JP4472726B2 - Base-isolated building structure - Google Patents

Base-isolated building structure Download PDF

Info

Publication number
JP4472726B2
JP4472726B2 JP2007133875A JP2007133875A JP4472726B2 JP 4472726 B2 JP4472726 B2 JP 4472726B2 JP 2007133875 A JP2007133875 A JP 2007133875A JP 2007133875 A JP2007133875 A JP 2007133875A JP 4472726 B2 JP4472726 B2 JP 4472726B2
Authority
JP
Japan
Prior art keywords
seismic isolation
base
beams
building
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007133875A
Other languages
Japanese (ja)
Other versions
JP2008285952A (en
Inventor
亮平 黒沢
Original Assignee
黒沢建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Application filed by 黒沢建設株式会社 filed Critical 黒沢建設株式会社
Priority to JP2007133875A priority Critical patent/JP4472726B2/en
Publication of JP2008285952A publication Critical patent/JP2008285952A/en
Application granted granted Critical
Publication of JP4472726B2 publication Critical patent/JP4472726B2/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40145945&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4472726(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は免震建物構造に関するものである。   The present invention relates to a base-isolated building structure.
従来の免震建物構造として特開昭64−14445号公報の発明が知られている。この免震建物構造は、上部躯体と下部躯体との間に免震装置が適宜間隔ごとに設置され、これらの免震装置が地震時における震動を吸収して地震エネルギーが上部躯体に伝わらないようにするものである。しかし、この免震建物構造は上部躯体と免震装置とが現場打ち鉄筋コンクリートの梁で接合されているため、これらの接合においては型枠施工、配筋工事およびコンクリート打設などの現場作業が多くて工期が長く、しかも梁のスパンを長くできずに、ひび割れも発生し易いという問題があった。そこで、これらの問題を解決するために、特開2000−220210号公報の発明がされた。これはプレキャストコンクリート製の連結ブロックに、免震装置とプレキャストプレストレストコンクリート梁とを接合して、免震装置と上部躯体とを一体接合するものである。
特開昭64−14445号公報 特開2000−220210号公報
As a conventional base-isolated building structure, an invention disclosed in Japanese Patent Laid-Open No. 64-14445 is known. In this base-isolated building structure, seismic isolation devices are installed at appropriate intervals between the upper and lower housings, so that these seismic isolation devices absorb the vibrations during the earthquake and prevent the seismic energy from being transmitted to the upper housing. It is to make. However, since this base-isolated building structure has an upper frame and seismic isolation device joined by a cast-in-place reinforced concrete beam, there are many on-site work such as formwork construction, reinforcement work and concrete placement. The construction period is long, and the span of the beam cannot be lengthened. In order to solve these problems, the invention of Japanese Patent Laid-Open No. 2000-220210 has been made. In this method, a seismic isolation device and a precast prestressed concrete beam are joined to a connecting block made of precast concrete, and the seismic isolation device and the upper frame are integrally joined.
JP-A-64-14445 JP 2000-220210 A
しかし、上記の免震建物構造においては従来の問題は解消されたが、プレキャスト部材同士が鉄筋で繋げないために、PC鋼線の配線量を多くしなければならなかった。このPC鋼線の配線量が多くなると、図12に示すように、プレストレス導入力による軸変形量が多くなって免震装置51が免震機能を発揮する前に変形してしまい(建物構造物の外側の免震装置が大きく変形する)、地震時に免震装置51の免震性能を充分に発揮することができないという恐れがあった。   However, in the above-mentioned base-isolated building structure, the conventional problems have been solved. However, since the precast members cannot be connected to each other by reinforcing bars, the wiring amount of PC steel wires has to be increased. When the wiring amount of the PC steel wire increases, as shown in FIG. 12, the amount of axial deformation due to the prestress introduction force increases and the seismic isolation device 51 is deformed before exhibiting the seismic isolation function (building structure). The seismic isolation device on the outside of the object is greatly deformed), and there is a fear that the seismic isolation performance of the seismic isolation device 51 cannot be fully exhibited during an earthquake.
本願発明はこれらの問題に鑑みてなされたものであり、その目的は、現場作業を少なくして短期間で効率良く上部躯体と免震装置の接合ができるとともに、免震装置の免震性能が充分に発揮できる免震建物構造を提供することである。   The present invention has been made in view of these problems, and its purpose is to reduce the field work and to efficiently join the upper frame and the seismic isolation device in a short period of time, and to improve the seismic isolation performance of the seismic isolation device. It is to provide a seismic isolation building structure that can be fully utilized.
以上の課題を解決するための免震建物構造は、上部躯体と下部躯体との間に免震装置が設置された免震建物構造であり、下部躯体に設置された免震装置の上面で上部躯体の最下階のプレキャストコンクリートの梁の端部と現場打ち鉄筋コンクリートの連結部とが一体接合され、前記プレキャストコンクリートの梁の端部から突出した下端筋が前記連結部内で定着することによって連結部と梁が一体接合されたことを特徴とする。また、前記プレキャストコンクリートの梁と前記一体接合された連結部とがプレストレスト導入用の緊張材によって緊張されたことを特徴とする。また上部躯体の柱および最下階以外の梁はプレキャストコンクリートであり、これらの柱と梁とが現場打ち鉄筋コンクリートの柱梁接合部により一体接合されるとともに、梁がプレストレスト導入用の緊張材によって緊張されたことを含む。また上部躯体の柱および最下階以外の梁はプレキャストコンクリートであり、これらの柱と梁にはプレストレスト導入用の緊張材が配線され、この緊張材によってプレストレスを導入することによって柱と梁とが圧着接合されたことを含む。また上部躯体の梁は、予め埋設された緊張材によって一次プレストレスが付与されたプレストレストコンクリートであることを含む。また免震装置は、免震装置本体と上面側の載置プレートと、下面側の固定プレートとから構成され、該固定プレートには下部躯体に固定するアンカー材が設けられ、載置プレートには梁の端部を載置する載置部と現場打ち連結部の形成部とが設けられたことを含むものである。 