JP2011246937A - Building structure using post with wall provided with earthquake control prestress - Google Patents

Building structure using post with wall provided with earthquake control prestress Download PDF

Info

Publication number
JP2011246937A
JP2011246937A JP2010120346A JP2010120346A JP2011246937A JP 2011246937 A JP2011246937 A JP 2011246937A JP 2010120346 A JP2010120346 A JP 2010120346A JP 2010120346 A JP2010120346 A JP 2010120346A JP 2011246937 A JP2011246937 A JP 2011246937A
Authority
JP
Japan
Prior art keywords
column
wall
building
steel
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010120346A
Other languages
Japanese (ja)
Other versions
JP4647714B1 (en
Inventor
Ryohei Kurosawa
亮平 黒沢
Keizo Tanabe
恵三 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosawa Construction Co Ltd
Original Assignee
Kurosawa Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosawa Construction Co Ltd filed Critical Kurosawa Construction Co Ltd
Priority to JP2010120346A priority Critical patent/JP4647714B1/en
Application granted granted Critical
Publication of JP4647714B1 publication Critical patent/JP4647714B1/en
Publication of JP2011246937A publication Critical patent/JP2011246937A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To significantly increase cross-section bending resistance by reasonably and effectively utilizing a cross-section performance considering a concrete post with walls as a unified cross-section and thereby preventing a building structure from being cracked and damaged by maintaining a PC steel material and a reinforcing bar within an elasticity range even if receiving a impulsive tensile force and a bending moment due to large earthquake and strong wind.SOLUTION: The concrete post with walls 1 is a member integrally constructed of a post portion 2 and a wall portions 3 provided on the both sides of the post portion and having a modified cross-section. The post with walls provided with earthquake control prestress is formed by disposing PC steel materials 8, 10 by insertion and applying a tension-introducing force on the PC steel materials to tension-fix it. Thereby, the building structure can be designed to be within an elasticity range in which it does not yield even when the maximum tensile force is applied to the PC steel material due to large earthquake and strong wind. Also, the respective maximum tensile forces applied to the PC steel materials disposed in the post portion and the wall portion are almost equal to each other. Integration between the wall portion and the post portion significantly increases cross-section bending resistance. As a result, the building structure can be prevented from being cracked and damaged.

Description

本発明は、壁付き柱を使用して構築される建造物であって、大地震や強風圧力に耐えられるように制震プレストレスを壁付き柱に付与して構築される耐震および制震構造の建造物に関するものである。   The present invention is a building constructed using a walled column, and is an earthquake-resistant and vibration-damped structure constructed by applying a damping prestress to a walled column so that it can withstand a large earthquake or strong wind pressure Is related to the building.

コンクリート造りの建築物においては、一般にRC構造で柱と壁とが連結した構成を有するものであるが、その既存の柱および壁を耐震構造に補強する技術が複数公知になっている。例えば、第1の従来例としては、建築物における既設の壁付き柱につき、その恒久的、応急的な耐震補強を施すに当たり、対向配置になる少なくとも2枚のプレートにより前記壁部分ごと挟み込み、該プレートを壁部分とともに貫通する複数本以上の緊結部材にて仮止めしたのち、該プレートと柱部分、壁部分の間に形成される間隙にコンクリートまたはモルタルを増し打ちして硬化させ、次いで、該緊結部材を締め上げてプレストレスを導入する壁付き柱の恒久的、応急的な耐震補強方法である(特許文献1)。   A concrete building generally has a structure in which a column and a wall are connected in an RC structure, and a plurality of techniques for reinforcing the existing column and wall to a seismic structure are known. For example, as a first conventional example, when a permanent and emergency earthquake-proof reinforcement is applied to an existing wall-mounted column in a building, the wall portion is sandwiched by at least two plates arranged opposite to each other. After temporarily fixing the plate with a plurality of fastening members penetrating with the wall portion, concrete or mortar is applied to the gap formed between the plate, the column portion, and the wall portion and hardened. This is a permanent and emergency seismic reinforcement method for a walled column that tightens a binding member and introduces prestress (Patent Document 1).

このような方法によれば、既存の壁付き柱の耐震性能を恒久的に高い状態に維持できるだけでなく、地震等によって損傷を受けた場合でも比較的簡単な手順でもって応急的な補強を施すことが可能になるというものである。   According to such a method, not only the seismic performance of the existing wall column can be maintained at a high level permanently, but even if it is damaged by an earthquake or the like, emergency reinforcement is performed by a relatively simple procedure. It will be possible.

また、第2の従来例としては、既存のRC柱に袖壁を増設して補強する柱の耐震補強方であって、予め周囲が鋼板によって囲繞されてなる排砂型鋼板ユニットを製作し、上記柱の中間部および上下階の梁にアンカーを施工して、当該アンカーを介して上記袖壁の壁筋を配筋するとともに、上記柱の上下端部に、型枠兼用となる上記閉鎖型鋼板ユニットを配置し、これら閉鎖型鋼板ユニット間に型枠を配設した後に、上記閉鎖型鋼板ユニットおよび型枠内に硬化性材料を充填して硬化させることにより上記袖壁を構築する柱の耐震補強法である(特許文献2)。   In addition, as a second conventional example, a method of seismic reinforcement of a pillar that reinforces an existing RC pillar by adding a sleeve wall, and manufacturing a sand-removed steel plate unit whose periphery is surrounded by a steel plate in advance, The closed-type steel plate that is also used as a formwork at the upper and lower ends of the column, with anchors being installed in the middle part of the column and beams on the upper and lower floors, and the wall bars of the sleeve wall being arranged through the anchor After placing the units and disposing the formwork between these closed type steel plate units, the seismic resistance of the pillars constructing the sleeve wall by filling the closed type steel plate unit and the formwork with a curable material and curing it. This is a reinforcing method (Patent Document 2).

そして、増設する袖壁の上下両端部に型枠兼用の閉鎖型鋼板ユニットを一体に組み込んでいるので、当該閉鎖型鋼板ユニットによって、大地震時に作用する圧縮力に起因して硬化性材料が圧壊することを防止することができて耐力および変形性能を大幅に向上させることができるというものである。   And since the closed type steel plate unit, which is also used as a formwork, is integrated into the upper and lower ends of the sleeve wall to be added, the hardenable material is crushed by the closed type steel plate unit due to the compressive force acting during a large earthquake. Therefore, the yield strength and deformation performance can be greatly improved.

さらに、第3の従来例としては、片面にスタッドを打った鋼板を既存柱の正背いずれかの面に沿って建て込み、前記既存柱に固定する工程と、前記鋼板と離間して対になる他側の型枠を含む残りの型枠を組上げる工程と、コンクリートまたは樹脂を充填または打設する工程と、養生・成形期間経過後に、前記鋼板を除く前記型枠を脱型する工程とからなる既存柱の両側に袖壁を増設して補強する方法である(特許文献3)。   Furthermore, as a third conventional example, a steel plate with a stud on one side is built along any one of the front and back surfaces of an existing column, and fixed to the existing column; A step of assembling the remaining formwork including the other formwork, a step of filling or placing concrete or resin, and a step of demolding the formwork excluding the steel plate after the curing / forming period This is a method of adding and reinforcing sleeve walls on both sides of an existing pillar (Patent Document 3).

