JP2011247432A - Laminated heat exchanger - Google Patents

Laminated heat exchanger Download PDF

Info

Publication number
JP2011247432A
JP2011247432A JP2010117714A JP2010117714A JP2011247432A JP 2011247432 A JP2011247432 A JP 2011247432A JP 2010117714 A JP2010117714 A JP 2010117714A JP 2010117714 A JP2010117714 A JP 2010117714A JP 2011247432 A JP2011247432 A JP 2011247432A
Authority
JP
Japan
Prior art keywords
flow
heat medium
wave
channel
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010117714A
Other languages
Japanese (ja)
Inventor
Naomi Sugimoto
尚規 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010117714A priority Critical patent/JP2011247432A/en
Publication of JP2011247432A publication Critical patent/JP2011247432A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated heat exchanger capable of forming a heat medium flow in the lamination direction of a duct even if flow speed of the heat medium in the duct is slow.SOLUTION: The Reynolds number of heat medium that flows a thin duct 333 is configured to be 1,000 or less. An inner fin 33 includes a plate part 331 that extends in the length direction of a duct and a top part 332 for connecting adjoining plate parts 331 together. It has a cross sectional shape which is orthogonal to the length direction of the duct and is wavelike, with the plate part 331 shaped in a wave fin bending wavelike in the length direction of the duct when viewed along the lamination direction of the duct. A fin inclination angle α[°] is so set as to satisfy the relationship of tan(2H/W)≤α<90. The wave angle β[°] and wave depth D [mm] are so set as to satisfy the relationship of 90<β<158, and, D≥13.096×W×β, and, D≥W×0.7.

Description

本発明は、熱媒体が流通する流路管と熱交換対象物とが交互に積層された積層型熱交換器に関する。   The present invention relates to a stacked heat exchanger in which flow channel tubes through which a heat medium flows and heat exchange objects are alternately stacked.

従来、半導体素子を内蔵した半導体モジュール等の発熱体の放熱を行うために、発熱体を両面から挟持するように流路管を配設して構成される積層型熱交換器が知られている。このような積層型熱交換器では、発熱体と流路管とが交互に積層された構成となっており、積層された複数の流路管は、連通部材によって連通され、冷却媒体が各流路管に流通するよう構成されている。   Conventionally, in order to dissipate heat from a heating element such as a semiconductor module incorporating a semiconductor element, a multilayer heat exchanger is known in which a flow path tube is disposed so as to sandwich the heating element from both sides. . Such a stacked heat exchanger has a configuration in which heating elements and flow path tubes are alternately stacked. The plurality of stacked flow path tubes are communicated by a communication member, and a cooling medium flows in each flow. It is configured to circulate in the road pipe.

この種の積層型熱交換器において、熱交換性能を向上させるために、流路管内に仕切部材を配設して1つの流路管内に熱媒体流路を流路管の厚み方向に2段形成するとともに、2段に形成された熱媒体流路のそれぞれにインナーフィンを配置したものが開示されている(例えば、特許文献1参照)。   In this type of stacked heat exchanger, in order to improve heat exchange performance, a partition member is provided in the flow path pipe, and the heat medium flow path is arranged in two stages in the thickness direction of the flow path pipe. In addition to this, there is disclosed a structure in which inner fins are arranged in each of the heat medium channels formed in two stages (see, for example, Patent Document 1).

ところで、この種の積層型熱交換器では、連通部材から各流路管に熱媒体が分配される構成になっているため、流路管内の熱媒体の流速が遅くなる。このような流路管内の微小流量域における熱交換性能の向上を図るために、インナーフィンとして、流路管内の熱媒体の混合促進機能を有するウェーブフィンを用い、当該ウェーブフィンを流路管の厚み方向に複数段積層したものが開示されている(例えば、特許文献2参照)。   By the way, in this type of stacked heat exchanger, since the heat medium is distributed from the communicating member to each flow pipe, the flow rate of the heat medium in the flow pipe becomes slow. In order to improve the heat exchange performance in the minute flow rate region in such a flow channel tube, a wave fin having a function of promoting mixing of the heat medium in the flow channel tube is used as the inner fin, and the wave fin is connected to the flow channel tube. What laminated | stacked multiple steps | paragraphs in the thickness direction is disclosed (for example, refer patent document 2).

特開2005−191527号公報JP 2005-191527 A 特開2010−10418号公報JP 2010-10418 A

上記特許文献2に記載の積層型熱交換器では、インナーフィンとしてウェーブフィンを用いることにより、流路管内に、流路管の幅方向の熱媒体流れが形成される。しかしながら、流路管の積層方向への熱媒体の移動は僅かであるため、流路管内の熱媒体の混合促進効果を充分に得られない。   In the stacked heat exchanger described in Patent Document 2, the heat medium flow in the width direction of the flow path tube is formed in the flow path tube by using the wave fin as the inner fin. However, since the movement of the heat medium in the stacking direction of the flow path tubes is slight, the effect of promoting the mixing of the heat medium in the flow path tubes cannot be sufficiently obtained.

本発明は上記点に鑑みて、流路管内の熱媒体の流速が遅い場合においても、流路管内に流路管の積層方向の熱媒体流れを形成できる積層型熱交換器を提供することを目的とする。   In view of the above points, the present invention provides a stacked heat exchanger capable of forming a heat medium flow in the stacking direction of flow channel tubes in the flow channel tube even when the flow rate of the heat medium in the flow channel tube is low. Objective.

