JP2011243606A - Laminate film - Google Patents

Laminate film Download PDF

Info

Publication number
JP2011243606A
JP2011243606A JP2010111804A JP2010111804A JP2011243606A JP 2011243606 A JP2011243606 A JP 2011243606A JP 2010111804 A JP2010111804 A JP 2010111804A JP 2010111804 A JP2010111804 A JP 2010111804A JP 2011243606 A JP2011243606 A JP 2011243606A
Authority
JP
Japan
Prior art keywords
layer
lactic acid
poly
film
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010111804A
Other languages
Japanese (ja)
Other versions
JP6082511B2 (en
Inventor
Tetsuo Yoshida
哲男 吉田
Yoshiro Tanuki
佳郎 田實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Kansai University
Original Assignee
Teijin Ltd
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd, Kansai University filed Critical Teijin Ltd
Priority to JP2010111804A priority Critical patent/JP6082511B2/en
Publication of JP2011243606A publication Critical patent/JP2011243606A/en
Application granted granted Critical
Publication of JP6082511B2 publication Critical patent/JP6082511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a laminate film in which a sufficiently large displacement occurs under voltage impression by manufacturing method without needing a complicated step such as laminating.SOLUTION: The laminate film having a layer A containing poly-L-lactic acid as main ingredient and a layer B containing poly-D-lactic acid as main ingredient is obtained by a coextrusion method.

Description

本発明は、積層フィルムに関する。さらに詳しくは、電圧を印加することにより変位を生じる積層フィルムに関する。   The present invention relates to a laminated film. More specifically, the present invention relates to a laminated film that generates displacement by applying a voltage.

従来、高分子圧電材料としては、ポリγベンジルLグルタメート等のポリペプチド型のもの、ポリ塩化ビニル等のエレクトレット型のもの、ポリ弗化ビニリデン、弗化ビニリデン三弗化エチレン共重合体、ビニリデンシアナイド酢酸ビニル共重合体等の強誘電体型のものなど種々ある。最も代表的なものは強誘電体型のポリ弗化ビニリデンのフィルムであり、既に超音波探触子などに使用されている。また、ポリ乳酸の延伸物も、高分子圧電材料として知られている(特許文献1、2)。
このような高分子圧電材料を用いてバイモルフ構造を形成し、マイクロホン、ピックアップ、ブザー、スピーカー、光スイッチ、ファン等の振動体として用いられることが知られている(特許文献3)。
しかしながら、特許文献3に記載の発明は、高分子圧電膜を、接着剤を介して接合するものであり、ラミネート等の加工工程が煩雑であり、生産性が低いという問題がある。また、このような接合方法では、高分子圧電膜の分極方向を同一にすることが困難であり、電圧を印加したときの変位量が不十分であるという問題がある。
Conventional polymer piezoelectric materials include poly-γ benzyl L-glutamate and the like, electret type such as polyvinyl chloride, polyvinylidene fluoride, vinylidene fluoride trifluoride ethylene copolymer, vinylidene cyana There are various types such as ferroelectric type ones such as id vinyl acetate copolymer. The most typical one is a ferroelectric type polyvinylidene fluoride film, which is already used for an ultrasonic probe or the like. A stretched product of polylactic acid is also known as a polymer piezoelectric material (Patent Documents 1 and 2).
It is known that such a polymer piezoelectric material is used to form a bimorph structure and used as a vibrating body such as a microphone, pickup, buzzer, speaker, optical switch, and fan (Patent Document 3).
However, the invention described in Patent Document 3 joins the polymer piezoelectric film via an adhesive, has a problem that the processing steps such as laminating are complicated, and the productivity is low. In addition, in such a joining method, it is difficult to make the polarization directions of the polymer piezoelectric films the same, and there is a problem that the amount of displacement when a voltage is applied is insufficient.

特開平5−152638号公報JP-A-5-152638 特開2005−213376号公報JP 2005-213376 A 特開昭59−115580号公報JP 59-115580 A

そこで本発明の目的は、電圧印加時に大きな変位を生じる積層フィルムを提供することにある。また本発明の目的は、ラミネート工程等の煩雑な工程を必要とせずに、該積層フィルムを製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a laminated film that causes a large displacement when a voltage is applied. Moreover, the objective of this invention is providing the method of manufacturing this laminated | multilayer film, without requiring complicated processes, such as a lamination process.

本発明は、上記課題を解決するために以下の構成を採用する。
(1)ポリL−乳酸を主たる成分とする層A、およびポリD−乳酸を主たる成分とする層Bを有し、共押出法により得られた積層フィルム。
(2)主配向方向の屈折率が1.45以上である上記(1)に記載の積層フィルム。
(3)密度が1.24〜1.27g/cmである上記(1)または(2)に記載の積層フィルム。
(4)層Aと層Bとが接触している上記(1)〜(3)のいずれか1項に記載の積層フィルム。
The present invention adopts the following configuration in order to solve the above problems.
(1) A laminated film obtained by a coextrusion method, which has a layer A containing poly L-lactic acid as a main component and a layer B containing poly D-lactic acid as a main component.
(2) The laminated film according to (1), wherein the refractive index in the main orientation direction is 1.45 or more.
(3) The laminated film according to (1) or (2), wherein the density is 1.24 to 1.27 g / cm 3 .
(4) The laminated film according to any one of (1) to (3), wherein the layer A and the layer B are in contact with each other.

また本発明は、以下の製造方法を包含する。
(5)層Aを形成するためのポリL−乳酸を主たる成分とする樹脂組成物Aと、層Bを形成するためのポリD−乳酸を主たる成分とする樹脂組成物Bとを、それぞれ別の押出機にて溶融し、次いで樹脂組成物Aと樹脂組成物Bとを溶融状態にて積層し、ダイより押し出す積層フィルムの製造方法。
(6)溶融状態にて積層する際に、樹脂組成物Aと樹脂組成物Bとが接触している上記(5)に記載の製造方法。
(7)ダイより押し出した後、少なくとも一軸方向に1.1〜10倍に延伸し、ポリL−乳酸およびポリD−乳酸の融点未満の温度で熱処理する上記(5)または(6)に記載の製造方法。
Moreover, this invention includes the following manufacturing methods.
(5) A resin composition A mainly composed of poly-L-lactic acid for forming the layer A and a resin composition B mainly composed of poly-D-lactic acid for forming the layer B are separated from each other. A laminated film manufacturing method in which the resin composition A and the resin composition B are laminated in a molten state and extruded from a die.
(6) The production method according to (5), wherein the resin composition A and the resin composition B are in contact with each other when laminated in a molten state.
(7) Described in (5) or (6) above, after being extruded from a die, stretched at least 1.1 to 10 times in a uniaxial direction and heat-treated at a temperature lower than the melting point of poly L-lactic acid and poly D-lactic acid. Manufacturing method.

本発明の積層フィルムは、電圧印加時に大きな変位を生じる。本発明の製造方法によれば、ラミネート工程等の煩雑な工程を経ずに、電圧印加時に十分な大きさの変位を生じる積層フィルムを提供することができる。   The laminated film of the present invention produces a large displacement when a voltage is applied. According to the production method of the present invention, it is possible to provide a laminated film that generates a displacement having a sufficient size when a voltage is applied without going through a complicated process such as a laminating process.

[積層フィルム]
本発明の積層フィルムは、ポリL−乳酸を主たる成分とする層A、およびポリD−乳酸を主たる成分とする層Bを有する。以下、ポリL−乳酸とポリD−乳酸とをまとめてポリ乳酸と呼称する場合がある。なお、ここで「主たる」とは、各層全体の質量に対して、各層が含有するポリ乳酸が60質量%以上、好ましくは75質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上であることを示す。
本発明においては、積層フィルム中に少なくとも1層ずつの層Aおよび層Bを有していれば、本発明の目的を損なわない限りにおいてその他の層を有していても良く、層Aと層Bとの間に有していてもよいし、層Aや層Bの外層側に有していてもよい。本発明においては層Aと層Bとが接触している態様が好ましく、このような態様とすることによって変位量の向上効果をより高くすることができる。
[Laminated film]
The laminated film of the present invention has a layer A containing poly L-lactic acid as a main component and a layer B containing poly D-lactic acid as a main component. Hereinafter, poly L-lactic acid and poly D-lactic acid may be collectively referred to as polylactic acid. Here, “main” means that the polylactic acid contained in each layer is 60% by mass or more, preferably 75% by mass or more, more preferably 90% by mass or more, and particularly preferably 95% by mass with respect to the mass of each layer. % Or more.
In the present invention, as long as it has at least one layer A and one layer B in the laminated film, it may have other layers as long as the object of the present invention is not impaired. You may have between B and you may have on the outer layer side of the layer A or the layer B. In the present invention, an aspect in which the layer A and the layer B are in contact with each other is preferable, and by adopting such an aspect, the effect of improving the amount of displacement can be further increased.