上記補強方法によれば、施工方法を簡素化し、アンカー工事を皆無乃至極力少なくすることができて、工期期間中における騒音の発生を極力抑制することができるから、従来の同種の工法に比べ工期を短縮し、しかも、建物を使用しつつ既存柱の補強工事を実施することができるというものである。   According to the above reinforcing method, the construction method can be simplified, the anchor construction can be minimized or minimized, and the generation of noise during the construction period can be suppressed as much as possible. In addition, the existing pillars can be reinforced while using the building.

特開2003−227236号公報JP 2003-227236 A 特開平10−61256号公報Japanese Patent Laid-Open No. 10-61256 特開2008−163646号公報JP 2008-163646 A

前記従来例においては、いずれも鉄筋コンクリート造りであり、例えば、柱の両側に袖壁が均等に配置された壁付き柱を一つの部材例とした場合に、部材断面において壁部が柱部より部材の中立軸(柱の図心位置)から離れている。現行の解析設計法では曲げモーメントと曲率の関係は平面保持を仮定して求められているから、断面の中立軸から離れるほど曲げモーメントによる引張(圧縮)応力が大きくなるため壁部の鉄筋が柱部の鉄筋より大きい引張(圧縮)応力を受ける。そうすると、部材内に配筋されている鉄筋に生じる応力の大きさが中立軸からの距離によって決まり、地震や強風等の水平力による曲げモーメントを受けると、結果として、壁部が曲げに先行抵抗して鉄筋が降伏して圧壊し、その後に柱部が抵抗するようになる。また、壁の厚さは柱幅の1/4程度しかなく、柱の剛性に比べて壁の剛性が小さいため、柱との一体化は確保できない。従って、従来の壁付き柱は、一体化した断面として曲げ耐力を求めることができないため、柱部が鉛直要素とし壁部が耐震水平要素として別々に取り扱われるのが現状であり、折角大きな断面性能を持つにも拘わらず合理的に利用できていないのである。   In the conventional example, each is made of reinforced concrete. For example, when a walled column in which sleeve walls are evenly arranged on both sides of the column is taken as one member example, the wall portion is a member from the column portion in the member cross section. Is away from the neutral axis (centroid position of the column). In the current analytical design method, the relationship between the bending moment and the curvature is obtained on the assumption that the flat surface is maintained. Therefore, the tensile stress caused by the bending moment increases as the distance from the neutral axis of the cross section increases. Subjected to a greater tensile (compression) stress than the rebar of the part. Then, the magnitude of the stress generated in the reinforcing bars arranged in the member is determined by the distance from the neutral axis, and when the bending moment due to the horizontal force such as earthquake or strong wind is received, the wall part will resist the bending. Then, the reinforcing bar yields and collapses, and then the column part resists. Further, the wall thickness is only about 1/4 of the column width, and the rigidity of the wall is small compared to the rigidity of the column, so that integration with the column cannot be ensured. Therefore, the conventional walled columns cannot obtain bending strength as an integrated cross section, so the column part is treated separately as a vertical element and the wall part is handled separately as a seismic horizontal element. Despite having it, it is not reasonably available.

また、過去の直下型短周期大地震の被害例は、特に、鉄筋コンクリート造の柱や壁構造において主筋の付着破壊が先行し、それによってせん断破壊が多く発生した。その理由は柱や壁等の鉛直部材の断面内に配設された鉄筋が降伏点強度を超えて、コンクリートとの付着力が鋼材引張伸びに追従できず、コンクリートとの付着界面で付着破壊、剥離を起こすことが主たる原因であると推定される。そして、特に問題となっているのは、短周期の瞬間的な引張伸びはコンクリート柱の断面全体塊状に破砕する損壊であり、現実に原子炉構造物の厚い壁にも水平クラックの被害を発生させている。また、鉄筋コンクリート造構造は、部材の変形を戻す力がなく地震後には残留変形が残っているため、発生したひび割れを閉じることができずにひび割れた大きく進行し、構造躯体に悪影響を与えて使用寿命が大幅に減少する。   In addition, in the past examples of direct-type short-period large earthquakes, the main reinforcement preceded the failure of the main reinforcement particularly in the columns and wall structures of reinforced concrete, which caused many shear failures. The reason is that the reinforcing bars arranged in the cross-section of vertical members such as columns and walls exceed the yield point strength, the adhesion force with concrete cannot follow the tensile elongation of steel, and adhesion failure at the adhesion interface with concrete, It is estimated that the main cause is peeling. In particular, the short-term instantaneous tensile elongation is a failure that breaks the entire cross section of a concrete column into a lump, which actually causes horizontal crack damage to the thick wall of the reactor structure. I am letting. In addition, the reinforced concrete structure has no force to restore the deformation of the member and residual deformation remains after the earthquake, so the crack that occurred can not be closed and it progresses greatly and it has a bad influence on the structural frame Lifetime is greatly reduced.

一方、従来のPC構造において、構造部材の断面耐力は大地震時において、PC鋼材の降伏荷重(Py)をもとに得られるものとしている。しかしながら、PC鋼材には明瞭な降伏点がないため、降伏荷重は0.2%永久伸びに対する荷重としている。降伏点強度はその降伏荷重を用いてPC鋼材の断面積を除した値とする。図7に示すように、降伏荷重の85%程度まで直線で示し、以後は非線形復元力状態に入る。この段階に入るとコンクリート断面にはひび割れが発生する虞があり、主筋やPC鋼材の弾性付着損傷防止が期待できなくなる。   On the other hand, in the conventional PC structure, the cross-sectional yield strength of the structural member is obtained based on the yield load (Py) of the PC steel during a large earthquake. However, since the PC steel material does not have a clear yield point, the yield load is set to 0.2% permanent elongation. The yield point strength is the value obtained by dividing the cross-sectional area of the PC steel using the yield load. As shown in FIG. 7, it is shown by a straight line up to about 85% of the yield load, and thereafter enters a non-linear restoring force state. When entering this stage, there is a risk that cracks will occur in the concrete cross section, and it will not be possible to prevent the elastic reinforcement damage of the main bars and PC steel.

従って、従来技術においては、大地震によるRC造柱や壁の損壊は、建物全体に繋がる致命的なダメージを与えてしまうこと、およびPC構造の柱や壁等の鉛直部材はPC鋼材や鉄筋の降伏点強度をもとに求められている断面耐力を持って使用されているため、大地震によりPC鋼材や鉄筋は降伏点強度に達する可能性があって、RC構造物の損壊例と同様な被害が予想されるという問題点を有している。   Therefore, in the prior art, damage to RC pillars and walls due to a large earthquake will cause fatal damage that leads to the entire building, and vertical members such as PC pillars and walls are made of PC steel and reinforcing bars. Because it is used with the required cross-sectional strength based on the yield point strength, there is a possibility that PC steel and rebar will reach the yield point strength due to a large earthquake. There is a problem that damage is expected.