The seismic isolation building structure for solving the above problems is a seismic isolation building structure in which a seismic isolation device is installed between the upper and lower housings, and on the upper surface of the seismic isolation device installed in the lower housing , a connecting portion of the end portion of the beam of the lowest floor of precast concrete and cast in place reinforced concrete of the upper building frame are integrally joined, the lower end muscle protruding from the end portion of the beam of the precast concrete by Rukoto be fixed by the connecting portion The connecting portion and the beam are integrally joined . Further, the precast concrete beam and the integrally joined connecting portion are tensioned by a prestressed tension material . The pillars in the upper frame and the beams other than the lowest floor are precast concrete. These pillars and beams are joined together by the cast-in-place reinforced concrete column beam joints, and the beams are tensioned by the prestressed tension material. Including what has been done. Also, the pillars in the upper frame and the beams other than the bottom floor are precast concrete, and tension materials for prestressed introduction are wired to these pillars and beams. Including being crimp-bonded. Moreover, the beam of an upper frame contains the prestressed concrete to which the primary prestress was provided with the tension material embed | buried beforehand. The seismic isolation device is composed of a seismic isolation device main body, an upper surface side mounting plate, and a lower surface side fixing plate, and the fixing plate is provided with an anchor material that is fixed to the lower housing. This includes that a placement portion for placing the end portion of the beam and a formation portion for the on- site hitting connection portion are provided.
プレキャストコンクリートの梁の上端筋をトップコンクリートに配置し、梁の下端筋を端部から突出させて現場打ち鉄筋コンクリートの連結部内に定着し、他の梁の端部から突出した下端筋と鉄筋継手で接続することができるので、例えば、梁の端部においては、曲げ耐力が梁主筋と緊張材(PC鋼線)とで半分ずつ負担するとすれば、緊張材量(PC鋼線量)を半分に減らすことができ、せん断力についてもコンクリート全断面が負担することによって緊張材量を大幅に減らすことができるので、プレストレス導入力による軸変形量も半分に減って、プレストレス導入力を支障のない程度に抑えることができる。また上部躯体の強度や剛性を高く確保するとともに、現場における配筋工事、型枠工事およびコンクリート打設工事を大幅に省略してコストを削減することにより、短い工期で免震装置の免震性能を効率よく発揮させることができる安価な免震建物構造を提供することができる。また柱と梁とが現場打ち鉄筋コンクリートの柱梁接合部を介して一体接合され、梁がプレストレス導入用の緊張材によって緊結されたことにより、柱と梁が一体接合されて上部躯体の強度や剛性を高めて、緊張材量(PC鋼線量)を減らすことができる。また柱および梁がプレキャストコンクリートであるため、現場におけるコンクリート打設工事をすることなく柱に梁を取り付けることが可能になり、上部躯体の構築作業を効率良く行うことができるとともに、工場生産による品質の高い部材とすることができる。また免震装置による地震力吸収性能を充分に発揮させるため、上部躯体の梁部材断面を大きくせずに全体の剛性と強度を高めることができる。また上部躯体の梁は、予め埋設された緊張材によって一次プレストレスが付与されたプレストレストコンクリートであることにより、脱型時、運搬時および架設時において、自重や床板やトップコンクリートの打設荷重および施工荷重によるひび割れの発生を抑えることができる。また設計時において、梁スパンの中央断面では設計荷重による断面応力を一次PC鋼材に負担させ、二次PC鋼材が主に端部断面の応力を負担し、二次PC鋼材量を低減することができる。また、梁にプレストレスが付与されたことによって、スパンを20〜30m以上も伸ばすことが可能となって建物内の平面使用計画に自由に対応することができるとともに、免震装置および杭本数を減らして経済性を著しく向上させることができる。また免震装置は、免震装置本体と、下面側の固定プレートおよび上面側の載置プレートから構成されたことによれば、免震装置を設置する際に、所定位置の確認、調整と水平レベル合わせを行って設置することによって、下部躯体の施工誤差を簡単に吸収して施工精度を高めることができる。また載置プレートには載置部を設けてあり、梁の所定位置に袋ナットを装着したことにより、梁を所定位置に簡単に設置することができる。また上記の袋ナットに載置プレートからボルトを挿入して梁を仮固定することによって連結部と一体化されるまでの仮設においては、中小地震時や強風時の揺れ止めと倒落防止とをすることができる。また位置確認と水平レベル合わせを行うことによって、下部躯体の施工誤差を簡単に吸収して施工精度を大幅に向上させることができ、免震装置の免震性能をより効率良く発揮することができる。また免震建物構造の完成後、免震装置本体のメンテナンスや取り替えなどを実施する際に、固定ボルトを取り外すだけで免震装置本体を取り外すことができる。   The top bar of the precast concrete beam is placed on the top concrete. Because it can be connected, for example, at the end of the beam, if the bending strength is borne by the beam main bar and the tension material (PC steel wire) in half, the amount of tension material (PC steel dose) is reduced by half. The amount of tension material can be greatly reduced because the entire cross section of the concrete bears the shearing force, so the amount of axial deformation caused by the prestressing force is reduced by half, and the prestressing force is not hindered. It can be suppressed to the extent. The seismic isolation performance of the seismic isolation device can be shortened in a short period of time by securing high strength and rigidity of the upper frame, and significantly reducing the cost by greatly omitting on-site reinforcement work, formwork and concrete placement work. It is possible to provide an inexpensive base-isolated building structure that can efficiently exhibit the above. In addition, the column and the beam are joined together via the column-beam joint of the cast-in-place reinforced concrete, and the beam is fastened with a tension material for introducing prestress. The rigidity can be increased and the amount of tendon (PC steel dose) can be reduced. In addition, since the columns and beams are precast concrete, it is possible to attach the beams to the columns without any concrete placement work on site, and the construction work of the upper frame can be performed efficiently, and the quality of factory production It can be set as a high member. Moreover, in order to fully exhibit the seismic force absorption performance by the seismic isolation device, the overall rigidity and strength can be increased without enlarging the beam member cross section of the upper frame. In addition, the beam of the upper frame is prestressed concrete to which primary prestress is applied by a pre-embedded tendon material. Generation of cracks due to construction load can be suppressed. Also, at the design stage, the cross section stress due to the design load is borne by the primary PC steel at the central cross section of the beam span, and the secondary PC steel mainly bears the stress of the end cross section, reducing the amount of secondary PC steel. it can. In addition, because prestress is applied to the beam, it is possible to extend the span by 20 to 30 m or more, and it is possible to respond freely to the plan to use the plane in the building. It can be reduced and the economy can be improved significantly. In addition, the seismic isolation device is composed of the seismic isolation device main body, the fixed plate on the lower surface side, and the mounting plate on the upper surface side. By performing the level adjustment, it is possible to easily absorb the construction error of the lower frame and improve the construction accuracy. Further, the mounting plate is provided with a mounting portion, and the beam can be easily installed at a predetermined position by attaching a cap nut at a predetermined position of the beam. Also, in the temporary installation until the beam is integrated with the connecting part by inserting bolts from the mounting plate into the cap nut and temporarily fixing the beam, it is possible to prevent shaking and falling during small and medium earthquakes and strong winds. can do. Also, by performing position confirmation and horizontal level alignment, construction errors of the lower frame can be easily absorbed and construction accuracy can be greatly improved, and the seismic isolation performance of the seismic isolation device can be demonstrated more efficiently. . In addition, after the seismic isolation building structure is completed, the seismic isolation device body can be removed simply by removing the fixing bolts when performing maintenance or replacement of the seismic isolation device body.