[積層フィルムの特性]
(変位量)
本発明の積層フィルムは、電圧を印加することにより湾曲し、そのため片方の端部が固定されている場合においては反対側のもう片方の端部が変位する。本発明においては、後述する測定方法により求められる変位量が1mm以上であることが好ましい。変位量が大きいと、上述したような用途における振動体として用いた場合に、より性能に優れた振動体を得ることができる。このような観点から、変位量は、より好ましくは1.3mm以上、さらに好ましくは1.5mm以上、特に好ましくは3mm以上である。
このような変位量を達成するためには、本発明における層Aおよび層Bを共押出法により積層すればよい。共押出法により積層することにより、層Aと層Bの主配向方向の同一性を高くすることができ、それにより変位量を大きくすることができる。また、変位量をより大きくするためには、さらに各層の厚み、配向の態様、結晶化度、密度等を適宜調整すればよい。例えば、配向、結晶化度、密度を高くすることによって、変位量は増加する傾向にある。
[Characteristics of laminated film]
(Displacement)
The laminated film of the present invention is bent by applying a voltage, so that when one end is fixed, the other end on the opposite side is displaced. In this invention, it is preferable that the displacement amount calculated | required by the measuring method mentioned later is 1 mm or more. When the amount of displacement is large, a vibrating body with better performance can be obtained when used as a vibrating body in the above-described applications. From such a viewpoint, the amount of displacement is more preferably 1.3 mm or more, further preferably 1.5 mm or more, and particularly preferably 3 mm or more.
In order to achieve such a displacement, the layers A and B in the present invention may be laminated by a coextrusion method. By laminating by the coextrusion method, it is possible to increase the identity of the main alignment directions of the layer A and the layer B, thereby increasing the amount of displacement. In order to further increase the amount of displacement, the thickness, orientation mode, crystallinity, density, and the like of each layer may be adjusted as appropriate. For example, the amount of displacement tends to increase by increasing the orientation, crystallinity, and density.

(各層の厚み)
本発明の積層フィルムにおいては、層Aの厚み(T(A))は、好ましくは1〜200μm、さらに好ましくは2〜150μm、特に好ましくは5〜60μmである。また、層Bの厚み(T(B))は、好ましくは1〜200μm、さらに好ましくは2〜150μm、特に好ましくは5〜60μmである。層Aおよび層Bの厚みが上記数値範囲にあると、変位量の向上効果を高くすることができる。
また、層Aの厚みと層Bの厚みとの比率(T(A)/T(B))は、0.05〜19であることが好ましい。厚みの比率が上記数値範囲にあると、変位量の向上効果を高くすることができる。このような観点から、厚みの比率は、0.2〜5がさらに好ましく、0.5〜2が特に好ましい。
(Thickness of each layer)
In the laminated film of the present invention, the thickness (T (A)) of the layer A is preferably 1 to 200 μm, more preferably 2 to 150 μm, and particularly preferably 5 to 60 μm. The thickness (T (B)) of the layer B is preferably 1 to 200 μm, more preferably 2 to 150 μm, and particularly preferably 5 to 60 μm. When the thicknesses of the layer A and the layer B are in the above numerical range, the effect of improving the amount of displacement can be increased.
Moreover, it is preferable that the ratio (T (A) / T (B)) of the thickness of the layer A and the thickness of the layer B is 0.05-19. When the thickness ratio is in the above numerical range, the effect of improving the displacement can be increased. From such a viewpoint, the thickness ratio is more preferably 0.2 to 5, and particularly preferably 0.5 to 2.

(主配向方向)
本発明の積層フィルムは、層Aの主配向方向と層Bの主配向方向とが実質的に同じである。ここで「主配向方向」とは、層Aや層Bの面内方向における最大配向方向のことを示す。また、「実質的に同じ」とは、層Aの主配向方向と層Bの主配向方向との成す角度が10度以下、好ましくは5度以下、さらに好ましくは3度以下、特に好ましくは1度以下であることを示し、理想的には0度であることを示す。層Aと層Bの主配向方向が実質的に同じであると、変位量を大きくすることができる。本発明においては、共押出法により積層フィルムを得ることにより、容易に、上記のような主配向方向の態様とすることができ、変位量が大きな積層フィルムを得ることができる。
(Main orientation direction)
In the laminated film of the present invention, the main alignment direction of layer A and the main alignment direction of layer B are substantially the same. Here, the “main alignment direction” indicates the maximum alignment direction in the in-plane direction of the layer A or the layer B. Further, “substantially the same” means that the angle formed between the main alignment direction of the layer A and the main alignment direction of the layer B is 10 degrees or less, preferably 5 degrees or less, more preferably 3 degrees or less, and particularly preferably 1 It is less than or equal to degrees, and ideally it is 0 degrees. When the main orientation directions of the layer A and the layer B are substantially the same, the amount of displacement can be increased. In the present invention, by obtaining a laminated film by a co-extrusion method, it is possible to easily achieve the above-described aspect of the main orientation direction and obtain a laminated film having a large displacement.

(屈折率)
本発明の積層フィルムは、主配向方向の屈折率が1.45以上であることが好ましい。屈折率が上記数値範囲にあると、変位量の向上効果を高くすることができる。屈折率が低い場合は、変位量の向上効果が低くなる傾向にあり、他方、屈折率が高い場合は変位量の向上効果は高くなる傾向にあるが、高すぎるとフィルムの機械特性に劣る傾向にある。このような観点から、主配向方向の屈折率は、より好ましくは1.45〜1.48、さらに好ましくは1.45〜1.47である。
(Refractive index)
The laminated film of the present invention preferably has a refractive index in the main alignment direction of 1.45 or more. When the refractive index is in the above numerical range, the effect of improving the displacement can be increased. When the refractive index is low, the displacement improvement effect tends to be low. On the other hand, when the refractive index is high, the displacement improvement effect tends to be high, but when it is too high, the mechanical properties of the film tend to be inferior. It is in. From such a viewpoint, the refractive index in the main alignment direction is more preferably 1.45 to 1.48, and still more preferably 1.45 to 1.47.

(密度)
本発明の積層フィルムは、密度が1.24〜1.27g/cmであることが好ましい。密度が上記数値範囲にあると、変位量の向上効果を高くすることができる。密度が低い場合は、変位量の向上効果が低くなる傾向にあり、他方、密度が高い場合は、変位量の向上効果は高いもののフィルムの機械特性に劣る傾向にある。このような観点から、密度は、より好ましくは1.24〜1.26g/cm、さらに好ましくは1.245〜1.255g/cmである。
以下、本発明の積層フィルムを構成する各成分について説明する。
(density)
The laminated film of the present invention preferably has a density of 1.24 to 1.27 g / cm 3 . When the density is in the above numerical range, the effect of improving the displacement can be increased. When the density is low, the effect of improving the amount of displacement tends to be low. On the other hand, when the density is high, the effect of improving the amount of displacement is high, but the mechanical properties of the film tend to be poor. From such a viewpoint, the density is more preferably 1.24 to 1.26 g / cm 3 , and further preferably 1.245 to 1.255 g / cm 3 .
Hereinafter, each component which comprises the laminated | multilayer film of this invention is demonstrated.

[ポリ乳酸]
(ポリL−乳酸)
本発明における層Aを構成するポリL−乳酸は、実質的にL−乳酸単位のみから構成されるポリ乳酸や、L−乳酸とその他のモノマーとの共重合体等であるが、特に、実質的にL−乳酸単位だけで構成されるポリL−乳酸であることが好ましい。ここで「実質的に」とは、ポリL−乳酸におけるL−乳酸単位の量が90モル%以上であることを示す。
ポリL−乳酸におけるL−乳酸単位の量は、結晶性の観点、また変位量の向上効果を高くするという観点、およびフィルム耐熱性などの観点より、好ましくは90〜100モル%、より好ましくは95〜100モル%、さらに好ましくは98〜100モル%である。すなわち、L−乳酸単位以外の単位の含有量は、好ましくは0〜10モル%、より好ましくは0〜5モル%、さらに好ましくは0〜2モル%である。
[Polylactic acid]
(Poly L-lactic acid)
The poly L-lactic acid constituting the layer A in the present invention is a polylactic acid substantially composed only of L-lactic acid units, a copolymer of L-lactic acid and other monomers, and the like. In particular, poly L-lactic acid composed only of L-lactic acid units is preferable. Here, “substantially” indicates that the amount of L-lactic acid units in poly L-lactic acid is 90 mol% or more.
The amount of the L-lactic acid unit in the poly-L-lactic acid is preferably 90 to 100 mol%, more preferably from the viewpoint of crystallinity, the viewpoint of enhancing the effect of improving the displacement, and the film heat resistance. It is 95-100 mol%, More preferably, it is 98-100 mol%. That is, the content of units other than the L-lactic acid unit is preferably 0 to 10 mol%, more preferably 0 to 5 mol%, and still more preferably 0 to 2 mol%.

かかるポリL−乳酸は、結晶性を有していることが好ましく、前述のような配向・結晶の態様とすることが容易となり、変位量の向上効果を高くすることができる。またその融点は150℃以上190℃以下であることが好ましく、160℃以上190℃以下であることがさらに好ましい。このような態様であるとフィルムの耐熱性に優れる。
本発明におけるポリL−乳酸は、その重量平均分子量(Mw)が8万から25万の範囲であることが好ましく、10万から25万以下であることがより好ましい。とりわけ好ましくは12万から20万の範囲である。重量平均分子量Mwが上記数値範囲にあると、フィルムの剛性に優れ、またフィルムの厚み斑が良好になる。
Such poly-L-lactic acid preferably has crystallinity, and it becomes easy to obtain the above-described orientation / crystal mode, and the effect of improving the amount of displacement can be enhanced. The melting point is preferably 150 ° C. or higher and 190 ° C. or lower, and more preferably 160 ° C. or higher and 190 ° C. or lower. With such an embodiment, the film has excellent heat resistance.
The poly L-lactic acid in the present invention preferably has a weight average molecular weight (Mw) in the range of 80,000 to 250,000, and more preferably 100,000 to 250,000 or less. Particularly preferred is a range of 120,000 to 200,000. When the weight average molecular weight Mw is in the above numerical range, the rigidity of the film is excellent and the thickness unevenness of the film becomes good.