従来技術に係るコンクリート造の壁付き柱について、いかに一体化断面として断面性能を合理的かつ有効に利用して断面曲げ耐力を大幅に増大させること、大地震や強風によって衝撃的な引張力や曲げモーメントを受けても、PC鋼材や鉄筋が線形復元力の範囲内に維持されるようにしてひび割れや損壊を防止することに解決すべき課題がある。   For concrete walled columns according to the prior art, how to use the cross-sectional performance rationally and effectively as an integrated cross-section to greatly increase the cross-sectional bending strength, impact tensile force and bending due to large earthquakes and strong winds Even if a moment is received, there is a problem to be solved by preventing the cracking and breakage by maintaining the PC steel material and the reinforcing bar within the range of the linear restoring force.

本発明は、前述の従来例の課題を解決する具体的手段として、コンクリート造の壁付き柱を使用して構築される建造物であって、前記壁付き柱は、柱とその両側に設けられた壁とから構成して一体となった異形断面を有する部材とし、該部材断面において、柱と壁とにそれぞれPC鋼材を挿通させて配置し、該PC鋼材に緊張導入力を与えて緊張定着することにより制震プレストレスを付与した壁付き柱が形成されることを特徴とする建造物を提供するものである。   The present invention is a building constructed using concrete walled columns as a specific means for solving the problems of the above-described conventional example, and the walled columns are provided on both sides of the column. It is a member having an odd-shaped cross section composed of a single wall, and in the cross section of the member, a PC steel material is inserted through each of the pillar and the wall, and a tension introducing force is applied to the PC steel material to fix the tension. Thus, the present invention provides a building characterized in that a pillar with a wall to which seismic prestress is applied is formed.

この発明において、前記緊張導入力は、柱に配置されたPC鋼材に与える緊張導入力を該PC鋼材降伏荷重の80%までとし、壁に配置されたPC鋼材に与える緊張導入力を該PC鋼材降伏荷重の40〜70%とすること;前記壁付き柱の断面において、柱幅をdとし壁の厚さをtとした時に、柱幅に対する壁の厚さ比を、t/d=0.3以上とすること;前記壁付き柱は、プレキャストコンクリート造であること;前記壁付き柱は、建造物の複数箇所に使用され、壁の方向を一致する方向と異なる方向とに配置すること;および建造物は、上部構造と、基礎構造と、これら上部構造と基礎構造との間に設けられた免震装置とからなること、を付加的な要件として含むものである。
なお、本発明において上記の緊張導入力とは、定着部における定着完了時にPC鋼材に与えた引張力を意味するものである。
In the present invention, the tension introducing force is a tension introducing force applied to the PC steel material arranged on the column up to 80% of the PC steel yield load, and a tension introducing force applied to the PC steel material arranged on the wall is the PC steel material. 40 to 70% of the yield load; in the cross section of the walled column, when the column width is d and the wall thickness is t, the wall thickness ratio to the column width is t / d = 0. 3 or more; the walled pillar is made of precast concrete; the walled pillar is used in a plurality of locations of the building, and is arranged in a direction different from the direction in which the directions of the walls coincide; Further, the building includes, as an additional requirement, an upper structure, a foundation structure, and a seismic isolation device provided between the upper structure and the foundation structure.
In the present invention, the above-described tension introducing force means a tensile force applied to the PC steel material at the completion of fixing in the fixing portion.

本発明に係る建造物は、壁付き柱の柱部と壁部とにそれぞれPC鋼材を挿通して所要の緊張導入力を与えて緊張定着することにより制震プレストレスを付与したことによって、強風や大地震によりPC鋼材に掛かる引張力が増えてくるが、最大引張力でも降伏しない弾性範囲内に納まるように設計することが出来るのであり、それによって柱部および壁部に配置されたPC鋼材に掛かる最大引張力がほぼ同じになり、壁部と柱部とを一体化したことで断面曲げ耐力を著しく増大させることができ、建造物の破損を防止することができるという優れた効果を奏する。   The building according to the present invention has a strong wind by applying a pre-stress control by inserting a PC steel material into each of a column portion and a wall portion of a walled column to give a necessary tension introduction force and fixing the tension. Although the tensile force applied to the PC steel increases due to a large earthquake, it can be designed to fit within the elastic range that does not yield even with the maximum tensile force, and thus the PC steel disposed on the column and wall The maximum tensile force applied to the wall is almost the same, and the cross section bending strength can be remarkably increased by integrating the wall portion and the column portion, and it is possible to prevent the damage of the building. .

本発明の実施の形態に係る高層建造物を構築するために使用される壁付き柱を略示的に示した断面図である。It is sectional drawing which showed schematically the walled pillar used in order to construct the high-rise building which concerns on embodiment of this invention. 同実施の形態に係る壁付き柱を使用した建造物の現場打ちコンクリート造りの例を示した要部の側面図である。It is the side view of the principal part which showed the example of the spot cast-in-place structure of the building using the walled pillar which concerns on the embodiment. 同実施の形態に係る壁付き柱を使用した建造物のプレキャストコンクリート造りの例を示した要部の側面図である。It is the side view of the principal part which showed the example of the precast concrete structure of the building using the walled pillar which concerns on the embodiment. 同実施の形態に係る壁付き柱を使用した建造物のプレキャストコンクリート造りで且つ免震装置を付加した例を示した要部の側面図である。It is the side view of the principal part which showed the example which added the seismic isolation apparatus with the precast concrete structure of the building using the walled pillar which concerns on the embodiment. 同実施の形態に係る壁付き柱を使用した建造物において、壁付き柱の配置に係る一例を略示的に示した建造物の説明図である。It is explanatory drawing of the building which showed schematically the example which concerns on arrangement | positioning of a walled column in the building using the walled column which concerns on the embodiment. (A)〜(D)図は、同実施の形態に係る高層の建造物で、強風や大地震で受ける水平力による変形状況とプレストレスによる復元力とを示した説明図である。(A)-(D) figure is the high-rise building which concerns on the embodiment, and is explanatory drawing which showed the deformation | transformation condition by the horizontal force received by a strong wind or a big earthquake, and the restoring force by prestress. 同実施の形態において使用されるPC鋼材の復元力特性曲線を示すグラフである。It is a graph which shows the restoring force characteristic curve of PC steel materials used in the same embodiment.

本発明を図示の実施の形態に基づいて詳しく説明する。図1において、建造物に使用される壁付き柱1は、柱部2の両側面に壁部3を一体に形成したもの、即ち、1つの構造部材であり、該壁付き柱1はプレキャストコンクリート造であっても現場打ちコンクリート造であっても良いのである。   The present invention will be described in detail based on the illustrated embodiment. In FIG. 1, a walled column 1 used for a building is a structure in which wall portions 3 are integrally formed on both side surfaces of a column portion 2, that is, one structural member, and the walled column 1 is precast concrete. It can be made of cast or cast concrete.