以下、本願発明の免震建物構造の実施の形態について説明する。各実施の形態において同じ構成は同じ符号を付して説明し、異なった構成にのみ異なった符号を付して説明する。   Hereinafter, embodiments of the seismic isolation building structure of the present invention will be described. In each embodiment, the same components are described with the same reference numerals, and only different components are described with different reference numerals.
図1〜図7は第1の実施の形態の免震建物構造1である。この免震建物構造1は、上部躯体2と下部躯体3との間に免震装置4が設置され、この免震装置4の上面に設置された上部躯体の梁(大梁)5が現場打ち鉄筋コンクリートの連結部6で一体接合されて構成されている。すなわち、この免震装置4は、図2に示すように、上部躯体2の最下階における梁5と柱16との接合部に設置されている。なお、この上部躯体2は、図3に示すように、梁間に小梁5aが架設された構成であってもよく、小梁5aがPC鋼線35によってプレストレスを付与されて梁5に接合されている。   FIGS. 1-7 is the seismic isolation building structure 1 of 1st Embodiment. In this seismic isolation building structure 1, a seismic isolation device 4 is installed between an upper housing 2 and a lower housing 3, and a beam (large beam) 5 of the upper housing installed on the upper surface of the seismic isolation device 4 is in-situ reinforced concrete. The connecting portion 6 is integrally joined. That is, as shown in FIG. 2, the seismic isolation device 4 is installed at the joint between the beam 5 and the column 16 on the lowest floor of the upper housing 2. As shown in FIG. 3, the upper frame 2 may have a configuration in which a small beam 5 a is installed between the beams. The small beam 5 a is prestressed by the PC steel wire 35 and joined to the beam 5. Has been.
ここで上部躯体2とは免震装置4の上方に構築された躯体をいい、下部躯体3とは免震装置4の下方に構築された躯体をいう。したがって、例えば、中層階に免震装置4を設置する建物においては、免震装置4より下方の各階層部が下部躯体3になり、図1においては、免震装置4の下方に構築された杭基礎7と基礎スラブ25とが下部躯体3になる。   Here, the upper housing 2 refers to a housing constructed above the seismic isolation device 4, and the lower housing 3 refers to a housing constructed below the seismic isolation device 4. Therefore, for example, in a building where the seismic isolation device 4 is installed on the middle floor, each layer below the seismic isolation device 4 becomes the lower housing 3, and is constructed below the seismic isolation device 4 in FIG. 1. The pile foundation 7 and the foundation slab 25 become the lower housing 3.
この免震装置4は、図4に示すように、円形の薄鋼板9とゴム板10とを交互に積層して一体化し、これらの中央部に鉛製ダンパー4aが貫通して設置され、これらの上下に上部プレート11と下部プレート13とを備えて構成された免震装置本体8と、この免震装置本体8の上部プレート11に固定ボルト27で設置された載置プレート12と、免震装置本体8の下部プレート13に固定ボルト27で設置された固定プレート14とから構成されている。この固定プレート14はアンカー材29で杭基礎7の上面に固定され、載置プレート12がスタットボルト30で現場打ち鉄筋コンクリートの連結部6に固定されている。   As shown in FIG. 4, the seismic isolation device 4 is formed by alternately laminating circular thin steel plates 9 and rubber plates 10, and a lead damper 4 a is installed through these central portions. A base isolation device body 8 including an upper plate 11 and a lower plate 13 above and below, a mounting plate 12 installed on the upper plate 11 of the base isolation device body 8 with fixing bolts 27, and a base isolation device. The fixing plate 14 is provided on the lower plate 13 of the apparatus main body 8 with fixing bolts 27. The fixing plate 14 is fixed to the upper surface of the pile foundation 7 by an anchor material 29, and the mounting plate 12 is fixed to the connection portion 6 of the cast-in-place reinforced concrete by a stat bolt 30.
この上部および下部プレート11、13の固定ボルト27はボルト挿入用の複数の大径の孔15に取り付けられ、この孔15で免震装置本体8の設置位置の確認と調整、および水平レベルの調整を行う。そのため固定プレート14に免震装置本体8の下部プレート13を固定するときに、免震装置本体8の設置位置の確認と調整、および水平レベルの調整を行い、さらに上部プレート11に載置プレート12を固定する際に、上記と同じ調整を行って下部躯体3の施工誤差を吸収する。   The fixing bolts 27 of the upper and lower plates 11 and 13 are attached to a plurality of large-diameter holes 15 for inserting bolts, and the installation position of the seismic isolation device main body 8 is confirmed and adjusted by the holes 15 and the horizontal level is adjusted. I do. Therefore, when the lower plate 13 of the seismic isolation device main body 8 is fixed to the fixing plate 14, the installation position of the seismic isolation device main body 8 is confirmed and adjusted, and the horizontal level is adjusted. When fixing, the same adjustment as described above is performed to absorb the construction error of the lower casing 3.
また免震装置本体8のメンテナンスや取り替えなどを実施する際には、上部躯体2をジャッキなどの仮受手段で支持して固定ボルト27を取り外すことにより、ジャッキアップするだけで免震装置本体8を取り外すことができるので、上部躯体2や下部躯体3の一部を取り壊すことがなく効率的に取り替えができる。   Further, when carrying out maintenance or replacement of the seismic isolation device main body 8, the upper casing 2 is supported by a temporary receiving means such as a jack and the fixing bolt 27 is removed, so that the seismic isolation device main body 8 can be simply lifted up. Can be removed, so that the upper housing 2 and the lower housing 3 can be efficiently replaced without tearing apart.