(ポリD−乳酸)
本発明における層Bを構成するポリD−乳酸は、実質的にD−乳酸単位のみから構成されるポリ乳酸や、D−乳酸とその他のモノマーとの共重合体等であるが、特に、実質的にD−乳酸単位だけで構成されるポリD−乳酸であることが好ましい。ここで「実質的に」とは、ポリD−乳酸におけるD−乳酸単位の量が90モル%以上であることを示す。
ポリD−乳酸におけるD−乳酸単位の量は、結晶性の観点、また変位量の向上効果を高くするという観点、およびフィルム耐熱性などの観点より、好ましくは90〜100モル%、より好ましくは95〜100モル%、さらに好ましくは98〜100モル%である。すなわち、D−乳酸単位以外の単位の含有量は、好ましくは0〜10モル%、より好ましくは0〜5モル%、さらに好ましくは0〜2モル%である。
(Poly D-lactic acid)
The poly D-lactic acid constituting the layer B in the present invention is a polylactic acid substantially composed only of D-lactic acid units, a copolymer of D-lactic acid and other monomers, and the like. In particular, poly-D-lactic acid composed of only D-lactic acid units is preferable. Here, “substantially” indicates that the amount of D-lactic acid units in poly-D-lactic acid is 90 mol% or more.
The amount of the D-lactic acid unit in the poly-D-lactic acid is preferably 90 to 100 mol%, more preferably from the viewpoint of crystallinity, the viewpoint of enhancing the effect of improving the displacement, and the film heat resistance. It is 95-100 mol%, More preferably, it is 98-100 mol%. That is, the content of units other than the D-lactic acid unit is preferably 0 to 10 mol%, more preferably 0 to 5 mol%, and still more preferably 0 to 2 mol%.

かかるポリD−乳酸は、結晶性を有していることが好ましく、前述のような配向・結晶の態様とすることが容易となり、変位量の向上効果を高くすることができる。またその融点は150℃以上190℃以下であることが好ましく、160℃以上190℃以下であることがさらに好ましい。このような態様であるとフィルムの耐熱性に優れる。
本発明におけるポリD−乳酸は、その重量平均分子量(Mw)が8万から25万の範囲であることが好ましく、10万から25万以下であることがより好ましい。とりわけ好ましくは12万から20万の範囲である。重量平均分子量Mwが上記数値範囲にあると、フィルムの剛性に優れ、またフィルムの厚み斑が良好になる。
本発明においては、とりわけ、上記好ましい態様を有するポリL−乳酸と、上記好ましい態様を有するポリD−乳酸とを同時に用いることにより、変位量の向上効果をより高くすることができ、好ましい。
Such poly-D-lactic acid preferably has crystallinity, and it becomes easy to obtain the above-described orientation / crystal mode, and the effect of improving the displacement can be enhanced. The melting point is preferably 150 ° C. or higher and 190 ° C. or lower, and more preferably 160 ° C. or higher and 190 ° C. or lower. With such an embodiment, the film has excellent heat resistance.
The poly D-lactic acid in the present invention preferably has a weight average molecular weight (Mw) in the range of 80,000 to 250,000, and more preferably 100,000 to 250,000. Particularly preferred is a range of 120,000 to 200,000. When the weight average molecular weight Mw is in the above numerical range, the rigidity of the film is excellent and the thickness unevenness of the film becomes good.
In the present invention, the poly L-lactic acid having the above preferred embodiment and the poly D-lactic acid having the above preferred embodiment are preferably used at the same time because the effect of improving the displacement can be further enhanced.

(共重合成分)
本発明で用いられるポリL−乳酸、ポリD−乳酸には、本発明の目的を損なわない範囲で所望により、L−乳酸、D−乳酸以外の共重合成分を含有させることができる。このとき、ポリ乳酸の結晶性を大きく損なわない範囲で含有させることが好ましい。かかる共重合成分は、特に限定されるものではないが、例えば、グリコール酸、カプロラクトン、ブチロラクトン、プロピオラクトンなどのヒドロキシカルボン酸類、エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−プロパンジオール、1,5−プロパンジオール、ヘキサンジオール、オクタンジオール、デカンジオール、ドデカンジオール、炭素数が2から30の脂肪族ジオール類、コハク酸、マレイン酸、アジピン酸、炭素数2から30の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、ヒドロキシ安息香酸、ヒドロキノンなど芳香族ジオール、芳香族ジカルボン酸などから選ばれる1種以上のモノマーを選ぶことが出来る。
(Copolymerization component)
The poly L-lactic acid and poly D-lactic acid used in the present invention can contain a copolymer component other than L-lactic acid and D-lactic acid, as desired, within a range not impairing the object of the present invention. At this time, it is preferable to contain in the range which does not impair the crystallinity of polylactic acid largely. Such copolymerization component is not particularly limited. For example, hydroxycarboxylic acids such as glycolic acid, caprolactone, butyrolactone, propiolactone, ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-propanediol, 1,5-propanediol, hexanediol, octanediol, decanediol, dodecanediol, aliphatic diols having 2 to 30 carbon atoms, succinic acid, maleic acid, adipic acid, 2 carbon atoms To 30 or more monomers selected from aromatic diols such as aliphatic dicarboxylic acid, terephthalic acid, isophthalic acid, hydroxybenzoic acid, hydroquinone, and aromatic dicarboxylic acid.

[ポリ乳酸の製造方法]
ポリL−乳酸およびポリD−乳酸を製造する方法は特別に限定されるものではなく、従来公知の方法が好適に使用できる。例えば、L−乳酸またはD−乳酸を直接脱水縮合する方法、L−またはD−乳酸オリゴマーを固相重合する方法、L−またはD−乳酸を一度脱水環化してラクチドとした後、溶融開環重合する方法等が例示される。
なかでも、直接脱水縮合方法、あるいはラクチド類の溶融開環重合法により得られるポリ乳酸が、品質、生産効率の観点から好ましく、中でもラクチド類の溶融開環重合法が特に好ましく選択される。
これらの製造法において使用する触媒は、ポリ乳酸が前述した所定の特性を有するように重合させることができるものであれば特に限定されない。例えば、ラクチドの溶融開環重合触媒として、アルカリ金属、アルカリ土類金属、希土類、遷移金属類、アルミニウム、ゲルマニウム、スズ、アンチモンなどの脂肪酸塩、炭酸塩、硫酸塩、リン酸塩、酸化物、水酸化物、ハロゲン化物、アルコラート等が挙げられる。これらのうち、スズ、アルミニウム、亜鉛、カルシウム、チタン、ゲルマニウム、マンガン、マグネシウムおよび稀土類元素よりなる群から選ばれる少なくとも一種を含有する触媒が好ましい(以下、かかる触媒を特定金属含有触媒と呼称する場合がある。)。
[Production method of polylactic acid]
The method for producing poly L-lactic acid and poly D-lactic acid is not particularly limited, and conventionally known methods can be suitably used. For example, a method of directly dehydrating and condensing L-lactic acid or D-lactic acid, a method of solid-phase polymerizing L- or D-lactic acid oligomers, once dehydrating and cyclizing L- or D-lactic acid into lactide, and then melt-opening The method of superposing | polymerizing etc. is illustrated.
Among them, polylactic acid obtained by a direct dehydration condensation method or a melt ring-opening polymerization method of lactides is preferable from the viewpoint of quality and production efficiency, and among them, a melt ring-opening polymerization method of lactides is particularly preferably selected.
The catalyst used in these production methods is not particularly limited as long as polylactic acid can be polymerized so as to have the above-mentioned predetermined characteristics. For example, lactide melt-opening polymerization catalysts include alkali metals, alkaline earth metals, rare earths, transition metals, fatty acid salts such as aluminum, germanium, tin, antimony, carbonates, sulfates, phosphates, oxides, Examples include hydroxides, halides, alcoholates and the like. Among these, a catalyst containing at least one selected from the group consisting of tin, aluminum, zinc, calcium, titanium, germanium, manganese, magnesium and rare earth elements is preferable (hereinafter, such a catalyst is referred to as a specific metal-containing catalyst). May be.)

かかる特定金属含有触媒としては、従来公知であり以下の化合物が例示される。すなわち、塩化第一スズ、臭化第一スズ、ヨウ化第一スズ、硫酸第一スズ、酸化第二スズ、ミリスチン酸スズ、オクチル酸スズ、ステアリン酸スズ、テトラフェニルスズ、スズメトキシド、スズエトキシド、スズブトキシド、酸化アルミニウム、アルミニウムアセチルアセトネート、アルミニウムイソプロポキシド、アルミニウム−イミン錯体四塩化チタン、チタン酸エチル、チタン酸ブチル、チタン酸グリコール、チタンテトラブトキシド、塩化亜鉛、酸化亜鉛、ジエチル亜鉛、三酸化アンチモン、三臭化アンチモン、酢酸アンチモン、酸化カルシウム、酸化ゲルマニウム、酸化マンガン、炭酸マンガン、酢酸マンガン、酸化マグネシウム、イットリウムアルコキシドなどが例示される。
これらのうち、触媒活性が良好であり、また副反応が少ないという観点から、塩化第一スズ、臭化第一スズ、ヨウ化第一スズ、硫酸第一スズ、酸化第二スズ、ミリスチン酸スズ、オクチル酸スズ、ステアリン酸スズ、テトラフェニルスズ等のスズ含有化合物、アルミニウムアセチルアセトネート、アルミニウムブトシキド、アルミニウム−イミン錯体等のアルミニウム含有化合物が好ましい。さらに好ましくは、ジエトキシスズ、ジノニルオキシスズ、ミリスチン酸スズ、オクチル酸スズ、ステアリン酸スズ、塩化スズ、アルミニウムアセチルアセトナート、アルミニウムイソプロポキシドなどである。
Such specific metal-containing catalysts are conventionally known and exemplified as follows. Stannous chloride, stannous bromide, stannous iodide, stannous sulfate, stannic oxide, tin myristate, tin octylate, tin stearate, tetraphenyltin, tin methoxide, tin ethoxide, tin Butoxide, aluminum oxide, aluminum acetylacetonate, aluminum isopropoxide, aluminum-imine complex titanium tetrachloride, ethyl titanate, butyl titanate, glycol titanate, titanium tetrabutoxide, zinc chloride, zinc oxide, diethyl zinc, trioxide Examples include antimony, antimony tribromide, antimony acetate, calcium oxide, germanium oxide, manganese oxide, manganese carbonate, manganese acetate, magnesium oxide, and yttrium alkoxide.
Of these, stannous chloride, stannous bromide, stannous iodide, stannous sulfate, stannic oxide, tin myristate from the viewpoint of good catalytic activity and few side reactions. , Tin-containing compounds such as tin octylate, tin stearate, and tetraphenyltin, and aluminum-containing compounds such as aluminum acetylacetonate, aluminum butoxide, and aluminum-imine complexes are preferred. More preferred are diethoxytin, dinonyloxytin, tin myristate, tin octylate, tin stearate, tin chloride, aluminum acetylacetonate, aluminum isopropoxide and the like.

