JP2011249032A - 質量分析方法及び装置 - Google Patents
質量分析方法及び装置 Download PDFInfo
- Publication number
- JP2011249032A JP2011249032A JP2010118302A JP2010118302A JP2011249032A JP 2011249032 A JP2011249032 A JP 2011249032A JP 2010118302 A JP2010118302 A JP 2010118302A JP 2010118302 A JP2010118302 A JP 2010118302A JP 2011249032 A JP2011249032 A JP 2011249032A
- Authority
- JP
- Japan
- Prior art keywords
- time
- flight
- spectrum
- mass
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
【解決手段】同一の被測定試料に対し、イオンの追い越しのない飛行時間スペクトルと高い時間分解能の追い越しのある飛行時間スペクトルとを取得する(S1、S2)。イオン出射時間に基づきtof値とm/z値との一対多の関係が分かるから、追い越し飛行時間スペクトル上のピーク強度とマススペクトル(未知)上のピーク強度との関係を表す係数行列Aを求める(S3)。ピーク強度がほぼ正確である非追い越し飛行時間スペクトルから求まるマススペクトルを制約とした平均自乗誤差最小化法により、係数行列Aに対する正則化一般逆行列を計算し(S4)、この行列を用いて各m/zにおけるピーク強度を計算する(S5)。
【選択図】図2
Description
a)周回軌道に沿ってイオンを多重周回させることなく又は多重周回させる場合でも異種のイオンの追いつき・追い越しが起こらないことが保証される周回数で以てイオンを飛行させる第1測定モードで被測定試料に対する質量分析を実行し、検出器により得られる検出信号に基づいて非追い越し飛行時間スペクトルを取得する第1測定モード実行ステップと、
b)前記周回軌道上でイオンの追い越しが生じるように多重周回させた後の所定の時点以降にイオンを周回軌道から離脱させて検出器に導入する第2測定モードで前記被測定試料に対する質量分析を実行し、検出器により得られる検出信号に基づいて追い越し飛行時間スペクトルを取得する第2測定モード実行ステップと、
c)第2測定モードの実行により取得された追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列と、目的のマススペクトル上の各ピークの強度を要素とする行列に乗じることで、該追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列と等しくなる係数行列を求め、前記目的のマススペクトルを求めるために前記係数行列の逆行列を演算する演算処理ステップと、
を有し、前記演算処理ステップは、前記逆行列の正則化一般逆行列を用い、推定される目的のマススペクトルと、前記非追い越し飛行時間スペクトルで近似した真のマススペクトルとの自乗誤差を最小にするように一般逆行列を求めることを特徴としている。
A+=AT(AAT+λ2P)-1=AT (ATA+λ2P)-1AT
a)前記周回軌道上でイオンの追い越しが生じるように多重周回させた後の所定の時点以降にイオンを周回軌道から離脱させて検出器に導入する測定モードによる質量分析を、周回軌道からのイオンの離脱のタイミングを変えて被測定試料に対して2回以上実行し、検出器により得られる検出信号に基づいて2以上の追い越し飛行時間スペクトルを取得する測定実行ステップと、
b)取得された2以上の追い越し飛行時間スペクトルの中の1つと目的のマススペクトルとの関係を、目的のマススペクトル上の各ピークの強度を要素とする行列に、飛行時間における拡がりを与える点拡がり関数を導入した係数行列を乗じて該追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列を求める関係に整理し、前記取得された2以上の追い越し飛行時間スペクトルに対する前記関係を連立させた係数行列を求め、前記目的のマススペクトルを求めるために該係数行列の逆行列を正則化一般逆行列を用いて演算する演算処理ステップと、
を有することを特徴としている。
a)前記周回軌道上でイオンの追い越しが生じるように多重周回させた後の所定の時点以降にイオンを周回軌道から離脱させて検出器に導入する測定モードによる質量分析を、周回軌道からのイオンの離脱のタイミングを変えて被測定試料に対して2回以上実行し、検出器により得られる検出信号に基づいて2以上の追い越し飛行時間スペクトルを取得する測定実行ステップと、