一方、現場打ち鉄筋コンクリートの連結部6は載置プレート12上面に形成され、これに設置されたプレキャストコンクリートの梁(上部躯体の最下階における梁)5の端部から突出した下端筋31を定着し、これが鉄筋継手32で他の梁の下端筋31と接続され、梁の上端筋34がトップコンクリート33に配置されたことにより梁5同士が一体接合されている。この連結部6には載置プレート12からのスタッドボルト30も配置されて載置プレート12を一体接合するとともに、柱16を接合するためのPC鋼棒36も配設されている。   On the other hand, the connecting portion 6 of the cast-in-place reinforced concrete is formed on the upper surface of the mounting plate 12 and fixes the lower reinforcing bar 31 protruding from the end of the precast concrete beam (the beam on the lowermost floor of the upper frame) 5 installed thereon. And this is connected with the lower reinforcement 31 of the other beam by the reinforcing bar joint 32, and the beams 5 are integrally joined by arranging the upper reinforcement 34 of the beam on the top concrete 33. The connecting portion 6 is also provided with a stud bolt 30 from the mounting plate 12 to integrally join the mounting plate 12, and a PC steel rod 36 for joining the column 16 is also provided.
したがって、この現場打ち鉄筋コンクリートの連結部6によって各梁5同士が一体接合されるとともに、免震装置4も一体接合される。また上記のPC鋼棒36はカプラー28で柱内のPC鋼材39に接合され、このPC鋼材39を緊張することによって柱16が連結部6に一体接合されている。この柱16は柱脚ブロック37を介して連結部6に立設され、この柱脚ブロック37の高さを変えることによって建て方の精度を確保する。   Therefore, the beams 5 are integrally joined together by the joint portion 6 of the cast-in-place reinforced concrete, and the seismic isolation device 4 is also integrally joined. The PC steel rod 36 is joined to the PC steel material 39 in the column by the coupler 28, and the column 16 is integrally joined to the connecting portion 6 by tensioning the PC steel material 39. The column 16 is erected on the connecting portion 6 via a column base block 37, and the accuracy of the construction is ensured by changing the height of the column base block 37.
この梁5にはプレストレスト導入用のPC鋼線(緊張材)35が、梁の端部17から連結部6を貫通して長さ方向に沿って配線され、所定の緊張力で緊張されることによって、梁5同士が連結部6を介して一体接合されている。   A PC steel wire (tensile material) 35 for introducing prestressed material is wired along the length direction from the end 17 of the beam to the beam 5 through the connecting portion 6 and is tensioned with a predetermined tension force. Thus, the beams 5 are joined together via the connecting portion 6.
この梁5同士は、上記のように連結部6に定着した梁主筋31、34で接合されているため、梁の端部17においては曲げ耐力を梁主筋31、34に一部負担させることができ、せん断力についてもコンクリート全断面で負担することによって、PC鋼線量(緊張材量)を大幅に減らすことができるので、例えば、曲げ耐力を梁主筋31、34とPC鋼線35とで半分ずつ負担するとすれば、PC鋼線量を半分に減らすことができ、プレストレス導入力による軸変形量も半分に減って、プレストレス導入力を支障のない程度に抑えることができる。   Since the beams 5 are joined by the beam main bars 31 and 34 fixed to the connecting portion 6 as described above, the beam main bars 31 and 34 can partially bear the bending strength at the end 17 of the beam. Since the PC steel dose (tensile material amount) can be greatly reduced by bearing the shear force on the entire cross section of the concrete, for example, the bending strength is halved between the beam main bars 31 and 34 and the PC steel wire 35. If it is assumed that it is burdened one by one, the PC steel dose can be reduced by half, the amount of axial deformation due to the prestress introduction force can also be reduced by half, and the prestress introduction force can be suppressed to an extent that does not hinder.
また図示は省略するが、上記のプレキャストコンクリートの梁の端部17より梁内部に所定長さ(定着長)まで、予め内蔵された鉄骨を梁端部から突出させて連結部内に定着し、他の梁の端部17から突出した鉄骨と鉄骨ジョイントで接続することによって、同様な効果を奏することができる。   Although not shown in the drawings, a steel frame built in advance from the end 17 of the beam of the above-mentioned precast concrete to a predetermined length (fixing length) inside the beam protrudes from the end of the beam and is fixed in the connecting portion. A similar effect can be achieved by connecting the steel frame projecting from the end 17 of the beam with a steel joint.
さらに、これらの梁5は連結部6の他に、現場打ちコンクリートスラブまたは合成スラブのトップコンクリート33によっても一体接合されて水平剛性が無限大となるため、図5に示すように、二階以上の梁5へのプレストレス導入による軸変形量が多くなったとしても、免震装置4には影響がなく変形もしない。   Furthermore, since these beams 5 are integrally joined by the top concrete 33 of the cast-in-place concrete slab or the synthetic slab in addition to the connecting portion 6 and the horizontal rigidity becomes infinite, as shown in FIG. Even if the amount of axial deformation due to the introduction of prestress to the beam 5 increases, the seismic isolation device 4 is not affected and is not deformed.
また梁の端部17は、図4および図6に示すように、平面方形の載置プレート12の載置部24に設置され、インサート金物(袋ナット)18にねじ込まれたボルト19で固定され、各梁の端部間の間隙部20が閉塞板21で塞がれている。このインサート金物18に載置プレート12からボルト19を挿入して梁5を固定することによって連結部6と一体化されるまでの仮設においては、中小地震時や強風時の揺れ止めと倒落防止とをすることができる。また、これは梁の端部17を止めることが可能ならば、ボルト19に限定されない。   As shown in FIGS. 4 and 6, the end 17 of the beam is installed on the mounting portion 24 of the flat rectangular mounting plate 12 and is fixed by a bolt 19 screwed into an insert hardware (cap nut) 18. The gap 20 between the ends of each beam is closed by a closing plate 21. In the temporary construction until it is integrated with the connecting portion 6 by inserting the bolt 19 from the mounting plate 12 into the insert hardware 18 and fixing the beam 5, it is prevented from shaking and falling during a small or medium earthquake or strong wind. You can This is not limited to the bolt 19 as long as the end 17 of the beam can be stopped.
この閉塞板21は、図7に示すように、間隙部20を塞ぐ塞ぎ板22と梁側面に添える側板23とからなり、この側板23が梁の側面に沿うように載置プレート12の四隅に設置され、隣接した閉塞板21の側板23同士で載置部24を形成する。このように側板23が梁の端部17を設置するためのガイドになるとともに、側板23の幅が梁の端部17の設置深さの基準となるため、側板23の幅に合わせて梁の端部17を設置すると載置プレート12のボルト孔とインサート金物18とが合致して、これらの位置合わせをせずにボルト19をねじ込むことができる。なお、この閉塞板21は、上記のように4箇所に限らず、3箇所または2箇所に設置することもできる。これらの位置合わせは側板23の幅に限らず、載置プレート12に予め基準線(図示せず)を引くことによってもすることができる。   As shown in FIG. 7, the closing plate 21 includes a closing plate 22 that closes the gap portion 20 and a side plate 23 attached to the side surface of the beam, and the side plate 23 is placed at the four corners of the mounting plate 12 along the side surface of the beam. The placement portion 24 is formed by the side plates 23 of the adjacent closing plates 21 that are installed. As described above, the side plate 23 serves as a guide for installing the end portion 17 of the beam, and the width of the side plate 23 serves as a reference for the installation depth of the end portion 17 of the beam. When the end portion 17 is installed, the bolt hole of the mounting plate 12 and the insert hardware 18 are matched, and the bolt 19 can be screwed in without aligning them. In addition, this obstruction board 21 can also be installed not only in four places as mentioned above but in three places or two places. These alignments are not limited to the width of the side plate 23 but can also be performed by previously drawing a reference line (not shown) on the mounting plate 12.