触媒の使用量は、ラクチド類1kgあたり0.42×10−4から100×10−4モルであり、さらに反応性、得られるポリラクチド類の色調、安定性の観点から、好ましくは1.68×10−4から42.1×10−4モル、特に好ましくは2.53×10−4から16.8×10−4モルである。
得られたポリL−乳酸およびポリD−乳酸は、従来公知の方法により、重合触媒を除去したり、失活剤を用いて重合触媒の触媒活性を失活、不活性化したりするのが、フィルムの溶融安定性、湿熱安定性のために好ましい。
失活剤を用いる場合、その使用量は、特定金属含有触媒の金属元素1当量あたり0.3から20当量、より好ましくは0.5から15当量、さらに好ましくは0.5から10等量、特に好ましくは0.6から7当量とすればよい。失活剤の使用量が少なすぎると、触媒金属の活性を十分に低下させることができないし、また過剰に使用すると、失活剤が樹脂の分解を引き起こす可能性があり好ましくない。
The amount of the catalyst used is 0.42 × 10 −4 to 100 × 10 −4 mol per kg of lactide, and is preferably 1.68 × from the viewpoint of reactivity, color tone of the resulting polylactide, and stability. 10 −4 to 42.1 × 10 −4 mol, particularly preferably 2.53 × 10 −4 to 16.8 × 10 −4 mol.
The obtained poly L-lactic acid and poly D-lactic acid may be removed by a conventionally known method or the catalytic activity of the polymerization catalyst is deactivated or deactivated using a deactivator. It is preferable for the melt stability and wet heat stability of the film.
When using a deactivator, the amount used is 0.3 to 20 equivalents, more preferably 0.5 to 15 equivalents, and even more preferably 0.5 to 10 equivalents per equivalent of metal element of the specific metal-containing catalyst. Particularly preferably, it may be 0.6 to 7 equivalents. If the amount of the deactivator used is too small, the activity of the catalyst metal cannot be lowered sufficiently, and if used excessively, the deactivator may cause decomposition of the resin, which is not preferable.

[積層フィルムの製造方法]
本発明の積層フィルムは、層Aを形成するための樹脂組成物Aと、層Bを形成するための樹脂組成物Bとを、それぞれ別々の押出機にて溶融し、それぞれの溶融樹脂を押出機内やダイ内において積層して押し出しする、いわゆる共押出法によって製造される。このような製造方法を採用することにより、層Aと層Bの主配向方向が成す角度を小さくでき、それによって変位量を大きくすることができ、また生産性に優れる。
以下、本発明の積層フィルムを共押出法により製造する好ましい方法について説明する。
[Production method of laminated film]
In the laminated film of the present invention, the resin composition A for forming the layer A and the resin composition B for forming the layer B are melted in separate extruders, and the respective molten resins are extruded. It is manufactured by a so-called co-extrusion method in which it is laminated and extruded in a machine or a die. By adopting such a manufacturing method, the angle formed by the main orientation directions of the layer A and the layer B can be reduced, whereby the amount of displacement can be increased, and the productivity is excellent.
Hereinafter, a preferred method for producing the laminated film of the present invention by a coextrusion method will be described.

(押出工程)
まず、所望により後述するカルボキシル基封止剤、滑剤、その他の添加剤等を含有する、ポリL−乳酸を主たる成分とする樹脂組成物A、およびポリD−乳酸主たる成分とする樹脂組成物Bを、それぞれ別々の押出機において溶融し、溶融状態で積層し、ダイから冷却ドラム上に押し出す。尚、押出機に供給する樹脂組成物は、溶融時の分解を抑制するため、押出機供給前に乾燥処理を行い、水分含有量を100ppm以下程度にすることが好ましい。
押出機における樹脂温度は、樹脂が十分に流動性を有する温度、すなわち(ポリ乳酸の融点(Tm)+20)から(Tm+50)(℃)の範囲で実施されるが、樹脂が分解しない温度で溶融押し出しするのが好ましく、かかる温度としては、好ましくは240〜300℃、さらに好ましくは245〜280℃、特に好ましくは250〜275℃である。上記温度範囲であると流動斑が発生しにくい。
(Extrusion process)
First, a resin composition A containing poly L-lactic acid as a main component and a resin composition B containing poly D-lactic acid as a main component, which contains a carboxyl group-blocking agent, a lubricant, and other additives as described later if desired. Are melted in separate extruders, laminated in a molten state, and extruded from a die onto a cooling drum. In addition, in order to suppress decomposition | disassembly at the time of a fusion | melting, the resin composition supplied to an extruder is preferable to perform a drying process before an extruder supply, and to make a water content into about 100 ppm or less.
The resin temperature in the extruder is a temperature at which the resin has sufficient fluidity, that is, a range of (melting point (Tm) +20 of polylactic acid) to (Tm + 50) (° C.), but melting at a temperature at which the resin does not decompose. It is preferable to extrude, and such a temperature is preferably 240 to 300 ° C, more preferably 245 to 280 ° C, and particularly preferably 250 to 275 ° C. Within the above temperature range, flow spots are unlikely to occur.

溶融樹脂は、従来公知の方法、例えばフィードブロックを用いる方法やマルチマニホールドダイを用いる方法等により積層される。かかる積層においては、層Aと層Bとかが必ずしも隣り合わせで接触している態様に限定されるものではない。例えば、層Aと層Bとの間にその他の層を有していても良いが、本発明においては、層Aを形成するための樹脂組成物Aと、層Bを形成するための樹脂組成物Bとが溶融状態で接触している態様を好ましい態様として挙げることができる。このような態様であると、層Aと層Bとの密着性が向上し、それにより変位量の向上効果を高くすることができる。   The molten resin is laminated by a conventionally known method such as a method using a feed block or a method using a multi-manifold die. In such lamination, the layer A and the layer B are not necessarily limited to the mode in which they are in contact with each other. For example, other layers may be provided between the layer A and the layer B. In the present invention, the resin composition A for forming the layer A and the resin composition for forming the layer B are used. A mode in which the product B is in contact with the product B in a molten state can be given as a preferable mode. With such an embodiment, the adhesion between the layer A and the layer B is improved, and thereby the effect of improving the displacement can be increased.

(キャスティング工程)
ダイから押し出した後、フィルムを冷却ドラムにキャスティングして未延伸フィルムを得る。その際、静電密着法により電極より静電荷を印加させることによって冷却ドラムに十分に密着させて冷却固化するのが好ましい。この時、静電荷を印加する電極はワイヤー状或いはナイフ状の形状のものが好適に使用される。該電極の表面物質は白金であることが好ましく、フィルムより昇華する不純物が電極表面に付着するのを抑制することができる。また、高温空気流を電極或いはその近傍に噴きつけ電極の温度を170〜350℃に保ち、電極上部に排気ノズルを設置することにより不純物の付着を防ぐこともできる。
(Casting process)
After extruding from the die, the film is cast on a cooling drum to obtain an unstretched film. At that time, it is preferable that the electrostatic charge is applied from the electrode by an electrostatic contact method so that it is sufficiently brought into close contact with the cooling drum and cooled and solidified. At this time, the electrode to which an electrostatic charge is applied preferably has a wire shape or a knife shape. The surface material of the electrode is preferably platinum, and can prevent impurities sublimated from the film from adhering to the electrode surface. Further, it is possible to prevent adhesion of impurities by blowing a high-temperature air flow on or near the electrode, keeping the temperature of the electrode at 170 to 350 ° C., and installing an exhaust nozzle above the electrode.

(延伸工程)
前記で得られた未延伸フィルムは、必要に応じて一軸方向あるいは二軸方向に延伸して一軸延伸フィルムあるいは二軸延伸フィルムとする。かかる一軸延伸フィルムあるいは二軸延伸フィルムを得るには、未延伸フィルムを延伸可能な温度、すなわちポリ乳酸のガラス転移点温度(Tg)以上(Tg+80)℃以下の温度に加熱して延伸する。
一軸延伸フィルムの場合は、機械軸方向(以下、縦方向または長手方向またはMDと呼称する場合がある。)に一軸延伸してもよいし、機械軸方向と垂直な方向(以下、横方向または幅方向またはTDと呼称する場合がある。)に一軸延伸してもよい。延伸倍率は、好ましくは1.1〜10倍、より好ましくは1.1〜7倍である。延伸倍率を上記数値範囲とすることによって変位量の向上効果を高くすることができる。延伸倍率が高い場合は、フィルムの機械特性が劣る傾向にあり、他方低い場合は、変位量の向上効果が低くなる傾向にある。このような観点から、延伸倍率は、さらに好ましくは1.2〜6、特に好ましくは2〜5である。
(Stretching process)
The unstretched film obtained above is stretched in a uniaxial direction or a biaxial direction as necessary to obtain a uniaxially stretched film or a biaxially stretched film. In order to obtain such a uniaxially stretched film or a biaxially stretched film, the unstretched film is stretched by heating to a temperature at which the unstretched film can be stretched, that is, a glass transition temperature (Tg) to (Tg + 80) ° C. of polylactic acid.
In the case of a uniaxially stretched film, the film may be uniaxially stretched in the machine axis direction (hereinafter sometimes referred to as the longitudinal direction or the longitudinal direction or MD), or in a direction perpendicular to the machine axis direction (hereinafter referred to as the transverse direction or It may be uniaxially stretched in the width direction or TD). The draw ratio is preferably 1.1 to 10 times, more preferably 1.1 to 7 times. The effect of improving the amount of displacement can be increased by setting the draw ratio within the above numerical range. When the draw ratio is high, the mechanical properties of the film tend to be inferior. On the other hand, when the draw ratio is low, the effect of improving the displacement tends to be low. From such a viewpoint, the draw ratio is more preferably 1.2 to 6, particularly preferably 2 to 5.