この壁付き柱1の内部には、当然のこととして鉄筋が配設されている。即ち、柱部2の内部に柱主筋4と帯筋5とが配設され、壁部3の内部にも壁縦筋6と帯筋7とが配設されるのであり、この場合の帯筋7は、柱と壁とが一体化されて1つの部材の断面として曲げ耐力を向上させるため、柱部2内を貫通させて両側の壁部3に繋がるように連続させた帯筋として配設してある。さらに、柱部2の内部に制震プレストレスを付与するための緊張用のPC鋼材8を挿通するためのシース管9が複数配設されると共に、壁部3の内部にも同様の緊張用のPC鋼材10を挿通するための複数のシース管11が配設されている。   As a matter of course, a reinforcing bar is disposed in the walled column 1. That is, the column main reinforcement 4 and the band reinforcement 5 are arranged inside the column portion 2, and the wall vertical stripe 6 and the band reinforcement 7 are arranged inside the wall portion 3. In this case, the band reinforcement In order to improve the bending strength as a cross section of one member by integrating the pillar and the wall, 7 is arranged as a continuous streak so as to penetrate the pillar portion 2 and connect to the wall portions 3 on both sides. It is. Further, a plurality of sheath tubes 9 for inserting the tensioning PC steel material 8 for applying the vibration control prestress inside the column portion 2 are disposed, and the same tension is applied to the inside of the wall portion 3. A plurality of sheath tubes 11 for inserting the PC steel material 10 are provided.

このように柱部2と壁部3とを一体に形成した壁付き柱1は、1つの構造部材として成立するのであり、現場打ちコンクリートの場合、その部材の柱成Dと壁の張り出し長さLwは建造物の用途や構造計画によって自由に設定することができるし、また、場合によっては、柱部2の各側面(4辺)にも壁部3を連接して一体に形成することもできる。さらに、プレキャストコンクリート造の場合には、運搬上の制約もあるので、全断面の成Dwは2.5m以下とすることが好ましい。いずれにしても、前記壁付き柱1の断面において、柱部2の幅をdとし壁部3の厚さをtとした時に、柱幅に対する壁の厚さ比を、t/d=0.3以上とすることによって、柱部2と壁部3との一体化が確保され、断面耐力が大幅に向上するのである。   The walled column 1 in which the column portion 2 and the wall portion 3 are integrally formed as described above is formed as a single structural member. In the case of cast-in-place concrete, the column formation D of the member and the overhang length of the wall are formed. Lw can be freely set according to the use of the building and the structural plan. In some cases, the wall 3 is also connected to each side surface (four sides) of the pillar 2 so as to be integrally formed. it can. Furthermore, in the case of a precast concrete structure, since there are restrictions on transportation, it is preferable that the total cross section Dw is 2.5 m or less. In any case, in the cross section of the walled column 1, when the width of the column part 2 is d and the thickness of the wall part 3 is t, the ratio of the wall thickness to the column width is t / d = 0. By setting it to 3 or more, integration of the column part 2 and the wall part 3 is ensured, and cross-sectional yield strength improves significantly.

前記したような構成の壁付き柱1を使用して高層の建造物を構築する際に、例えば、第1の実施の形態として現場打ちコンクリート造りの場合には、図2に示したように、建造物の基礎構造における基礎コンクリート12に予め埋設して取り付けた柱部2用のアンカー材13と壁部3用のアンカー材14に対して、それぞれ緊張用のPC鋼材8とシース管9およびPC鋼材10とシース管11とが連結状態で配設され、通常の現場打ち工程と同様に柱部2と壁部3と梁部15および上層フロアの型枠(図示せず)を組むと共に所要の鉄筋等(4〜7)を配設した後にコンクリートを打設し締め固めをして硬化させるものであり、一つのフロア形成のコンクリートが硬化した後に上記と同様に順次上層階の柱部2と壁部3と梁部15およびフロアを構築するのであり、緊張用のPC鋼材8、10は下層に配設し定着させたものと順次連結させるのである。   When constructing a high-rise building using the walled pillar 1 having the above-described configuration, for example, in the case of on-site concrete construction as the first embodiment, as shown in FIG. PC steel material 8 for tension and sheath tube 9 and PC for anchor material 13 for pillar 2 and anchor material 14 for wall 3 that are pre-embedded and attached to foundation concrete 12 in the foundation structure of the building, respectively. The steel material 10 and the sheath tube 11 are arranged in a connected state, and the column part 2, the wall part 3, the beam part 15, and the upper floor formwork (not shown) are assembled in the same manner as in a normal on-site punching process. After placing the reinforcing bars (4-7), the concrete is placed and compacted to be hardened. After the concrete on one floor is hardened, the pillars 2 of the upper floors are sequentially formed in the same manner as described above. Wall 3 and beam 15 and flow And of building a, PC steel 8,10 for tensioning is to be sequentially connected to that is disposed on the lower fixing.

そして、各階毎に緊張用のPC鋼材8、10に対して緊張導入力を与えて緊張定着させることによって制震プレストレスを付与した壁付き柱1が形成されるのである。この場合の緊張導入力は、柱部2に挿通したPC鋼材8に対しては、そのPC鋼材8の降伏荷重の80%までとし、壁部3に挿通したPC鋼材10に対しては、そのPC鋼材10の降伏荷重の40〜70%までとする。なお、この現場打ちコンクリート造りの場合には、PC鋼材としてPC鋼棒を使用した方が好ましい。   And the pillar 1 with a wall which gave the vibration suppression pre-stress is formed by giving tension | tensile_strength introduction force with respect to the PC steel materials 8 and 10 for tension | tensile_strength for every floor, and fixing tension | tensile_strength. In this case, the tension introduction force is up to 80% of the yield load of the PC steel material 8 for the PC steel material 8 inserted through the column portion 2, and for the PC steel material 10 inserted through the wall portion 3, The yield load is 40 to 70% of the PC steel material 10. In the case of this in-situ concrete construction, it is preferable to use a PC steel bar as the PC steel material.

また、第2の実施の形態として、プレキャストコンクリート造の材料を用いて高層の建造物を構築する場合については、図3に示してある。なお、この実施例においても、前記実施例と同一部分には同一符合を付して説明する。使用されるPC構造の壁付き柱1には、予め柱部2と壁部3とにそれぞれシース管9、11が配設されている。そして、建造物の基礎構造における基礎コンクリート12には予め埋設して取り付けた柱部2用のアンカー材13と壁部3用のアンカー材14とが設けられている。   As a second embodiment, a case where a high-rise building is constructed using a precast concrete material is shown in FIG. In this embodiment as well, the same parts as those in the above embodiment will be described with the same reference numerals. In the PC structure walled column 1 to be used, sheath tubes 9 and 11 are disposed in advance in the column portion 2 and the wall portion 3, respectively. The foundation concrete 12 in the foundation structure of the building is provided with an anchor material 13 for the pillar portion 2 and an anchor material 14 for the wall portion 3 that are embedded and attached in advance.

これらアンカー材13、14に対して、壁付き柱1に挿通されるPC鋼材8、10が連結出来るように位置合わせしてPC構造の壁付き柱1をセットすると共に、該壁付き柱1の上面にPC構造の梁材15a、15aを両側から載置し、これら梁材15aの端部にも壁部3に設けたシース管11と対応する位置にシース管11a、11aがそれぞれ設けられており、これら梁材15a、15aを載置後に柱部2のシース管9にはPC鋼材8を、壁部2のシース管11と、それに対応する11a、11aにはPC鋼材10を挿通して前記アンカー材13、14にそれぞれ連結する。   The anchors 13 and 14 are positioned so that the PC steel members 8 and 10 inserted into the walled column 1 can be connected to each other, and the walled column 1 of the PC structure is set. PC-structured beam members 15a and 15a are mounted on the upper surface from both sides, and sheath tubes 11a and 11a are respectively provided at positions corresponding to the sheath tube 11 provided on the wall 3 at the ends of the beam members 15a. After the beam members 15a and 15a are placed, the PC steel material 8 is inserted into the sheath tube 9 of the column portion 2, and the PC steel material 10 is inserted into the sheath tube 11 of the wall portion 2 and the corresponding 11a and 11a. The anchor members 13 and 14 are connected respectively.

