present invention.
FIG. 13 is a configuration diagram showing a proper applied voltage control system of the present invention.
FIG. 14 is a diagram showing a difference in discharge characteristics depending on the presence or absence of electrode protrusions in the discharge part of the present invention.
FIG. 15 is a diagram showing the results of various experiments according to the implementation of the present invention.
FIG. 16 is a diagram showing the results of various experiments according to the implementation of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic metal or transition metal, 2 Sintered part (positive electrode) of metal particle or metal oxide, or mixture thereof, 3 Cathode electrode, 4 External cell, 5 Slack, 6 High voltage transformer, 7 High voltage diode, 8 High voltage resistance , 9 charge / discharge capacitor, 10 electrode part, 11 high voltage probe, 12 high voltage oscilloscope, 13 raw water inlet, 14 positive electrode part, 15 cathode electrode part, 16 mantle part (also used as cathode), 17 treated water outlet, 18 generation Gas exhaust port, 19 Electrical insulator, 20 Stirrer, 21 Raw water tank, 22 Hydrogen peroxide tank, 23 Metering pump (P1), 24 Water pump (P2), 25 electric field treatment device, 26 sedimentation tank, 27 treated water outlet, 28 sediment discharge port, 29 high sensitivity CCD camera, 30 high voltage pulse generator.

Claims (7)