また、二軸延伸フィルムの場合は、縦方向の延伸倍率(以下、縦延伸倍率と呼称する場合がある。)は、好ましくは1.1〜10倍、より好ましくは1.1〜7倍である。また、横方向の延伸倍率(以下、横延伸倍率と呼称する場合がある。)は1.1〜10倍、好ましくは1.1〜7倍である。延伸倍率を上記数値範囲とすることによって、本発明における好ましい配向の態様とすることができ、変位量の向上効果を高くすることができる。縦および/または横方向の延伸倍率が高い場合は、フィルムが破断しやすくなる傾向にあり、生産性に劣る場合があり、他方、低い場合は、好ましい配向の態様とすることが困難となる傾向にあり、変位量の向上効果が低くなる傾向にある。このような観点から、縦延伸倍率は、さらに好ましくは1.1〜6倍、特に好ましくは1.1〜4.5倍である。また、横延伸倍率は、さらに好ましくは1.1〜5.5倍、特に好ましくは1.1〜4.5倍である。さらに、縦延伸倍率と横延伸倍率の差が、好ましくは1倍以上、さらに好ましくは2倍以上、特に好ましくは2.5倍以上であると、本発明における好ましい配向の態様とすることが容易となり、変位量の向上効果を高くすることができる。
なお、二軸延伸は、逐次二軸延伸であってもよいし、同時二軸延伸であってもよい。また、二軸延伸後に、さらに縦方向あるいは横方向の一軸方向に、あるいは縦方向および横方向の二軸方向に再延伸することもできる。
In the case of a biaxially stretched film, the stretching ratio in the longitudinal direction (hereinafter sometimes referred to as the longitudinal stretching ratio) is preferably 1.1 to 10 times, more preferably 1.1 to 7 times. is there. The stretching ratio in the transverse direction (hereinafter sometimes referred to as the transverse stretching ratio) is 1.1 to 10 times, preferably 1.1 to 7 times. By setting the draw ratio within the above numerical range, a preferred orientation mode in the present invention can be obtained, and the effect of improving the displacement can be increased. When the draw ratio in the longitudinal and / or transverse direction is high, the film tends to break and the productivity may be inferior. On the other hand, when it is low, it tends to be difficult to obtain a preferred orientation mode. Therefore, the effect of improving the displacement amount tends to be low. From such a viewpoint, the longitudinal draw ratio is more preferably 1.1 to 6 times, and particularly preferably 1.1 to 4.5 times. Further, the transverse draw ratio is more preferably 1.1 to 5.5 times, particularly preferably 1.1 to 4.5 times. Furthermore, when the difference between the longitudinal draw ratio and the transverse draw ratio is preferably 1 or more, more preferably 2 or more, and particularly preferably 2.5 or more, it is easy to obtain a preferred orientation mode in the present invention. Thus, the effect of improving the amount of displacement can be increased.
The biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching. Further, after biaxial stretching, it can be re-stretched in the longitudinal direction or the uniaxial direction of the lateral direction, or in the biaxial direction of the longitudinal direction and the lateral direction.

(熱処理工程)
上記で得られた未延伸フィルム、一軸延伸フィルム、二軸延伸フィルムは、熱処理することが好ましい。熱処理温度は、ポリ乳酸成分の融点未満の温度であり、好ましくは50〜160℃であり、変位量の向上効果を高くすることができる。熱処理温度が低い場合は、変位量の向上効果が低くなる傾向にあり、他方、高い場合は、フィルムの平面性や機械特性に劣る傾向にあり、また変位量の向上効果が低くなる傾向にある。このような観点から、熱処理温度は、さらに好ましくは60〜150℃、特に好ましくは80〜130℃である。また、熱処理時間は、好ましくは1〜120秒、さらに好ましくは2〜60秒であり、変位量の向上効果を高くすることができる。
さらに本発明においては、熱処理工程において弛緩処理して、熱寸法安定性を調整することも可能である。
かくして得られた本発明の積層フィルムは、所望により従来公知の方法で、例えば表面活性化処理、例えばプラズマ処理、アミン処理、コロナ処理を施すことも可能である。また、フィルムを製造する工程において所謂インラインコーティング法により、あるいはフィルムを製造した後に所謂オフラインコーティング法により、易滑層、易接着層、離型層等のコーティング層を設けても良い。
(Heat treatment process)
The unstretched film, uniaxially stretched film, and biaxially stretched film obtained above are preferably heat-treated. The heat treatment temperature is a temperature lower than the melting point of the polylactic acid component, preferably 50 to 160 ° C., and the effect of improving the displacement can be increased. When the heat treatment temperature is low, the displacement improvement effect tends to be low. On the other hand, when the heat treatment temperature is high, the flatness and mechanical properties of the film tend to be inferior, and the displacement improvement effect tends to be low. . From such a viewpoint, the heat treatment temperature is more preferably 60 to 150 ° C, and particularly preferably 80 to 130 ° C. The heat treatment time is preferably 1 to 120 seconds, more preferably 2 to 60 seconds, and the effect of improving the displacement can be increased.
Furthermore, in the present invention, it is possible to adjust the thermal dimensional stability by performing a relaxation treatment in the heat treatment step.
The laminated film of the present invention thus obtained can be subjected to surface activation treatment such as plasma treatment, amine treatment and corona treatment by a conventionally known method if desired. Moreover, you may provide coating layers, such as a slippery layer, an easily bonding layer, a mold release layer, by what is called an in-line coating method in the process of manufacturing a film, or what is called an offline coating method after manufacturing a film.

[層Aおよび/または層Bに添加しても良い成分]
(カルボキシル基封止剤)
本発明の積層フィルムは、カルボキシル基量は10当量/10g以下であることが、フィルムキャスティング時の安定性、加水分解抑制、重量平均分子量低下抑制の観点から好ましく、このような観点から、カルボキシル基量は5当量/10g以下であることがさらに好ましく、2当量/10g以下であることが特に好ましい。このような態様とするために、本発明においては、用途に応じて層Aおよび/または層Bにカルボキシル基封止剤を配合することが好ましい。カルボキシル基封止剤は、ポリ乳酸の末端カルボキシル基の封止に加え、ポリ乳酸や各種添加剤の分解反応で生成するカルボキシル基、乳酸、ギ酸などの低分子化合物のカルボキシル基を封止し樹脂を安定化することができ、フィルム化時の樹脂温度を、流動斑を抑えるに足る温度まで昇温できる利点ももたらす。
[Ingredients that may be added to Layer A and / or Layer B]
(Carboxyl group blocking agent)
In the laminated film of the present invention, the amount of carboxyl groups is preferably 10 equivalents / 10 6 g or less from the viewpoint of stability during film casting, hydrolysis inhibition, and weight average molecular weight reduction inhibition. From such a viewpoint, The amount of carboxyl groups is more preferably 5 equivalents / 10 6 g or less, and particularly preferably 2 equivalents / 10 6 g or less. In order to obtain such an embodiment, in the present invention, it is preferable to add a carboxyl group sealing agent to the layer A and / or the layer B depending on the application. In addition to sealing the terminal carboxyl group of polylactic acid, the carboxyl group sealing agent seals the carboxyl group of low molecular weight compounds such as carboxyl group, lactic acid, and formic acid generated by the decomposition reaction of polylactic acid and various additives. The resin temperature at the time of film formation can be increased to a temperature sufficient to suppress flow spots.

かかるカルボキシル基封止剤としては、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、イソシアネート化合物から選択される少なくとも1種の化合物を使用することが好ましく、なかでもカルボジイミド化合物が好ましい。
カルボキシル基封止剤の使用量は、層Aまたは層Bの各層を構成するポリ乳酸100質量部あたり、0.01〜10質量部が好ましく、0.03〜5質量部がさらに好ましい。本発明においては、さらに封止反応触媒を使用してもよい。
As such a carboxyl group-capping agent, it is preferable to use at least one compound selected from a carbodiimide compound, an epoxy compound, an oxazoline compound, an oxazine compound, and an isocyanate compound, and among them, a carbodiimide compound is preferable.
The amount of the carboxyl group sealing agent used is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, per 100 parts by mass of polylactic acid constituting each layer of layer A or layer B. In the present invention, a sealing reaction catalyst may be further used.