上記目的を達成するため、請求項1に記載の発明では、細流路(333)を流通する熱媒体のレイノルズ数が、1000以下となるように構成されており、インナーフィン(33)は、流路管(3)の長手方向に延びる板部(331)と、隣り合う板部(331)間を繋ぐ頂部(332)とを有し、長手方向に直交する断面形状が波状となるとともに、積層方向から見た際に板部(331)が長手方向に波形に屈折するウェーブフィンであり、流路管(3)の長手方向および積層方向に対してともに直交する方向を、流路管幅方向としたとき、インナーフィン(33)の細流路(333)における熱媒体の流れ方向に直交する断面において、細流路(333)の積層方向の寸法を流路高さH[mm]、細流路(333)のうち当該細流路(333)に対向する頂部(332)から最も離れた部位(314)における熱媒体の流れ方向に直交する方向の寸法を最大流路幅W[mm]、熱媒体の流れ方向に直交する方向に隣り合う頂部(332)同士を結んだ仮想線と板部(331)との成す角度をフィン傾斜角度α[°]としたとき、フィン傾斜角度αは、次の数式1
(数1)
tan−1(2H/W)≦α<90
にて示される関係を満たすように設定されており、インナーフィン(33)の、積層方向に直交し、かつ、細流路(333)における積層方向の中心部を通る断面において、板部(332)の波形状の屈折角度をウェーブ角度β[°]、板部(332)の波形状の振幅方向の寸法をウェーブ深さD[mm]、隣り合う板部(331)間の流路管幅方向における距離を板部間距離W[mm]としたとき、ウェーブ角度βおよびウェーブ深さDは、次の数式2ないし4
(数2)
90<β<158
(数3)
D≧13.096×W×β−0.5785
(数4)
D≧W×0.7
にて示される関係を満たすように設定されていることを特徴としている。
In order to achieve the above object, the invention according to claim 1 is configured such that the Reynolds number of the heat medium flowing through the narrow channel (333) is 1000 or less, and the inner fin (33) It has a plate portion (331) extending in the longitudinal direction of the channel pipe (3) and a top portion (332) connecting between the adjacent plate portions (331), and the cross-sectional shape perpendicular to the longitudinal direction is wavy and laminated. When viewed from the direction, the plate portion (331) is a wave fin that refracts into a waveform in the longitudinal direction, and the direction perpendicular to both the longitudinal direction and the stacking direction of the channel tube (3) In the cross section perpendicular to the flow direction of the heat medium in the narrow channel (333) of the inner fin (33), the dimension in the stacking direction of the narrow channels (333) is defined as the channel height H [mm], the narrow channel ( 333) in the narrow channel (3 Top facing the 3) (maximum flow path dimension perpendicular to the flow direction of the heat medium in the most distant sites from 332) (314) width W 1 [mm], in the direction perpendicular to the flow direction of the heat medium When the angle formed by the imaginary line connecting the adjacent top portions (332) and the plate portion (331) is defined as the fin inclination angle α [°], the fin inclination angle α is expressed by the following formula 1.
(Equation 1)
tan −1 (2H / W 1 ) ≦ α <90
In the cross section of the inner fin (33) perpendicular to the stacking direction and passing through the center of the narrow channel (333) in the stacking direction, the plate portion (332) is set. The wave-shaped refraction angle is the wave angle β [°], the amplitude of the plate portion (332) in the amplitude direction is the wave depth D [mm], and the channel width direction between the adjacent plate portions (331) when the distance was set to the plate portion a distance W 2 [mm] and in the wave angle β and wave depth D, to equation 2 to 4
(Equation 2)
90 <β <158
(Equation 3)
D ≧ 13.096 × W 2 × β− 0.5785
(Equation 4)
D ≧ W 2 × 0.7
It is characterized by being set so as to satisfy the relationship shown in.

このように、フィン傾斜角度αを上記数式1にて示される関係を満たすように設定することで、板部(331)を流路管(3)の積層方向に対して傾斜させることができる。このため、細流路(333)を熱媒体の流れ方向から見た際に、熱媒体の流れ方向下流側に板部(331)の壁面が存在することになるので、細流路(333)を流れる熱媒体が板部(331)の壁面と接触し、これにより流路管(3)の積層方向の熱媒体流れが形成される。したがって、流路管(3)内の熱媒体の流速が遅い場合においても、流路管(3)内に流路管(3)の積層方向の熱媒体流れを形成することが可能となる。   In this way, by setting the fin inclination angle α so as to satisfy the relationship represented by Formula 1, the plate portion (331) can be inclined with respect to the stacking direction of the flow channel pipe (3). For this reason, when the narrow channel (333) is viewed from the flow direction of the heat medium, the wall surface of the plate portion (331) exists on the downstream side in the flow direction of the heat medium, and therefore flows through the narrow channel (333). The heat medium comes into contact with the wall surface of the plate portion (331), thereby forming a heat medium flow in the stacking direction of the flow path pipe (3). Therefore, even when the flow rate of the heat medium in the flow path pipe (3) is low, it is possible to form a heat medium flow in the stacking direction of the flow path pipe (3) in the flow path pipe (3).

また、ウェーブ角度βおよびウェーブ深さDを上記数式2ないし4を満たすように設定することで、後述する実施形態に示すように、細流路(333)を流通する熱媒体のレイノルズ数が1000以下の場合に、流路管(3)の積層方向に直交する断面において、熱媒体が板部(331)に衝突することなく細流路(333)を流れてしまうことを防止できる。これにより、流路管(3)内の熱媒体の流速が遅い場合においても、インナーフィン(33)による熱媒体の混合促進効果を充分に得ることが可能となる。   Further, by setting the wave angle β and the wave depth D so as to satisfy the above formulas 2 to 4, the Reynolds number of the heat medium flowing through the narrow channel (333) is 1000 or less as shown in an embodiment described later. In this case, it is possible to prevent the heat medium from flowing through the narrow channel (333) without colliding with the plate portion (331) in the cross section perpendicular to the stacking direction of the channel tube (3). Thereby, even when the flow rate of the heat medium in the flow path pipe (3) is low, it is possible to sufficiently obtain the effect of promoting the mixing of the heat medium by the inner fin (33).