長石やケイ素を主体とするセラミックス又はチタン、鉄、不銹鋼の表面に酸化チタン、酸化コバルト、酸化スズ、酸化イリジュウム、酸化ニッケル、酸化鉄や酸化バナジュウムの微粒子又はチタン、コバルト、ニッケル、銀、金の金属微粒子又はこれらの混合物に、同一種類の金属塩溶液を混合した液体を塗布し、乾燥処理後500℃〜1500℃の温度域で焼結した前記金属酸化物又は金属又はこれらの混合物からなる正極電極と、白金、又はチタン、又は不銹鋼からなる陰極電極と互いに対向するように配設したラジカル発生部とからなり、この対向する電極の両極間に廃水を連続的に流し、両極間に所定の電圧、電流、周波数の条件下でパルス放電をさせ、水の部分分解によってラジカルを発生させ、水中に溶存する有機物やその中間生成物を酸化・還元分解させるとともに、
前記正極は、金属酸化物を塗布、焼結する際に、2mm〜100mm間隔の網目状に白金又は金の細線を張り付け、これらの網目状の金属が金属酸化物の表面に埋設されるように配設され、該網目状の金属の端線にチタン、銅、不銹鋼からなる正極端子を接続し、該正極端子に電源から導かれる正の電圧が確実に付加されることを特徴とする水の浄化装置。
Ceramic oxides mainly composed of feldspar and silicon or titanium, iron, stainless steel, titanium oxide, cobalt oxide, tin oxide, iridium oxide, nickel oxide, iron oxide or vanadium oxide fine particles or titanium, cobalt, nickel, silver, gold A positive electrode comprising the metal oxide or metal or a mixture thereof obtained by applying a liquid in which the same kind of metal salt solution is mixed to the metal fine particles or a mixture thereof and then drying and sintering in a temperature range of 500 ° C. to 1500 ° C. An electrode and a radical generator disposed so as to face each other and a cathode made of platinum, titanium, or stainless steel, and waste water is allowed to flow continuously between both electrodes of the facing electrode, Organic substances dissolved in water and their intermediates by generating a radical by partial decomposition of water by pulse discharge under conditions of voltage, current and frequency Together with the oxidation and reduction decomposition of Narubutsu,
When applying and sintering the metal oxide, the positive electrode is attached with fine wires of platinum or gold in a mesh shape with an interval of 2 mm to 100 mm so that the mesh metal is embedded in the surface of the metal oxide. The positive electrode terminal made of titanium, copper, stainless steel is connected to the end line of the mesh-like metal, and a positive voltage derived from a power source is reliably added to the positive electrode terminal . Purification equipment.
前記正極電極に対向する陰極側に10μm〜1mmの厚さのポーラスセラミックス膜又は0.1〜100μmのフッ素樹脂膜、硬質ポリエチレン膜、フッ素系樹脂膜を溶着又は塗布した電極を配設し、安定したラジカル発生によって廃水中の有機物やその中間生成物を酸化・還元分解させることを特徴とする請求項記載の水の浄化装置。An electrode on which a porous ceramic film having a thickness of 10 μm to 1 mm or a fluororesin film having a thickness of 0.1 to 100 μm, a hard polyethylene film, or a fluororesin film is deposited or applied is disposed on the cathode side facing the positive electrode. the radical-generating water purifying apparatus of claim 1, wherein the oxidizing-reduction decomposition of organic substances and their intermediate products in the waste water by. 前記正極電極を中心線に対し全頂角5°〜40°の角度からなる円筒また円錐台の構造とし、この円筒内側面と外側面は前記酸化金属粉末、これと同一の金属粉末又はこれらの混合物及び同一金属塩からなる混合液を塗布、焼結した金属面で構成し、円筒状円錐台の中心部を白金、チタン、不銹鋼からなる丸棒又は角棒状の陰極を配設し、さらにこの円筒状円錐台の外側をチタン、ステンレス等の金属容器からなる外套容器によって密閉し、該外套容器を廃水の流入口と流出口及び発生ガス流出口に配設して陰極を構成し、かつ円筒状円錐台の内側面及び外側面をラジカルの発生部とし、有機廃水を円筒状円錐台の内側の直径の大きいな部分から送入し、直径の小さな部分に出て、再度円筒状円錐台の外側部を内側部と逆方向に流れ、発生するラジカルによって廃水を酸化・還元処理する構造を持つことを特徴とする請求項記載の水の浄化装置。The positive electrode has a cylindrical or frustoconical structure with a total apex angle of 5 ° to 40 ° with respect to the center line, and the inner side surface and the outer side surface of the cylinder are the metal oxide powder, the same metal powder or the same. It consists of a metal surface coated and sintered with a mixture and a mixed liquid consisting of the same metal salt, and a cylindrical or truncated conical cone is provided with a round bar or square bar cathode made of platinum, titanium, stainless steel, and this The outside of the cylindrical truncated cone is sealed with an outer casing made of a metal container such as titanium or stainless steel, and the outer casing is disposed at the waste water inlet, outlet and generated gas outlet to constitute a cathode, and the cylinder The inside surface and the outside surface of the circular truncated cone are used as radical generators, and organic waste water is fed from the large diameter portion inside the cylindrical circular truncated cone, exits the small diameter portion, and again returns to the cylindrical circular truncated cone. Generates when the outer part flows in the opposite direction to the inner part Water purification device according to claim 1, characterized by having a structure in which oxidation-reduction treatment of wastewater by radicals. 前記正極電極を鉛直面に対して2.5°〜20°の角度に傾けた平板とし、平板の厚さ方向に対して直角に位置する2つの平板を前記酸化金属粉末又は金属粉末又はこれらの混合物及び同一金属塩からなる混合液を両面に塗布して、焼結した金属面で構成し、これを2枚用いて金属面を面対称となるように配設し、さらに2枚の平板の酸化金属面でない側面はチタン又は不銹鋼又は同一金属面を片側に有する平板で接合し、陽極の電圧が均一になるように角錐台に構成し、角錐台の中心である金属面と面対称の位置にチタン板、不銹鋼板、白金線の網又は白金丸棒からなる陰極電極並びに角錐台の外側をチタン、ステンレス容器で密閉して外套容器を構成し、該外套容器を廃水の流入口、流出口及び発生ガス流出口に配設して、陰極を構成して、金属酸化物を塗布した2枚の平板の内側面及び外側面をラジカルの発生部とし、有機系廃水を角錐台の内側の直径又は長さの大きな部分から送入し、直径又は長さの小さい部分に出た廃水は再度角錐台の外側部を内側部と逆方向に流れる間に、発生するラジカルによって含まれる有機物や有害物質を酸化・還元分解処理する構造を有することを特徴とする請求項記載の水の浄化装置。