(滑剤)
本発明の積層フィルムにおいては、フィルムの巻き取りや走行性を改良する目的で積層フィルム中に滑剤を含有することができる。
かかる滑剤としては、例えば乾式法で製造されたシリカ、湿式法で製造されたシリカ、ゼオライト、炭酸カルシウム、燐酸カルシウム、カオリン、カオリナイト、クレイ、タルク、酸化チタン、アルミナ、ジルコニア、水酸化アルミニウム、酸化カルシウム、グラファイト、カーボンブラック、酸化亜鉛、炭化珪素、酸化スズ等の無機粒子や、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、メラミン樹脂粒子、架橋シリコーン樹脂粒子等の有機微粒子を好ましく挙げることができる。
滑剤としては、平均粒径が0.001〜5.0μmの微粒子が好ましく、1種類で使用することもできるし2種類以上併用することも可能である。
また滑剤は、層Aまたは層Bの各層を構成するポリ乳酸に対して、0.01〜0.5質量%の範囲で配合することができる。
(Lubricant)
In the laminated film of the present invention, a lubricant can be contained in the laminated film for the purpose of improving film winding and running properties.
Examples of such lubricants include silica produced by a dry method, silica produced by a wet method, zeolite, calcium carbonate, calcium phosphate, kaolin, kaolinite, clay, talc, titanium oxide, alumina, zirconia, aluminum hydroxide, Preferable examples include inorganic particles such as calcium oxide, graphite, carbon black, zinc oxide, silicon carbide, and tin oxide, and organic fine particles such as crosslinked acrylic resin particles, crosslinked polystyrene resin particles, melamine resin particles, and crosslinked silicone resin particles. .
As the lubricant, fine particles having an average particle diameter of 0.001 to 5.0 μm are preferable, and one kind can be used, or two or more kinds can be used in combination.
Moreover, a lubricant can be mix | blended in 0.01-0.5 mass% with respect to the polylactic acid which comprises each layer of the layer A or the layer B.

(その他の添加剤)
また、層Aおよび/または層Bには、本発明の趣旨に反しない範囲において、酸化防止剤、帯電防止剤、着色剤、顔料、蛍光蒼白剤、可塑剤、架橋剤、紫外線吸収剤、その他の樹脂等を必要に応じて添加することができる。
(Other additives)
In addition, the layer A and / or the layer B are provided with an antioxidant, an antistatic agent, a colorant, a pigment, a fluorescent whitening agent, a plasticizer, a cross-linking agent, an ultraviolet absorber, and the like, as long as it does not contradict the gist of the present invention. These resins can be added as necessary.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれにより何ら限定を受けるものではない。なお、実施例中の各値は以下の方法に従って求めた。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention does not receive limitation at all by this. In addition, each value in an Example was calculated | required according to the following method.

(1)変位量
サンプルの両面に、表面抵抗値が約100Ω/□となるような厚みでアルミ蒸着を施して電極を形成し、10mm(主配向方向に垂直方向)×40mm(主配向方向)に切り出した。次いで、切り出したサンプルを、A層が上となるように、水平に、短辺の片方を固定し、A層側とB層側にそれぞれ電極を接続して、フィルムの両面から25V(Vpp)周波数15Hzで電圧印加し、スケールを用いてもう一辺の短辺の変位量を実測した。
(2)屈折率
Metricon社製のレーザー屈折率測定装置を用い、プリズムカプラ(633nm)波長で測定した。プリズムに密着させたサンプルに、プリズムを通じてレーザー光を入射し、プリズムを回転させてサンプルへの入射角を変える。サンプル表面で反射した光を測定し、光量の入射角依存をモニターし臨界角に相当する屈折率を求めた。
(3)密度
JIS規格 C2151に準じて測定した。
(4)ガラス転移点温度(Tg)、融点(Tm)
サンプル約10mgを測定用のアルミニウム製パンに封入して示差熱量計(TAinstruments社製商品名「DSC2920」)に装着し、25℃から20℃/分の速度で250℃まで昇温させ、250℃で5分間保持した後、取出し、直ちに氷の上に移して急冷する。このパンを再度示差熱量計に装着し、25℃から10℃/分の速度で昇温させてガラス転移点温度(Tg:℃)および融点(Tm:℃)を測定した。
(5)主配向方向
フィルムの面内において、0°(MD)〜90°(TD)〜180°として、5°ピッチで、上記(2)で記載の方法で面内の屈折率を測定し、最も屈折率の高い方向を主配向方向とした。これを両面について測定し、それぞれの面における主配向方向の角度差を「なす角度」とした。
(1) Displacement Electrode is deposited on both sides of the sample with a thickness such that the surface resistance value is about 100Ω / □ to form an electrode, and 10 mm (perpendicular to the main alignment direction) × 40 mm (main alignment direction) Cut out. Next, the cut sample was horizontally fixed so that the A layer was on the upper side, and electrodes were connected to the A layer side and the B layer side, respectively, and 25 V (Vpp) from both sides of the film. A voltage was applied at a frequency of 15 Hz, and the amount of displacement on the other short side was measured using a scale.
(2) Refractive index It measured with the prism coupler (633 nm) wavelength using the laser refractive index measuring apparatus made from Metricon. Laser light is incident on the sample in close contact with the prism through the prism, and the prism is rotated to change the incident angle on the sample. The light reflected from the sample surface was measured, and the dependence of the amount of light on the incident angle was monitored to determine the refractive index corresponding to the critical angle.
(3) Density Measured according to JIS standard C2151.
(4) Glass transition temperature (Tg), melting point (Tm)
About 10 mg of sample was sealed in an aluminum pan for measurement and attached to a differential calorimeter (trade name “DSC2920” manufactured by TA instruments), heated from 25 ° C. to 250 ° C. at a rate of 20 ° C./min, 250 ° C. Hold for 5 minutes, then remove, immediately transfer to ice and quench. The pan was again attached to the differential calorimeter, and the glass transition temperature (Tg: ° C.) and melting point (Tm: ° C.) were measured by raising the temperature from 25 ° C. at a rate of 10 ° C./min.
(5) Main orientation direction In the plane of the film, the in-plane refractive index is measured by the method described in (2) at a pitch of 5 ° as 0 ° (MD) to 90 ° (TD) to 180 °. The direction with the highest refractive index was defined as the main orientation direction. This was measured on both surfaces, and the angle difference between the main orientation directions on each surface was defined as “angle formed”.

[参考例1]ラクチドの溶融開環重合によるポリL−乳酸(PLLA)の合成
真空配管および窒素ガス配管、触媒、L−ラクチド溶液添加配管、アルコール開始剤添加配管を具備したフルゾーン翼具備縦型攪拌槽(40L)を窒素置換した。その後、L−ラクチド30Kg、ステアリルアルコール0.90kg(0.030モル/kg)、オクチル酸スズ6.14g(5.05×10−4モル/1kg)を仕込み、窒素圧106.4kPaの雰囲気下、150℃に昇温した。内容物が溶解した時点で、攪拌を開始、内温をさらに190℃に昇温した。内温が180℃を超えると反応が始まるため、冷却しながら内温を185℃から190℃に保持し1時間反応を継続した。さらに攪拌しつつ、窒素圧106.4kPa、内温200℃から210℃で1時間反応を行なった後、攪拌を停止しリン系の触媒失活剤を添加した。
[Reference Example 1] Synthesis of poly L-lactic acid (PLLA) by melt ring-opening polymerization of lactide Vertical type equipped with full zone blades equipped with vacuum piping and nitrogen gas piping, catalyst, L-lactide solution addition piping, and alcohol initiator addition piping The stirring tank (40 L) was purged with nitrogen. Thereafter, 30 kg of L-lactide, 0.90 kg of stearyl alcohol (0.030 mol / kg), and 6.14 g of tin octylate (5.05 × 10 −4 mol / 1 kg) were charged in an atmosphere with a nitrogen pressure of 106.4 kPa. The temperature was raised to 150 ° C. When the contents were dissolved, stirring was started and the internal temperature was further raised to 190 ° C. Since the reaction started when the internal temperature exceeded 180 ° C., the internal temperature was maintained from 185 ° C. to 190 ° C. while cooling and the reaction was continued for 1 hour. The reaction was further carried out at a nitrogen pressure of 106.4 kPa and an internal temperature of 200 ° C. to 210 ° C. for 1 hour while stirring, and then stirring was stopped and a phosphorus-based catalyst deactivator was added.

さらに20分間静置して気泡除去をおこなった後、内圧を窒素圧で2から3気圧に昇圧し、プレポリマーをチップカッターに押し出し、重量平均分子量13万、分子量分散1.8のプレポリマーをペレット化した。
さらに、ペレットを押出機で溶解させ、無軸籠型反応装置に15kg/hrで投入し、10.13kPaに減圧して残留するラクチドを低減処理し、それを再度チップ化した。得られたポリL−乳酸(PLLA)は、ガラス転移点温度(Tg)55℃、融点(Tm)175℃、重量平均分子量12万、分子量分散1.8、ラクチド含有量0.005質量%であった。
After removing the bubbles by standing still for 20 minutes, the internal pressure was increased from 2 to 3 atm with nitrogen pressure, the prepolymer was pushed out to a chip cutter, and a prepolymer having a weight average molecular weight of 130,000 and a molecular weight dispersion of 1.8 was obtained. Pelletized.
Further, the pellets were dissolved by an extruder, charged into a non-axial vertical reactor at 15 kg / hr, reduced in pressure to 10.13 kPa to reduce the remaining lactide, and chipped again. The obtained poly L-lactic acid (PLLA) has a glass transition temperature (Tg) of 55 ° C., a melting point (Tm) of 175 ° C., a weight average molecular weight of 120,000, a molecular weight dispersion of 1.8, and a lactide content of 0.005% by mass. there were.