この場合に、載置された梁材15a、15aの端部は当接状態ではなく、柱部2に対応する間隔分が開いているので、その開いている間隔位置に柱部2のシース管9に対応するシース管9aを配設してから現場打ちコンクリート16により梁材15a、15aの端部間の間隔を埋めるとともに、梁材15a、15aの上面も含めてフロア用のトップコンクリート17を打設し、これらの現場打ちコンクリートが硬化した後に、前記実施例と同様に各PC鋼材8、10に緊張導入力を与えて緊張定着させることによって制震プレストレスを付与する。なお、この実施例におけるPC構造の材料を使用した場合に、例えば、PC鋼材8、10としてPC鋼棒を使用し、各階毎ではなく複数階、例えば、2〜3階分の長さのPC鋼棒を使用し、2〜3階分ずつ緊張導入力、即ち、PC圧着工法またはPC圧着関節工法をもって緊張定着させることによって、全体的に制震プレストレスを付与した壁付き柱1を形成しても良い。   In this case, since the end portions of the mounted beam members 15a and 15a are not in contact with each other and a space corresponding to the column portion 2 is open, the sheath tube of the column portion 2 is located at the open interval position. After the sheath tube 9a corresponding to 9 is disposed, the space between the ends of the beam members 15a, 15a is filled with the cast-in-place concrete 16, and the top concrete 17 for the floor including the upper surfaces of the beam members 15a, 15a is also provided. After the placement and hardening of these cast-in-place concrete, the prestressing prestress is applied by applying a tension introducing force to the PC steel materials 8 and 10 and fixing the tension in the same manner as in the above embodiment. In addition, when the material of the PC structure in this embodiment is used, for example, a PC steel rod is used as the PC steel materials 8 and 10, and a PC having a length corresponding to a plurality of floors, for example, two to three floors instead of each floor. By using a steel bar and tension fixing force by 2-3 floors, that is, the PC crimping method or the PC crimping joint method, the walled column 1 to which the seismic prestress is applied as a whole is formed. May be.

このようにPC鋼材8、10としてPC鋼棒を使用して、各定着部でPC鋼棒を連結し、基礎コンクリート12から高層建造物の最上階の天井まで一連に連結することができ、結果的に全長に渡って制震プレストレスを付与することにより、建造物として全体が安定すると共に、PC構造の建築部材を使用するので効率よく短期間で建造物を構築することができるのである。   In this way, PC steel bars can be used as PC steel materials 8 and 10, and PC steel bars can be connected at each fixing part, and can be connected in series from the foundation concrete 12 to the top floor ceiling of the high-rise building. In addition, by applying seismic prestress over the entire length, the entire structure is stabilized, and a building member having a PC structure is used, so that the building can be efficiently constructed in a short period of time.

さらに、前記した壁付き柱1を使用して、図4に示したように、第3の実施の形態である高層建造物を免震構造とすることもできる。一例としてPC構造の材料を使用した場合について、前記第2の実施の形態と同一部部には同一符合を付して説明する。建造物としての基礎構造における鋼管杭18の杭頭部に打設したコンクリート19にアンカー材20を介して下部基板21が一体的に取り付けられ、鋼管杭18の周囲は基礎スラブ22により基礎構造として固められている。   Furthermore, as shown in FIG. 4, the high-rise building which is 3rd Embodiment can also be made into a seismic isolation structure using the above-mentioned pillar 1 with a wall. As an example, the case where a material having a PC structure is used will be described with the same reference numerals given to the same portions as those in the second embodiment. A lower substrate 21 is integrally attached to a concrete 19 placed on a pile head of a steel pipe pile 18 in a foundation structure as a building via an anchor material 20, and the periphery of the steel pipe pile 18 is formed as a foundation structure by a foundation slab 22. It has been hardened.

この実施の形態において、基礎構造の上に免震構造の建造物、即ち、上部構造物が建造されるのであるが、その上部構造物である下部コンクリート大梁23に前記PC構造の壁付き柱1がアンカー材13、14を介して取り付けられる。この場合に、前記第2の実施の形態でいう基礎コンクリート12が上部構造物の下部コンクリート大梁23に相当するものであり、該下部コンクリート大梁23と鋼管杭18の杭頭部に設けた下部基板21との間に免震装置24が配設されるのである。この場合に、下部コンクリート大梁23の下面には、所要大きさの突部23aが一体的に設けられており、該突部23aの下面に設けた上部基板25と下部基板21との間に免震装置24が設けられるのである。なお、下部コンクリート大梁23が、例えば、フーチング部材等を介してPC圧着またはPC圧着関節工法で配設される場合には、壁付き柱1もフーチング部材の上部に所要のアンカー部材を介して取り付けられ、免震装置24もフーチング部材の下面に上部基板25を介して取り付けられることになる。   In this embodiment, a base-isolated structure, that is, an upper structure is built on the foundation structure, and the PC-structured wall-mounted column 1 is attached to the lower concrete beam 23 which is the upper structure. Are attached via anchor members 13 and 14. In this case, the basic concrete 12 referred to in the second embodiment corresponds to the lower concrete large beam 23 of the upper structure, and the lower substrate provided at the pile head of the lower concrete large beam 23 and the steel pipe pile 18. The seismic isolation device 24 is arranged between the two. In this case, a projecting portion 23a having a required size is integrally provided on the lower surface of the lower concrete beam 23, and is exempted between the upper substrate 25 and the lower substrate 21 provided on the lower surface of the projecting portion 23a. A seismic device 24 is provided. In addition, when the lower concrete girder 23 is arrange | positioned by PC crimping or a PC crimping joint method via a footing member etc., the walled pillar 1 is also attached to the upper part of a footing member via a required anchor member. The seismic isolation device 24 is also attached to the lower surface of the footing member via the upper substrate 25.

免震装置を適用した従来の免震構造物では、海洋型地震による水平動に対して水平方向の相対変位により地震エネルギーを吸収し、地震エネルギーが上部構造に作用することを回避できていたが、直下型地震による上下動に対しては抑制することができなかった。しかしながら、上記したように壁付き柱1と免震装置24とを組み合わせて使用し、壁付き柱1に制震プレストレスを付与した建造物とすることによって、水平方向の地震力による地震エネルギーを吸収すると共に、上下動による柱や壁等の損傷も防止または抑制することができ、特に、鉛直方向の衝撃波による応力度を緩和させる作用がある。要するに、地震後に、制震プレストレスによる復元力が建造物を元の位置状態に戻すのであり、従来の制震ダンパーが不要となり、建造物全体の耐震性能を著しく向上させることができると共に、コスト削減にも寄与するのである。   In conventional seismic isolation structures using seismic isolation devices, the seismic energy was absorbed by the horizontal relative displacement with respect to the horizontal movement caused by the ocean type earthquake, and the seismic energy was prevented from acting on the superstructure. It was not possible to suppress vertical movement caused by a direct earthquake. However, as described above, by using the wall-mounted column 1 and the seismic isolation device 24 in combination, and making the wall-mounted column 1 seismic prestressed, the seismic energy due to the horizontal seismic force can be reduced. In addition to absorption, damage to columns and walls due to vertical movement can be prevented or suppressed, and in particular, there is an effect of relaxing the stress level due to a shock wave in the vertical direction. In short, after the earthquake, the restoring force due to seismic prestressing returns the building to its original position, eliminating the need for conventional seismic damping dampers, significantly improving the seismic performance of the entire building, and reducing costs. It also contributes to reduction.