b)取得された2以上の追い越し飛行時間スペクトルの中の1つと目的のマススペクトルとの関係を、目的のマススペクトル上の各ピークの強度を要素とする行列に、飛行時間における拡がりを与える点拡がり関数を導入した係数行列を乗じて該追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列を求める関係に整理し、前記取得された2以上の追い越し飛行時間スペクトルに対する前記関係を連立させた係数行列を求め、該係数行列の各要素と追い越し飛行時間スペクトル上の各ピークの強度とに基づき、点拡がり関数に対するベイズ的逐次近似解法を用いて目的のマススペクトル上の各質量電荷比におけるピーク強度を算出する演算処理ステップと、
を有することを特徴としている。
fr+1(i)=fr(i)Σk{h(k|i)f(i)・h(k)/{Σjfr(j)・h(k|j)}
r→∞のときにfr(i)→f(i)に収束するとすれば、上記式でr→∞として求めたfr(i)が求めるf(i)、つまり目的の質量電荷比におけるピーク強度となる。もちろん、実用的にはr→∞にする必要はなく、rを適宜な値とした段階で近似を打ち切ることができる。
a)周回軌道に沿ってイオンを多重周回させることなく又は多重周回させる場合でも異種のイオンの追いつき・追い越しが起こらないことが保証される周回数で以てイオンを飛行させる第1測定モードで被測定試料に対する質量分析を実行し、検出器により得られる検出信号に基づいて非追い越し飛行時間スペクトルを取得する第1測定モード実行手段と、
b)前記周回軌道上でイオンの追い越しが生じるように多重周回させた後の所定の時点以降にイオンを周回軌道から離脱させて検出器に導入する第2測定モードで前記被測定試料に対する質量分析を実行し、検出器により得られる検出信号に基づいて追い越し飛行時間スペクトルを取得する第2測定モード実行手段と、
c)第2測定モードの実行により取得された追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列と、目的のマススペクトル上の各ピークの強度を要素とする行列に乗じることで、該追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列と等しくなる係数行列を求め、前記目的のマススペクトルを求めるために前記係数行列の逆行列を演算する手段であって、前記逆行列の正則化一般逆行列を用い、推定される目的のマススペクトルと前記非追い越し飛行時間スペクトルで近似した真のマススペクトルとの自乗誤差を最小にするように一般逆行列を求める演算処理手段と、
を備えることを特徴としている。
a)前記周回軌道上でイオンの追い越しが生じるように多重周回させた後の所定の時点以降にイオンを周回軌道から離脱させて検出器に導入する測定モードによる質量分析を、周回軌道からのイオンの離脱のタイミングを変えて被測定試料に対して2回以上実行し、検出器により得られる検出信号に基づいて2以上の追い越し飛行時間スペクトルを取得する測定実行手段と、
b)取得された2以上の追い越し飛行時間スペクトルの中の1つと目的のマススペクトルとの関係を、目的のマススペクトル上の各ピークの強度を要素とする行列に、飛行時間における拡がりを与える点拡がり関数を導入した係数行列を乗じて該追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列を求める関係に整理し、前記取得された2以上の追い越し飛行時間スペクトルに対する前記関係を連立させた係数行列を求め、前記目的のマススペクトルを求めるために該係数行列の逆行列を正則化一般逆行列を用いて演算する演算処理手段と、
を備えることを特徴としている。
a)前記周回軌道上でイオンの追い越しが生じるように多重周回させた後の所定の時点以降にイオンを周回軌道から離脱させて検出器に導入する測定モードによる質量分析を、周回軌道からのイオンの離脱のタイミングを変えて被測定試料に対して2回以上実行し、検出器により得られる検出信号に基づいて2以上の追い越し飛行時間スペクトルを取得する測定実行手段と、
b)取得された2以上の追い越し飛行時間スペクトルの中の1つと目的のマススペクトルとの関係を、目的のマススペクトル上の各ピークの強度を要素とする行列に、飛行時間における拡がりを与える点拡がり関数を導入した係数行列を乗じて該追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列を求める関係に整理し、前記取得された2以上の追い越し飛行時間スペクトルに対する前記関係を連立させた係数行列を求め、該係数行列の各要素と追い越し飛行時間スペクトル上の各ピークの強度とに基づき、点拡がり関数に対するベイズ的逐次近似解法を用いて目的のマススペクトル上の各質量電荷比におけるピーク強度を算出する演算処理手段と、