[参考例2]ラクチドの溶融開環重合によるポリD−乳酸(PDLA)の合成
また、L−ラクチドの代わりにD−ラクチドを使用する以外は上記と同様にして、ガラス転移点温度(Tg)55℃、融点(Tm)175℃、重量平均分子量12万、分子量分散1.8、ラクチド含有量0.005質量%のポリD−乳酸(PDLA)を得た。
[Reference Example 2] Synthesis of poly D-lactic acid (PDLA) by melt ring-opening polymerization of lactide Glass transition temperature (Tg) in the same manner as above except that D-lactide was used instead of L-lactide. Poly-D-lactic acid (PDLA) having a temperature of 55 ° C., a melting point (Tm) of 175 ° C., a weight average molecular weight of 120,000, a molecular weight dispersion of 1.8, and a lactide content of 0.005% by mass was obtained.

[実施例1]
参考例1で得られた重量平均分子量Mwが12万のポリL−乳酸(PLLA)と、参考例2で得られた重量平均分子量Mwが12万のポリD−乳酸(PDLA)とを、それぞれ乾燥機を用いて十分に乾燥させた後、それぞれ別の押出機に投入し、210℃で溶融し、それぞれの溶融樹脂をダイ内部にて合流させ積層し、ダイより押し出して2層シート状に成形し、かかるシートを表面温度20℃の冷却ドラムで冷却固化して未延伸フィルムを得た。
得られた未延伸フィルムを、75℃に加熱したロール群に導き、縦方向に1.1倍に延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き、80℃に加熱された雰囲気中で横方向に4倍に延伸した。その後テンター内で110℃の温度条件で30秒間の熱処理を行い、次いで100℃で1%幅方向に熱弛緩した後、均一に徐冷して室温まで冷やして80μm厚みの二軸配向2層積層フィルムを得た。得られた積層フィルムの特性を表1に示す。
[Example 1]
A poly L-lactic acid (PLLA) having a weight average molecular weight Mw of 120,000 obtained in Reference Example 1 and a poly D-lactic acid (PDLA) having a weight average molecular weight Mw of 120,000 obtained in Reference Example 2, respectively. After sufficiently drying using a dryer, each is put into separate extruders, melted at 210 ° C., the molten resins are merged inside the die, laminated, and extruded from the die to form a two-layer sheet. The sheet was molded and cooled and solidified with a cooling drum having a surface temperature of 20 ° C. to obtain an unstretched film.
The obtained unstretched film was led to a roll group heated to 75 ° C., stretched 1.1 times in the longitudinal direction, and cooled by a roll group at 25 ° C. Subsequently, both ends of the longitudinally stretched film were guided to a tenter while being held by clips, and stretched 4 times in the transverse direction in an atmosphere heated to 80 ° C. After that, heat treatment is performed in a tenter for 30 seconds at a temperature of 110 ° C., followed by heat relaxation at 100 ° C. in the 1% width direction, and then uniformly cooled and cooled to room temperature, and a biaxially oriented two-layer laminate having a thickness of 80 μm A film was obtained. Table 1 shows the characteristics of the obtained laminated film.

[実施例2〜6]
製膜条件を表1に示すとおりとした以外は実施例1と同様にして積層フィルムを得た。得られた積層フィルムの特性を表1に示す。
[Examples 2 to 6]
A laminated film was obtained in the same manner as in Example 1 except that the film forming conditions were as shown in Table 1. Table 1 shows the characteristics of the obtained laminated film.

[比較例1]
参考例1で得られた重量平均分子量Mwが12万のポリL−乳酸(PLLA)を、乾燥機を用いて十分に乾燥させた後、押出機に投入し、210℃で溶融し、溶融樹脂をダイより押し出して単層のシート状に成形し、かかるシートを表面温度20℃の冷却ドラムで冷却固化して未延伸フィルムを得た。得られた未延伸フィルムを、75℃に加熱したロール群に導き、縦方向に1.1倍に延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き、80℃に加熱された雰囲気中で横方向に4倍に延伸した。その後テンター内で110℃の温度条件で30秒間の熱処理を行い、次いで100℃で1%幅方向に熱弛緩した後、均一に徐冷して室温まで冷やして40μm厚みの二軸配向ポリL−乳酸単層フィルムを得た。
[Comparative Example 1]
Poly L-lactic acid (PLLA) having a weight average molecular weight Mw of 120,000 obtained in Reference Example 1 is sufficiently dried using a dryer, and then charged into an extruder, melted at 210 ° C., and melted resin. Was extruded from a die and formed into a single-layer sheet, and the sheet was cooled and solidified with a cooling drum having a surface temperature of 20 ° C. to obtain an unstretched film. The obtained unstretched film was led to a roll group heated to 75 ° C., stretched 1.1 times in the longitudinal direction, and cooled by a roll group at 25 ° C. Subsequently, both ends of the longitudinally stretched film were guided to a tenter while being held by clips, and stretched 4 times in the transverse direction in an atmosphere heated to 80 ° C. Thereafter, a heat treatment is performed in a tenter at a temperature of 110 ° C. for 30 seconds, followed by heat relaxation at 100 ° C. in the 1% width direction, and then uniformly cooled and cooled to room temperature to obtain a 40 μm thick biaxially oriented poly L- A lactic acid monolayer film was obtained.

次に、参考例2で得られた重量平均分子量Mwが12万のポリD−乳酸(PDLA)を用いて、上記同様にして40μm厚みの二軸配向ポリD−乳酸単層フィルムを得た。
得られたこれらのフィルムを用いて、エポキシ系粘着剤を20μm厚みで塗布し、温度120℃、圧力2atmで1分間の条件にてラミネート処理により貼り合わせ、積層フィルムを得た。この際、それぞれのフィルムの主配向方向の成す角度が15度となるようにした。得られた積層フィルムの特性を表1に示す。
Next, using the poly D-lactic acid (PDLA) having a weight average molecular weight Mw of 120,000 obtained in Reference Example 2, a biaxially oriented poly D-lactic acid single layer film having a thickness of 40 μm was obtained in the same manner as described above.
Using these obtained films, an epoxy-based pressure-sensitive adhesive was applied in a thickness of 20 μm and bonded together by a laminating process at a temperature of 120 ° C. and a pressure of 2 atm for 1 minute to obtain a laminated film. At this time, the angle formed by the main orientation direction of each film was set to 15 degrees. Table 1 shows the characteristics of the obtained laminated film.

Figure 2011243606
Figure 2011243606

本発明によれば、電圧印加により湾曲して変位を示すような積層フィルムを容易に得ることができる。また、かかる積層フィルムは変位量が大きいため、マイクロホン、ピックアップ、ブザー、スピーカー、光スイッチ、ファン等の振動体として用いた場合は、より優れた性能のものとすることができる。
According to the present invention, it is possible to easily obtain a laminated film that is bent by voltage application and exhibits displacement. Further, since such a laminated film has a large displacement, when it is used as a vibrating body such as a microphone, a pickup, a buzzer, a speaker, an optical switch, or a fan, it can have a more excellent performance.

Claims (7)

ポリL−乳酸を主たる成分とする層A、およびポリD−乳酸を主たる成分とする層Bを有し、共押出法により得られた積層フィルム。 A laminated film obtained by a coextrusion method, which has a layer A containing poly L-lactic acid as a main component and a layer B containing poly D-lactic acid as a main component. 主配向方向の屈折率が1.45以上である請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the refractive index in the main orientation direction is 1.45 or more. 密度が1.24〜1.27g/cmである請求項1または2に記載の積層フィルム。 The laminated film according to claim 1 or 2 density of 1.24~1.27g / cm 3. 層Aと層Bとが接触している請求項1〜3のいずれか1項に記載の積層フィルム。 The laminated film according to any one of claims 1 to 3, wherein the layer A and the layer B are in contact with each other. 層Aを形成するためのポリL−乳酸を主たる成分とする樹脂組成物Aと、層Bを形成するためのポリD−乳酸を主たる成分とする樹脂組成物Bとを、それぞれ別の押出機にて溶融し、次いで樹脂組成物Aと樹脂組成物Bとを溶融状態にて積層し、ダイより押し出す積層フィルムの製造方法。 Separate extruders for resin composition A mainly composed of poly-L-lactic acid for forming layer A and resin composition B mainly composed of poly-D-lactic acid for forming layer B And then laminating resin composition A and resin composition B in a molten state and extruding from a die. 溶融状態にて積層する際に、樹脂組成物Aと樹脂組成物Bとが接触している請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the resin composition A and the resin composition B are in contact with each other when laminated in a molten state. ダイより押し出した後、少なくとも一軸方向に1.1〜10倍に延伸し、ポリL−乳酸およびポリD−乳酸の融点未満の温度で熱処理する請求項5または6に記載の製造方法。
The method according to claim 5 or 6, wherein after the extrusion from the die, the film is stretched 1.1 to 10 times in at least a uniaxial direction and heat-treated at a temperature lower than the melting point of poly L-lactic acid and poly D-lactic acid.
JP2010111804A 2010-05-14 2010-05-14 Laminated film Active JP6082511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111804A JP6082511B2 (en) 2010-05-14 2010-05-14 Laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111804A JP6082511B2 (en) 2010-05-14 2010-05-14 Laminated film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015099690A Division JP6076398B2 (en) 2015-05-15 2015-05-15 Piezoelectric material

Publications (2)

Publication Number Publication Date
JP2011243606A true JP2011243606A (en) 2011-12-01
JP6082511B2 JP6082511B2 (en) 2017-02-15

Family

ID=45410021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111804A Active JP6082511B2 (en) 2010-05-14 2010-05-14 Laminated film

Country Status (1)