The positive electrode is a flat plate inclined at an angle of 2.5 ° to 20 ° with respect to the vertical plane, and two flat plates positioned perpendicular to the thickness direction of the flat plate are the metal oxide powder or metal powder or these A mixture and a mixed solution composed of the same metal salt are applied to both surfaces, and are composed of sintered metal surfaces. Two of these are used so that the metal surfaces are plane-symmetrical, and two flat plates Side surfaces that are not metal oxide surfaces are joined with titanium or stainless steel or a flat plate with the same metal surface on one side, and the anode voltage is configured to be a frustum so that the anode voltage is uniform, and the plane is symmetrical with the metal surface that is the center of the frustum A titanium plate, a stainless steel plate, a cathode electrode made of a platinum wire net or a platinum round bar, and a titanium / stainless steel container on the outside of the truncated pyramid to form an outer container, and the outer container is made into a wastewater inlet and outlet And arranged at the generated gas outlet to form a cathode The inner surface and the outer surface of the two flat plates coated with the metal oxide are used as radical generating parts, and organic waste water is fed from the large diameter or length part inside the truncated pyramid. The waste water discharged to a small portion has a structure for oxidizing / reducing and decomposing organic substances and harmful substances contained by radicals generated while the outer portion of the truncated pyramid flows again in the opposite direction to the inner portion. Item 2. A water purifier according to Item 1 . 前記正極電極の円筒状円錐台を2段以上重ね、相互の円錐台の間に不銹鋼又はチタンで構成する円筒状陰極を交互に配設し、さらに全体を不銹鋼又はチタンからなる外套容器で密閉し、該外套容器を廃水の流入口、流出口及びガスの流出口を配設して、陰極を構成して、廃水は酸化金属面を正極電極、不銹鋼又はチタンを陰極とするラジカル発生電極をセル構造上に配設できるようにして発生するラジカルによって廃水に含まれる有機物や有害物質を酸化・還元分解処理することを特徴とする請求項記載の水の浄化装置。Two or more cylindrical conical frustums of the positive electrode are stacked, cylindrical cathodes made of stainless steel or titanium are alternately arranged between the conical cones, and the whole is sealed with an outer casing made of stainless steel or titanium. The outer vessel is provided with a waste water inlet, outlet and gas outlet to form a cathode, and the waste water is a cell with a radical generating electrode having a metal oxide surface as a positive electrode and stainless steel or titanium as a cathode. water purification device according to claim 1, characterized in that the radicals produced by allowing disposed on the structure to oxidation and reduction decomposing organic matter and toxic substances contained in the waste water. 前記正極電極側の筒状角錐台を2段以上重ね、角錐台の間に不銹鋼又はチタンで構成する筒状角錐台陰極を交互に配置し、さらに不銹鋼又はチタンで構成する外套容器で全体を密閉し、該外套容器を廃水の流入口、流出口及びガスの流出口を配設して、陰極を構成し、酸化金属面を正極電極、不銹鋼又はチタンを陰極とするラジカル発生電極をセル構造状に配設できることを特徴とする発生するラジカルによって廃水を酸化・還元分解処理することを特徴とする請求項記載の水の浄化装置。Two or more cylindrical pyramids on the positive electrode side are stacked, and cylindrical pyramid cathodes made of stainless steel or titanium are alternately arranged between the pyramids, and the whole is hermetically sealed with an outer casing made of stainless steel or titanium. The outer casing is provided with a waste water inlet, outlet and gas outlet to constitute a cathode, and a radical generating electrode having a metal oxide surface as a positive electrode and stainless steel or titanium as a cathode as a cell structure. water purification device according to claim 1, characterized in that the oxidation-reduction decomposition treatment of waste water by radicals generated, characterized in that it disposed. 前記正極並びに陰極電極を構成する電極構造の最上縁部の空隙が10%〜30%小さくなるように突起状とし、この部分の放電監視が可能となるように収納した水の浄化装置内に400nm〜470nmの波長の蛍光検出器の配設、並びに発生するガスの排出口までの配管又は両電極の直上の空間に水素ガス検出器を配設し、蛍光の検出によって電圧を制御し、水素の検出によって電流を制御することが可能となるように発振器への信号のフィードバックを自動又は手動によって行うことを特徴とする請求項記載の水の浄化装置。A protrusion is formed so that the gap at the uppermost edge of the electrode structure constituting the positive electrode and the cathode electrode is reduced by 10% to 30%, and 400 nm is provided in the water purifier stored so that the discharge can be monitored in this part. Arrangement of a fluorescence detector having a wavelength of ˜470 nm, and a hydrogen gas detector in the space immediately above the pipes or both electrodes to the generated gas outlet, control the voltage by detecting fluorescence, detecting water purification device according to claim 1, characterized in that a feedback signal to the oscillator so as to be able to control the current by automatically or manually by.
JP2000029570A 2000-01-31 2000-02-07 Water purification equipment containing dissolved organic matter and trace amounts of harmful substances Expired - Fee Related JP4429451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000029570A JP4429451B2 (en) 2000-01-31 2000-02-07 Water purification equipment containing dissolved organic matter and trace amounts of harmful substances