を備えることを特徴としている。
MT−TOFMSにおける飛行時間tofと質量電荷比m/zとの関係は、次の(2)式又は(3)式で表すことができる。また、このとき周回数nturnは(4)式で計算することができる。
y(1049.0)=x(179.0000)+x(138.0001)+x(148.9712)+x(191.0519)+… …(5)
同様に、全てのtof値におけるピーク強度y(長さmのベクトル:mはtof値におけるサンプル点数)は、m/zでのピーク強度x(長さnのベクトル:nはm/zにおけるサンプル点数)のいくつかの加算により表される。したがって、次の(6)式による行列式が成り立つ。ここで、Xはx(m/z)を要素とする行列、Yはy(tof)を要素とする行列である。
Y=AX …(6)
Aは係数行列であり、値が1である要素をいくつか含むスパース(疎)な行列である。この係数行列Aの構造を概念的に示したのが図3である。係数行列Aの行の数は測定したtofのサンプル数、列の数は換算後のマススペクトル上のm/zのサンプル数で、図3中の塗り潰し部分が値が1である要素を表している。データ処理部9では、追い越し飛行時間スペクトルを構成するスペクトルデータに基づいて、係数行列Aを算出する(ステップS3)。
X=A-1Y …(7)
したがって、飛行時間スペクトルからマススペクトルを求める作業は、係数行列Aから逆行列A-1を計算する作業に帰着される。一般に、或る逆行列を求める解法にはいくつかの方法がある。
具体的には、上記(7)式における逆行列A-1を求めるために、次の(8)式に示すムーア・ペンローズ(Moore-Penrose)の一般逆行列(擬似逆行列)A+を利用して、Xのノルムを最小とする制約をつけた最小ノルム解を計算する方法がある。
A+=AT (AAT) -1 …(8)
より一般的には、次の(9)式に示す正則化一般逆行列を用い、最小ノルム制約と同時に最小自乗制約を付けることができる。ここで、λは正則化パラメータ、Pはペナルティ行列である。
A+=AT(AAT+λ2P)-1=AT (ATA+λ2P)-1AT …(9)
このときの評価関数は次の(10)式となる。
S(x)=|y−Ax|2+λ2xTPx …(10)
上記(8)式は(9)式においてλ=0とした特異なケースである。
A+=AT(AAT+σ2Rxx -1)-1=(RxxATA+σ2I)-1RxxAT …(11)
S(x)= <(x0−x)T(x0−x)> …(12)
Rxxつまり真のマススペクトルx0は本来未知であるが、図8に示したような非追い越し飛行時間スペクトルから求まるマススペクトルは質量分解能は低いものの、各ピークの相対強度はほぼ真のマススペクトルを反映していると考えることができる。そこで、ここでは、ステップS1で得られた非追い越し飛行時間スペクトルから求まるマススペクトルで真のマススペクトルx0を近似する。これにより、(11),(12)式に基づいて、ステップS3で求めた係数行列Aの逆行列を得ることができる(ステップS4)。
以上のように、平均自乗誤差最小化法を用いたデータ処理によれば、非追い越し飛行時間スペクトルから求めたマススペクトルと同様のピーク強度を有し、追い越し飛行時間スペクトルで達成される高い時間分解能を活かして高い質量分解能のマススペクトルを作成することができる。
即ち、或る一つのm/zのイオンは飛行中に拡がって、幾つかのtof値で観測されることになる。このイオンの拡がりは点拡がり関数に従い、ここでは、点拡がり関数は標準偏差を質量分解能で表現するガウス関数であると捉える。この場合、飛行時間スペクトル上の或るtof値におけるピークの強度y(tof)は、近傍の点からの拡がりが重なったものである。そこで、点拡がり関数をh(u)として、上記(5)式を以下の(13)式のように変形する。
y(1049.0)=Σh(u)×(179.0000−u)+Σh(u)×(138.0001−u)+Σh(u)×(148.9712−u)+Σh(u)×(191.0519−u)+… …(13)
したがって、点拡がり関数を導入した係数行列Aの要素は1だけではなく、h(u)の和が1となる確率密度の値を含んでいる。この場合の係数行列Aの構造の概念を図5に示す。ここで、図5中の塗り潰しの濃淡は要素の値の大小を表している。
F(i|k)=f(i)・h(k|i)/{Σjf(j)・h(k|j)} …(15)
また、元のピークf(i)は、
f(i)=ΣkF(i|k)・h(k) …(16)
である。(15)式を(16)式に代入すると、
f(i)=Σk{h(k|i)f(i)・h(k)/{Σjf(j)・h(k|j)} …(17)
となる。(17)式の右辺のf(i)をfr(i)、左辺のf(i)をfr+1(i) とすると、次の漸化式(18)が得られる。