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の実施形態に係る積層型熱交換器1を示す正面図である。It is a front view which shows the laminated heat exchanger 1 which concerns on embodiment of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. (a)はインナーフィン33の流路管長手方向に直交する断面形状を示す断面図、(b)がインナーフィン33を流路管積層方向から見た平面図である。(A) is sectional drawing which shows the cross-sectional shape orthogonal to the flow-path pipe longitudinal direction of the inner fin 33, (b) is the top view which looked at the inner fin 33 from the flow-path pipe lamination direction. インナーフィン33を示す拡大斜視図である。4 is an enlarged perspective view showing an inner fin 33. FIG. 図4のB矢視図である。It is a B arrow view of FIG. 図5のC−C断面図である。It is CC sectional drawing of FIG. インナーフィン33のウェーブ角度βとウェーブ深さDとの関係を示すグラフである。6 is a graph showing the relationship between the wave angle β of the inner fin 33 and the wave depth D.

以下、本発明の一実施形態について図1〜図7に基づいて説明する。図1は、本実施形態に係る積層型熱交換器1を示す正面図である。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view showing a stacked heat exchanger 1 according to the present embodiment.

図1に示すように、本実施形態の積層型熱交換器1は、熱交換対象物としての複数の電子部品2を両面から冷却するもので、熱媒体を流通させる熱媒体流路30(図2参照)を有する扁平形状の複数の流路管3と、複数の流路管3を連通する連通部材4とを備えている。複数の流路管3は、電子部品2を両面から挟持できるように複数個積層配置されている。   As shown in FIG. 1, the laminated heat exchanger 1 of the present embodiment cools a plurality of electronic components 2 as heat exchange objects from both sides, and a heat medium flow path 30 (see FIG. 2) and a communication member 4 that communicates the plurality of flow channel tubes 3 with each other. A plurality of flow path tubes 3 are arranged in a stacked manner so that the electronic component 2 can be sandwiched from both sides.

本実施形態では、電子部品2として、IGBT等の半導体素子とダイオードとを内蔵した半導体モジュールを用いている。当該半導体モジュールは、自動車用インバータ、産業機器のモータ駆動インバータ、ビル空調用のエアコンインバータ等に用いるものとすることができる。なお、電子部品2としては、上記半導体モジュール以外にも、例えば、パワートランジスタ、パワーFET、IGBT等を用いることもできる。   In the present embodiment, as the electronic component 2, a semiconductor module incorporating a semiconductor element such as an IGBT and a diode is used. The semiconductor module can be used for an inverter for automobiles, a motor drive inverter for industrial equipment, an air conditioner inverter for building air conditioning, and the like. In addition to the semiconductor module, for example, a power transistor, a power FET, an IGBT, or the like can be used as the electronic component 2.

図2は、図1のA−A断面図である。図2に示すように、本実施形態の流路管3は、いわゆるドロンカップ構造となっている。すなわち、流路管3は、一対の外殻プレート31を有して構成されており、一対の外殻プレート31の間に熱媒体流路30が形成されている。   FIG. 2 is a cross-sectional view taken along the line AA of FIG. As shown in FIG. 2, the channel tube 3 of this embodiment has a so-called drone cup structure. That is, the flow path pipe 3 is configured to have a pair of outer shell plates 31, and the heat medium flow path 30 is formed between the pair of outer shell plates 31.

流路管3内には、熱媒体流路30を複数の細流路333に分割し、熱媒体と流路管3との伝熱面積を増大させるインナーフィン33が設けられている。本実施形態では、インナーフィン33は、一対の外殻プレート31間、すなわち熱媒体流路30内に、流路管3の積層方向(以下、流路管積層方向という)に2枚重ねて配置されている。このインナーフィン33の詳細については後述する。   An inner fin 33 that divides the heat medium flow path 30 into a plurality of narrow flow paths 333 and increases the heat transfer area between the heat medium and the flow path pipe 3 is provided in the flow path pipe 3. In the present embodiment, two inner fins 33 are arranged between the pair of outer shell plates 31, that is, in the heat medium flow path 30, in a stacking direction of the flow path pipes 3 (hereinafter referred to as a flow path pipe stacking direction). Has been. Details of the inner fin 33 will be described later.

図1に戻り、電子部品2は、流路管3の一対の外殻プレート31それぞれに対して2個ずつ設けられている。各外殻プレート31に設けられた2つの電子部品2は、それぞれ熱媒体の流れ方向に直列に配置されている。   Returning to FIG. 1, two electronic components 2 are provided for each of the pair of outer shell plates 31 of the channel tube 3. The two electronic components 2 provided on each outer shell plate 31 are arranged in series in the flow direction of the heat medium.

また、流路管3の外殻プレート31における長手方向両端部には、外側、すなわち隣り合う他の流路管3側に突出する略円筒状のフランジ部300が形成されている。そして、隣り合う流路管3のフランジ部300同士をろう付けにより接合することにより、複数の流路管3を連通する連通部材4が形成されている。   Further, at both ends in the longitudinal direction of the outer shell plate 31 of the flow channel tube 3, a substantially cylindrical flange portion 300 that protrudes to the outside, that is, the side of the other adjacent flow channel tube 3 is formed. And the communication member 4 which connects the several flow path pipes 3 is formed by joining the flange parts 300 of the adjacent flow path pipes 3 by brazing.

複数の流路管3のうち積層方向最外側に配置される流路管3を外側流路管3aとしたとき、2つの外側流路管3aのうち一方の外側流路管3aの長手方向両端部には、熱媒体を積層型熱交換器1に導入するための熱媒体導入口401と、熱媒体を積層型熱交換器1から排出するための熱媒体排出口402とがそれぞれ接続されている。熱媒体導入口401および熱媒体排出口402は、ろう付けにより一方の外側流路管3aに接合されている。なお、本実施形態の流路管3、連通部材4、熱媒体導入口401および熱媒体排出口402は、アルミニウム製である。   When the channel tube 3 disposed on the outermost side in the stacking direction among the plurality of channel tubes 3 is an outer channel tube 3a, both ends in the longitudinal direction of one outer channel tube 3a of the two outer channel tubes 3a. The unit is connected with a heat medium inlet 401 for introducing the heat medium into the laminated heat exchanger 1 and a heat medium outlet 402 for discharging the heat medium from the laminated heat exchanger 1, respectively. Yes. The heat medium introduction port 401 and the heat medium discharge port 402 are joined to one outer flow path pipe 3a by brazing. In addition, the flow path pipe 3, the communication member 4, the heat medium introduction port 401, and the heat medium discharge port 402 of this embodiment are made of aluminum.

熱媒体導入口401から導入された熱媒体は、連通部材4を通って長手方向における一方の端部から各流路管3に流入し、それぞれの熱媒体流路30内を他方の端部に向かって流れる。そして、熱媒体は、連通部材4を通って熱媒体排出口402から排出される。このように、熱媒体が熱媒体流路30を流通する間に、電子部品2との間で熱交換を行って、電子部品2を冷却するようになっている。   The heat medium introduced from the heat medium introduction port 401 flows into the flow channel pipe 3 from one end portion in the longitudinal direction through the communication member 4, and the inside of each heat medium flow channel 30 to the other end portion. It flows toward. The heat medium is discharged from the heat medium discharge port 402 through the communication member 4. As described above, while the heat medium flows through the heat medium flow path 30, heat exchange is performed with the electronic component 2 to cool the electronic component 2.

また、積層型熱交換器1は、細流路333を流通する熱媒体のレイノルズ数が、1000以下の層流となるように構成されている。なお、熱媒体としては、本実施形態ではエチレングリコール系の不凍液が混入した水を用いている。   The laminated heat exchanger 1 is configured so that the Reynolds number of the heat medium flowing through the narrow flow path 333 is a laminar flow of 1000 or less. As the heat medium, in this embodiment, water mixed with an ethylene glycol antifreeze is used.

図3は本実施形態に係る積層型熱交換器1のインナーフィン33を示しており、(a)が流路管3の長手方向(以下、流路管長手方向という)に直交する断面形状を示す断面図、(b)が流路管積層方向から見た平面図である。   FIG. 3 shows the inner fins 33 of the laminated heat exchanger 1 according to the present embodiment, in which (a) has a cross-sectional shape orthogonal to the longitudinal direction of the channel tube 3 (hereinafter referred to as the channel tube longitudinal direction). Sectional drawing shown, (b) is the top view seen from the flow-path pipe lamination direction.

図3に示すように、1つの流路管3内に積層配置された2枚のインナーフィン33として、ウェーブフィンがそれぞれ用いられている。具体的には、インナーフィン33は、流路管長手方向に延びるとともに細流路333を分割する板部331と、隣り合う板部331間を繋ぐ頂部332とを有し、流路管長手方向に直交する断面形状が台形波状に形成されるとともに、流路管積層方向から見た際に板部331が流路管長手方向に三角波形に屈折するように形成されている。   As shown in FIG. 3, wave fins are used as the two inner fins 33 stacked in one flow path pipe 3. Specifically, the inner fin 33 includes a plate portion 331 that extends in the longitudinal direction of the flow channel tube and divides the narrow flow channel 333, and a top portion 332 that connects the adjacent plate portions 331, and in the longitudinal direction of the flow channel tube. The orthogonal cross-sectional shape is formed in a trapezoidal wave shape, and the plate portion 331 is formed so as to be refracted in a triangular waveform in the longitudinal direction of the flow pipe when viewed from the flow pipe stacking direction.

2枚のインナーフィン33の間には、中間プレート等の他の部材が配置されておらず、互いの頂部332が直接接触している。このため、流路管3内には、一対のインナーフィン33のうち一方のインナーフィン33により形成された細流路333と、他方のインナーフィン33により形成された細流路333とが連通する部分が存在する。   No other member such as an intermediate plate is disposed between the two inner fins 33, and the top portions 332 of each other are in direct contact with each other. For this reason, in the channel tube 3, there is a portion where the narrow channel 333 formed by one inner fin 33 of the pair of inner fins 33 communicates with the narrow channel 333 formed by the other inner fin 33. Exists.

図4は本実施形態におけるインナーフィン33を示す拡大斜視図で、図5は図4のB矢視図である。ここで、流路管長手方向および流路管積層方向に対してともに直交する方向を、流路管幅方向とする。   FIG. 4 is an enlarged perspective view showing the inner fins 33 in the present embodiment, and FIG. 5 is a view taken in the direction of arrow B in FIG. Here, the direction orthogonal to both the longitudinal direction of the flow channel pipe and the flow channel stacking direction is defined as the flow channel width direction.

また、インナーフィン33の細流路333における熱媒体の流れ方向に直交する断面(以下、第1断面ともいう)において、細流路333の流路管積層方向の寸法を流路高さH[mm]とする。   Further, in a cross section (hereinafter, also referred to as a first cross section) orthogonal to the flow direction of the heat medium in the narrow flow path 333 of the inner fin 33, the dimension of the narrow flow path 333 in the flow path stacking direction is defined as a flow path height H [mm] And

また、第1断面において、細流路333のうち当該細流路333に対向する頂部332から最も離れた部位334における熱媒体の流れ方向に直交する方向の寸法を最大流路幅W[mm]とする。すなわち、最大流路幅Wは、第1断面における熱媒体の流れ方向に直交する方向に隣り合う頂部332間の距離ともいえる。 In the first cross section, the dimension in the direction perpendicular to the flow direction of the heat medium in the portion 334 farthest from the top 332 facing the narrow channel 333 among the narrow channels 333 is the maximum channel width W 1 [mm]. To do. That is, the maximum channel width W 1 can be regarded as the distance between the top 332 adjacent in the direction perpendicular to the flow direction of the heat medium in the first section.

また、第1断面において、熱媒体の流れ方向に直交する方向に隣り合う頂部332同士を結んだ仮想線(図4中の破線l)と板部331との成す角度をフィン傾斜角度α[°]とする。   Further, in the first cross section, the angle formed by the phantom line (broken line 1 in FIG. 4) connecting the adjacent top portions 332 in the direction orthogonal to the flow direction of the heat medium and the plate portion 331 is the fin inclination angle α [°. ].

そして、フィン傾斜角度αは、次の数式5にて示される関係を満たすように設定されている。   The fin inclination angle α is set so as to satisfy the relationship represented by the following mathematical formula 5.

(数5)
tan−1(2H/W)≦α<90
フィン傾斜角度αを、90°を下回るように設定することで、インナーフィン33の板部331は、流路管積層方向に対して傾斜した状態となる。また、フィン傾斜角度αをtan−1(2H/W)とした場合、隣り合う板部331同士が直接接触した状態となる。このため、フィン傾斜角度αの下限をtan−1(2H/W)に設定している。
(Equation 5)
tan −1 (2H / W 1 ) ≦ α <90
By setting the fin inclination angle α to be less than 90 °, the plate portion 331 of the inner fin 33 is inclined with respect to the flow channel tube stacking direction. Further, when the fin inclination angle α is tan −1 (2H / W 1 ), the adjacent plate portions 331 are in direct contact with each other. For this reason, the lower limit of the fin inclination angle α is set to tan −1 (2H / W 1 ).

図6は、図5のC−C断面図である。ここで、インナーフィン33の、流路管積層方向に直交し、かつ、細流路33における流路管積層方向の中心部を通る断面(以下第2断面ともいう)において、板部331の三角波形状の屈折角度をウェーブ角度β[°]とする。すなわち、ウェーブ角度βは、第2断面において、1つの板部331における流路管長手方向に隣り合う直線部分331a同士が成す角度ともいえる。   6 is a cross-sectional view taken along the line CC of FIG. Here, a triangular wave shape of the plate portion 331 in a cross section (hereinafter also referred to as a second cross section) of the inner fin 33 that is orthogonal to the flow path tube stacking direction and passes through the central portion of the narrow flow path 33 in the flow path tube stacking direction. Is the wave angle β [°]. That is, the wave angle β can be said to be an angle formed by the straight portions 331a adjacent to each other in the longitudinal direction of the flow path pipe in one plate portion 331 in the second cross section.

また、第2断面において、板部331の三角波形状の振幅方向の寸法をウェーブ深さD[mm]とする。すなわち、ウェーブ深さDは、第2断面において、1つの板部331における隣り合う頂点部331b間の流路管幅方向の距離ともいえる。   In the second cross section, the dimension in the amplitude direction of the triangular wave shape of the plate portion 331 is defined as a wave depth D [mm]. That is, the wave depth D can also be said to be the distance in the channel tube width direction between adjacent vertex portions 331b in one plate portion 331 in the second cross section.

また、第2断面において、流路管幅方向に隣り合う板部331間の流路管幅方向における距離を板部間距離W[mm]とする。 In the second cross section, the distance between the plate portions 331 adjacent in the flow channel width direction in the flow channel width direction is defined as a distance W 2 [mm] between the plate portions.

一般に、ウェーブフィンにおいて、ウェーブ深さDの最適値は板部間距離Wの1/4であることが知られている(伝熱工学資料(改訂第4版)(日本機械学会)参照)。しかしながら、レイノルズ数(Re)が1000以下である層流域においては、ウェーブフィンのウェーブ深さDを板部間距離Wの70%以上に設定しないと、第2断面において、熱媒体が板部331に衝突することなく細流路333を流れてしまい、流路管幅方向の熱媒体流れが形成され難くなるので、充分な混合促進効果が得られないことが、本発明者の実験検討により明らかとなった。 In general, the wave fins, the wave depth optimal value is known to be a quarter of the plate portion between the distance W 2 of the D (heat transfer engineering materials (Revised Fourth Edition) (Japan Society of Mechanical Engineers) reference) . However, in a laminar flow region where the Reynolds number (Re) is 1000 or less, if the wave depth D of the wave fin is not set to 70% or more of the distance W 2 between the plate portions, the heat medium is not It is clear from the experimental study of the present inventor that a sufficient mixing promotion effect cannot be obtained because the flow of the heat medium in the direction of the width of the flow path tube is difficult to form without colliding with the flow path 331. It became.

そこで、本発明者は、ウェーブ角度βを変化させた際に、常に板部間距離Wの70%以上となるウェーブ深さDの範囲を検討した。具体的には、ウェーブ角度βそれぞれについて板部間距離Wを算出し、算出されたW2に0.7をかける(0.7倍する)ことで、当該ウェーブ角度βにおけるウェーブ深さDの最小値Dminを算出した。この検討結果を図7に示す。 Therefore, the present inventor has examined a range of the wave depth D that is always 70% or more of the inter-plate portion distance W 2 when the wave angle β is changed. Specifically, the plate-to-plate distance W 2 is calculated for each wave angle β, and the calculated W 2 is multiplied by 0.7 (multiplied by 0.7) to obtain the wave depth D at the wave angle β. The minimum value Dmin was calculated. The examination result is shown in FIG.

図7に示すように、ウェーブ深さDの最小値Dminは次の数式6で近似できる。 As shown in FIG. 7, the minimum value D min of the wave depth D can be approximated by the following formula 6.

(数6)
min=13.096×W×β−0.5785
ここで、ウェーブ角度βは、その加工性から90°より大きく設定される。また、図7に示すように、ウェーブ角度βが158°以上になると、ウェーブ深さDの最小値Dminが板部間距離Wの70%を下回るため、ウェーブ角度βは158°より小さく設定される。
(Equation 6)
D min = 13.096 × W 2 × β −0.5785
Here, the wave angle β is set to be larger than 90 ° because of its workability. Further, as shown in FIG. 7, when the wave angle β is 158 ° or more, the minimum value D min of the wave depth D is less than 70% of the plate-to-plate distance W 2 , so the wave angle β is smaller than 158 °. Is set.

以上により、ウェーブ角度βおよびウェーブ深さDは、次の数式7〜9にて示される関係を満たすように設定されている。   As described above, the wave angle β and the wave depth D are set so as to satisfy the relationships represented by the following mathematical formulas 7 to 9.

(数7)
90<β<158
(数8)
D≧W×0.7
(数9)
D≧13.096×W×β−0.5785
図7のグラフ中、実線aは上記数式6を示しており、斜線領域が上記数式7〜9に示される関係を全て満たす範囲である。この斜線領域内にウェーブ角度βおよびウェーブ深さDを設定すれば、インナーフィン33のウェーブ形状に沿って熱媒体が流れ、インナーフィン33による充分な混合促進効果を得ることができることを示している。
(Equation 7)
90 <β <158
(Equation 8)
D ≧ W 2 × 0.7
(Equation 9)
D ≧ 13.096 × W 2 × β− 0.5785
In the graph of FIG. 7, the solid line a indicates the above formula 6, and the hatched area is a range that satisfies all the relationships represented by the above formulas 7 to 9. It is shown that if the wave angle β and the wave depth D are set in the hatched region, the heat medium flows along the wave shape of the inner fin 33 and a sufficient mixing promotion effect by the inner fin 33 can be obtained. .

なお、第2断面における細流路333の幅寸法、すなわち第2断面における細流路333を通過する熱媒体の流れ方向に直交する方向の寸法を流路幅W[mm]としたとき、板部間距離Wを次の数式10で表すこともできる。
(数10)
=W/cos(90−β/2)
以上説明したように、フィン傾斜角度αを上記数式5にて示される関係を満たすように設定することで、板部331を流路管積層方向に対して傾斜させることができる。このため、細流路333を熱媒体の流れ方向から見た際に、熱媒体の流れ方向下流側に板部331の壁面が存在することになるので、細流路333を流れる熱媒体が板部331の壁面と接触することにより、流路管3の積層方向の熱媒体流れが形成される。したがって、流路管3内の熱媒体の流速が遅い場合においても、流路管3内に流路管積層方向の熱媒体流れを形成することが可能となる。その結果、流路管3内の微小流量域における熱交換性能の向上を図ることができる。
When the width dimension of the narrow channel 333 in the second cross section, that is, the dimension in the direction perpendicular to the flow direction of the heat medium passing through the narrow channel 333 in the second section is defined as the channel width W 3 [mm], the plate portion between the distance W 2 may be expressed by equation 10.
(Equation 10)
W 2 = W 3 / cos (90−β / 2)
As described above, the plate portion 331 can be inclined with respect to the flow channel tube stacking direction by setting the fin inclination angle α so as to satisfy the relationship expressed by the above mathematical formula 5. For this reason, when the narrow flow path 333 is viewed from the flow direction of the heat medium, the wall surface of the plate portion 331 exists on the downstream side in the flow direction of the heat medium, so that the heat medium flowing through the narrow flow path 333 is the plate portion 331. The heat medium flow in the stacking direction of the flow path pipes 3 is formed by contacting the wall surfaces of the flow path tubes 3. Therefore, even when the flow rate of the heat medium in the flow channel tube 3 is low, it is possible to form a heat medium flow in the flow channel tube stacking direction in the flow channel tube 3. As a result, it is possible to improve the heat exchange performance in the minute flow rate region in the flow channel tube 3.

また、ウェーブ角度βおよびウェーブ深さDを上記数式7〜9を満たすように設定することで、細流路333を流通する熱媒体のレイノルズ数が1000以下の場合に、流路管積層方向に直交する断面において、熱媒体が板部331に衝突することなく細流路333を流れてしまうことを防止できる。これにより、流路管3内の熱媒体の流速が遅い場合においても、インナーフィン33による熱媒体の混合効果を充分得ることが可能となる。   In addition, by setting the wave angle β and the wave depth D so as to satisfy the above formulas 7 to 9, when the Reynolds number of the heat medium flowing through the narrow flow path 333 is 1000 or less, it is orthogonal to the flow path tube stacking direction. In the cross section, the heat medium can be prevented from flowing through the narrow channel 333 without colliding with the plate portion 331. Thereby, even when the flow rate of the heat medium in the flow path pipe 3 is low, it is possible to sufficiently obtain the heat medium mixing effect by the inner fins 33.