また載置プレート12に設置する梁5が大型で載置部24を補強する必要がある場合は、図4に示すように、基礎スラブ25に設置したサポート材26で梁5を支持することもできる。   When the beam 5 installed on the mounting plate 12 is large and it is necessary to reinforce the mounting part 24, the beam 5 may be supported by a support material 26 installed on the foundation slab 25 as shown in FIG. it can.
図8は第2の実施の形態の免震建物構造38である。この免震建物構造38は柱16と梁5とがプレキャストコンクリートであり、これらの柱16と梁5とが現場打ち鉄筋コンクリートの柱梁接合部40を介して一体接合された以外は第1の実施の形態の免震建物構造1と同じ構成である。   FIG. 8 shows a base-isolated building structure 38 according to the second embodiment. This seismic isolation building structure 38 is the first implementation except that the columns 16 and 5 are precast concrete, and these columns 16 and 5 are integrally joined via the column-beam joint 40 of the cast-in-place reinforced concrete. It is the same structure as the seismic isolation building structure 1 of the form.
この柱16は連結部6に柱脚ブロック37を介して建て込まれ、連結部6からのPC鋼棒36がカプラー28で柱16のPC鋼材39に接合され、このPC鋼材39が所定の緊張力で緊張されてプレストレスが付与されている。   This column 16 is built in the connecting portion 6 via a column base block 37, and a PC steel rod 36 from the connecting portion 6 is joined to a PC steel material 39 of the column 16 by a coupler 28. Prestressed by being tense by force.
この柱16の頭部における載置用突部41には梁の端部17が設置され、この梁の上端筋34をトップコンクリート33に配置し、梁の端部17から突出した下端筋31が現場打ち鉄筋コンクリートの柱梁接合部40に定着され、他の梁の端部17から突出した下端筋31と鉄筋継手32で接合されている。   An end 17 of the beam is installed on the mounting projection 41 at the head of the column 16, and the upper end bar 34 of the beam is arranged on the top concrete 33, and the lower end bar 31 protruding from the end 17 of the beam is provided. It is fixed to the beam-to-column joint 40 of the cast-in-place reinforced concrete, and is joined by the reinforcing bar 32 and the lower bar 31 protruding from the end 17 of the other beam.
この梁5にはプレストレスト導入用のPC鋼線(緊張材)35が、梁の端部17から柱梁接合部40を貫通して長さ方向に沿って配線され、所定の緊張力で緊張されることによって、柱梁接合部40を介して柱16と梁5とが一体接合されている。   A PC steel wire (straining material) 35 for introducing prestressed material is wired to the beam 5 from the beam end 17 through the column beam joint 40 along the length direction, and is tensioned with a predetermined tension force. As a result, the column 16 and the beam 5 are integrally joined via the column beam joint 40.
また、これらの梁5同士も、上記と同じように、柱梁接合部40に定着した梁主筋31、34で接合されているため、梁の端部17においてPC鋼線量を減らすことができる。   Moreover, since these beams 5 are also joined by the beam main bars 31 and 34 fixed to the column beam joint portion 40 as described above, the PC steel dose can be reduced at the end portion 17 of the beam.
また図9は第3の実施の形態の免震建物構造42である。この免震建物構造42の柱16と梁5とがプレキャストコンクリートであり、これらの柱16と梁5とがプレストレスト導入用のPC鋼線(緊張材)35によって圧着接合された以外は第1の実施の形態の免震建物構造1と同じ構成である。   FIG. 9 shows a seismic isolation building structure 42 according to the third embodiment. The columns 16 and the beams 5 of the seismic isolation building structure 42 are precast concrete, and the first and the other are the first except that these columns 16 and the beams 5 are pressure-bonded and joined by a PC steel wire (tensile material) 35 for introducing prestressed. It is the same structure as the seismic isolation building structure 1 of embodiment.
この柱16も上記と同じように、連結部6に柱脚ブロック37を介して建て込まれ、連結部6からのPC鋼棒36がカプラー28で柱16のPC鋼材39に接合され、このPC鋼材39が所定の緊張力で緊張されてプレストレスが付与されている。   Similarly to the above, this column 16 is built in the connecting portion 6 via the column base block 37, and the PC steel rod 36 from the connecting portion 6 is joined to the PC steel material 39 of the column 16 by the coupler 28. The steel material 39 is tensed with a predetermined tension and prestressed.
これらの柱16の載置用顎43には梁の端部17が設置され、この梁5にはプレストレスト導入用のPC鋼線(緊張材)35が、梁の端部17から載置用顎43を貫通して長さ方向に沿って配線され、所定の緊張力で緊張されることによって、柱16と梁5とが圧着接合されている。   Ends 17 of the beams are installed on the mounting jaws 43 of these columns 16, and prestressed PC steel wires (tension members) 35 are placed on the beams 5 from the ends 17 of the beams. The pillar 16 and the beam 5 are pressure-bonded and joined by being wired along the length direction through 43 and being tensioned with a predetermined tension force.
また図10は第4の実施の形態の免震建物構造44である。この免震建物構造44は梁5が接合ケーブル45によって接合されたものであり、これ以外は第1の実施の形態の免震建物構造1と同じ構成である。これは連結部6に定着された梁の下端筋31に代わって、接合ケーブル45が連結部6から梁の端部17に配線されて梁5同士を接合するものであり、梁の下端筋31と同じ働きをする。この接合ケーブル45は、グラウト48が充填されたシース管47にPC鋼線35が挿入されて構成され、一方の梁上面から連結部6を貫通して他方の梁上面に配設されたシース管47内に、PC鋼線35が緊張力を付与されない状態、すなわち緊張されない状態で配線されて、鉄筋代わりになっている。なお、梁の上端筋34は、上記と同じように、トップコンクリート33に配筋されている。   FIG. 10 shows a seismic isolation building structure 44 according to the fourth embodiment. This seismic isolation building structure 44 is obtained by joining the beams 5 with a joining cable 45, and the other configuration is the same as that of the seismic isolation building structure 1 of the first embodiment. In this case, instead of the lower end bar 31 of the beam fixed to the connecting part 6, the joining cable 45 is wired from the connecting part 6 to the end part 17 of the beam to join the beams 5. Works the same as This joining cable 45 is configured by inserting a PC steel wire 35 into a sheath tube 47 filled with a grout 48, and penetrates the connecting portion 6 from the upper surface of one beam and is disposed on the upper surface of the other beam. In 47, the PC steel wire 35 is wired in a state in which no tension is applied, that is, in a state in which it is not tensioned, and serves as a reinforcing bar. Note that the upper end bars 34 of the beams are arranged on the top concrete 33 in the same manner as described above.