fr+1(i)=fr(i)Σk{h(k|i)f(i)・h(k)/{Σjfr(j)・h(k|j)} …(18)
2…ゲート電極
4…トロイダル扇形電極
5…周回軌道
6…入射軌道
7…出射軌道
8…検出器
9…データ処理部
10…制御部
11…入出射電圧発生部
12…周回飛行電圧発生部
13…入力部
14…表示部
Claims (7)
- イオン源から出発した各種イオンを周回軌道に沿って複数回繰り返し飛行させた後に検出器に導入し、その検出信号に基づいてマススペクトルを取得する多重周回飛行時間型の質量分析装置を用いた質量分析方法であって、
a)周回軌道に沿ってイオンを多重周回させることなく又は多重周回させる場合でも異種のイオンの追いつき・追い越しが起こらないことが保証される周回数で以てイオンを飛行させる第1測定モードで被測定試料に対する質量分析を実行し、検出器により得られる検出信号に基づいて非追い越し飛行時間スペクトルを取得する第1測定モード実行ステップと、
b)前記周回軌道上でイオンの追い越しが生じるように多重周回させた後の所定の時点以降にイオンを周回軌道から離脱させて検出器に導入する第2測定モードで前記被測定試料に対する質量分析を実行し、検出器により得られる検出信号に基づいて追い越し飛行時間スペクトルを取得する第2測定モード実行ステップと、
c)第2測定モードの実行により取得された追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列と、目的のマススペクトル上の各ピークの強度を要素とする行列に乗じることで、該追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列と等しくなる係数行列を求め、前記目的のマススペクトルを求めるために前記係数行列の逆行列を演算する演算処理ステップと、
を有し、前記演算処理ステップは、前記逆行列の正則化一般逆行列を用い、推定される目的のマススペクトルと、前記非追い越し飛行時間スペクトルで近似した真のマススペクトルとの自乗誤差を最小にするように一般逆行列を求めることを特徴とする質量分析方法。 - 請求項1に記載の質量分析方法であって、
係数行列をAとしたときに次式で示す正則化一般行列を用い、該式中の正則化パラメータλをλ=σ(ノイズの標準偏差)、ペナルティ行列PをP=(X0X0 T)-1(ただし、X0は真のマススペクトル)とすることにより、推定される目的のマススペクトルと真のマススペクトルとの平均自乗誤差を最小にするようにしたことを特徴とする質量分析方法。
A+=AT(AAT+λ2P)-1=AT (ATA+λ2P)-1AT - イオン源から出発した各種イオンを周回軌道に沿って複数回繰り返し飛行させた後に検出器に導入し、その検出信号に基づいてマススペクトルを取得する多重周回飛行時間型の質量分析装置を用いた質量分析方法であって、
a)前記周回軌道上でイオンの追い越しが生じるように多重周回させた後の所定の時点以降にイオンを周回軌道から離脱させて検出器に導入する測定モードによる質量分析を、周回軌道からのイオンの離脱のタイミングを変えて被測定試料に対して2回以上実行し、検出器により得られる検出信号に基づいて2以上の追い越し飛行時間スペクトルを取得する測定実行ステップと、
b)取得された2以上の追い越し飛行時間スペクトルの中の1つと目的のマススペクトルとの関係を、目的のマススペクトル上の各ピークの強度を要素とする行列に、飛行時間における拡がりを与える点拡がり関数を導入した係数行列を乗じて該追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列を求める関係に整理し、前記取得された2以上の追い越し飛行時間スペクトルに対する前記関係を連立させた係数行列を求め、前記目的のマススペクトルを求めるために該係数行列の逆行列を正則化一般逆行列を用いて演算する演算処理ステップと、
を有することを特徴とする質量分析方法。 - イオン源から出発した各種イオンを周回軌道に沿って複数回繰り返し飛行させた後に検出器に導入し、その検出信号に基づいてマススペクトルを取得する多重周回飛行時間型の質量分析装置を用いた質量分析方法であって、
a)前記周回軌道上でイオンの追い越しが生じるように多重周回させた後の所定の時点以降にイオンを周回軌道から離脱させて検出器に導入する測定モードによる質量分析を、周回軌道からのイオンの離脱のタイミングを変えて被測定試料に対して2回以上実行し、検出器により得られる検出信号に基づいて2以上の追い越し飛行時間スペクトルを取得する測定実行ステップと、