前記各実施の形態に係る壁付き柱1を使用した建造物において、壁付き柱1の配置に係る一例を図5に示してある。本発明の主旨としては、建造物平面においてX・Y軸の2方向に構造剛性と強度を向上させて耐震性または制震性のバランスを良くするために、図示したように壁付き柱1における壁部3の方向を交互に配置して用いることを基本構成とするものであるが、建造物の間取りやX軸とY軸との長さの比によっても壁付き柱1の壁部3の方向を適宜に選択することができるし、また、部屋の間取りを大きくする場合には、壁部のない柱1aを使用することも当然のこととしてあり得るのである。しかしながら、壁部のない柱1aであっても、その内部にシース管9を配置しPC鋼材8を挿通して制震プレストレスを付与する構成を採用するのである。   FIG. 5 shows an example of the arrangement of the walled pillars 1 in the building using the walled pillars 1 according to the respective embodiments. The gist of the present invention is that in the walled column 1 as shown in the figure, in order to improve the structural rigidity and strength in two directions of the X and Y axes in the building plane and to improve the balance of earthquake resistance or vibration control The basic configuration is to alternately use the directions of the wall portions 3, but the wall portion 3 of the walled column 1 can also be used depending on the floor plan of the building and the ratio of the length between the X axis and the Y axis. The direction can be appropriately selected, and when the room layout is increased, it is naturally possible to use the pillar 1a having no wall portion. However, even if it is the pillar 1a without a wall part, the structure which arrange | positions the sheath pipe | tube 9 in the inside, inserts the PC steel material 8, and gives a damping control prestress is employ | adopted.

前記したいずれの実施の形態においても、建造物の基礎部または下部構造部から最上部の天井まで壁付き柱1を使用して建造物を構築し、柱部2に挿通したPC鋼材8に対して降伏荷重の80%以下、壁部3に挿通したPC鋼材10に対しては降伏荷重の40〜70%程度の緊張導入力で緊張定着して制震プレストレスを付与した高層の建造物について、制震プレストレスによる復元力の制震作用を、図6に示した概念図に基づいて説明する。(A)図は、高層建造物27において、その建造物の重量Wに加えて制震プレストレスPを付与した例を示すもので、該建造物27が地震や強風で受ける水平力Qの強さを示すものである。   In any of the above-described embodiments, the building is constructed using the walled pillar 1 from the foundation or lower structure part of the building to the uppermost ceiling, and the PC steel material 8 inserted into the pillar part 2 is used. For high-rise buildings that are 80% or less of the yield load and have been pre-stressed with a tension introduction force of about 40 to 70% of the yield load for the PC steel material 10 inserted through the wall 3 and are subjected to seismic prestressing. The damping effect of the restoring force due to the damping prestress will be described based on the conceptual diagram shown in FIG. (A) The figure shows an example in which a high-rise building 27 is given a seismic prestress P in addition to the weight W of the building, and the strong horizontal force Q that the building 27 receives due to an earthquake or a strong wind. This is an indication.

(B)図は、水平力aに対するプレストレスによる復元力bを示すもので、(C)図に示したように、大地震によって建造物が有する変形力を超えた水平力aを受けて一時的に仮想線で示した範囲で変形cしても、PC鋼材8、10に付与したプレストレスPによる復元力bが水平力aに抵抗して建造物27が損壊せず、(D)図に示したように、水平力が作用しなくなると、プレストレスによる復元力bによって建造物27は元の状態に戻るのである。このようにPC鋼材8、10に付与した制震プレストレスによる復元力が、地震などにより建造物が変形した時に抵抗する力、即ち、元に戻そうとする力となって、建造物を損壊させることなく、強い制震作用を発揮するのである。   (B) The figure shows the restoring force b due to the prestress with respect to the horizontal force a. As shown in (C), the horizontal force a exceeding the deformation force of the building is temporarily received by a large earthquake. Even if the deformation c is within the range indicated by the phantom line, the restoring force b due to the prestress P applied to the PC steel materials 8 and 10 resists the horizontal force a and the building 27 is not damaged, FIG. As shown in FIG. 5, when the horizontal force stops working, the building 27 returns to the original state by the restoring force b due to the prestress. In this way, the restoring force due to the prestressing prestress applied to the PC steel materials 8 and 10 becomes a force that resists when the building is deformed by an earthquake or the like, that is, a force that tries to return to the original, and damages the building. Without damaging it, it exerts strong seismic control.

このように壁付き柱1を使用して高層の建造物27を構築しても、柱部2と壁部3とに挿通して設けたPC鋼材8、10に所要の緊張導入力で緊張定着して制震プレストレスを付与することによって、建造物27が下層構造物かた上部構造物まで制震プレストレスPを付与して弾性一体化された一連の状態になっており、直下型の大地震による振動を受けても、また、水平力を受けても上部(最上層階)に生ずる強い揺れは、プレストレスによる復元力で抵抗し全体が鞭打ち現象に制震させるのであり、それによって衝撃的引張力や曲げモーメントで発生する引張力に対して制震ダンパー性能を発揮し、内部に配設してある全ての主筋やPC鋼材を降伏させずに線形復元力範囲に留めるのである。   Thus, even if the high-rise building 27 is constructed using the walled pillar 1, the tension is fixed to the PC steel members 8 and 10 provided by being inserted through the pillar part 2 and the wall part 3 with a necessary tension introduction force. By applying the vibration control prestress, the building 27 is in a series of elastically integrated with the vibration control prestress P from the lower structure to the upper structure. The strong shaking that occurs in the upper part (the uppermost floor) even when subjected to vibration due to a large earthquake or horizontal force resists the restoring force due to prestress and suppresses the entire whipping phenomenon. The damping damper performance is exhibited against the tensile force generated by the impact tensile force or bending moment, and all the main bars and PC steel materials arranged inside are kept within the linear restoring force range without yielding.

本発明に係る壁付き柱1を使用した高層の建造物について、大地震及び強風に対して耐えられるPC構造の建造物について説明したが、これに限定されることなく、例えば、低層のPC構造や鉄筋コンクリート造(RC造)、またはプレストレスト鉄筋コンクリート造(PRC構造)にも適用できるので、高層マンションやオフイスビル等の高層または低層ビル建設に広く利用できる。   Although a high-rise building using the walled pillar 1 according to the present invention has been described with respect to a PC-structure building that can withstand large earthquakes and strong winds, the present invention is not limited to this. It can also be applied to the construction of high-rise or low-rise buildings such as high-rise apartments and office buildings.