また図11は第5の実施の形態の免震建物構造49である。この免震建物構造49は梁5がフルプレキャストコンクリートであり、梁の下端筋31および上端筋34に代わって接合ケーブル45、46が連結部6に配筋され、梁上面には不陸調整用モルタル50が打設されている。これは梁の下端筋31に代わる下側の接合ケーブル45と、梁の上端筋34に代わる上側の接合ケーブル46とが連結部6から梁の端部17に配線されて、梁5同士を一体接合したものである。これ以外は、上記の第1の実施の形態の免震建物構造1と同じ構成である。また、この接合ケーブル45、46も上記と同じ構成であり、グラウト48が充填されたシース管47と緊張されないPC鋼線35とからなっている。   FIG. 11 shows a base-isolated building structure 49 according to the fifth embodiment. In this seismic isolation building structure 49, the beam 5 is made of full precast concrete, and the connecting cables 45 and 46 are arranged in the connecting portion 6 in place of the lower end bar 31 and the upper end bar 34 of the beam, and the upper surface of the beam is used for uneven adjustment. A mortar 50 is placed. In this structure, a lower joint cable 45 in place of the lower end bar 31 of the beam and an upper joint cable 46 in place of the upper end bar 34 of the beam are wired from the connecting portion 6 to the end portion 17 of the beam so that the beams 5 are integrated. It is joined. Except this, it is the same structure as the seismic isolation building structure 1 of said 1st Embodiment. The joining cables 45 and 46 have the same configuration as described above, and are composed of a sheath tube 47 filled with a grout 48 and a PC steel wire 35 that is not tensioned.
また第1〜第5の実施の形態において上部躯体2の梁5は、一次緊張材によってプレテンションまたはポストテンション方式でプレストレスが付与された梁を使用することもできる。   In the first to fifth embodiments, the beam 5 of the upper casing 2 may be a beam prestressed by a primary tension material in a pretension or post tension manner.
また第1〜第5の実施の形態において上部躯体の柱16も上記のものに限定されず、例えば、現場打ちコンクリート柱、鋼管コンクリート柱等であっても良い。また免震装置本体8も上記のものに限定されず、オイルダンパーや金属製ダンパーと支承を組み合わせる形式のものであっても良く、これらを総称して免震装置本体8という。また免震装置本体(載置プレート12と固定プレート14とを撤去したもの)8の単体によっても免震装置4を構成するものであっても良い。さらに下部躯体3も上記のものに限定されるものではなく、その他の基礎構造であっても良く、例えば、杭頭にフーチングを設けた構成のもの、または独立基礎や布基礎などであっても良い。   Further, in the first to fifth embodiments, the column 16 of the upper frame is not limited to the above, and may be a cast-in-place concrete column, a steel pipe concrete column, or the like. The seismic isolation device main body 8 is not limited to the above-described one, and may be of a type in which an oil damper or a metal damper and a support are combined. These are collectively referred to as a seismic isolation device main body 8. Further, the seismic isolation device 4 may be configured by a single body of the seismic isolation device main body (the mounting plate 12 and the fixed plate 14 are removed) 8. Furthermore, the lower housing 3 is not limited to the above, but may be other foundation structures, for example, a structure in which a footing is provided on a pile head, or an independent foundation or a cloth foundation. good.
なお、上記の実施の形態における各構成については、本願発明の主旨を逸脱しない範囲であれば、その構成を限定するものではない。   In addition, about each structure in said embodiment, if it is a range which does not deviate from the main point of this invention, the structure is not limited.
第1の実施の形態の免震建物構造の断面図である。It is sectional drawing of the seismic isolation building structure of 1st Embodiment. 上部躯体の平面図である。It is a top view of an upper housing. (1)は上部躯体の平面図、(2)は(1)の断面図である。(1) is a top view of an upper housing, (2) is sectional drawing of (1). 梁と免震装置の接合部の断面図である。It is sectional drawing of the junction part of a beam and a seismic isolation apparatus. 上部躯体が軸変形した免震建物構造の断面図である。It is sectional drawing of the base-isolated building structure where the upper housing was axially deformed. (1)は載置プレートの断面図、(2)は同平面図、(3)は免震装置本体の断面図、(4)は閉塞板の正面図である。(1) is a sectional view of the mounting plate, (2) is the same plan view, (3) is a sectional view of the seismic isolation device main body, and (4) is a front view of the closing plate. (1)は載置プレートに梁の端部を載せる斜視図、(2)は載置プレートの斜視図である。(1) is a perspective view which mounts the edge part of a beam on a mounting plate, (2) is a perspective view of a mounting plate. 第2の実施の形態の免震建物構造の断面図である。It is sectional drawing of the seismic isolation building structure of 2nd Embodiment. 第3の実施の形態の免震建物構造の断面図である。It is sectional drawing of the seismic isolation building structure of 3rd Embodiment. 第4の実施の形態の免震建物構造の断面図である。It is sectional drawing of the seismic isolation building structure of 4th Embodiment. 第5の実施の形態の免震建物構造の断面図である。It is sectional drawing of the seismic isolation building structure of 5th Embodiment. 従来の免震建物構造の概念図である。It is a conceptual diagram of the conventional seismic isolation building structure.
符号の説明Explanation of symbols
1、38、42、44、49 免震建物構造
2 上部躯体
3 下部躯体
4、51 免震装置
4a 鉛製ダンパー
5 梁
5a 小梁
6 連結部
7 杭基礎
8 免震装置本体
9 薄鋼板
10 ゴム板
11 上部プレート
12 載置プレート
13 下部プレート
14 固定プレート
15 孔
16 柱
17 梁の端部
18 インサート金物
19 ボルト
20 間隙部
21 閉塞板
22 塞ぎ板
23 側板
24 載置部
25 基礎スラブ
26 サポート材
27 固定ボルト
28 カプラー
29 アンカー材
30 スタッドボルト
31 下端筋
32 鉄筋継手
33 トップコンクリート
34 上端筋
35 PC鋼線
36 PC鋼棒
37 柱脚ブロック
39 PC鋼材
40 柱梁接合部
41 載置用突部
43 載置用顎
45、46 接合ケーブル
47 シース管
48 グラウト
50 不陸調整用モルタル
1, 38, 42, 44, 49 Base-isolated building structure 2 Upper housing 3 Lower housing 4, 51 Seismic isolation device 4a Lead damper 5 Beam 5a Small beam 6 Connecting portion 7 Pile foundation 8 Seismic isolation device body 9 Thin steel plate 10 Rubber Plate 11 Upper plate 12 Mounting plate 13 Lower plate 14 Fixed plate 15 Hole 16 Column 17 End of beam 18 Insert hardware 19 Bolt 20 Gap portion 21 Blocking plate 22 Closing plate 23 Side plate 24 Mounting portion 25 Base slab 26 Support material 27 Fixing bolt 28 Coupler 29 Anchor material 30 Stud bolt 31 Lower end bar 32 Reinforcing bar joint 33 Top concrete 34 Upper end bar 35 PC steel wire 36 PC steel rod 37 Column base block 39 PC steel member 40 Column beam joint 41 Mounting projection 43 Mount Jaw 45, 46 Joint cable 47 Sheath tube 48 Grout 50 Uneven adjustment Mortar