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000022858 2000-01-31
JP2000-22858 2000-01-31
JP2000029570A JP4429451B2 (en) 2000-01-31 2000-02-07 Water purification equipment containing dissolved organic matter and trace amounts of harmful substances

Publications (2)

Publication Number Publication Date
JP2001286866A JP2001286866A (en) 2001-10-16
JP4429451B2 true JP4429451B2 (en) 2010-03-10

Family

ID=26584554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000029570A Expired - Fee Related JP4429451B2 (en) 2000-01-31 2000-02-07 Water purification equipment containing dissolved organic matter and trace amounts of harmful substances

Country Status (1)

Country Link
JP (1) JP4429451B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320696A (en) * 2011-05-17 2012-01-18 华英伦水科技(宁波)有限公司 Large water treatment equipment and control method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756739B2 (en) * 2000-12-28 2011-08-24 株式会社筑波バイオテック研究所 Water purification equipment containing dissolved organic substances and trace amounts of harmful substances
JPWO2004031450A1 (en) 2002-09-30 2006-02-02 本田技研工業株式会社 Hydrogen activation device
JP4387734B2 (en) * 2003-09-09 2009-12-24 ペルメレック電極株式会社 Method for producing hydrogen peroxide
NZ522619A (en) * 2004-06-18 2005-08-26 S Hydrogen electrolysis with pyramid shaped reaction cell and moderated production rate
KR100708618B1 (en) 2005-12-28 2007-04-18 제주대학교 산학협력단 Treatment apparatus of dyeing wastewater by using electrical discharge to wastewater surface
KR100770736B1 (en) 2006-04-18 2007-10-26 전치중 Ceramic Electrode for Water Treatment And Making Method of The Same and Electrode Apparatus using The Same
JP2012031488A (en) * 2010-07-31 2012-02-16 Kanji Hosokawa Brown's gas generation system
JP6322477B2 (en) * 2014-05-20 2018-05-09 国立大学法人 熊本大学 Apparatus and method for treating water containing organic matter
CN108911316A (en) * 2018-09-03 2018-11-30 大渊环境技术(厦门)有限公司 A kind of plasma nitrogen rejection facility and its application method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320696A (en) * 2011-05-17 2012-01-18 华英伦水科技(宁波)有限公司 Large water treatment equipment and control method thereof

Also Published As

Publication number Publication date
JP2001286866A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
US5766447A (en) Method and device for treating an aqueous solution
Vanraes et al. Electrical discharge in water treatment technology for micropollutant decomposition
US6802981B2 (en) Method for purification and disinfection of water
US7413667B1 (en) Water decontamination apparatus and method
US10934197B2 (en) Electronic water pre-treatment equipment and methods
US6358398B1 (en) Waste water treatment method and apparatus
US6482327B1 (en) Liquid treating process and apparatus, as well as liquid treating system
US6547951B1 (en) Method and apparatus for treatment of organic matter-containing wastewater
US6811660B2 (en) Apparatus for purifying water containing dissolved organic matters and trace harmful substances
KR102613173B1 (en) Systems and methods for treating fluids by sonoelectrochemistry
JP4429451B2 (en) Water purification equipment containing dissolved organic matter and trace amounts of harmful substances
JP2005058887A (en) Waste water treatment apparatus using high-voltage pulse
CA2971084A1 (en) Electrolytic cell with advanced oxidation process and electro catalytic paddle electrode
EP1156014A1 (en) Waste water treatment method and apparatus
US7494582B2 (en) Electroionic flow cell electrode configuration
KR102564892B1 (en) electric water purification apparatus
Buntat Ozone generation using electrical discharges: A comparative study between pulsed streamer discharge and atmospheric pressure glow discharge
US20220048795A1 (en) System and method for treatment of wastewater fluids
JP2011251275A (en) Water treatment method and water treatment apparatus used for water treatment method
RU2234470C2 (en) Water purification system and method
Krishnan et al. Degradation of Organic Pollutants in Drinking Water by Non-thermal Plasma
UA126680C2 (en) METHOD OF DISINFECTION AND PURIFICATION OF WATER AND DEVICES FOR ITS IMPLEMENTATION
Einstein Plasma reactor classification and optimization

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees