WO2020184315A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2020184315A1
WO2020184315A1 PCT/JP2020/009030 JP2020009030W WO2020184315A1 WO 2020184315 A1 WO2020184315 A1 WO 2020184315A1 JP 2020009030 W JP2020009030 W JP 2020009030W WO 2020184315 A1 WO2020184315 A1 WO 2020184315A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat exchanger
cooling water
fin
tubes
Prior art date
Application number
PCT/JP2020/009030
Other languages
French (fr)
Japanese (ja)
Inventor
孝博 宇野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020021446A external-priority patent/JP7226364B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080019915.0A priority Critical patent/CN113557403B/en
Priority to DE112020001170.4T priority patent/DE112020001170T5/en
Publication of WO2020184315A1 publication Critical patent/WO2020184315A1/en
Priority to US17/404,719 priority patent/US20210389057A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/105Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being corrugated elements extending around the tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F2001/428Particular methods for manufacturing outside or inside fins

Definitions

  • This disclosure relates to heat exchangers.
  • the heat exchanger described in Patent Document 1 is a condenser and includes a plurality of tubes arranged in a laminated manner. Refrigerant is flowing inside the tube. Air is flowing in the gap between adjacent tubes. In this heat exchanger, the refrigerant is condensed by heat exchange between the refrigerant flowing inside each tube and the air flowing outside each tube. Inner fins are housed inside the tube.
  • the inner fin is a so-called corrugated fin formed by bending a thin metal plate in a wavy shape. The inner fin has a function of promoting heat exchange between the refrigerant and air by increasing the heat transfer area with respect to the refrigerant.
  • the structure described in Patent Document 1 specifically, the structure in which the inner fin is provided inside the tube is not limited to the condenser, but is not limited to the condenser, but is used for a radiator that cools the cooling water by radiating the heat of the cooling water to the air. It is valid even when applied.
  • a structure in which an inner fin is provided inside the tube is adopted for the radiator, there are the following concerns.
  • a radiator for cooling the cooling water circulating in the battery and its peripheral devices that supply electric power to the electric motor, in addition to the radiator for cooling the engine cooling water.
  • a radiator is sometimes referred to as a low water temperature radiator because cooling water having a temperature lower than that of the engine cooling water flows through the radiator.
  • the flow rate of the cooling water supplied from the electric pump may be smaller than that of the engine cooling water radiator, so the flow of the cooling water inside the tube becomes a flow in the low Re (Reynolds) number region.
  • Re Reynolds
  • the inner fin becomes an obstacle to the flow of the cooling water, so that the water flow resistance of the cooling water increases.
  • a low water temperature radiator is mounted on a vehicle, it may be necessary to reduce the number of stacking stages of the radiator tubes due to the relationship between the space limitation of the vehicle and the heat generation amount of the radiator. As the number of stacked tubes decreases, the flow velocity of the cooling water in the tube increases, so that the water flow resistance of the cooling water further increases. When the water flow resistance of the cooling water increases, it becomes difficult for the cooling water to flow in the tube, so that the heat transfer coefficient of the low water temperature radiator may decrease. This is one of the factors that cannot improve the heat transfer coefficient of the low water temperature radiator even though the inner fin is provided inside the tube.
  • An object of the present disclosure is to provide a heat exchanger capable of achieving both a reduction in water flow resistance and an improvement in heat transfer coefficient.
  • the heat exchanger has a plurality of tubes arranged in a laminated manner, and heat exchange is performed between a first fluid flowing inside the tubes and a second fluid flowing outside the tubes. It is said.
  • the heat exchanger includes fins housed inside the tube.
  • the fins are a joint portion that is bent in a wavy shape at a predetermined fin pitch and the tip of the bent portion is joined to the inner surface of the tube, and a portion formed longer than the predetermined fin pitch. It has a non-joint portion that is not joined to the inner surface.
  • a protrusion is formed on the outer wall of the tube facing the non-joint portion.
  • the non-joint portion of the fin since the non-joint portion of the fin is not in contact with the inner surface of the tube, it is possible to secure the cross-sectional area of the flow path through which the first fluid flows. Therefore, it is possible to reduce the water flow resistance.
  • the protrusions formed on the tube increase the heat transfer area of the tube with respect to the first fluid, so that the heat transfer coefficient of the heat exchanger can be improved.
  • another heat exchanger has a plurality of tubes arranged in a laminated manner, and is located between a first fluid flowing inside the tubes and a second fluid flowing outside the tubes. Heat exchange takes place.
  • the heat exchanger includes fins housed inside the tube.
  • the fins are a joint portion that is bent in a wavy shape at a predetermined fin pitch and the tip of the bent portion is joined to the inner surface of the tube, and a portion formed longer than the predetermined fin pitch. It has a non-joint portion that is not joined to the inner surface. A protrusion is formed on the non-joint portion.
  • the non-joint portion of the fin since the non-joint portion of the fin is not in contact with the inner surface of the tube, it is possible to secure the cross-sectional area of the flow path through which the first fluid flows. Therefore, it is possible to reduce the water flow resistance. Further, since the heat transfer area of the fin to the first fluid is increased by the protrusion formed in the non-joint portion of the fin, the heat transfer rate of the heat exchanger can be improved.
  • another heat exchanger has a plurality of tubes arranged in a laminated manner, and between a first fluid flowing inside the tubes and a second fluid flowing outside the tubes. Heat exchange takes place.
  • the heat exchanger includes fins housed inside the tube.
  • the fins are a joint portion that is bent in a wavy shape at a predetermined fin pitch and the tip of the bent portion is joined to the inner surface of the tube, and a portion formed longer than the predetermined fin pitch. It has a non-joint portion that is not joined to the inner surface.
  • a protrusion is formed on the outer wall of the tube facing the non-joint portion.
  • a protrusion is formed on the non-joint portion.
  • the non-joint portion of the fin since the non-joint portion of the fin is not in contact with the inner surface of the tube, it is possible to secure the cross-sectional area of the flow path through which the first fluid flows. Therefore, it is possible to reduce the water flow resistance. Further, since the protrusion formed on the tube and the protrusion formed on the non-joint portion of the fin increase the heat transfer area of the tube and fin with respect to the first fluid, the heat transfer coefficient of the heat exchanger can be increased. Can be improved.
  • FIG. 1 is a front view showing the front structure of the heat exchanger of the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along the line II-II of FIG.
  • FIG. 3 is a cross-sectional view showing a cross-sectional structure of the tube of the first embodiment.
  • FIG. 4 is a perspective view showing a cross-sectional perspective structure of the tube of the first embodiment.
  • FIG. 5 is a graph showing the relationship between the Reynolds number Re of the cooling water and the heat transfer coefficient ⁇ .
  • FIG. 6 is a cross-sectional view showing the cross-sectional structure of the tube of the first modification of the first embodiment.
  • FIG. 7 is a perspective view showing a cross-sectional perspective structure of the tube of the first modification of the first embodiment.
  • FIG. 8 is a cross-sectional view showing a cross-sectional structure of the tube of the second embodiment.
  • FIG. 9 is a cross-sectional view showing the cross-sectional structure of the tube of the first modification of the second embodiment.
  • FIG. 10 is a cross-sectional view showing the cross-sectional structure of the tube of the first modification of the second embodiment.
  • FIG. 11 is a perspective view showing a cross-sectional perspective structure of the tube of the second modification of the second embodiment.
  • 12 (A) and 12 (B) are cross-sectional views showing a cross-sectional structure around a protrusion in a tube of a second modification of the second embodiment.
  • FIG. 13 is a diagram schematically showing a flow mode of cooling water in a tube in the heat exchanger of the second modification of the second embodiment.
  • FIG. 14 is a perspective view showing a cross-sectional perspective structure of the tube of the third modification of the second embodiment.
  • 15 (A) and 15 (B) are cross-sectional views showing a cross-sectional structure around a protrusion in a tube of a third modification of the second embodiment.
  • FIG. 16 is a perspective view showing a cross-sectional perspective structure of the tube of the fourth modification of the second embodiment.
  • 17 (A) and 17 (B) are cross-sectional views showing a cross-sectional structure around a protrusion in a tube of a fourth modification of the second embodiment.
  • FIG. 18 is a cross-sectional view showing the cross-sectional structure of the tube of another embodiment.
  • FIG. 19 is a cross-sectional view showing a cross-sectional structure of a tube of another embodiment.
  • the heat exchanger 10 of the first embodiment shown in FIG. 1 will be described.
  • the heat exchanger 10 shown in FIG. 1 is mounted on a vehicle equipped with an engine and an electric motor as a power source for traveling.
  • the heat exchanger 10 circulates engine cooling water for cooling the engine and cooling water for cooling the electric motor and its peripheral devices. Since the cooling water for cooling the electric motor and its peripheral devices is lower than the engine cooling water, it will be referred to as "low temperature cooling water" below.
  • the heat exchanger 10 can cool the engine cooling water and the low temperature cooling water by exchanging heat between the engine cooling water and the air and exchanging heat between the low temperature cooling water and the air. It is a complex type radiator.
  • the engine cooling water and the low temperature cooling water correspond to the first fluid
  • the air corresponds to the second fluid.
  • the engine cooling water and the low temperature cooling water are collectively referred to as "cooling water”.
  • the heat exchanger 10 is arranged in the engine room together with the condenser and the evaporator of the vehicle air conditioner. For example, in the case of combination with the evaporator of the vehicle air conditioner, the heat exchanger 10 is arranged at a position closer to the grill opening than the condenser of the vehicle air conditioner. Air introduced from the grill opening is supplied to the heat exchanger 10.
  • the heat exchanger 10 includes a core portion 20, a first header tank 30, and a second header tank 40.
  • the core portion 20 includes a plurality of tubes 21 and a plurality of outer fins 22.
  • the plurality of tubes 21 are stacked and arranged at predetermined intervals in the direction indicated by the arrow Z.
  • the tube 21 is formed so as to extend in the direction indicated by the arrow X.
  • the cross-sectional shape of the tube 21 orthogonal to the direction indicated by the arrow X is formed in a flat tubular shape.
  • a flow path through which the cooling water flows is formed so as to extend in the direction indicated by the arrow X. Air flows in the direction indicated by the arrow Y in the gap between the adjacent tubes 21 and 21.
  • the direction indicated by the arrow X is referred to as “tube longitudinal direction X”
  • the direction indicated by the arrow Y is referred to as “air flow direction Y”
  • the direction indicated by the arrow Z is referred to as “tube stacking direction Z”. ..
  • the tube stacking direction Z is the vertical direction
  • the tube longitudinal direction X and the air flow direction Y are the horizontal directions. Therefore, the heat exchanger 10 of the present embodiment is a so-called cross-flow type heat exchanger.
  • the outer fins 22 are arranged in the gap between the adjacent tubes 21 and 21.
  • the outer fin 22 is a so-called corrugated fin formed by bending a thin metal plate made of aluminum or the like in a wavy shape.
  • the tip of the bent portion of the outer fin 22 is in contact with the outer surfaces of the adjacent tubes 21 and 21, and the contact portions are joined by brazing.
  • the outer fin 22 is fixed to the tube 21 by this joining structure.
  • the outer fin 22 has a function of promoting heat exchange between the refrigerant flowing inside the tube 21 and the air by increasing the heat transfer area for the air flowing between the adjacent tubes 21 and 21. ..
  • the first header tank 30 is connected to one end of each tube 21.
  • the first header tank 30 is formed in a tubular shape. Inside the first header tank 30, a partition portion 33 that partitions the internal space into the first distribution flow path 31 and the second distribution flow path 32 is formed.
  • the first header tank 30 is provided with the first inflow port 310 corresponding to the portion where the first distribution flow path 31 is formed, and the second header tank 30 corresponds to the portion where the second distribution flow path 32 is formed.
  • An inflow port 320 is provided.
  • the second header tank 40 is connected to the other end of each tube 21.
  • the second header tank 40 is formed in a tubular shape like the first header tank 30.
  • a partition portion 43 for partitioning the internal space into the first collecting flow path 41 and the second collecting flow path 42 is formed inside the second header tank 40.
  • the partition portion 43 of the second header tank 40 is arranged at the same position as the position of the partition portion 33 of the first header tank 30 in the tube stacking direction Z.
  • the second header tank 40 is provided with a first discharge port 410 corresponding to a portion where the first collecting flow path 41 is formed, and corresponds to a portion where the second collecting flow path 42 is formed.
  • a second discharge port 420 is provided.
  • the region of the core portion 20 connected to the first distribution flow path 31 of the first header tank 30 and the first assembly flow path 41 of the second header tank 40 is referred to as the first core region A1 and is referred to as the core.
  • the region connected to the second distribution flow path 32 of the first header tank 30 and the second assembly flow path 42 of the second header tank 40 in the unit 20 is referred to as a second core region A2.
  • the first core region A1 is larger than the second core region A2.
  • engine cooling water flows into the first inflow port 310 of the first header tank 30.
  • the engine cooling water that has flowed into the first inflow port 310 is distributed from the first distribution flow path 31 of the first header tank 30 to each tube 21 of the first core region A1 of the core portion 20.
  • the engine cooling water is cooled by heat exchange between the engine cooling water flowing inside each tube 21 and the air flowing outside each tube.
  • the engine cooling water cooled by flowing through each tube is collected in the first collecting flow path 41 of the second header tank 40, and then discharged from the first discharge port 410 of the second header tank 40.
  • low water temperature cooling water flows into the second inflow port 320 of the first header tank 30.
  • the low water temperature cooling water that has flowed into the second inflow port 320 is distributed from the second distribution flow path 32 of the first header tank 30 to each tube 21 of the second core region A2 of the core portion 20.
  • the low water temperature cooling water is cooled by heat exchange between the low water temperature cooling water flowing inside each tube 21 and the air flowing outside each tube. ..
  • the low water temperature cooling water cooled by flowing through each tube is collected in the second collecting flow path 42 of the second header tank 40, and then discharged from the second discharge port 420 of the second header tank 40.
  • the laminated structure of the tubes 21 is arranged in two rows in the air flow direction Y.
  • the core portion 20 is not limited to a structure having two rows of laminated structures of tubes 21, and may have a structure having only one row of laminated structures of tubes 21.
  • the inner fin 23 is housed inside the tube 21.
  • the inner fin 23 is formed by bending a thin metal plate such as aluminum.
  • a crimped portion 232 to be crimped to the tube 21 is formed at one end of the inner fin 23.
  • the crimped portion 232 increases the thickness of one end of the tube 21 to ensure the stone chipping performance of the tube 21.
  • Joint portions 230a to 230c bent in a wavy shape at a predetermined fin pitch FP are formed in the inner portion of the inner fin 23, which is inside the crimped portion 232, and in the central portion and the other end portion of the inner fin 23, respectively.
  • the tip of the bent portion of the joint portions 230a to 230c is in contact with the inner surface of the tube 21.
  • the contact parts are joined by brazing.
  • the joint portions 230a to 230c position the inner fin 23 with respect to the tube 21 and secure heat transfer to the tube 21 and rigidity of the tube 21.
  • a non-joint portion 231a that is not joined to the inner surface of the tube 21 is formed in a portion of the inner fin 23 between the joint portion 230a and the joint portion 230b.
  • a non-joint portion 231b is also formed in a portion of the inner fin 23 between the joint portion 230b and the joint portion 230c.
  • the non-joining portions 231a and 231b are formed so as to extend parallel to the inner surface of the tube 21.
  • the respective lengths L1 and L2 of the non-joining portions 231a and 231b are longer than the respective fin pitch FPs of the joining portions 230a to 230c.
  • a plurality of protrusions 210a and 211a are formed on the tube 21 so as to project inward of the tube 21 at a portion of the inner fin 23 facing the non-joining portions 231a and 231b. More specifically, a first protrusion 210a is formed on one outer wall 210 of the tube 21 facing the non-joining portion 231a of the inner fin 23. A second protrusion 211a is formed on the other outer wall 211 of the tube 21 facing the non-joining portion 231a of the inner fin 23. The first protrusion 210a is arranged at a position closer to the joint 230a than the joint 230b of the inner fin 23.
  • the second protrusion 211a is arranged at a position closer to the joint 230b than the joint 230a of the inner fin 23.
  • the first protrusion 210a and the second protrusion 211a are formed on the outer wall portions 210 and 211 of the tube 21 facing the non-joint portion 231b of the inner fin 23, respectively.
  • the space partitioned by the joint portions 230a and 230b of the inner fin 23, the non-joint portions 231a, and the outer wall portions 210 and 211 of the tube 21 is defined as the first space S1, and the joint portions 230b, 230c and non-joint portions 231b of the inner fin 23,
  • the first space S1 and the second space S2 are spaces having substantially the same shape.
  • the Reynolds number Re of the cooling water flowing through the tube 21 and the heat transfer coefficient ⁇ of the cooling water change as shown by the solid line L1 in FIG.
  • the Reynolds number Re and the heat transfer of the cooling water when the protrusions 210a and 211a are not formed on the tube 21 and the inner fin 23 is not provided inside the tube 21.
  • the relationship with the rate ⁇ is shown by the alternate long and short dash line L2. Further, in FIG.
  • the relationship with the rate ⁇ is shown by the alternate long and short dash line L3.
  • the flow of the cooling water becomes a laminar watershed. Further, when the value of the Reynolds number Re is large, the flow of the cooling water becomes a turbulent flow area. When the value of the Reynolds number Re is an intermediate value between them, the flow of the cooling water becomes a transition region.
  • the transition region is a region where the flow of cooling water transitions between the laminar watershed and the turbulent watershed.
  • the flow of the cooling water flows as shown by the alternate long and short dash line L3 in FIG.
  • the heat transfer coefficient ⁇ of the cooling water can be secured in the transition region and the turbulent flow region.
  • the flow rate of the low temperature cooling water flowing through the second core region A2 of the heat exchanger 10 is lower than the flow rate of the engine cooling water flowing through the first core region A1.
  • the heat transfer coefficient ⁇ of the cooling water can be sufficiently obtained only by forming the protrusions 210a and 211a on the tube 21. It may not be possible to secure it.
  • the heat of the cooling water when the flow of the cooling water is in the laminar basin is in the laminar basin. It is possible to improve the transmission rate ⁇ . This is because in the heat exchanger 10 of the present embodiment, the heat transfer area can be increased and the heat transfer can be promoted by the inner fins 23 provided inside the tube 21.
  • the heat of the cooling water is generated even when the flow of the cooling water is in the transition region. It is possible to improve the transmission rate ⁇ . This is because, in addition to the effects of the protrusions 210a and 211a themselves, the inner fins 23 can increase the heat transfer area and promote heat transfer.
  • the actions and effects shown in the following (1) to (3) can be obtained.
  • the protrusions 210a and 211a are formed so as to protrude inward of the tube 21. According to such a configuration, it is possible to avoid interference between the protrusions 210a and 211a and the outer fins 22.
  • the non-joining portions 231a and 231b of the inner fin 23 are formed so as to extend parallel to the inner surface of the tube 21. According to such a configuration, a flow path having a predetermined width can be secured between the inner surface of the tube 21 and the non-joining portions 231a and 231b of the inner fin 23, so that the cooling water flowing through the tube 21 can pass through. It is possible to further reduce the water resistance.
  • the air flowing between the adjacent tubes 21 and 21 collides with the protrusions 210a and 211a, so that the air flow direction around the outside of the tubes can be changed. Therefore, since it is possible to promote the introduction of air into the louver portion formed on the outer fin 22, it is possible to promote the improvement of the heat exchange performance on the air side by the protrusions 210a and 211a.
  • the protrusions 210a and 211a of this modification are formed not in a hemispherical shape but in an elongated hole shape that intersects diagonally with respect to the flow direction of the cooling water. According to such a configuration, it is possible to minimize the gap formed on the joint surface between the protrusions 210a and 211a and the outer fin 22. As a result, the joint area between the tube 21 and the outer fin 22 is increased, so that the heat exchange performance on both the cooling water side and the air side can be improved.
  • the heat exchanger 10 of the second embodiment will be described.
  • the differences from the heat exchanger 10 of the first embodiment will be mainly described.
  • a plurality of protrusions 232a are formed on the non-joined portions 231a and 231b of the inner fin 23.
  • the protrusion 232a is formed so as not to come into contact with the inner surface of the tube 21.
  • the arrangement of the protrusion 232a in the non-joining portion 231a and the arrangement of the protrusion 232a in the non-joining portion 231b are substantially the same.
  • the space partitioned by the joint portions 230a and 230b of the inner fin 23, the non-joint portions 231a, and the outer wall portions 210 and 211 of the tube 21 is designated as the first space S1, and the joint portions 230b and 230c of the inner fin 23 are not joined.
  • the space partitioned by the portions 231b and the outer wall portions 210 and 211 of the tube 21 is the second space S2
  • the first space S1 and the second space S2 have substantially the same shape.
  • the action and effect shown in (4) below can be obtained.
  • the non-joined portions 231a and 231b of the inner fin 23 are not in contact with the inner surface of the tube 21, it is possible to secure the cross-sectional area of the flow path through which the engine cooling water and the low temperature cooling water flow. Therefore, it is possible to reduce the water flow resistance.
  • the protrusion 232a formed on the inner fin 23 increases the heat transfer area of the inner fin 23 with respect to the cooling water, the heat transfer coefficient of the heat exchanger 10 can be improved.
  • protrusions 232a do not come into contact with the inner surface of the tube 21, but a part of the protrusions 232a is a part of the tube 21 as long as the same or similar effect as the heat exchanger 10 of the present embodiment can be obtained. It may be in contact with the inner surface of the.
  • the protrusion 232a is formed by cutting up a part of the non-joining portions 231a and 231b of the inner fin 23 into a trapezoidal shape.
  • the cut-up shape of the protrusion 232a is not limited to the trapezoidal shape, and may be triangular, for example, as shown in FIG.
  • one of the tube longitudinal directions X is referred to as the X1 direction, and the other direction is referred to as the X2 direction.
  • one of the air flow directions Y is referred to as the Y1 direction, and the other direction is referred to as the Y2 direction.
  • one of the tube stacking directions Z is referred to as the Z1 direction, and the other direction is referred to as the Z2 direction.
  • the X2 direction corresponds to the flow direction of the cooling water.
  • protrusions 232b and 232c are formed on the non-joined portions 231a and 231b of the inner fin 23.
  • the protruding portion 232b is formed so as to protrude in the Z2 direction from the non-joined portions 231a and 231b.
  • the protrusion 232b is formed so as to extend in the direction in which the X2 direction component and the Y1 direction component are combined.
  • the protruding portion 232c is formed so as to protrude in the Z1 direction from the non-joined portions 231a and 231b.
  • the protrusion 232c is formed so as to extend in the direction in which the X2 direction component and the Y2 direction component are combined. As shown in FIGS. 12A and 12B, the protrusions 232b and 232c are formed so as not to come into contact with the outer wall portions 210 and 211 of the tube 21.
  • FIG. 13 illustrates a case where the cross-sectional shape of the protrusion 232c is trapezoidal.
  • the cooling water flows along the outer surface of the protrusion 232c, so that the flow direction of the cooling water flowing inside the outer wall portion 210 of the tube 21 is Z1. Can be changed in direction.
  • the cooling water flows so as to collide with the inner wall surface of the tube 21, so that heat exchange is easily performed between the inner wall surface of the tube 21 and the cooling water.
  • the same action and effect are exhibited at the protrusion 232c.
  • the heat exchange between the air flowing through the outer fins 22 and the cooling water flowing inside the tube 21 can be further promoted, so that the heat transfer coefficient of the heat exchanger 10 can be improved.
  • protrusions 232b and 232c do not come into contact with the outer wall portions 210 and 211 of the tube 21, but as long as the same or similar effect as the heat exchanger 10 of the present embodiment can be obtained, the protrusions A part of 232b and 232c may be in contact with the outer wall portions 210 and 211 of the tube 21.
  • the protrusion 232c protruding in the Z2 direction and the protrusion 232c protruding in the Z1 direction are alternately arranged in the X2 direction, in other words, cooling water. Since the cooling water is alternately arranged in the flow direction of, the cooling water repeatedly collides with the inner wall surface of the tube 21 in the Z1 direction and the inner wall surface in the Z2 direction discontinuously and alternately. As a result, the heat transfer coefficient of the heat exchanger 10 can be improved while reducing the pressure loss of the cooling water.
  • the protrusions 232b and 232c move toward the X1 direction, in other words, in the direction of the cooling water flow. It has a shape in which the amount of protrusion increases toward the upstream side, a so-called fish shadow streamline shape.
  • the shapes of the protrusions 232b and 232c are also referred to as inclined blade shapes.
  • the cross-sectional shapes of the protrusions 232b and 232c orthogonal to the Z1 and Z2 directions are formed in a circular shape.
  • the cooling water easily flows along the periphery of the protrusions 232b and 232c, so that the cooling water is less likely to deviate from the protrusions 232b and 232c.
  • the heat transfer coefficient around the protrusions 232b and 232c in the inner fin 23 can be locally improved.
  • each embodiment can also be implemented in the following embodiments.
  • the space partitioned by the joint portions 230a and 230b of the inner fin 23, the non-joint portions 231a, and the outer wall portions 210 and 211 of the tube 21 is set as the first space S1, and the inner fin 23
  • the first space S1 and the second space S2 are tubes in the air flow direction Y. It may have a shape that is line-symmetrical with respect to the center line of 21. According to such a configuration, it is possible to flow the cooling water more uniformly in the internal flow path of the tube 21.
  • the inner fin 23 of the first embodiment may have a plurality of protrusions 210a and 211a formed line-symmetrically with respect to the center line in the air flow direction Y. Further, the plurality of protrusions 210a and 211a may be arranged in a staggered pattern or a grid pattern.
  • Applicable heat exchangers include, for example, heat exchangers in which only one type of fluid flows, small-sized down-face heat exchangers, medium-sized half-face heat exchangers, and large-sized full-face heat exchangers. There is a heat exchanger. Further, the flow direction of the cooling water in the heat exchanger 10 can be changed as appropriate. For example, as the heat exchanger 10, it is also possible to adopt a so-called downflow type in which cooling water flows in the vertical direction.
  • the configuration of the heat exchanger 10 of each embodiment is not limited to the radiator that cools the cooling water, and can be applied to any heat exchanger such as a condenser that condenses the refrigerant by heat exchange between air and the refrigerant. Is.
  • the configuration of the heat exchanger 10 of each embodiment is applied to the condenser, the refrigerant corresponds to the first fluid and the air corresponds to the second fluid.
  • the protrusions 210a and 211a may be formed on the tube 21 and the protrusions 232a and 232a may be formed on the inner fin 23. Further, the tube 21 may have a structure in which the tip thereof does not hold the inner fin 23.
  • the protrusions 210a and 211a of the tube 21 may be in contact with the inner fins 23. Further, in the heat exchanger 10 of the second embodiment, the protrusion 232a of the inner fin 23 may be in contact with the inner surface of the tube 21.
  • the number of protrusions 210a, 211a formed on the tube 21 of the first embodiment and the number of joints 230a, 230b, 230c formed on the inner fin 23 can be arbitrarily changed. Further, the number of protrusions 232a, 232b, 232c formed on the inner fin 23 of the second embodiment and the number of joints 230a, 230b, 230c can be arbitrarily changed.

Abstract

This heat exchanger comprises a fin (23) accommodated inside a tube (21). The fin has: joining parts (230a, 230b, 230c) that are folded in a wave shape at a prescribed fin pitch, the joining parts being such that the distal-end parts of the folded portions are joined to the inner surface of the tube; and non-joining parts (231a, 231b) that are not joined to the inner surface of the tube, the non-joining parts being formed longer than the prescribed fin pitch. In the tube, protruding parts (210a, 211a) are formed on outer wall surfaces (210, 211) facing the non-joining parts.

Description

熱交換器Heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年3月13日に出願された日本国特許出願2019-045425号と、2020年2月12日に出願された日本国特許出願2020-021446号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2019-045425 filed on March 13, 2019 and Japanese Patent Application No. 2020-021446 filed on February 12, 2020. , Which asserts the benefit of its priority, and the entire contents of its patent application are incorporated herein by reference.
 本開示は、熱交換器に関する。 This disclosure relates to heat exchangers.
 従来、下記の特許文献1に記載の熱交換器がある。特許文献1に記載の熱交換器は、凝縮器であって、積層して配置される複数のチューブを備えている。チューブの内部には、冷媒が流れている。隣り合うチューブ間の隙間には空気が流れている。この熱交換器では、各チューブの内部を流れる冷媒と、各チューブの外部を流れる空気との間で熱交換が行われることにより、冷媒が凝縮される。チューブの内部にはインナーフィンが収容されている。インナーフィンは、薄い金属版を波状に屈曲させることにより形成された、いわゆるコルゲートフィンである。インナーフィンは、冷媒に対する伝熱面積を増加させることにより、冷媒と空気との間の熱交換を促進させる機能を有している。 Conventionally, there is a heat exchanger described in Patent Document 1 below. The heat exchanger described in Patent Document 1 is a condenser and includes a plurality of tubes arranged in a laminated manner. Refrigerant is flowing inside the tube. Air is flowing in the gap between adjacent tubes. In this heat exchanger, the refrigerant is condensed by heat exchange between the refrigerant flowing inside each tube and the air flowing outside each tube. Inner fins are housed inside the tube. The inner fin is a so-called corrugated fin formed by bending a thin metal plate in a wavy shape. The inner fin has a function of promoting heat exchange between the refrigerant and air by increasing the heat transfer area with respect to the refrigerant.
特開2013-217507号公報Japanese Unexamined Patent Publication No. 2013-217507
 特許文献1に記載されるような構造、具体的にはチューブの内部にインナーフィンを設ける構造は、凝縮器に限らず、冷却水の熱を空気に放熱することにより冷却水を冷却するラジエータに適用する場合でも有効である。しかしながら、チューブの内部にインナーフィンを設ける構造をラジエータに採用した場合、次のような懸念がある。 The structure described in Patent Document 1, specifically, the structure in which the inner fin is provided inside the tube is not limited to the condenser, but is not limited to the condenser, but is used for a radiator that cools the cooling water by radiating the heat of the cooling water to the air. It is valid even when applied. However, when a structure in which an inner fin is provided inside the tube is adopted for the radiator, there are the following concerns.
 近年、電動機を動力源として走行する車両には、エンジン冷却水を冷却するラジエータとは別に、電動機に電力を供給する電池やその周辺機器を循環する冷却水を冷却するためのラジエータが搭載される場合がある。このようなラジエータは、エンジン冷却水よりも温度の低い冷却水が流れることから、低水温ラジエータと称されることがある。低水温ラジエータでは、エンジン冷却水用ラジエータと比較すると、電動ポンプから供給される冷却水の流量が少ない場合があるため、チューブの内部の冷却水の流れが低Re(レイノルズ)数領域の流れになり易く、冷却水の熱伝達率が低下するおそれがある。そのため、特許文献1に記載の熱交換器のように、チューブの内部にインナーフィンを設ければ、冷却水に対する伝熱面積を増加させることができるため、冷却水の熱伝達率を向上させることが可能となる。 In recent years, vehicles traveling with an electric motor as a power source are equipped with a radiator for cooling the cooling water circulating in the battery and its peripheral devices that supply electric power to the electric motor, in addition to the radiator for cooling the engine cooling water. In some cases. Such a radiator is sometimes referred to as a low water temperature radiator because cooling water having a temperature lower than that of the engine cooling water flows through the radiator. In a low water temperature radiator, the flow rate of the cooling water supplied from the electric pump may be smaller than that of the engine cooling water radiator, so the flow of the cooling water inside the tube becomes a flow in the low Re (Reynolds) number region. There is a risk that the heat transfer coefficient of the cooling water will decrease. Therefore, if an inner fin is provided inside the tube as in the heat exchanger described in Patent Document 1, the heat transfer area for the cooling water can be increased, so that the heat transfer coefficient of the cooling water can be improved. Is possible.
 ところで、チューブの内部にインナーフィンを設けた場合、冷却水の流れに対してインナーフィンが障害物となるため、冷却水の通水抵抗が増加する。また、低水温ラジエータを車両に搭載する場合には、車両のスペース的な制約とラジエータの発熱量との関係により、ラジエータのチューブの積段数を少なくする必要が生じる場合がある。チューブの積段数が少なくなるほど、チューブ内の冷却水の流速が速くなるため、冷却水の通水抵抗が更に増加することになる。冷却水の通水抵抗が増加すると、チューブ内を冷却水が流れ難くなることから、低水温ラジエータの熱伝達率が低下するおそれがある。これが、チューブの内部にインナーフィンが設けられているにも関わらず、低水温ラジエータの熱伝達率を向上させることができない要因の一つとなっている。 By the way, when the inner fin is provided inside the tube, the inner fin becomes an obstacle to the flow of the cooling water, so that the water flow resistance of the cooling water increases. Further, when a low water temperature radiator is mounted on a vehicle, it may be necessary to reduce the number of stacking stages of the radiator tubes due to the relationship between the space limitation of the vehicle and the heat generation amount of the radiator. As the number of stacked tubes decreases, the flow velocity of the cooling water in the tube increases, so that the water flow resistance of the cooling water further increases. When the water flow resistance of the cooling water increases, it becomes difficult for the cooling water to flow in the tube, so that the heat transfer coefficient of the low water temperature radiator may decrease. This is one of the factors that cannot improve the heat transfer coefficient of the low water temperature radiator even though the inner fin is provided inside the tube.
 なお、このような課題は、低水温ラジエータに限らず、チューブの内部を流れる流体と、チューブの外部を流れる流体との間で熱交換を行う熱交換器に共通する課題である。
 本開示の目的は、通水抵抗の低減と熱伝達率の向上との両立を図ることの可能な熱交換器を提供することにある。
It should be noted that such a problem is not limited to the low water temperature radiator, but is a problem common to heat exchangers that exchange heat between the fluid flowing inside the tube and the fluid flowing outside the tube.
An object of the present disclosure is to provide a heat exchanger capable of achieving both a reduction in water flow resistance and an improvement in heat transfer coefficient.
 本開示の一態様による熱交換器は、積層して配置される複数のチューブを有し、チューブの内部を流れる第1流体と、チューブの外部を流れる第2流体との間で熱交換が行われる。熱交換器は、チューブの内部に収容されるフィンを備える。フィンは、所定のフィンピッチで波状に折り曲げられ、且つ折り曲げられた部分の先端部がチューブの内面に接合される接合部と、所定のフィンピッチよりも長く形成された部分であって、チューブの内面に接合されていない非接合部と、を有する。チューブにおいて非接合部に対向する外壁部には、突起部が形成されている。 The heat exchanger according to one aspect of the present disclosure has a plurality of tubes arranged in a laminated manner, and heat exchange is performed between a first fluid flowing inside the tubes and a second fluid flowing outside the tubes. It is said. The heat exchanger includes fins housed inside the tube. The fins are a joint portion that is bent in a wavy shape at a predetermined fin pitch and the tip of the bent portion is joined to the inner surface of the tube, and a portion formed longer than the predetermined fin pitch. It has a non-joint portion that is not joined to the inner surface. A protrusion is formed on the outer wall of the tube facing the non-joint portion.
 この構成によれば、フィンの非接合部がチューブの内面に接触していないため、第1流体の流れる流路断面積を確保することができる。よって、通水抵抗を低減することが可能である。また、チューブに形成されている突起部により、第1流体に対するチューブの伝熱面積が増加するため、熱交換器の熱伝達率を向上させることができる。 According to this configuration, since the non-joint portion of the fin is not in contact with the inner surface of the tube, it is possible to secure the cross-sectional area of the flow path through which the first fluid flows. Therefore, it is possible to reduce the water flow resistance. In addition, the protrusions formed on the tube increase the heat transfer area of the tube with respect to the first fluid, so that the heat transfer coefficient of the heat exchanger can be improved.
 また、本開示の一態様による他の熱交換器は、積層して配置される複数のチューブを有し、チューブの内部を流れる第1流体と、チューブの外部を流れる第2流体との間で熱交換が行われる。熱交換器は、チューブの内部に収容されるフィンを備える。フィンは、所定のフィンピッチで波状に折り曲げられ、且つ折り曲げられた部分の先端部がチューブの内面に接合される接合部と、所定のフィンピッチよりも長く形成された部分であって、チューブの内面に接合されていない非接合部と、を有する。非接合部には、突起部が形成されている。 Further, another heat exchanger according to one aspect of the present disclosure has a plurality of tubes arranged in a laminated manner, and is located between a first fluid flowing inside the tubes and a second fluid flowing outside the tubes. Heat exchange takes place. The heat exchanger includes fins housed inside the tube. The fins are a joint portion that is bent in a wavy shape at a predetermined fin pitch and the tip of the bent portion is joined to the inner surface of the tube, and a portion formed longer than the predetermined fin pitch. It has a non-joint portion that is not joined to the inner surface. A protrusion is formed on the non-joint portion.
 この構成によれば、フィンの非接合部がチューブの内面に接触していないため、第1流体の流れる流路断面積を確保することができる。よって、通水抵抗を低減することが可能である。また、フィンの非接合部に形成されている突起部により、第1流体に対するフィンの伝熱面積が増加するため、熱交換器の熱伝達率を向上させることができる。 According to this configuration, since the non-joint portion of the fin is not in contact with the inner surface of the tube, it is possible to secure the cross-sectional area of the flow path through which the first fluid flows. Therefore, it is possible to reduce the water flow resistance. Further, since the heat transfer area of the fin to the first fluid is increased by the protrusion formed in the non-joint portion of the fin, the heat transfer rate of the heat exchanger can be improved.
 さらに、本開示の一態様による他の熱交換器は、積層して配置される複数のチューブを有し、チューブの内部を流れる第1流体と、チューブの外部を流れる第2流体との間で熱交換が行われる。熱交換器は、チューブの内部に収容されるフィンを備える。フィンは、所定のフィンピッチで波状に折り曲げられ、且つ折り曲げられた部分の先端部がチューブの内面に接合される接合部と、所定のフィンピッチよりも長く形成された部分であって、チューブの内面に接合されていない非接合部と、を有する。チューブにおいて非接合部に対向する外壁部には、突起部が形成されている。非接合部には、突起部が形成されている。 Further, another heat exchanger according to one aspect of the present disclosure has a plurality of tubes arranged in a laminated manner, and between a first fluid flowing inside the tubes and a second fluid flowing outside the tubes. Heat exchange takes place. The heat exchanger includes fins housed inside the tube. The fins are a joint portion that is bent in a wavy shape at a predetermined fin pitch and the tip of the bent portion is joined to the inner surface of the tube, and a portion formed longer than the predetermined fin pitch. It has a non-joint portion that is not joined to the inner surface. A protrusion is formed on the outer wall of the tube facing the non-joint portion. A protrusion is formed on the non-joint portion.
 この構成によれば、フィンの非接合部がチューブの内面に接触していないため、第1流体の流れる流路断面積を確保することができる。よって、通水抵抗を低減することが可能である。また、チューブに形成されている突起部、及びフィンの非接合部に形成されている突起部により、第1流体に対するチューブ及びフィンの伝熱面積が増加するため、熱交換器の熱伝達率を向上させることができる。 According to this configuration, since the non-joint portion of the fin is not in contact with the inner surface of the tube, it is possible to secure the cross-sectional area of the flow path through which the first fluid flows. Therefore, it is possible to reduce the water flow resistance. Further, since the protrusion formed on the tube and the protrusion formed on the non-joint portion of the fin increase the heat transfer area of the tube and fin with respect to the first fluid, the heat transfer coefficient of the heat exchanger can be increased. Can be improved.
図1は、第1実施形態の熱交換器の正面構造を示す正面図である。FIG. 1 is a front view showing the front structure of the heat exchanger of the first embodiment. 図2は、図1のII-II線に沿った断面構造を示す断面図である。FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along the line II-II of FIG. 図3は、第1実施形態のチューブの断面構造を示す断面図である。FIG. 3 is a cross-sectional view showing a cross-sectional structure of the tube of the first embodiment. 図4は、第1実施形態のチューブの断面斜視構造を示す斜視図である。FIG. 4 is a perspective view showing a cross-sectional perspective structure of the tube of the first embodiment. 図5は、冷却水のレイノルズ数Reと熱伝達率αとの関係を示すグラフである。FIG. 5 is a graph showing the relationship between the Reynolds number Re of the cooling water and the heat transfer coefficient α. 図6は、第1実施形態の第1変形例のチューブの断面構造を示す断面図である。FIG. 6 is a cross-sectional view showing the cross-sectional structure of the tube of the first modification of the first embodiment. 図7は、第1実施形態の第1変形例のチューブの断面斜視構造を示す斜視図である。FIG. 7 is a perspective view showing a cross-sectional perspective structure of the tube of the first modification of the first embodiment. 図8は、第2実施形態のチューブの断面構造を示す断面図である。FIG. 8 is a cross-sectional view showing a cross-sectional structure of the tube of the second embodiment. 図9は、第2実施形態の第1変形例のチューブの断面構造を示す断面図である。FIG. 9 is a cross-sectional view showing the cross-sectional structure of the tube of the first modification of the second embodiment. 図10は、第2実施形態の第1変形例のチューブの断面構造を示す断面図である。FIG. 10 is a cross-sectional view showing the cross-sectional structure of the tube of the first modification of the second embodiment. 図11は、第2実施形態の第2変形例のチューブの断面斜視構造を示す斜視図である。FIG. 11 is a perspective view showing a cross-sectional perspective structure of the tube of the second modification of the second embodiment. 図12(A),(B)は、第2実施形態の第2変形例のチューブにおける突起部周辺の断面構造を示す断面図である。12 (A) and 12 (B) are cross-sectional views showing a cross-sectional structure around a protrusion in a tube of a second modification of the second embodiment. 図13は、第2実施形態の第2変形例の熱交換器におけるチューブ内の冷却水の流れ態様を模式的に示す図である。FIG. 13 is a diagram schematically showing a flow mode of cooling water in a tube in the heat exchanger of the second modification of the second embodiment. 図14は、第2実施形態の第3変形例のチューブの断面斜視構造を示す斜視図である。FIG. 14 is a perspective view showing a cross-sectional perspective structure of the tube of the third modification of the second embodiment. 図15(A),(B)は、第2実施形態の第3変形例のチューブにおける突起部周辺の断面構造を示す断面図である。15 (A) and 15 (B) are cross-sectional views showing a cross-sectional structure around a protrusion in a tube of a third modification of the second embodiment. 図16は、第2実施形態の第4変形例のチューブの断面斜視構造を示す斜視図である。FIG. 16 is a perspective view showing a cross-sectional perspective structure of the tube of the fourth modification of the second embodiment. 図17(A),(B)は、第2実施形態の第4変形例のチューブにおける突起部周辺の断面構造を示す断面図である。17 (A) and 17 (B) are cross-sectional views showing a cross-sectional structure around a protrusion in a tube of a fourth modification of the second embodiment. 図18は、他の実施形態のチューブの断面構造を示す断面図である。FIG. 18 is a cross-sectional view showing the cross-sectional structure of the tube of another embodiment. 図19は、他の実施形態のチューブの断面構造を示す断面図である。FIG. 19 is a cross-sectional view showing a cross-sectional structure of a tube of another embodiment.
 以下、熱交換器の実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、図1に示される第1実施形態の熱交換器10について説明する。図1に示される熱交換器10は、走行用の動力源としてエンジン及び電動機を備える車両に搭載されている。熱交換器10には、エンジンを冷却するためのエンジン冷却水と、電動機及びその周辺機器を冷却するための冷却水とが循環している。なお、電動機及びその周辺機器を冷却するための冷却水は、エンジン冷却水よりも低温であるため、以下では「低温冷却水」と称する。熱交換器10は、エンジン冷却水と空気との間で熱交換を行うとともに、低温冷却水と空気との間で熱交換を行うことにより、エンジン冷却水及び低温冷却水を冷却することが可能な複合型ラジエータである。本実施形態では、エンジン冷却水及び低温冷却水が第1流体に相当し、空気が第2流体に相当する。なお、以下では、便宜上、エンジン冷却水及び低温冷却水をまとめて「冷却水」とも称する。熱交換器10は、車両用空調装置の凝縮器や蒸発器と共に、エンジンルーム内に配置されている。例えば車両用空調装置の蒸発器との組合せの場合には、熱交換器10は、車両用空調装置の凝縮器よりもグリル開口部に近い位置に配置されている。熱交換器10には、グリル開口部から導入される空気が供給される。
Hereinafter, embodiments of the heat exchanger will be described with reference to the drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.
<First Embodiment>
First, the heat exchanger 10 of the first embodiment shown in FIG. 1 will be described. The heat exchanger 10 shown in FIG. 1 is mounted on a vehicle equipped with an engine and an electric motor as a power source for traveling. The heat exchanger 10 circulates engine cooling water for cooling the engine and cooling water for cooling the electric motor and its peripheral devices. Since the cooling water for cooling the electric motor and its peripheral devices is lower than the engine cooling water, it will be referred to as "low temperature cooling water" below. The heat exchanger 10 can cool the engine cooling water and the low temperature cooling water by exchanging heat between the engine cooling water and the air and exchanging heat between the low temperature cooling water and the air. It is a complex type radiator. In the present embodiment, the engine cooling water and the low temperature cooling water correspond to the first fluid, and the air corresponds to the second fluid. In the following, for convenience, the engine cooling water and the low temperature cooling water are collectively referred to as "cooling water". The heat exchanger 10 is arranged in the engine room together with the condenser and the evaporator of the vehicle air conditioner. For example, in the case of combination with the evaporator of the vehicle air conditioner, the heat exchanger 10 is arranged at a position closer to the grill opening than the condenser of the vehicle air conditioner. Air introduced from the grill opening is supplied to the heat exchanger 10.
 図1に示されるように、熱交換器10は、コア部20と、第1ヘッダタンク30と、第2ヘッダタンク40とを備えている。
 コア部20は、複数のチューブ21と、複数のアウターフィン22とを備えている。
As shown in FIG. 1, the heat exchanger 10 includes a core portion 20, a first header tank 30, and a second header tank 40.
The core portion 20 includes a plurality of tubes 21 and a plurality of outer fins 22.
 複数のチューブ21は、矢印Zで示される方向に所定の間隔をあけて積層して配置されている。チューブ21は、矢印Xで示される方向に延びるように形成されている。矢印Xで示される方向に直交するチューブ21の断面形状は扁平筒状に形成されている。チューブ21の内部には、冷却水の流れる流路が矢印Xで示される方向に延びるように形成されている。隣り合うチューブ21,21の間の隙間には、矢印Yで示される方向に空気が流れている。 The plurality of tubes 21 are stacked and arranged at predetermined intervals in the direction indicated by the arrow Z. The tube 21 is formed so as to extend in the direction indicated by the arrow X. The cross-sectional shape of the tube 21 orthogonal to the direction indicated by the arrow X is formed in a flat tubular shape. Inside the tube 21, a flow path through which the cooling water flows is formed so as to extend in the direction indicated by the arrow X. Air flows in the direction indicated by the arrow Y in the gap between the adjacent tubes 21 and 21.
 以下では、矢印Xで示される方向を「チューブ長手方向X」と称し、矢印Yで示される方向を「空気流れ方向Y」と称し、矢印Zで示される方向を「チューブ積層方向Z」と称する。なお、本実施形態では、チューブ積層方向Zが鉛直方向となっており、チューブ長手方向X及び空気流れ方向Yが水平方向となっている。したがって、本実施形態の熱交換器10は、いわゆるクロスフロー式の熱交換器である。 Hereinafter, the direction indicated by the arrow X is referred to as "tube longitudinal direction X", the direction indicated by the arrow Y is referred to as "air flow direction Y", and the direction indicated by the arrow Z is referred to as "tube stacking direction Z". .. In this embodiment, the tube stacking direction Z is the vertical direction, and the tube longitudinal direction X and the air flow direction Y are the horizontal directions. Therefore, the heat exchanger 10 of the present embodiment is a so-called cross-flow type heat exchanger.
 アウターフィン22は、隣り合うチューブ21,21の間の隙間に配置されている。アウターフィン22は、アルミニウム等からなる薄い金属板を波状に折り曲げることにより形成された、いわゆるコルゲートフィンである。アウターフィン22の折り曲げ部分の先端部は、隣り合うチューブ21,21のそれぞれの外面に接触するとともに、それらの接触部分がろう付けにより接合されている。この接合構造によりアウターフィン22がチューブ21に固定されている。アウターフィン22は、隣り合うチューブ21,21の間を流れる空気に対する伝熱面積を増加させることにより、チューブ21の内部を流れる冷媒と空気との間の熱交換を促進させる機能を有している。 The outer fins 22 are arranged in the gap between the adjacent tubes 21 and 21. The outer fin 22 is a so-called corrugated fin formed by bending a thin metal plate made of aluminum or the like in a wavy shape. The tip of the bent portion of the outer fin 22 is in contact with the outer surfaces of the adjacent tubes 21 and 21, and the contact portions are joined by brazing. The outer fin 22 is fixed to the tube 21 by this joining structure. The outer fin 22 has a function of promoting heat exchange between the refrigerant flowing inside the tube 21 and the air by increasing the heat transfer area for the air flowing between the adjacent tubes 21 and 21. ..
 第1ヘッダタンク30は、各チューブ21の一端部に接続されている。第1ヘッダタンク30は筒状に形成されている。第1ヘッダタンク30の内部には、その内部空間を第1分配流路31と第2分配流路32とに仕切る仕切部33が形成されている。第1ヘッダタンク30には、第1分配流路31が形成される部分に対応して第1流入口310が設けられるとともに、第2分配流路32が形成される部分に対応して第2流入口320が設けられている。 The first header tank 30 is connected to one end of each tube 21. The first header tank 30 is formed in a tubular shape. Inside the first header tank 30, a partition portion 33 that partitions the internal space into the first distribution flow path 31 and the second distribution flow path 32 is formed. The first header tank 30 is provided with the first inflow port 310 corresponding to the portion where the first distribution flow path 31 is formed, and the second header tank 30 corresponds to the portion where the second distribution flow path 32 is formed. An inflow port 320 is provided.
 第2ヘッダタンク40は、各チューブ21の他端部に接続されている。第2ヘッダタンク40は、第1ヘッダタンク30と同様に筒状に形成されている。第2ヘッダタンク40の内部には、その内部空間を第1集合流路41と第2集合流路42とに仕切る仕切部43が形成されている。第2ヘッダタンク40の仕切部43は、チューブ積層方向Zにおいて第1ヘッダタンク30の仕切部33の位置と同一の位置に配置されている。第2ヘッダタンク40には、第1集合流路41が形成されている部分に対応して第1排出口410が設けられるとともに、第2集合流路42が形成されている部分に対応して第2排出口420が設けられている。 The second header tank 40 is connected to the other end of each tube 21. The second header tank 40 is formed in a tubular shape like the first header tank 30. Inside the second header tank 40, a partition portion 43 for partitioning the internal space into the first collecting flow path 41 and the second collecting flow path 42 is formed. The partition portion 43 of the second header tank 40 is arranged at the same position as the position of the partition portion 33 of the first header tank 30 in the tube stacking direction Z. The second header tank 40 is provided with a first discharge port 410 corresponding to a portion where the first collecting flow path 41 is formed, and corresponds to a portion where the second collecting flow path 42 is formed. A second discharge port 420 is provided.
 なお、以下では、コア部20において第1ヘッダタンク30の第1分配流路31及び第2ヘッダタンク40の第1集合流路41に接続されている領域を第1コア領域A1と称し、コア部20において第1ヘッダタンク30の第2分配流路32及び第2ヘッダタンク40の第2集合流路42に接続されている領域を第2コア領域A2と称する。図1に示されるように、本実施形態の熱交換器10では、第1コア領域A1が第2コア領域A2よりも大きい。 In the following, the region of the core portion 20 connected to the first distribution flow path 31 of the first header tank 30 and the first assembly flow path 41 of the second header tank 40 is referred to as the first core region A1 and is referred to as the core. The region connected to the second distribution flow path 32 of the first header tank 30 and the second assembly flow path 42 of the second header tank 40 in the unit 20 is referred to as a second core region A2. As shown in FIG. 1, in the heat exchanger 10 of the present embodiment, the first core region A1 is larger than the second core region A2.
 この熱交換器10では、第1ヘッダタンク30の第1流入口310にエンジン冷却水が流入する。第1流入口310に流入したエンジン冷却水は、第1ヘッダタンク30の第1分配流路31からコア部20の第1コア領域A1の各チューブ21に分配される。コア部20の第1コア領域A1では、各チューブ21の内部を流れるエンジン冷却水と各チューブの外部を流れる空気との間で熱交換が行われることにより、エンジン冷却水が冷却される。各チューブを流れることにより冷却されたエンジン冷却水は、第2ヘッダタンク40の第1集合流路41に集められた後、第2ヘッダタンク40の第1排出口410から排出される。 In this heat exchanger 10, engine cooling water flows into the first inflow port 310 of the first header tank 30. The engine cooling water that has flowed into the first inflow port 310 is distributed from the first distribution flow path 31 of the first header tank 30 to each tube 21 of the first core region A1 of the core portion 20. In the first core region A1 of the core portion 20, the engine cooling water is cooled by heat exchange between the engine cooling water flowing inside each tube 21 and the air flowing outside each tube. The engine cooling water cooled by flowing through each tube is collected in the first collecting flow path 41 of the second header tank 40, and then discharged from the first discharge port 410 of the second header tank 40.
 また、この熱交換器10では、第1ヘッダタンク30の第2流入口320に低水温冷却水が流入する。第2流入口320に流入した低水温冷却水は、第1ヘッダタンク30の第2分配流路32からコア部20の第2コア領域A2の各チューブ21に分配される。コア部20の第2コア領域A2では、各チューブ21の内部を流れる低水温冷却水と各チューブの外部を流れる空気との間で熱交換が行われることにより、低水温冷却水が冷却される。各チューブを流れることにより冷却された低水温冷却水は、第2ヘッダタンク40の第2集合流路42に集められた後、第2ヘッダタンク40の第2排出口420から排出される。 Further, in this heat exchanger 10, low water temperature cooling water flows into the second inflow port 320 of the first header tank 30. The low water temperature cooling water that has flowed into the second inflow port 320 is distributed from the second distribution flow path 32 of the first header tank 30 to each tube 21 of the second core region A2 of the core portion 20. In the second core region A2 of the core portion 20, the low water temperature cooling water is cooled by heat exchange between the low water temperature cooling water flowing inside each tube 21 and the air flowing outside each tube. .. The low water temperature cooling water cooled by flowing through each tube is collected in the second collecting flow path 42 of the second header tank 40, and then discharged from the second discharge port 420 of the second header tank 40.
 次に、コア部20の構造について具体的に説明する。
 図2に示されるように、コア部20では、チューブ21の積層構造が空気流れ方向Yに2列並べて配置されている。なお、コア部20は、チューブ21の積層構造を2列有する構造に限らず、チューブ21の積層構造を一列だけ有する構造であってもよい。
Next, the structure of the core portion 20 will be specifically described.
As shown in FIG. 2, in the core portion 20, the laminated structure of the tubes 21 is arranged in two rows in the air flow direction Y. The core portion 20 is not limited to a structure having two rows of laminated structures of tubes 21, and may have a structure having only one row of laminated structures of tubes 21.
 チューブ21の内部には、インナーフィン23が収容されている。インナーフィン23は、アルミニウム等の薄い金属板を折り曲げることにより形成されている。
 図3及び図4に示されるように、インナーフィン23の一端部には、チューブ21にかしめられる、かしめ部232が形成されている。かしめ部232によりチューブ21の一端部の板厚が太くなることで、チューブ21のストーンチッピング性能が確保されている。
The inner fin 23 is housed inside the tube 21. The inner fin 23 is formed by bending a thin metal plate such as aluminum.
As shown in FIGS. 3 and 4, a crimped portion 232 to be crimped to the tube 21 is formed at one end of the inner fin 23. The crimped portion 232 increases the thickness of one end of the tube 21 to ensure the stone chipping performance of the tube 21.
 インナーフィン23におけるかしめ部232よりも内側の部分、及びインナーフィン23の中央部及び他端部には、所定のフィンピッチFPで波状に折り曲げられた接合部230a~230cがそれぞれ形成されている。接合部230a~230cの折り曲げ部分の先端部はチューブ21の内面に接触している。それらの接触部分はろう付けにより接合されている。接合部230a~230cは、チューブ21に対するインナーフィン23の位置決めを行うとともに、チューブ21への熱移動およびチューブ21の剛性を確保している。 Joint portions 230a to 230c bent in a wavy shape at a predetermined fin pitch FP are formed in the inner portion of the inner fin 23, which is inside the crimped portion 232, and in the central portion and the other end portion of the inner fin 23, respectively. The tip of the bent portion of the joint portions 230a to 230c is in contact with the inner surface of the tube 21. The contact parts are joined by brazing. The joint portions 230a to 230c position the inner fin 23 with respect to the tube 21 and secure heat transfer to the tube 21 and rigidity of the tube 21.
 インナーフィン23における接合部230aと接合部230bとの間の部分には、チューブ21の内面に接合されていない非接合部231aが形成されている。同様に、インナーフィン23における接合部230bと接合部230cとの間の部分にも非接合部231bが形成されている。各非接合部231a,231bは、チューブ21の内面に対して平行に延びるように形成されている。非接合部231a,231bのそれぞれの長さL1,L2は、接合部230a~230cのそれぞれのフィンピッチFPよりも長くなっている。 A non-joint portion 231a that is not joined to the inner surface of the tube 21 is formed in a portion of the inner fin 23 between the joint portion 230a and the joint portion 230b. Similarly, a non-joint portion 231b is also formed in a portion of the inner fin 23 between the joint portion 230b and the joint portion 230c. The non-joining portions 231a and 231b are formed so as to extend parallel to the inner surface of the tube 21. The respective lengths L1 and L2 of the non-joining portions 231a and 231b are longer than the respective fin pitch FPs of the joining portions 230a to 230c.
 チューブ21においてインナーフィン23の非接合部231a,231bに対向する部分には、チューブ21の内側に突出するように複数の突起部210a,211aが形成されている。より詳細には、インナーフィン23の非接合部231aに対向するチューブ21の一方の外壁部210には、第1突起部210aが形成されている。インナーフィン23の非接合部231aに対向するチューブ21の他方の外壁部211には、第2突起部211aが形成されている。第1突起部210aは、インナーフィン23の接合部230bよりも接合部230aに近い位置に配置されている。第2突起部211aは、インナーフィン23の接合部230aよりも接合部230bに近い位置に配置されている。インナーフィン23の非接合部231bに対向するチューブ21の外壁部210,211にも、同様に第1突起部210a及び第2突起部211aがそれぞれ形成されている。インナーフィン23の接合部230a,230b、非接合部231a、及びチューブ21の外壁部210,211により仕切られる空間を第1空間S1とし、インナーフィン23の接合部230b,230c、非接合部231b、及びチューブ21の外壁部210,211により仕切られる空間を第2空間S2とするとき、第1空間S1及び第2空間S2が略同一の形状を有する空間となっている。 A plurality of protrusions 210a and 211a are formed on the tube 21 so as to project inward of the tube 21 at a portion of the inner fin 23 facing the non-joining portions 231a and 231b. More specifically, a first protrusion 210a is formed on one outer wall 210 of the tube 21 facing the non-joining portion 231a of the inner fin 23. A second protrusion 211a is formed on the other outer wall 211 of the tube 21 facing the non-joining portion 231a of the inner fin 23. The first protrusion 210a is arranged at a position closer to the joint 230a than the joint 230b of the inner fin 23. The second protrusion 211a is arranged at a position closer to the joint 230b than the joint 230a of the inner fin 23. Similarly, the first protrusion 210a and the second protrusion 211a are formed on the outer wall portions 210 and 211 of the tube 21 facing the non-joint portion 231b of the inner fin 23, respectively. The space partitioned by the joint portions 230a and 230b of the inner fin 23, the non-joint portions 231a, and the outer wall portions 210 and 211 of the tube 21 is defined as the first space S1, and the joint portions 230b, 230c and non-joint portions 231b of the inner fin 23, When the space partitioned by the outer wall portions 210 and 211 of the tube 21 is the second space S2, the first space S1 and the second space S2 are spaces having substantially the same shape.
 次に、本実施形態の熱交換器10の動作例について説明する。
 本実施形態の熱交換器10では、チューブ21を流れる冷却水のレイノルズ数Reと冷却水の熱伝達率αとが図5に実線L1で示されるように推移する。なお、図5では、参考例として、チューブ21に突起部210a,211aが形成されておらず、且つチューブ21の内部にインナーフィン23が設けられていない場合のレイノルズ数Reと冷却水の熱伝達率αとの関係が一点鎖線L2で示されている。また、図5では、同じく参考例として、チューブ21に突起部210a,211aが形成されており、且つチューブ21の内部にインナーフィン23が設けられていない場合のレイノルズ数Reと冷却水の熱伝達率αとの関係が二点鎖線L3で示されている。
Next, an operation example of the heat exchanger 10 of the present embodiment will be described.
In the heat exchanger 10 of the present embodiment, the Reynolds number Re of the cooling water flowing through the tube 21 and the heat transfer coefficient α of the cooling water change as shown by the solid line L1 in FIG. In FIG. 5, as a reference example, the Reynolds number Re and the heat transfer of the cooling water when the protrusions 210a and 211a are not formed on the tube 21 and the inner fin 23 is not provided inside the tube 21. The relationship with the rate α is shown by the alternate long and short dash line L2. Further, in FIG. 5, as a reference example, the Reynolds number Re and the heat transfer of the cooling water when the protrusions 210a and 211a are formed on the tube 21 and the inner fin 23 is not provided inside the tube 21. The relationship with the rate α is shown by the alternate long and short dash line L3.
 図5に示されるように、レイノルズ数Reの値が小さい場合、冷却水の流れは層流域となる。また、レイノルズ数Reの値が大きい場合、冷却水の流れは乱流域となる。レイノルズ数Reの値がそれらの中間の値である場合、冷却水の流れは遷移域となる。遷移域とは、冷却水の流れが層流域と乱流域との間で遷移する領域である。 As shown in FIG. 5, when the value of the Reynolds number Re is small, the flow of the cooling water becomes a laminar watershed. Further, when the value of the Reynolds number Re is large, the flow of the cooling water becomes a turbulent flow area. When the value of the Reynolds number Re is an intermediate value between them, the flow of the cooling water becomes a transition region. The transition region is a region where the flow of cooling water transitions between the laminar watershed and the turbulent watershed.
 チューブ21に突起部210a,211aが形成されている一方、チューブ21の内部にインナーフィン23が設けられていない場合には、図5に二点鎖線L3で示されるように、冷却水の流れが遷移域及び乱流域であるとき、冷却水の熱伝達率αを確保することができる。しかしながら、冷却水の流れが層流域であるとき、冷却水の熱伝達率αを十分に確保できないおそれがある。第1コア領域A1を流れるエンジン冷却水の流量と比較すると、熱交換器10の第2コア領域A2を流れる低温冷却水の流量は低流量である。したがって、熱交換器10の第2コア領域A2を流れる低温冷却水の流れは層流域となり易いため、チューブ21に突起部210a,211aを形成しただけでは、冷却水の熱伝達率αを十分に確保できないおそれがある。 When the protrusions 210a and 211a are formed on the tube 21, but the inner fin 23 is not provided inside the tube 21, the flow of the cooling water flows as shown by the alternate long and short dash line L3 in FIG. The heat transfer coefficient α of the cooling water can be secured in the transition region and the turbulent flow region. However, when the flow of the cooling water is in the laminar basin, there is a possibility that the heat transfer rate α of the cooling water cannot be sufficiently secured. The flow rate of the low temperature cooling water flowing through the second core region A2 of the heat exchanger 10 is lower than the flow rate of the engine cooling water flowing through the first core region A1. Therefore, since the flow of the low-temperature cooling water flowing through the second core region A2 of the heat exchanger 10 tends to be a layered basin, the heat transfer coefficient α of the cooling water can be sufficiently obtained only by forming the protrusions 210a and 211a on the tube 21. It may not be possible to secure it.
 この点、本実施形態の熱交換器10では、図5に実線L1で示されるように、二点鎖線L3の参考例と比較すると、冷却水の流れが層流域であるときに冷却水の熱伝達率αを向上させることが可能である。これは、本実施形態の熱交換器10では、チューブ21の内部に設けられるインナーフィン23により、伝熱面積の増加及び熱伝達の促進を図ることができるためである。 In this regard, in the heat exchanger 10 of the present embodiment, as shown by the solid line L1 in FIG. 5, as compared with the reference example of the alternate long and short dash line L3, the heat of the cooling water when the flow of the cooling water is in the laminar basin. It is possible to improve the transmission rate α. This is because in the heat exchanger 10 of the present embodiment, the heat transfer area can be increased and the heat transfer can be promoted by the inner fins 23 provided inside the tube 21.
 また、本実施形態の熱交換器10では、図5に実線L1で示されるように、二点鎖線L3の参考例と比較すると、冷却水の流れが遷移域であるときにも冷却水の熱伝達率αを向上させることが可能である。これは、突起部210a,211aそのものの効果に加え、インナーフィン23により伝熱面積の増加及び熱伝達の促進を図ることができるためである。 Further, in the heat exchanger 10 of the present embodiment, as shown by the solid line L1 in FIG. 5, as compared with the reference example of the alternate long and short dash line L3, the heat of the cooling water is generated even when the flow of the cooling water is in the transition region. It is possible to improve the transmission rate α. This is because, in addition to the effects of the protrusions 210a and 211a themselves, the inner fins 23 can increase the heat transfer area and promote heat transfer.
 以上説明した本実施形態の熱交換器10によれば、以下の(1)~(3)に示される作用及び効果を得ることができる。
 (1)インナーフィン23の非接合部231a,231bがチューブ21の内面に接触していないため、エンジン冷却水及び低温冷却水の流れる流路断面積を確保することができる。よって、通水抵抗を低減することが可能である。また、チューブ21に形成されている突起部210a,211aにより、冷却水に対するチューブ21の局所的な伝熱面積が増加に加え、冷却水の突起部周りの乱流化により、熱交換器10の熱伝達率を向上させることができる。
According to the heat exchanger 10 of the present embodiment described above, the actions and effects shown in the following (1) to (3) can be obtained.
(1) Since the non-joined portions 231a and 231b of the inner fin 23 are not in contact with the inner surface of the tube 21, it is possible to secure the cross-sectional area of the flow path through which the engine cooling water and the low temperature cooling water flow. Therefore, it is possible to reduce the water flow resistance. Further, the protrusions 210a and 211a formed on the tube 21 increase the local heat transfer area of the tube 21 with respect to the cooling water, and the turbulence around the protrusions of the cooling water causes the heat exchanger 10 to flow. The heat transfer coefficient can be improved.
 (2)突起部210a,211aは、チューブ21の内側に突出するように形成されている。このような構成によれば、突起部210a,211aとアウターフィン22との干渉を回避することができる。
 (3)インナーフィン23の非接合部231a,231bは、チューブ21の内面に対して平行に延びるように形成されている。このような構成によれば、チューブ21の内面とインナーフィン23の非接合部231a,231bとの間に所定の幅の流路を確保することができるため、チューブ21内を流れる冷却水の通水抵抗を一層低減することが可能である。
(2) The protrusions 210a and 211a are formed so as to protrude inward of the tube 21. According to such a configuration, it is possible to avoid interference between the protrusions 210a and 211a and the outer fins 22.
(3) The non-joining portions 231a and 231b of the inner fin 23 are formed so as to extend parallel to the inner surface of the tube 21. According to such a configuration, a flow path having a predetermined width can be secured between the inner surface of the tube 21 and the non-joining portions 231a and 231b of the inner fin 23, so that the cooling water flowing through the tube 21 can pass through. It is possible to further reduce the water resistance.
 (第1変形例)
 次に、第1実施形態の熱交換器10の第1変形例について説明する。
 図6に示されるように、本変形例のチューブ21には、突起部210a,211aが外側に突出するように形成されている。
(First modification)
Next, a first modification of the heat exchanger 10 of the first embodiment will be described.
As shown in FIG. 6, the tube 21 of this modified example is formed so that the protrusions 210a and 211a project outward.
 このような構成によれば、隣り合うチューブ21,21の間を流れる空気が突起部210a,211aに衝突することにより、チューブ外側周りの空気の流れ方向を変化させることができる。よって、アウターフィン22に形成されるルーバ部への空気の導入を促進することができるため、空気側の熱交換性能の向上を突起部210a,211aにより促進することが可能である。 According to such a configuration, the air flowing between the adjacent tubes 21 and 21 collides with the protrusions 210a and 211a, so that the air flow direction around the outside of the tubes can be changed. Therefore, since it is possible to promote the introduction of air into the louver portion formed on the outer fin 22, it is possible to promote the improvement of the heat exchange performance on the air side by the protrusions 210a and 211a.
 (第2変形例)
 次に、第1実施形態の熱交換器10の第2変形例について説明する。
 図7に示されるように、本変形例の突起部210a,211aは、半球形状ではなく、冷却水の流れ方向に対して斜めに交差する長穴形状で形成されている。このような構成によれば、突起部210a,211aとアウターフィン22との接合面に形成される隙間を最小化することが可能である。これにより、チューブ21とアウターフィン22との接合面積が増加するため、冷却水側及び空気側の両方の熱交換性能を向上させることができる。
(Second modification)
Next, a second modification of the heat exchanger 10 of the first embodiment will be described.
As shown in FIG. 7, the protrusions 210a and 211a of this modification are formed not in a hemispherical shape but in an elongated hole shape that intersects diagonally with respect to the flow direction of the cooling water. According to such a configuration, it is possible to minimize the gap formed on the joint surface between the protrusions 210a and 211a and the outer fin 22. As a result, the joint area between the tube 21 and the outer fin 22 is increased, so that the heat exchange performance on both the cooling water side and the air side can be improved.
 <第2実施形態>
 次に、第2実施形態の熱交換器10について説明する。以下、第1実施形態の熱交換器10との相違点を中心に説明する。
 図8に示されるように、本実施形態の熱交換器10では、インナーフィン23の非接合部231a,231bに複数の突起部232aが形成されている。突起部232aは、チューブ21の内面に接触しないように形成されている。非接合部231aにおける突起部232aの配置、及び非接合部231bにおける突起部232aの配置は略同一である。これにより、インナーフィン23の接合部230a,230b、非接合部231a、及びチューブ21の外壁部210,211により仕切られる空間を第1空間S1とし、インナーフィン23の接合部230b,230c、非接合部231b、及びチューブ21の外壁部210,211により仕切られる空間を第2空間S2とするとき、第1空間S1及び第2空間S2が略同一の形状を有している。
<Second Embodiment>
Next, the heat exchanger 10 of the second embodiment will be described. Hereinafter, the differences from the heat exchanger 10 of the first embodiment will be mainly described.
As shown in FIG. 8, in the heat exchanger 10 of the present embodiment, a plurality of protrusions 232a are formed on the non-joined portions 231a and 231b of the inner fin 23. The protrusion 232a is formed so as not to come into contact with the inner surface of the tube 21. The arrangement of the protrusion 232a in the non-joining portion 231a and the arrangement of the protrusion 232a in the non-joining portion 231b are substantially the same. As a result, the space partitioned by the joint portions 230a and 230b of the inner fin 23, the non-joint portions 231a, and the outer wall portions 210 and 211 of the tube 21 is designated as the first space S1, and the joint portions 230b and 230c of the inner fin 23 are not joined. When the space partitioned by the portions 231b and the outer wall portions 210 and 211 of the tube 21 is the second space S2, the first space S1 and the second space S2 have substantially the same shape.
 以上説明した本実施形態の熱交換器10によれば、上記の(3)に示される作用及び効果に加え、以下の(4)に示される作用及び効果を得ることができる。
 (4)インナーフィン23の非接合部231a,231bがチューブ21の内面に接触していないため、エンジン冷却水及び低温冷却水の流れる流路断面積を確保することができる。よって、通水抵抗を低減することが可能である。また、インナーフィン23に形成されている突起部232aにより、冷却水に対するインナーフィン23の伝熱面積が増加するため、熱交換器10の熱伝達率を向上させることができる。なお、全ての突起部232aがチューブ21の内面に接触しないことが望ましいが、本実施形態の熱交換器10と同一又は類似の効果を得られる範囲であれば突起部232aの一部がチューブ21の内面に接触していてもよい。
According to the heat exchanger 10 of the present embodiment described above, in addition to the action and effect shown in (3) above, the action and effect shown in (4) below can be obtained.
(4) Since the non-joined portions 231a and 231b of the inner fin 23 are not in contact with the inner surface of the tube 21, it is possible to secure the cross-sectional area of the flow path through which the engine cooling water and the low temperature cooling water flow. Therefore, it is possible to reduce the water flow resistance. Further, since the protrusion 232a formed on the inner fin 23 increases the heat transfer area of the inner fin 23 with respect to the cooling water, the heat transfer coefficient of the heat exchanger 10 can be improved. It is desirable that all the protrusions 232a do not come into contact with the inner surface of the tube 21, but a part of the protrusions 232a is a part of the tube 21 as long as the same or similar effect as the heat exchanger 10 of the present embodiment can be obtained. It may be in contact with the inner surface of the.
 (第1変形例)
 次に、第2実施形態の熱交換器10の第1変形例について説明する。
 図9に示されるように、本変形例の熱交換器10では、インナーフィン23の非接合部231a,231bの一部が台形状に切り起こされることにより突起部232aが形成されている。なお、突起部232aの切り起こし形状は、台形状に限らず、例えば図10に示されるように三角形状であってもよい。
(First modification)
Next, a first modification of the heat exchanger 10 of the second embodiment will be described.
As shown in FIG. 9, in the heat exchanger 10 of this modified example, the protrusion 232a is formed by cutting up a part of the non-joining portions 231a and 231b of the inner fin 23 into a trapezoidal shape. The cut-up shape of the protrusion 232a is not limited to the trapezoidal shape, and may be triangular, for example, as shown in FIG.
 このような構成によれば、インナーフィン23に突起部232aを容易に形成することが可能である。
 (第2変形例)
 次に、第2実施形態の熱交換器10の第2変形例について説明する。なお、以下では、図11に示されるように、チューブ長手方向Xのうちの一方向をX1方向と称し、その他方向をX2方向と称する。また、空気流れ方向Yのうちの一方向をY1方向と称し、その他方向をY2方向と称する。更に、チューブ積層方向Zのうちの一方向をZ1方向と称し、その他方向をZ2方向と称する。なお、X2方向は冷却水の流れ方向に相当する。
According to such a configuration, it is possible to easily form the protrusion 232a on the inner fin 23.
(Second modification)
Next, a second modification of the heat exchanger 10 of the second embodiment will be described. In the following, as shown in FIG. 11, one of the tube longitudinal directions X is referred to as the X1 direction, and the other direction is referred to as the X2 direction. Further, one of the air flow directions Y is referred to as the Y1 direction, and the other direction is referred to as the Y2 direction. Further, one of the tube stacking directions Z is referred to as the Z1 direction, and the other direction is referred to as the Z2 direction. The X2 direction corresponds to the flow direction of the cooling water.
 図11に示されるように、本変形例の熱交換器10では、インナーフィン23の非接合部231a,231bに突起部232b,232cが形成されている。
 突起部232bは、非接合部231a,231bからZ2方向に突出するように形成されている。突起部232bは、X2方向成分及びY1方向成分を合成した方向に延びるように形成されている。
As shown in FIG. 11, in the heat exchanger 10 of this modified example, protrusions 232b and 232c are formed on the non-joined portions 231a and 231b of the inner fin 23.
The protruding portion 232b is formed so as to protrude in the Z2 direction from the non-joined portions 231a and 231b. The protrusion 232b is formed so as to extend in the direction in which the X2 direction component and the Y1 direction component are combined.
 突起部232cは、非接合部231a,231bからZ1方向に突出するように形成されている。突起部232cは、X2方向成分及びY2方向成分を合成した方向に延びるように形成されている。
 図12(A),(B)に示されるように各突起部232b,232cはチューブ21の外壁部210,211に接触しないように形成されている。
The protruding portion 232c is formed so as to protrude in the Z1 direction from the non-joined portions 231a and 231b. The protrusion 232c is formed so as to extend in the direction in which the X2 direction component and the Y2 direction component are combined.
As shown in FIGS. 12A and 12B, the protrusions 232b and 232c are formed so as not to come into contact with the outer wall portions 210 and 211 of the tube 21.
 次に、本変形例の熱交換器10の動作例について説明する。
 インナーフィン23に突起部232cが形成されている場合、チューブ21の内部を流れる冷却水の流れ方向を例えば図13に矢印で示されるように変化させることができる。なお、図13では、突起部232cの断面形状が台形状である場合について例示している。図13に示されるように、冷却水が突起部232cに到達すると、冷却水が突起部232cの外面に沿って流れることにより、チューブ21の外壁部210の内側を流れる冷却水の流れ方向をZ1方向に変化させることができる。これにより、冷却水がチューブ21の内壁面に向かって衝突するように流れるため、チューブ21の内壁面と冷却水との間で熱交換が行われ易くなる。突起部232cでも同様の作用及び効果が奏される。結果として、アウターフィン22を流れる空気と、チューブ21の内部を流れる冷却水との熱交換を更に促進させることができるため、熱交換器10の熱伝達率を向上させることができる。なお、全ての突起部232b,232cがチューブ21の外壁部210,211に接触しないことが望ましいが、本実施形態の熱交換器10と同一又は類似の効果を得られる範囲であれば、突起部232b,232cの一部がチューブ21の外壁部210,211に接触していてもよい。
Next, an operation example of the heat exchanger 10 of this modification will be described.
When the protrusion 232c is formed on the inner fin 23, the flow direction of the cooling water flowing inside the tube 21 can be changed as shown by an arrow in FIG. 13, for example. Note that FIG. 13 illustrates a case where the cross-sectional shape of the protrusion 232c is trapezoidal. As shown in FIG. 13, when the cooling water reaches the protrusion 232c, the cooling water flows along the outer surface of the protrusion 232c, so that the flow direction of the cooling water flowing inside the outer wall portion 210 of the tube 21 is Z1. Can be changed in direction. As a result, the cooling water flows so as to collide with the inner wall surface of the tube 21, so that heat exchange is easily performed between the inner wall surface of the tube 21 and the cooling water. The same action and effect are exhibited at the protrusion 232c. As a result, the heat exchange between the air flowing through the outer fins 22 and the cooling water flowing inside the tube 21 can be further promoted, so that the heat transfer coefficient of the heat exchanger 10 can be improved. It is desirable that all the protrusions 232b and 232c do not come into contact with the outer wall portions 210 and 211 of the tube 21, but as long as the same or similar effect as the heat exchanger 10 of the present embodiment can be obtained, the protrusions A part of 232b and 232c may be in contact with the outer wall portions 210 and 211 of the tube 21.
 また、図11に示されるように、本変形例のチューブ21では、Z2方向に突出する突起部232cと、Z1方向に突出する突起部232cとが、X2方向において交互に、換言すれば冷却水の流れ方向において交互に配置されているため、冷却水はチューブ21のZ1方向の内壁面及びZ2方向の内壁面への衝突を非連続的に交互に繰り返す。これにより、冷却水の圧損を低減しつつ、熱交換器10の熱伝達率を向上させることができる。 Further, as shown in FIG. 11, in the tube 21 of the present modification, the protrusion 232c protruding in the Z2 direction and the protrusion 232c protruding in the Z1 direction are alternately arranged in the X2 direction, in other words, cooling water. Since the cooling water is alternately arranged in the flow direction of, the cooling water repeatedly collides with the inner wall surface of the tube 21 in the Z1 direction and the inner wall surface in the Z2 direction discontinuously and alternately. As a result, the heat transfer coefficient of the heat exchanger 10 can be improved while reducing the pressure loss of the cooling water.
 (第3変形例)
 次に、第2実施形態の熱交換器10の第3変形例について説明する。
 図14,図15(A),(B)に示されるように、本変形例の熱交換器10では、突起部232b,232cが、X1方向に向かうほど、換言すれば冷却水の流れ方向の上流側に向かうほど突出量が大きくなるような形状、いわゆる魚影流線形状と称される形状を有している。なお、このような突起部232b,232cの形状は傾斜翼形状とも称される。
(Third Modification)
Next, a third modification of the heat exchanger 10 of the second embodiment will be described.
As shown in FIGS. 14 and 15 (A) and 15 (B), in the heat exchanger 10 of this modified example, the protrusions 232b and 232c move toward the X1 direction, in other words, in the direction of the cooling water flow. It has a shape in which the amount of protrusion increases toward the upstream side, a so-called fish shadow streamline shape. The shapes of the protrusions 232b and 232c are also referred to as inclined blade shapes.
 次に、本変形例の熱交換器10の動作例について説明する。
 図13に矢印で示されるように冷却水が流れる場合、突起部232bを越えた冷却水がインナーフィン23から乖離するように流れ易くなる。これは、インナーフィン23における冷却水の伝熱面積を減少させる要因となる。
Next, an operation example of the heat exchanger 10 of this modification will be described.
When the cooling water flows as shown by an arrow in FIG. 13, the cooling water that exceeds the protrusion 232b tends to flow so as to deviate from the inner fin 23. This is a factor that reduces the heat transfer area of the cooling water in the inner fin 23.
 この点、本変形例の熱交換器10のように突起部232が魚影流線形状に形成されていれば、突起部232b,232cを越えた冷却水がインナーフィン23に沿って流れ易くなるため、インナーフィン23における冷却水の伝熱面積の減少を抑制することができる。
 (第4変形例)
 次に、第2実施形態の熱交換器10の第4変形例について説明する。
In this respect, if the protrusions 232 are formed in a streamlined shape like the heat exchanger 10 of this modified example, the cooling water exceeding the protrusions 232b and 232c can easily flow along the inner fins 23. Therefore, it is possible to suppress a decrease in the heat transfer area of the cooling water in the inner fin 23.
(Fourth modification)
Next, a fourth modification of the heat exchanger 10 of the second embodiment will be described.
 図16,図17(A),(B)に示されるように、本変形例の熱交換器10では、Z1,Z2方向に直交する突起部232b,232cの断面形状が円形状に形成されている。このような構成によれば、突起部232b,232cの周囲に沿って冷却水が流れ易くなるため、冷却水が突起部232b,232cから乖離し難くなる。結果として、インナーフィン23における突起部232b,232c周辺の熱伝達率を局所的に向上させることができる。 As shown in FIGS. 16 and 17 (A) and 17 (B), in the heat exchanger 10 of this modified example, the cross-sectional shapes of the protrusions 232b and 232c orthogonal to the Z1 and Z2 directions are formed in a circular shape. There is. According to such a configuration, the cooling water easily flows along the periphery of the protrusions 232b and 232c, so that the cooling water is less likely to deviate from the protrusions 232b and 232c. As a result, the heat transfer coefficient around the protrusions 232b and 232c in the inner fin 23 can be locally improved.
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
 ・各実施形態の熱交換器10では、インナーフィン23の接合部230a,230b、非接合部231a、及びチューブ21の外壁部210,211により仕切られる空間を第1空間S1とし、インナーフィン23の接合部230b,230c、非接合部231b、及びチューブ21の外壁部210,211により仕切られる空間を第2空間S2とするとき、第1空間S1及び第2空間S2が、空気流れ方向Yにおけるチューブ21の中央線に対して線対称な形状を有していてもよい。このような構成によれば、チューブ21の内部流路において、より均一に冷却水を流すことが可能である。
<Other embodiments>
In addition, each embodiment can also be implemented in the following embodiments.
In the heat exchanger 10 of each embodiment, the space partitioned by the joint portions 230a and 230b of the inner fin 23, the non-joint portions 231a, and the outer wall portions 210 and 211 of the tube 21 is set as the first space S1, and the inner fin 23 When the space partitioned by the joint portions 230b and 230c, the non-joint portions 231b, and the outer wall portions 210 and 211 of the tube 21 is the second space S2, the first space S1 and the second space S2 are tubes in the air flow direction Y. It may have a shape that is line-symmetrical with respect to the center line of 21. According to such a configuration, it is possible to flow the cooling water more uniformly in the internal flow path of the tube 21.
 ・第1実施形態のインナーフィン23には、その空気流れ方向Yの中央線に対して複数の突起部210a,211aが線対称に形成されていてもよい。また、複数の突起部210a,211aは、千鳥状又は格子状に配置されていてもよい。
 ・本実施形態の熱交換器10の構成は、任意の熱交換器に適用可能である。適用可能な熱交換器としては、例えば1種類の流体のみが流れる熱交換器、小サイズのダウンフェース式の熱交換器、中サイズのハーフフェース式の熱交換器、大サイズのフルフェース式の熱交換器がある。また、熱交換器10における冷却水の流れ方向も適宜変更可能である。例えば熱交換器10として、冷却水が鉛直方向に流れる、いわゆるダウンフロー式を採用することも可能である。
The inner fin 23 of the first embodiment may have a plurality of protrusions 210a and 211a formed line-symmetrically with respect to the center line in the air flow direction Y. Further, the plurality of protrusions 210a and 211a may be arranged in a staggered pattern or a grid pattern.
-The configuration of the heat exchanger 10 of the present embodiment can be applied to any heat exchanger. Applicable heat exchangers include, for example, heat exchangers in which only one type of fluid flows, small-sized down-face heat exchangers, medium-sized half-face heat exchangers, and large-sized full-face heat exchangers. There is a heat exchanger. Further, the flow direction of the cooling water in the heat exchanger 10 can be changed as appropriate. For example, as the heat exchanger 10, it is also possible to adopt a so-called downflow type in which cooling water flows in the vertical direction.
 ・各実施形態の熱交換器10の構成は、冷却水を冷却するラジエータに限らず、空気と冷媒との熱交換により冷媒を凝縮させる凝縮器等、任意の熱交換器に適用することが可能である。なお、各実施形態の熱交換器10の構成を凝縮器に適用した場合、冷媒が第1流体に相当し、空気が第2流体に相当する。 -The configuration of the heat exchanger 10 of each embodiment is not limited to the radiator that cools the cooling water, and can be applied to any heat exchanger such as a condenser that condenses the refrigerant by heat exchange between air and the refrigerant. Is. When the configuration of the heat exchanger 10 of each embodiment is applied to the condenser, the refrigerant corresponds to the first fluid and the air corresponds to the second fluid.
 ・図18に示されるように、熱交換器10では、チューブ21に突起部210a,211aが形成され、且つインナーフィン23に突起部232a,232aが形成されていてもよい。また、チューブ21は、その先端がインナーフィン23を保持していない構造を有するものであってもよい。 As shown in FIG. 18, in the heat exchanger 10, the protrusions 210a and 211a may be formed on the tube 21 and the protrusions 232a and 232a may be formed on the inner fin 23. Further, the tube 21 may have a structure in which the tip thereof does not hold the inner fin 23.
 ・図19に示されるように、第1実施形態の熱交換器10では、チューブ21の突起部210a,211aがインナーフィン23に接触していてもよい。また、第2実施形態の熱交換器10では、インナーフィン23の突起部232aがチューブ21の内面に接触していてもよい。 As shown in FIG. 19, in the heat exchanger 10 of the first embodiment, the protrusions 210a and 211a of the tube 21 may be in contact with the inner fins 23. Further, in the heat exchanger 10 of the second embodiment, the protrusion 232a of the inner fin 23 may be in contact with the inner surface of the tube 21.
 ・第1実施形態のチューブ21に形成される突起部210a,211aの数、及びインナーフィン23に形成される接合部230a,230b,230cの数は任意に変更可能である。また、第2実施形態のインナーフィン23に形成される突起部232a,232b,232cの数、及び接合部230a,230b,230cの数も任意に変更可能である。 The number of protrusions 210a, 211a formed on the tube 21 of the first embodiment and the number of joints 230a, 230b, 230c formed on the inner fin 23 can be arbitrarily changed. Further, the number of protrusions 232a, 232b, 232c formed on the inner fin 23 of the second embodiment and the number of joints 230a, 230b, 230c can be arbitrarily changed.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 ・ This disclosure is not limited to the above specific examples. Specific examples described above with appropriate design changes by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

Claims (9)

  1.  積層して配置される複数のチューブ(21)を有し、前記チューブの内部を流れる第1流体と、前記チューブの外部を流れる第2流体との間で熱交換が行われる熱交換器であって、
     前記チューブの内部に収容されるフィン(23)を備え、
     前記フィンは、
     所定のフィンピッチで波状に折り曲げられ、且つ折り曲げられた部分の先端部が前記チューブの内面に接合される接合部(230a,230b,230c)と、
     前記所定のフィンピッチよりも長く形成された部分であって、前記チューブの内面に接合されていない非接合部(231a,231b)と、を有し、
     前記チューブにおいて前記非接合部に対向する外壁部(210,211)には、突起部(210a,211a)が形成されている
     熱交換器。
    A heat exchanger having a plurality of tubes (21) arranged in a laminated manner, in which heat exchange is performed between a first fluid flowing inside the tubes and a second fluid flowing outside the tubes. hand,
    A fin (23) housed inside the tube.
    The fins
    Joints (230a, 230b, 230c) that are bent in a wavy shape at a predetermined fin pitch and the tip of the bent portion is joined to the inner surface of the tube.
    It has a non-joint portion (231a, 231b) that is formed longer than the predetermined fin pitch and is not joined to the inner surface of the tube.
    A heat exchanger in which protrusions (210a, 211a) are formed on outer wall portions (210, 211) facing the non-joint portion in the tube.
  2.  前記突起部は、前記チューブの内側に突出するように形成されている
     請求項1に記載の熱交換器。
    The heat exchanger according to claim 1, wherein the protrusion is formed so as to protrude inside the tube.
  3.  前記突起部は、前記フィンに接触しないように形成されている
     請求項1又は2に記載の熱交換器。
    The heat exchanger according to claim 1 or 2, wherein the protrusions are formed so as not to come into contact with the fins.
  4.  前記突起部は、前記チューブの外側に突出するように形成されている
     請求項1に記載の熱交換器。
    The heat exchanger according to claim 1, wherein the protrusion is formed so as to protrude to the outside of the tube.
  5.  積層して配置される複数のチューブ(21)を有し、前記チューブの内部を流れる第1流体と、前記チューブの外部を流れる第2流体との間で熱交換が行われる熱交換器であって、
     前記チューブの内部に収容されるフィン(23)を備え、
     前記フィンは、
     所定のフィンピッチで波状に折り曲げられ、且つ折り曲げられた部分の先端部が前記チューブの内面に接合される接合部(230a,230b,230c)と、
     前記所定のフィンピッチよりも長く形成された部分であって、前記チューブの内面に接合されていない非接合部(231a,231b)と、を有し、
     前記非接合部には、突起部(232a,232b,232c)が形成されている
     熱交換器。
    A heat exchanger having a plurality of tubes (21) arranged in a laminated manner, in which heat exchange is performed between a first fluid flowing inside the tubes and a second fluid flowing outside the tubes. hand,
    A fin (23) housed inside the tube.
    The fins
    Joints (230a, 230b, 230c) that are bent in a wavy shape at a predetermined fin pitch and the tip of the bent portion is joined to the inner surface of the tube.
    It has a non-joint portion (231a, 231b) that is formed longer than the predetermined fin pitch and is not joined to the inner surface of the tube.
    A heat exchanger in which protrusions (232a, 232b, 232c) are formed in the non-joint portion.
  6.  前記突起部は、前記非接合部の一部を切り起こすことで形成されている
     請求項5に記載の熱交換器。
    The heat exchanger according to claim 5, wherein the protrusion is formed by cutting up a part of the non-joint portion.
  7.  前記突起部は、前記チューブの内面に接触しないように形成されている
     請求項5又は6に記載の熱交換器。
    The heat exchanger according to claim 5 or 6, wherein the protrusion is formed so as not to come into contact with the inner surface of the tube.
  8.  前記非接合部は、前記チューブの内面に対して平行に延びるように形成されている
     請求項1~7のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 7, wherein the non-joint portion is formed so as to extend parallel to the inner surface of the tube.
  9.  積層して配置される複数のチューブ(21)を有し、前記チューブの内部を流れる第1流体と、前記チューブの外部を流れる第2流体との間で熱交換が行われる熱交換器であって、
     前記チューブの内部に収容されるフィン(23)を備え、
     前記フィンは、
     所定のフィンピッチで波状に折り曲げられ、且つ折り曲げられた部分の先端部が前記チューブの内面に接合される接合部(230a,230b,230c)と、
     前記所定のフィンピッチよりも長く形成された部分であって、前記チューブの内面に接合されていない非接合部(231a,231b)と、を有し、
     前記チューブにおいて前記非接合部に対向する外壁部(210,211)には、突起部(210a,211a)が形成され、
     前記非接合部には、突起部(232a)が形成されている
     熱交換器。
    A heat exchanger having a plurality of tubes (21) arranged in a laminated manner, in which heat exchange is performed between a first fluid flowing inside the tubes and a second fluid flowing outside the tubes. hand,
    A fin (23) housed inside the tube.
    The fins
    Joints (230a, 230b, 230c) that are bent in a wavy shape at a predetermined fin pitch and the tip of the bent portion is joined to the inner surface of the tube.
    It has a non-joint portion (231a, 231b) that is formed longer than the predetermined fin pitch and is not joined to the inner surface of the tube.
    Protrusions (210a, 211a) are formed on the outer wall portions (210,211) facing the non-joint portion in the tube.
    A heat exchanger in which a protrusion (232a) is formed on the non-joint portion.
PCT/JP2020/009030 2019-03-13 2020-03-04 Heat exchanger WO2020184315A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080019915.0A CN113557403B (en) 2019-03-13 2020-03-04 Heat exchanger
DE112020001170.4T DE112020001170T5 (en) 2019-03-13 2020-03-04 Heat exchanger
US17/404,719 US20210389057A1 (en) 2019-03-13 2021-08-17 Heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-045425 2019-03-13
JP2019045425 2019-03-13
JP2020021446A JP7226364B2 (en) 2019-03-13 2020-02-12 Heat exchanger
JP2020-021446 2020-02-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/404,719 Continuation US20210389057A1 (en) 2019-03-13 2021-08-17 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2020184315A1 true WO2020184315A1 (en) 2020-09-17