Claims (6)

  1. 上部躯体と下部躯体との間に免震装置が設置された免震建物構造であり、下部躯体に設置された免震装置の上面で上部躯体の最下階のプレキャストコンクリートの梁の端部と現場打ち鉄筋コンクリートの連結部とが一体接合され、前記プレキャストコンクリートの梁の端部から突出した下端筋が前記連結部内で定着することによって連結部と梁が一体接合されたことを特徴とする免震建物構造。 A seismic isolation building structure seismic isolation device is installed between the upper skeleton and lower skeleton, on the upper surface of the seismic isolation device installed in the lower skeleton, the ends of the beam of the lowest floor of the precast concrete of the upper skeleton and is joined with connecting portions of the cast-in-place reinforced concrete integral, the fixing to connection portion and the beams by Rukoto lower muscle protruding from the end portion of the beam of precast concrete in the connecting portion is characterized in that it is integrally joined Seismic isolation building structure.
  2. 前記プレキャストコンクリートの梁と前記一体接合された連結部とがプレストレスト導入用の緊張材によって緊張されたことを特徴とする請求項1に記載の免震建物構造。2. The base-isolated building structure according to claim 1, wherein the precast concrete beam and the integrally joined connecting portion are tensioned by a prestressed introduction tension material. 3.
  3. 上部躯体の柱および最下階以外の梁はプレキャストコンクリートであり、これらの柱と梁とが現場打ち鉄筋コンクリートの柱梁接合部により一体接合されるとともに、梁がプレストレスト導入用の緊張材によって緊張されたことを特徴とする請求項1に記載の免震建物構造。 The columns of the upper frame and the beams other than the lowest floor are precast concrete, and these columns and beams are joined together by the column-beam joints of cast-in-place reinforced concrete, and the beams are tensioned by the prestressed tension material. The base-isolated building structure according to claim 1.
  4. 上部躯体の柱および最下階以外の梁はプレキャストコンクリートであり、これらの柱と梁にはプレストレスト導入用の緊張材が配線され、この緊張材によってプレストレスを導入することによって柱と梁とが圧着接合されたことを特徴とする請求項1に記載の免震建物構造。   The columns of the upper frame and the beams other than the lowermost floor are precast concrete, and tension materials for prestressed introduction are wired to these columns and beams. The base-isolated building structure according to claim 1, wherein the base-isolated building structure is crimp-bonded.
  5. 上部躯体の梁は、予め埋設された緊張材によって一次プレストレスが付与されたプレストレストコンクリートであることを特徴とする請求項1〜のいずれかに記載の免震建物構造。 The base-isolated building structure according to any one of claims 1 to 4 , wherein the beam of the upper frame is prestressed concrete to which primary prestress is applied by a previously embedded tendon.
  6. 免震装置は、免震装置本体と上面側の載置プレートと、下面側の固定プレートとから構成され、該固定プレートには下部躯体に固定するアンカー材が設けられ、載置プレートには梁の端部を載置する載置部と現場打ち連結部の形成部とが設けられたことを特徴とする請求項1〜のいずれかに記載の免震建物構造。 The seismic isolation device is composed of a seismic isolation device main body, an upper surface side mounting plate, and a lower surface side fixing plate. The fixing plate is provided with an anchor material that is fixed to the lower housing, and the mounting plate has a beam. The base-isolated building structure according to any one of claims 1 to 5 , further comprising a placement portion for placing the end portion of the base plate and a forming portion for the on- site connection portion .
JP2007133875A 2007-05-21 2007-05-21 Base-isolated building structure Active JP4472726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133875A JP4472726B2 (en) 2007-05-21 2007-05-21 Base-isolated building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133875A JP4472726B2 (en) 2007-05-21 2007-05-21 Base-isolated building structure