b)取得された2以上の追い越し飛行時間スペクトルの中の1つと目的のマススペクトルとの関係を、目的のマススペクトル上の各ピークの強度を要素とする行列に、飛行時間における拡がりを与える点拡がり関数を導入した係数行列を乗じて該追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列を求める関係に整理し、前記取得された2以上の追い越し飛行時間スペクトルに対する前記関係を連立させた係数行列を求め、該係数行列の各要素と追い越し飛行時間スペクトル上の各ピークの強度とに基づき、点拡がり関数に対するベイズ的逐次近似解法を用いて目的のマススペクトル上の各質量電荷比におけるピーク強度を算出する演算処理ステップと、
を有することを特徴とする質量分析方法。 - イオン源から出発した各種イオンを周回軌道に沿って複数回繰り返し飛行させた後に検出器に導入し、その検出信号に基づいてマススペクトルを取得する多重周回飛行時間型の質量分析装置において、
a)周回軌道に沿ってイオンを多重周回させることなく又は多重周回させる場合でも異種のイオンの追いつき・追い越しが起こらないことが保証される周回数で以てイオンを飛行させる第1測定モードで被測定試料に対する質量分析を実行し、検出器により得られる検出信号に基づいて非追い越し飛行時間スペクトルを取得する第1測定モード実行手段と、
b)前記周回軌道上でイオンの追い越しが生じるように多重周回させた後の所定の時点以降にイオンを周回軌道から離脱させて検出器に導入する第2測定モードで前記被測定試料に対する質量分析を実行し、検出器により得られる検出信号に基づいて追い越し飛行時間スペクトルを取得する第2測定モード実行手段と、
c)第2測定モードの実行により取得された追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列と、目的のマススペクトル上の各ピークの強度を要素とする行列に乗じることで、該追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列と等しくなる係数行列を求め、前記目的のマススペクトルを求めるために前記係数行列の逆行列を演算する手段であって、前記逆行列の正則化一般逆行列を用い、推定される目的のマススペクトルと前記非追い越し飛行時間スペクトルで近似した真のマススペクトルとの自乗誤差を最小にするように一般逆行列を求める演算処理手段と、
を備えることを特徴とする質量分析装置。 - イオン源から出発した各種イオンを周回軌道に沿って複数回繰り返し飛行させた後に検出器に導入し、その検出信号に基づいてマススペクトルを取得する多重周回飛行時間型の質量分析装置において、
a)前記周回軌道上でイオンの追い越しが生じるように多重周回させた後の所定の時点以降にイオンを周回軌道から離脱させて検出器に導入する測定モードによる質量分析を、周回軌道からのイオンの離脱のタイミングを変えて被測定試料に対して2回以上実行し、検出器により得られる検出信号に基づいて2以上の追い越し飛行時間スペクトルを取得する測定実行手段と、
b)取得された2以上の追い越し飛行時間スペクトルの中の1つと目的のマススペクトルとの関係を、目的のマススペクトル上の各ピークの強度を要素とする行列に、飛行時間における拡がりを与える点拡がり関数を導入した係数行列を乗じて該追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列を求める関係に整理し、前記取得された2以上の追い越し飛行時間スペクトルに対する前記関係を連立させた係数行列を求め、前記目的のマススペクトルを求めるために該係数行列の逆行列を正則化一般逆行列を用いて演算する演算処理手段と、
を備えることを特徴とする質量分析装置。 - イオン源から出発した各種イオンを周回軌道に沿って複数回繰り返し飛行させた後に検出器に導入し、その検出信号に基づいてマススペクトルを取得する多重周回飛行時間型の質量分析装置において、
a)前記周回軌道上でイオンの追い越しが生じるように多重周回させた後の所定の時点以降にイオンを周回軌道から離脱させて検出器に導入する測定モードによる質量分析を、周回軌道からのイオンの離脱のタイミングを変えて被測定試料に対して2回以上実行し、検出器により得られる検出信号に基づいて2以上の追い越し飛行時間スペクトルを取得する測定実行手段と、
b)取得された2以上の追い越し飛行時間スペクトルの中の1つと目的のマススペクトルとの関係を、目的のマススペクトル上の各ピークの強度を要素とする行列に、飛行時間における拡がりを与える点拡がり関数を導入した係数行列を乗じて該追い越し飛行時間スペクトル上の各ピークの強度を要素とする行列を求める関係に整理し、前記取得された2以上の追い越し飛行時間スペクトルに対する前記関係を連立させた係数行列を求め、該係数行列の各要素と追い越し飛行時間スペクトル上の各ピークの強度とに基づき、点拡がり関数に対するベイズ的逐次近似解法を用いて目的のマススペクトル上の各質量電荷比におけるピーク強度を算出する演算処理手段と、