(他の実施形態)
上述の実施形態では、1つの流路管3内に2枚のインナーフィン33を積層配置した例について説明したが、これに限らず、1つの流路管3内に3枚以上のインナーフィン33を積層配置してもよいし、インナーフィン33を1枚のみ配置してもよい。
(Other embodiments)
In the above-described embodiment, an example in which two inner fins 33 are stacked in one flow channel pipe 3 has been described. However, the present invention is not limited thereto, and three or more inner fins 33 are formed in one flow channel tube 3. May be arranged in layers, or only one inner fin 33 may be arranged.

2 電子部品(熱交換対象物)
3 流路管
4 連通部材
33 インナーフィン
331 板部
332 頂部
333 細流路
2 Electronic components (objects for heat exchange)
3 Channel pipe 4 Communication member 33 Inner fin 331 Plate part 332 Top part 333 Narrow channel

Claims (1)

熱媒体が流通する熱媒体流路(30)を有する複数の流路管(3)と、
前記複数の流路管(3)を連通する連通部材(4)とを備え、
前記複数の流路管(3)は、前記流路管(3)と交互に配置される熱交換対象物(2)を両面から挟持できるように積層配置されており、
前記流路管(3)内に、前記熱媒体流路(30)を複数の細流路(333)に分割するとともに、前記熱媒体と前記流路管(3)との伝熱面積を増大させるインナーフィン(33)が、前記流路管(3)の積層方向に複数積層されている積層型熱交換器であって、
前記細流路(333)を流通する熱媒体のレイノルズ数が、1000以下となるように構成されており、
前記インナーフィン(33)は、前記流路管(3)の長手方向に延びる板部(331)と、隣り合う前記板部(331)間を繋ぐ頂部(332)とを有し、前記長手方向に直交する断面形状が波状となるとともに、前記積層方向から見た際に前記板部(331)が前記長手方向に波形に屈折するウェーブフィンであり、
前記流路管(3)の長手方向および前記積層方向に対してともに直交する方向を、流路管幅方向としたとき、
前記インナーフィン(33)の前記細流路(333)における熱媒体の流れ方向に直交する断面において、前記細流路(333)の前記積層方向の寸法を流路高さH[mm]、前記細流路(333)のうち当該細流路(333)に対向する前記頂部(332)から最も離れた部位(314)における前記熱媒体の流れ方向に直交する方向の寸法を最大流路幅W[mm]、前記熱媒体の流れ方向に直交する方向に隣り合う前記頂部(332)同士を結んだ仮想線と前記板部(331)との成す角度をフィン傾斜角度α[°]としたとき、前記フィン傾斜角度αは、次の数式1
(数1)
tan−1(2H/W)≦α<90
にて示される関係を満たすように設定されており、
前記インナーフィン(33)の、前記積層方向に直交し、かつ、前記細流路(333)における前記積層方向の中心部を通る断面において、前記板部(332)の波形状の屈折角度をウェーブ角度β[°]、前記板部(332)の波形状の振幅方向の寸法をウェーブ深さD[mm]、隣り合う前記板部(331)間の前記流路管幅方向における距離を板部間距離W[mm]としたとき、前記ウェーブ角度βおよび前記ウェーブ深さDは、次の数式2ないし4
(数2)
90<β<158
(数3)
D≧13.096×W×β−0.5785
(数4)
D≧W×0.7
にて示される関係を満たすように設定されていることを特徴とする積層型熱交換器。
A plurality of flow pipes (3) having a heat medium flow path (30) through which the heat medium flows;
A communication member (4) communicating with the plurality of flow path pipes (3),
The plurality of flow channel pipes (3) are arranged so as to sandwich the heat exchange object (2) alternately arranged with the flow channel pipes (3) from both sides,
The heat medium flow path (30) is divided into a plurality of narrow flow paths (333) in the flow path pipe (3), and the heat transfer area between the heat medium and the flow path pipe (3) is increased. A laminated heat exchanger in which a plurality of inner fins (33) are laminated in the lamination direction of the flow path pipe (3),
The Reynolds number of the heat medium flowing through the narrow channel (333) is configured to be 1000 or less,
The inner fin (33) includes a plate portion (331) extending in the longitudinal direction of the flow channel tube (3) and a top portion (332) connecting between the adjacent plate portions (331), and the longitudinal direction. A wave fin in which the cross-sectional shape orthogonal to the wave shape is wavy and the plate portion (331) is refracted into a waveform in the longitudinal direction when viewed from the stacking direction,
When the direction perpendicular to both the longitudinal direction of the flow pipe (3) and the stacking direction is the flow pipe width direction,
In the cross section perpendicular to the flow direction of the heat medium in the narrow channel (333) of the inner fin (33), the dimension in the stacking direction of the narrow channels (333) is the channel height H [mm], and the narrow channel (333), the dimension in the direction perpendicular to the flow direction of the heat medium at the portion (314) farthest from the top (332) facing the narrow channel (333) is the maximum channel width W 1 [mm]. When the angle formed between the imaginary line connecting the apexes (332) adjacent to each other in the direction orthogonal to the flow direction of the heat medium and the plate portion (331) is a fin inclination angle α [°], the fin The inclination angle α is expressed by the following formula 1.
(Equation 1)
tan −1 (2H / W 1 ) ≦ α <90
It is set to satisfy the relationship shown in
In the cross section of the inner fin (33) perpendicular to the stacking direction and passing through the central portion of the narrow channel (333) in the stacking direction, the wave-shaped refraction angle of the plate portion (332) is a wave angle. β [°], the dimension in the amplitude direction of the wave shape of the plate part (332) is the wave depth D [mm], and the distance between the adjacent plate parts (331) in the flow channel width direction is the distance between the plate parts. When the distance is W 2 [mm], the wave angle β and the wave depth D are expressed by the following formulas 2 to 4.
(Equation 2)
90 <β <158
(Equation 3)
D ≧ 13.096 × W 2 × β− 0.5785
(Equation 4)
D ≧ W 2 × 0.7
It is set so that the relationship shown by may be satisfy | filled, The laminated | stacked heat exchanger characterized by the above-mentioned.
JP2010117714A 2010-05-21 2010-05-21 Laminated heat exchanger Pending JP2011247432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010117714A JP2011247432A (en) 2010-05-21 2010-05-21 Laminated heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010117714A JP2011247432A (en) 2010-05-21 2010-05-21 Laminated heat exchanger