Publications (2)

Publication Number Publication Date
JP2008285952A JP2008285952A (en) 2008-11-27
JP4472726B2 true JP4472726B2 (en) 2010-06-02

Family

ID=40145945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133875A Active JP4472726B2 (en) 2007-05-21 2007-05-21 Base-isolated building structure

Country Status (1)

Country Link
JP (1) JP4472726B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5866689B1 (en) * 2015-02-10 2016-02-17 黒沢建設株式会社 PC lampway building
JP5886996B1 (en) * 2015-04-07 2016-03-16 黒沢建設株式会社 Concrete lampway building with friction connection structure
JP6000414B2 (en) * 2015-07-08 2016-09-28 大成建設株式会社 Pile foundation reconstruction method and pile foundation structure

Also Published As

Publication number Publication date
JP2008285952A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP4284056B2 (en) Non-embedded column base construction method and non-embedded column base structure
JP2005155139A (en) Seismic reinforcing external frame construction method of existing building
KR101027393B1 (en) Longitudinal and/or transverse seismic reinforcing method for masonry walls
KR101242395B1 (en) Construction method for rhamen bridge
JP2006132150A (en) Seismic response control column and its construction method
KR20130026311A (en) Precast bridge post
JP4647714B1 (en) Buildings using walled columns with seismic prestressing
JP4472726B2 (en) Base-isolated building structure
KR20130117204A (en) Earthquake-resistant frame and seismic retrofit method for building using the same
KR20180137268A (en) Aseismatic Reinforcement Steel Frame with Friction Slip Brace and Aseismatic Reinforcement Method using thereof
KR100949828B1 (en) Steel beam and hybrid beam of steel concrete for slim floor
JP2011202420A (en) Structure and method for joining shaft member and rc member
JP2005330657A (en) Joint structure of precast concrete column and beam
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP2001262774A (en) Steel concrete composite structural member
KR101845078B1 (en) Aseismatic Reinforcement Steel Frame with Adjusting Connector and Aseismatic Reinforcement Method using thereof
KR20180138388A (en) Aseismatic Reinforcement Device with Toggle Type Friction Slip Brace, and Aseismatic Reinforcement Method using thereof
KR101481152B1 (en) Seismic resistant reinforcement structures and the reinforcing method using it
JP2018096071A (en) Composite building
JP2017110418A (en) Building structure
JP6114071B2 (en) Seismic isolation method for existing buildings and temporary structure under construction
JP4660810B2 (en) Boundary beam damper
JP2006037607A (en) Base isolating structure
JP2007224586A (en) Composite structural building and method of constructing composite structural building
JP5325709B2 (en) Method of constructing steel exposed column base structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

R150 Certificate of patent or registration of utility model

Ref document number: 4472726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250