を備えることを特徴とする質量分析装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010118302A JP5533255B2 (ja) | 2010-05-24 | 2010-05-24 | 質量分析方法及び装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010118302A JP5533255B2 (ja) | 2010-05-24 | 2010-05-24 | 質量分析方法及び装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011249032A true JP2011249032A (ja) | 2011-12-08 |
JP5533255B2 JP5533255B2 (ja) | 2014-06-25 |
Family
ID=45414076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010118302A Expired - Fee Related JP5533255B2 (ja) | 2010-05-24 | 2010-05-24 | 質量分析方法及び装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5533255B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017077618A1 (ja) * | 2015-11-05 | 2017-05-11 | 株式会社島津製作所 | クロマトグラフ質量分析データ処理方法及び処理装置 |
CN114778752A (zh) * | 2021-01-22 | 2022-07-22 | 株式会社岛津制作所 | 色谱仪质量分析装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0689695A (ja) * | 1992-05-27 | 1994-03-29 | Finnigan Corp | 個別質量スペクトル出力を発生するための装置及び質量分析計器械を使用する方法 |
JP2005079037A (ja) * | 2003-09-03 | 2005-03-24 | Shimadzu Corp | 質量分析装置 |
JP2007242426A (ja) * | 2006-03-09 | 2007-09-20 | Hitachi High-Technologies Corp | 飛行時間型質量分析装置 |
WO2009075011A1 (ja) * | 2007-12-13 | 2009-06-18 | Shimadzu Corporation | 質量分析方法及び質量分析システム |
WO2010052756A1 (ja) * | 2008-11-10 | 2010-05-14 | 株式会社島津製作所 | 質量分析方法及び質量分析装置 |
-
2010
- 2010-05-24 JP JP2010118302A patent/JP5533255B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0689695A (ja) * | 1992-05-27 | 1994-03-29 | Finnigan Corp | 個別質量スペクトル出力を発生するための装置及び質量分析計器械を使用する方法 |
JP2005079037A (ja) * | 2003-09-03 | 2005-03-24 | Shimadzu Corp | 質量分析装置 |
JP2007242426A (ja) * | 2006-03-09 | 2007-09-20 | Hitachi High-Technologies Corp | 飛行時間型質量分析装置 |
WO2009075011A1 (ja) * | 2007-12-13 | 2009-06-18 | Shimadzu Corporation | 質量分析方法及び質量分析システム |
WO2010052756A1 (ja) * | 2008-11-10 | 2010-05-14 | 株式会社島津製作所 | 質量分析方法及び質量分析装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017077618A1 (ja) * | 2015-11-05 | 2017-05-11 | 株式会社島津製作所 | クロマトグラフ質量分析データ処理方法及び処理装置 |
JPWO2017077618A1 (ja) * | 2015-11-05 | 2018-05-17 | 株式会社島津製作所 | クロマトグラフ質量分析データ処理方法及び処理装置 |