Publications (1)

Publication Number Publication Date
JP2011247432A true JP2011247432A (en) 2011-12-08

Family

ID=45412920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010117714A Pending JP2011247432A (en) 2010-05-21 2010-05-21 Laminated heat exchanger

Country Status (1)

Country Link
JP (1) JP2011247432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175569A (en) * 2014-03-17 2015-10-05 株式会社デンソー heat transport system
JP2015530552A (en) * 2012-07-19 2015-10-15 グランジェス・アーベー Small aluminum heat exchanger with welded tube for power electronics and battery cooling
JP2016152302A (en) * 2015-02-17 2016-08-22 株式会社デンソー Heat exchanger

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196321A (en) * 1991-01-31 1993-08-06 Nippondenso Co Ltd Vaporizer and refrigeration cycle device
JPH0875310A (en) * 1994-07-05 1996-03-19 Nippondenso Co Ltd Evaporator for cooling apparatus
JPH10173375A (en) * 1996-12-11 1998-06-26 Mitsubishi Electric Corp Electronic circuit module
JP2005191527A (en) * 2003-12-03 2005-07-14 Denso Corp Stacked cooler
JP2007078194A (en) * 2005-09-09 2007-03-29 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger
JP2007175759A (en) * 2005-12-28 2007-07-12 Usui Kokusai Sangyo Kaisha Ltd Method and apparatus for forming corrugated fin structure
JP2007175758A (en) * 2005-12-28 2007-07-12 Usui Kokusai Sangyo Kaisha Ltd Method and apparatus for forming corrugated fin structure
JP2008096048A (en) * 2006-10-13 2008-04-24 Tokyo Radiator Mfg Co Ltd Inner fin for exhaust gas heat exchanger
JP2008144997A (en) * 2006-12-07 2008-06-26 T Rad Co Ltd Pressure-proof heat exchanger
JP2010010418A (en) * 2008-06-27 2010-01-14 Denso Corp Laminated cooler

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196321A (en) * 1991-01-31 1993-08-06 Nippondenso Co Ltd Vaporizer and refrigeration cycle device
JPH0875310A (en) * 1994-07-05 1996-03-19 Nippondenso Co Ltd Evaporator for cooling apparatus
JPH10173375A (en) * 1996-12-11 1998-06-26 Mitsubishi Electric Corp Electronic circuit module
JP2005191527A (en) * 2003-12-03 2005-07-14 Denso Corp Stacked cooler
JP2007078194A (en) * 2005-09-09 2007-03-29 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger
JP2007175759A (en) * 2005-12-28 2007-07-12 Usui Kokusai Sangyo Kaisha Ltd Method and apparatus for forming corrugated fin structure
JP2007175758A (en) * 2005-12-28 2007-07-12 Usui Kokusai Sangyo Kaisha Ltd Method and apparatus for forming corrugated fin structure
JP2008096048A (en) * 2006-10-13 2008-04-24 Tokyo Radiator Mfg Co Ltd Inner fin for exhaust gas heat exchanger
JP2008144997A (en) * 2006-12-07 2008-06-26 T Rad Co Ltd Pressure-proof heat exchanger
JP2010010418A (en) * 2008-06-27 2010-01-14 Denso Corp Laminated cooler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530552A (en) * 2012-07-19 2015-10-15 グランジェス・アーベー Small aluminum heat exchanger with welded tube for power electronics and battery cooling
JP2015175569A (en) * 2014-03-17 2015-10-05 株式会社デンソー heat transport system
JP2016152302A (en) * 2015-02-17 2016-08-22 株式会社デンソー Heat exchanger

Similar Documents

Publication Publication Date Title
JP5545260B2 (en) Heat exchanger
JP5157681B2 (en) Stacked cooler
JP4479568B2 (en) Stacked cooler
JP2016205802A (en) Heat exchanger
JP4265509B2 (en) Stacked cooler
JP2009266937A (en) Stacked cooler
JP4941398B2 (en) Stacked cooler
JP2011192730A (en) Cooler, laminated cooler, and intermediate plate
JP2011233688A (en) Semiconductor cooling device
JP2011247432A (en) Laminated heat exchanger
JP5316470B2 (en) Laminate heat exchanger
JP2012169429A (en) Heat exchanger
WO2016166963A1 (en) Heat exchanger
JP5556691B2 (en) Heat exchanger
JP2016046322A (en) Lamination type cooler
JP2011003708A (en) Heat exchanger using corrugated heat radiation unit
WO2017195588A1 (en) Stack type heat exchanger
WO2020184315A1 (en) Heat exchanger
JP7000777B2 (en) Heat exchanger
JP2011243693A (en) Laminated heat exchanger
JP5382185B2 (en) Stacked cooler
JP2020035830A (en) Wave fin and heat exchanger
JP4522725B2 (en) heatsink
JPWO2019176620A1 (en) Cooler, power converter unit and cooling system
JP6926777B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603