1 壁付き柱
1a 柱(壁付でない柱)
2 柱部
3 壁部
4 柱用の主筋
5 帯筋(フープ筋)
6 壁用の縦筋
7 壁用の帯筋
8、10 PC鋼材(PC鋼棒)
9、9a、11、11a シース管
12 基礎コンクリート
13、14 アンカー部材
15 梁
15a 梁材(プレキャスト)
16 現場打ちコンクリート
17 トップコンクリート
18 鋼管杭
19 コンクリート
20 アンカー材
21 下部基板
22 基礎スラブ
23 下部コンクリート大梁
23a 突部
24 免震装置
25 上部基板
27 高層の建造物
1 Column with wall 1a Column (column without wall)
2 Columns 3 Walls 4 Main bars for columns 5 Bands (hoops)
6 Vertical bars for walls 7 Strips for walls 8, 10 PC steel (PC steel bars)
9, 9a, 11, 11a Sheath tube 12 Foundation concrete 13, 14 Anchor member 15 Beam 15a Beam material (precast)
16 In-situ concrete 17 Top concrete 18 Steel pipe pile 19 Concrete 20 Anchor material 21 Lower substrate 22 Foundation slab 23 Lower concrete beam 23a Protrusion 24 Seismic isolation device 25 Upper substrate 27 High-rise building

本発明は、前述の従来例の課題を解決する具体的手段として、コンクリート造の壁付き柱を使用して構築される建造物であって、前記壁付き柱は、柱とその両側に設けられた壁とから構成して一体となった異形断面を有する部材とし、該部材断面において、柱と壁とにそれぞれ下層階から上層階まで連結したPC鋼材を挿通させて配置し、該PC鋼材に緊張導入力を与えて緊張定着することによりプレストレスを付与した壁付き柱が形成され、前記壁付き柱の断面において、柱幅をbとし壁の厚さをtとした時に、柱幅に対する壁の厚さ比を、t/b=0.3以上とし、前記緊張導入力は、柱に配置されたPC鋼材に与える緊張導入力を該PC鋼材降伏荷重の80%までとし、壁に配置されたPC鋼材に与える緊張導入力を該PC鋼材降伏荷重の40〜70%とすることを特徴とする建造物を提供するものである。 The present invention is a building constructed using concrete walled columns as a specific means for solving the problems of the above-described conventional example, and the walled columns are provided on both sides of the column. A member having an odd-shaped cross section composed of a single wall, and in the member cross section, a PC steel material connected from the lower floor to the upper floor is inserted into the pillar and the wall, respectively, and is disposed on the PC steel material. tension walled columns I imparted with descriptor restless be introduced force given the tense fixing is formed in a cross section of the wall with pillars, the thickness of the wall to the column width and b is taken as t, pillars The thickness ratio of the wall to the width is set to t / b = 0.3 or more, and the tension introducing force is set to 80% of the PC steel yield load, and the tension introducing force applied to the PC steel arranged on the column is The tension introduction force applied to the PC steel material placed on the PC steel material yield load There is provided a building, characterized in that 40% to 70% of that.

この発明において、前記壁付き柱は、プレキャストコンクリート造であること;および前記壁付き柱は、建造物の複数箇所に使用され、壁の方向を一致する方向と異なる方向とに配置すること、を付加的な要件として含むものである。
なお、本発明において上記の緊張導入力とは、定着部における定着完了時にPC鋼材に与えた引張力を意味するものである。
The present invention smell Te, front Symbol walled pillar, it is precast concrete structure; and the walled columns are used in a plurality of locations of buildings, they are arranged in a direction different from the direction corresponding to the direction of the wall , As an additional requirement.
In the present invention, the above-described tension introducing force means a tensile force applied to the PC steel material at the completion of fixing in the fixing portion.

本発明に係る建造物は、前記壁付き柱の断面において、柱幅をbとし壁の厚さをtとした時に、柱幅に対する壁の厚さ比を、t/b=0.3以上としたことにより一体化が確保され、断面曲げ耐力を著しく増大させることができ、また、壁付き柱の柱部と壁部とにそれぞれ下層階から上層階まで連結したPC鋼材を挿通し、柱に配置されたPC鋼材に与える緊張導入力を該PC鋼材降伏荷重の80%までとし、壁に配置されたPC鋼材に与える緊張導入力を該PC鋼材降伏荷重の40〜70%とするプレストレスを付与して緊張定着することによって、強風や大地震によりPC鋼材に掛かる引張力が増えてくるが、最大引張力でも降伏しない弾性範囲内に納まるように設計することが出来るのであり、それによって柱部および壁部に配置されたPC鋼材に掛かる最大引張力がほぼ同じになり、建造物の破損を防止することができるという優れた効果を奏する。 The building according to the present invention has a wall thickness ratio with respect to the column width of t / b = 0.3 or more when the column width is b and the wall thickness is t in the cross section of the walled column. is secured integrally by the can significantly increase the cross-sectional flexural strength, also inserted through the PC steel material with a respectively connected to the column portion of the wall column with a wall portion from the lower floors to the upper floors, pillars The prestress is set so that the tension introducing force given to the arranged PC steel is up to 80% of the PC steel yield load, and the tension introducing force given to the PC steel arranged on the wall is 40 to 70% of the PC steel yield load. By applying and fixing the tension, the tensile force applied to the PC steel increases due to strong winds and large earthquakes, but it can be designed to fit within the elastic range where it does not yield even with the maximum tensile force. Placed on wall and wall Maximum tensile force applied to the PC steel material becomes substantially the same, an excellent effect that it is possible to prevent damage to the building.

Claims (6)

コンクリート造の壁付き柱を使用して構築される建造物であって、
前記壁付き柱は、柱とその両側に設けられた壁とから構成して一体となった異形断面を有する部材とし、
該部材断面において、柱と壁とにそれぞれPC鋼材を挿通させて配置し、
該PC鋼材に緊張導入力を与えて緊張定着することにより制震プレストレスを付与した壁付き柱が形成されること
を特徴とする建造物。
A building constructed using concrete walled columns,
The walled pillar is a member having an odd-shaped cross section composed of a pillar and walls provided on both sides thereof,
In the member cross section, the PC steel material is inserted through the column and the wall, respectively,
A building having a wall with a prestressing prestress formed by applying tension introduction force to the PC steel and fixing the tension.
前記緊張導入力は、柱に配置されたPC鋼材に与える緊張導入力を該PC鋼材降伏荷重の80%までとし、壁に配置されたPC鋼材に与える緊張導入力を該PC鋼材降伏荷重の40〜70%とすること
を特徴とする請求項1に記載の建造物。
The tension introducing force is such that the tension introducing force applied to the PC steel arranged on the column is up to 80% of the PC steel yield load, and the tension introducing force applied to the PC steel arranged on the wall is 40% of the PC steel yield load. The building according to claim 1, characterized in that it is ˜70%.
前記壁付き柱の断面において、柱幅をbとし壁の厚さをtとした時に、柱幅に対する壁の厚さ比を、t/b=0.3以上とすること
を特徴とする請求項1または2に記載の建造物。
The wall thickness ratio with respect to the column width is t / b = 0.3 or more when the column width is b and the wall thickness is t in the cross section of the walled column. The building according to 1 or 2.
前記壁付き柱は、プレキャストコンクリート造であること
を特徴とする請求項1乃至3のいずれかに記載の建造物。
The building according to any one of claims 1 to 3, wherein the walled column is made of precast concrete.
前記壁付き柱は、建造物の複数箇所に使用され、壁の方向を一致する方向と異なる方向とに配置すること
を特徴とする請求項1乃至4のいずれかに記載の建造物。
5. The building according to claim 1, wherein the walled pillar is used in a plurality of locations of the building, and is arranged in a direction different from a direction in which the directions of the walls coincide with each other.
建造物は、上部構造と、基礎構造と、これら上部構造と基礎構造との間に設けられた免震装置とからなること
を特徴とする請求項1乃至5のいずれかに記載の建造物。
The building according to any one of claims 1 to 5, wherein the building includes an upper structure, a foundation structure, and a seismic isolation device provided between the upper structure and the foundation structure.
JP2010120346A 2010-05-26 2010-05-26 Buildings using walled columns with seismic prestressing Active JP4647714B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010120346A JP4647714B1 (en) 2010-05-26 2010-05-26 Buildings using walled columns with seismic prestressing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010120346A JP4647714B1 (en) 2010-05-26 2010-05-26 Buildings using walled columns with seismic prestressing