CN114778752A (zh) * | 2021-01-22 | 2022-07-22 | 株式会社岛津制作所 | 色谱仪质量分析装置 |
CN114778752B (zh) * | 2021-01-22 | 2023-09-22 | 株式会社岛津制作所 | 色谱仪质量分析装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5533255B2 (ja) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
De Cian et al. | Fast neural-net based fake track rejection in the LHCb reconstruction | |
WO2010052756A1 (ja) | 質量分析方法及び質量分析装置 | |
CN105051530B (zh) | 用于串联质谱分析的系统和方法 | |
JP4182844B2 (ja) | 質量分析装置 | |
US7227131B2 (en) | Time of flight mass spectrometer | |
JPH07211285A (ja) | 飛行時間型質量分析計および方法 | |
JP2000513494A (ja) | 飛行時間質量分析計における質量誤差を修正する方法及び装置 | |
Spataro | Event Reconstruction in the PandaRoot framework | |
JP4506481B2 (ja) | 飛行時間型質量分析装置 | |
Adamczewski-Musch et al. | Production and electromagnetic decay of hyperons: a feasibility study with HADES as a phase-0 experiment at FAIR | |
JP2007280655A (ja) | 質量分析装置 | |
JP5533255B2 (ja) | 質量分析方法及び装置 | |
JP4790507B2 (ja) | プロダクトイオンスペクトル作成方法及び装置 | |
WO2009110026A1 (ja) | 質量分析方法及び質量分析装置 | |
Gershman et al. | Modeling extreme ultraviolet suppression of electrostatic analyzers | |
JP2006012747A (ja) | 飛行時間型質量分析装置 | |
Bychik et al. | Ion optics of the LAMAS-10 laser time-of-flight mass spectrometer | |
Sauter | Measurement of beauty photoproduction at threshold using di-electron events with the H1 detector at HERA | |
Hanley | The beginnings of cold ion outflow at mars: Supply and energization near the exobase | |
EP4012747A1 (en) | Methods and systems for processing mass spectra | |
Veliscek | The search for pair production of Higgs Bosons at the ATLAS experiment | |
JPWO2011080959A1 (ja) | 質量分析装置、質量分析装置の制御装置、および質量分析方法 | |
Ibrahimi et al. | Accelerated time-of-flight mass spectrometry | |
Tenchini et al. | Decay Chain Reconstruction at Belle II | |
Eckardt | Jet activity in top-quark events at√ s= 13 TeV using 3.2 fb-1 data collected by the ATLAS detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140401 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5533255 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140414 |
|
LAPS | Cancellation because of no payment of annual fees |