Family

ID=72426077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009030 WO2020184315A1 (en) 2019-03-13 2020-03-04 Heat exchanger

Country Status (2)

Country Link
US (1) US20210389057A1 (en)
WO (1) WO2020184315A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD967361S1 (en) * 2020-08-17 2022-10-18 Mercracing, Llc Heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060920A (en) * 2002-07-25 2004-02-26 Denso Corp Heat exchanger
JP2004263616A (en) * 2003-02-28 2004-09-24 Toyo Radiator Co Ltd Flat tube for egr cooler
JP2010025447A (en) * 2008-07-18 2010-02-04 Denso Corp Heat exchanger
JP2014119244A (en) * 2012-12-19 2014-06-30 Mazda Motor Corp Heat exchanger
JP2016200313A (en) * 2015-04-08 2016-12-01 株式会社デンソー Heat exchanger
JP2018124034A (en) * 2017-02-03 2018-08-09 株式会社デンソー Tube for heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2659392A (en) * 1947-09-15 1953-11-17 Frenkel Meyer Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060920A (en) * 2002-07-25 2004-02-26 Denso Corp Heat exchanger
JP2004263616A (en) * 2003-02-28 2004-09-24 Toyo Radiator Co Ltd Flat tube for egr cooler
JP2010025447A (en) * 2008-07-18 2010-02-04 Denso Corp Heat exchanger
JP2014119244A (en) * 2012-12-19 2014-06-30 Mazda Motor Corp Heat exchanger
JP2016200313A (en) * 2015-04-08 2016-12-01 株式会社デンソー Heat exchanger
JP2018124034A (en) * 2017-02-03 2018-08-09 株式会社デンソー Tube for heat exchanger

Also Published As

Publication number Publication date
US20210389057A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6567097B2 (en) Plate heat exchanger and heat pump heating / hot water system equipped with the same
US6273184B1 (en) Parallel-disposed integral heat exchanger
JP4379967B2 (en) Double heat exchanger
US20120103583A1 (en) Heat exchanger and fin for the same
JP2006322698A (en) Heat exchanger
US20070287334A1 (en) Flat tube adapted for heat exchanger
JP5803768B2 (en) Heat exchanger fins and heat exchangers
JPH11287580A (en) Heat exchanger
JP6011481B2 (en) Heat exchanger fins
JP2007278558A (en) Refrigerant radiator
WO2007088850A1 (en) Heat exchanger for vehicle
US20120103582A1 (en) Heat exchanger and micro-channel tube thereof
WO2020170651A1 (en) Compound heat exchanger
WO2019111849A1 (en) Heat exchanger
WO2020184315A1 (en) Heat exchanger
CN109642778B (en) Air conditioning unit
JP2010121925A (en) Heat exchanger
JP2009103404A (en) Heat exchanger
JP2013122368A (en) Vehicle heat exchanger
JP2013122367A (en) Heat exchanger for vehicle
JP7226364B2 (en) Heat exchanger
US20220018614A1 (en) Heat exchanger
JP5772608B2 (en) Heat exchanger
JP5569410B2 (en) Heat exchanger tubes and heat exchangers
JP2009074739A (en) Heat exchanging device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20771140

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20771140

Country of ref document: EP

Kind code of ref document: A1