Publications (2)

Publication Number Publication Date
JP4647714B1 JP4647714B1 (en) 2011-03-09
JP2011246937A true JP2011246937A (en) 2011-12-08

Family

ID=43836076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010120346A Active JP4647714B1 (en) 2010-05-26 2010-05-26 Buildings using walled columns with seismic prestressing

Country Status (1)

Country Link
JP (1) JP4647714B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379285B1 (en) * 2012-09-24 2013-12-25 黒沢建設株式会社 Buildings using seismic control PC columns
CN107524251A (en) * 2017-09-22 2017-12-29 东南大学 Prestress steel strip masonry faced wall
KR102511207B1 (en) * 2022-04-12 2023-03-17 주식회사 이안파트너스이앤씨 Precast concrete panel that is fire-resistant and can be assembled

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211258B1 (en) * 2012-08-17 2013-06-12 黒沢建設株式会社 Buildings using steel columns with seismic prestressing
JP6215552B2 (en) * 2013-03-27 2017-10-18 株式会社フジタ Hybrid structure and construction method thereof
JP5676800B1 (en) * 2014-04-22 2015-02-25 黒沢建設株式会社 Method of introducing PS into constructed building later and its building
CN108978928A (en) * 2018-07-30 2018-12-11 中国建筑股份有限公司 A kind of assembled foundation connecting node and its construction method
CN112647650B (en) * 2020-09-27 2022-10-04 河南鸿炜钢制品有限公司 Mechanical anchoring structure for steel bars of building constructional column
CN112942619A (en) * 2021-02-03 2021-06-11 佛山科学技术学院 Wallboard in assembled

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170922A (en) * 1974-12-03 1976-06-19 Katsuta Minoru Jujikeino hashirato haritoo ryoshita kenchikukoho
JPH0742231A (en) * 1993-07-30 1995-02-10 Taisei Corp Pca concrete wall post
JPH11172762A (en) * 1997-12-16 1999-06-29 Kurosawa Construction Co Ltd Joining structure for column and beam of prestressed concrete structure
JPH11336251A (en) * 1998-05-27 1999-12-07 Penta Ocean Constr Co Ltd Column structure and reinforcing method of column
JP2000104334A (en) * 1998-09-29 2000-04-11 Ube Ind Ltd Building structure skeleton
JP2003013496A (en) * 2001-07-02 2003-01-15 Kurosawa Construction Co Ltd Prestressed concrete structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170922A (en) * 1974-12-03 1976-06-19 Katsuta Minoru Jujikeino hashirato haritoo ryoshita kenchikukoho
JPH0742231A (en) * 1993-07-30 1995-02-10 Taisei Corp Pca concrete wall post
JPH11172762A (en) * 1997-12-16 1999-06-29 Kurosawa Construction Co Ltd Joining structure for column and beam of prestressed concrete structure
JPH11336251A (en) * 1998-05-27 1999-12-07 Penta Ocean Constr Co Ltd Column structure and reinforcing method of column
JP2000104334A (en) * 1998-09-29 2000-04-11 Ube Ind Ltd Building structure skeleton
JP2003013496A (en) * 2001-07-02 2003-01-15 Kurosawa Construction Co Ltd Prestressed concrete structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379285B1 (en) * 2012-09-24 2013-12-25 黒沢建設株式会社 Buildings using seismic control PC columns
CN107524251A (en) * 2017-09-22 2017-12-29 东南大学 Prestress steel strip masonry faced wall
CN107524251B (en) * 2017-09-22 2019-08-20 东南大学 Prestress steel strip masonry faced wall
KR102511207B1 (en) * 2022-04-12 2023-03-17 주식회사 이안파트너스이앤씨 Precast concrete panel that is fire-resistant and can be assembled

Also Published As

Publication number Publication date
JP4647714B1 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4647714B1 (en) Buildings using walled columns with seismic prestressing
Gkournelos et al. Seismic upgrading of existing reinforced concrete buildings: A state-of-the-art review
CN110541354B (en) Single-section prefabricated anti-seismic pier and construction method thereof
Wu et al. Hybrid experimental performance of a full‐scale two‐story buckling‐restrained braced RC frame
Tsonos Seismic repair of exterior R/C beam-to-column joints using two-sided and three-sided jackets
JP2007321486A (en) Armed pipe aseismatic structure and armed pipe aseismatic reinforcing method
KR101139761B1 (en) Reinforcing wall for construction
KR102201159B1 (en) Seismic retrofit structure using cap unit and reinforcing column and construction method thereof
JP2007270600A (en) Prestress introducing method to filling part between precast concrete members
JP5210337B2 (en) Buildings using vertical seismic control PC structural members with seismic prestress
JP4472726B2 (en) Base-isolated building structure
JP5509374B1 (en) Seismic strengthening structure and seismic strengthening method for existing buildings
JP5509380B1 (en) Seismic reinforcement method and structure for existing buildings
KR101209363B1 (en) Concrete block for seismic reinforcement of H-shaped column and seismic reinforcing method using the same
JP5379285B1 (en) Buildings using seismic control PC columns
JP2006132150A (en) Seismic response control column and its construction method
JP5868603B2 (en) Seismic reinforcement method for existing buildings
JP5325709B2 (en) Method of constructing steel exposed column base structure
JP5411375B1 (en) Buildings using seismic control columns
JP3873064B2 (en) Joint structure of precast concrete columns and beams
CN113622707A (en) Pre-tensioned crossed steel pull rod supporting and reinforcing reinforced concrete frame structure
JP3817402B2 (en) RC seismic studs
JP2017172278A (en) Earthquake-proof reinforcement structure
JP6872384B2 (en) Reinforcement structure and construction method of existing skeleton
JP2021107619A (en) Building structure and method for forming building structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250