Country Link
JP (1) JP6082511B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672539A1 (en) 2011-10-13 2013-12-11 Mitsui Chemicals, Inc. Polymer piezoelectric material, and manufacturing method thereof
JP2013251363A (en) * 2012-05-31 2013-12-12 Teijin Ltd Actuator, and method of moving object by using the same
JP2014027038A (en) * 2012-07-25 2014-02-06 Teijin Ltd Uniaxially oriented film for piezoelectric laminate and piezoelectric laminate
JP2014027055A (en) * 2012-07-25 2014-02-06 Teijin Ltd Method for producing piezoelectric body
JP2014068141A (en) * 2012-09-25 2014-04-17 Teijin Ltd Piezoelectric loudspeaker
JP2014068142A (en) * 2012-09-25 2014-04-17 Teijin Ltd Piezoelectric loudspeaker
JP2014086703A (en) * 2012-10-26 2014-05-12 Mitsui Chemicals Inc Polymer piezoelectric material, manufacturing method thereof and composition for polymer piezoelectric material
WO2014119695A1 (en) * 2013-01-31 2014-08-07 帝人株式会社 Piezoelectric vibrating body
EP2662910A4 (en) * 2011-12-13 2014-11-19 Mitsui Chemicals Inc Polymeric piezoelectric material and method for manufacturing same
WO2015079899A1 (en) 2013-11-26 2015-06-04 三井化学株式会社 Macromolecular piezoelectric material and manufacturing method therefor
WO2015083723A1 (en) * 2013-12-03 2015-06-11 帝人株式会社 Stretched laminated film for use in piezoelectric polymer material, and manufacturing method thereof
WO2016027613A1 (en) * 2014-08-18 2016-02-25 株式会社村田製作所 Piezoelectric film laminate and bending detection sensor
JP2017075332A (en) * 2016-12-27 2017-04-20 帝人株式会社 Uniaxially oriented film for piezoelectric laminate
JPWO2015170446A1 (en) * 2014-05-07 2017-04-20 パナソニックIpマネジメント株式会社 Piezoelectric device and manufacturing method thereof
JPWO2016027587A1 (en) * 2014-08-22 2017-04-27 三井化学株式会社 Polymer piezoelectric film
JP2017191951A (en) * 2017-07-03 2017-10-19 三井化学株式会社 Polymer piezoelectric material, method for producing the same, and composition for polymer piezoelectric material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152638A (en) * 1991-07-31 1993-06-18 Takiron Co Ltd High polymer piezo-electric material
JPH0873628A (en) * 1994-09-09 1996-03-19 Dainippon Ink & Chem Inc Heat-resistant sheet comprising lactic acid polymer and method for producing molder product
JP2000144545A (en) * 1998-08-31 2000-05-26 Gunze Ltd Piezoelectric material and its production
JP2000238128A (en) * 1999-02-25 2000-09-05 Toyobo Co Ltd Aliphatic polyester film
JP2001219522A (en) * 2000-02-14 2001-08-14 Mitsubishi Plastics Ind Ltd Polylactic acid laminated biaxially stretched film
JP2003191425A (en) * 2001-10-03 2003-07-08 Toray Ind Inc Flexible polylactic acid resin stretched film and production method thereof
WO2009139237A1 (en) * 2008-05-12 2009-11-19 学校法人関西大学 Piezoelectric element and audio equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152638A (en) * 1991-07-31 1993-06-18 Takiron Co Ltd High polymer piezo-electric material
JPH0873628A (en) * 1994-09-09 1996-03-19 Dainippon Ink & Chem Inc Heat-resistant sheet comprising lactic acid polymer and method for producing molder product
JP2000144545A (en) * 1998-08-31 2000-05-26 Gunze Ltd Piezoelectric material and its production
JP2000238128A (en) * 1999-02-25 2000-09-05 Toyobo Co Ltd Aliphatic polyester film
JP2001219522A (en) * 2000-02-14 2001-08-14 Mitsubishi Plastics Ind Ltd Polylactic acid laminated biaxially stretched film
JP2003191425A (en) * 2001-10-03 2003-07-08 Toray Ind Inc Flexible polylactic acid resin stretched film and production method thereof
WO2009139237A1 (en) * 2008-05-12 2009-11-19 学校法人関西大学 Piezoelectric element and audio equipment

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672539B1 (en) * 2011-10-13 2016-09-28 Mitsui Chemicals, Inc. Polymeric piezoelectric material and process for producing the same
US9559289B2 (en) 2011-10-13 2017-01-31 Mitsui Chemicals, Inc. Polymeric piezoelectric material and process for producing the same
US9136461B2 (en) 2011-10-13 2015-09-15 Mitsui Chemicals, Inc. Polymeric piezoelectric material and process for producing the same
EP2672539A1 (en) 2011-10-13 2013-12-11 Mitsui Chemicals, Inc. Polymer piezoelectric material, and manufacturing method thereof
US9905750B2 (en) 2011-12-13 2018-02-27 Mitsui Chemicals, Inc. Polymeric piezoelectric material, and process for producing the same
EP2662910A4 (en) * 2011-12-13 2014-11-19 Mitsui Chemicals Inc Polymeric piezoelectric material and method for manufacturing same
JP2013251363A (en) * 2012-05-31 2013-12-12 Teijin Ltd Actuator, and method of moving object by using the same
JP2014027038A (en) * 2012-07-25 2014-02-06 Teijin Ltd Uniaxially oriented film for piezoelectric laminate and piezoelectric laminate
JP2014027055A (en) * 2012-07-25 2014-02-06 Teijin Ltd Method for producing piezoelectric body
JP2014068142A (en) * 2012-09-25 2014-04-17 Teijin Ltd Piezoelectric loudspeaker
JP2014068141A (en) * 2012-09-25 2014-04-17 Teijin Ltd Piezoelectric loudspeaker
JP2014086703A (en) * 2012-10-26 2014-05-12 Mitsui Chemicals Inc Polymer piezoelectric material, manufacturing method thereof and composition for polymer piezoelectric material
WO2014119695A1 (en) * 2013-01-31 2014-08-07 帝人株式会社 Piezoelectric vibrating body
US9929335B2 (en) 2013-01-31 2018-03-27 Teijin Limited Piezoelectric vibrator
KR20150112944A (en) 2013-01-31 2015-10-07 데이진 가부시키가이샤 Piezoelectric vibrating body
JP5671192B2 (en) * 2013-01-31 2015-02-18 帝人株式会社 Piezoelectric vibrator
WO2015079899A1 (en) 2013-11-26 2015-06-04 三井化学株式会社 Macromolecular piezoelectric material and manufacturing method therefor
WO2015083723A1 (en) * 2013-12-03 2015-06-11 帝人株式会社 Stretched laminated film for use in piezoelectric polymer material, and manufacturing method thereof
KR20160094405A (en) 2013-12-03 2016-08-09 데이진 가부시키가이샤 Stretched laminated film for use in piezoelectric polymer material, and manufacturing method thereof
US20160263872A1 (en) * 2013-12-03 2016-09-15 Teijin Limited The stretched laminated film for use in piezoelectric polymer material, and manufacturing method thereof
JPWO2015083723A1 (en) * 2013-12-03 2017-03-16 帝人株式会社 Stretched laminated film for polymer piezoelectric material and method for producing the same
TWI644973B (en) * 2013-12-03 2018-12-21 帝人股份有限公司 Stretch laminated film for piezoelectric polymer material and manufacturing method thereof
US9937688B2 (en) 2013-12-03 2018-04-10 Teijin Limited Stretched laminated film for use in piezoelectric polymer material, and manufacturing method thereof
CN105794008A (en) * 2013-12-03 2016-07-20 帝人株式会社 Stretched laminated film for use in piezoelectric polymer material, and manufacturing method thereof
JPWO2015170446A1 (en) * 2014-05-07 2017-04-20 パナソニックIpマネジメント株式会社 Piezoelectric device and manufacturing method thereof
WO2016027613A1 (en) * 2014-08-18 2016-02-25 株式会社村田製作所 Piezoelectric film laminate and bending detection sensor
JPWO2016027613A1 (en) * 2014-08-18 2017-06-01 株式会社村田製作所 Piezoelectric film laminate and bending detection sensor
JPWO2016027587A1 (en) * 2014-08-22 2017-04-27 三井化学株式会社 Polymer piezoelectric film
JP2017075332A (en) * 2016-12-27 2017-04-20 帝人株式会社 Uniaxially oriented film for piezoelectric laminate
JP2017191951A (en) * 2017-07-03 2017-10-19 三井化学株式会社 Polymer piezoelectric material, method for producing the same, and composition for polymer piezoelectric material

Also Published As

Publication number Publication date
JP6082511B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6082511B2 (en) Laminated film
JP5647943B2 (en) Laminated film
JP5656669B2 (en) Laminated film
JP4972012B2 (en) Sequential biaxially stretched polyglycolic acid film, method for producing the same, and multilayer film
CN102438832B (en) Polylactic acid resin composition and film
JP4794187B2 (en) Film cutter and storage box with film cutter
JP2007118476A (en) Biaxially oriented polyester film for packaging
JP6030878B2 (en) Method for manufacturing piezoelectric body
JP2007169424A (en) Polyester film
JP2009045888A (en) Film for protecting back surface of solar cell
JP6076398B2 (en) Piezoelectric material
JP6050030B2 (en) Actuator and method of moving object using the same
JPH1110723A (en) Manufacture of biaxially oriented polyester film
JP2002187963A (en) Biaxially oriented polyester film
JP2006265275A (en) Method for producing polyester composition
JP4386386B2 (en) Easy tear laminated polyester film
JP6243179B2 (en) Laminated film
JP5074215B2 (en) Biaxially oriented laminated film
JP3640282B2 (en) Method for producing biaxially stretched polyester film
JP2009234165A (en) Laminated polyester film
JP4885419B2 (en) Biaxially stretched polyester film
JP2010126539A (en) Biaxially stretched film
JP2001293832A (en) Laminated polyester film
JP2003342394A (en) Polyester soft film for protective film
JP2023126139A (en) Polyester resin composition, and laminated polyester film and multilayer laminated film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150617

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6082511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250