JP2011228078A - バックライト装置および液晶表示装置 - Google Patents

バックライト装置および液晶表示装置 Download PDF

Info

Publication number
JP2011228078A
JP2011228078A JP2010095863A JP2010095863A JP2011228078A JP 2011228078 A JP2011228078 A JP 2011228078A JP 2010095863 A JP2010095863 A JP 2010095863A JP 2010095863 A JP2010095863 A JP 2010095863A JP 2011228078 A JP2011228078 A JP 2011228078A
Authority
JP
Japan
Prior art keywords
light
light source
liquid crystal
crystal display
backlight unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010095863A
Other languages
English (en)
Inventor
Shuichi Kagawa
周一 香川
Rena Nishitani
令奈 西谷
Eiji Niikura
栄二 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010095863A priority Critical patent/JP2011228078A/ja
Publication of JP2011228078A publication Critical patent/JP2011228078A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

【課題】点光源であるレーザ光源をサイドライト方式のバックライトに採用した場合、光源入射端近傍において光源の輝度分布に起因する面内輝度むらを抑制することが困難だった。
【解決手段】液晶表示装置100が有する第1バックライトユニット2は、レーザ光源20a、20bと、該点状のレーザ光源20a、20bから線状のレーザ光源を生成するための光伝播部と該線状レーザ光を照明光として液晶表示素子1の背面に向け放射する微細光学素子25a、25bとを設けた導光板21a、21bとを含む2組の面光源200a、200b液晶表示素子1の表示面の法線方向に積層して成り、これらの面光源から放射された光が重なり合うことにより面内輝度分布が均一な照明光を生成する。この簡易な構成により、小型で高画質な画像を提供する液晶表示装置を実現することが可能となる。
【選択図】図1

Description

本発明は、複数のレーザ光源で液晶表示装置の背面から液晶表示装置を照明して液晶表示装置に画像を表示させる液晶表示装置およびバックライト装置に関するものである。
液晶表示装置が備える液晶表示素子は、自ら発光しないため、液晶表示装置を照明する光源として、液晶表示素子の背面にバックライト装置を備える必要がある。近年では、液晶表示装置に対する薄型化への要求が高まっており、薄板状の導光板を備え、その側面と対向する様に光源を配置し側面から光を入射することにより、面状光源を作り出すサイドライト方式が広く用いられている。
液晶表示装置の液晶表示素子はカラーフィルタを備えており、連続スペクトルで白色に発光する蛍光ランプからの光のうち、一部の波長の光のみをカラーフィルタによって透過させることによって、赤、緑、青の表示色を抽出し色表現を行っている。このように、連続スペクトルの光源光から一部の波長帯域の光のみを切り出して表示色を得る場合には、色再現範囲を広げるために表示色の色純度を高めようとすると、液晶表示素子に備えるカラーフィルタの透過波長帯域を狭く設定しなければならない。このため、表示色の色純度を高めようとすると、カラーフィルタを透過する光の透過光量が減少して輝度が落ちるという問題が発生する。
また、一般的に用いられる蛍光ランプは、蛍光体の特性から赤色波長域では615nm程度のオレンジ色にシフトした波長にピークを持つ発光スペクトルを有している。このため、特に赤色において純赤として好ましい630〜640nmの波長領域で色純度を高めようとすると、極めて透過光量が落ち、著しく輝度が低下するという問題が発生する。
このような問題点の改善策として、近年では波長幅の狭い、すなわち色純度の高い単色の発光ダイオード(以下、LED(Light Emitting Diode)という。)やレーザを光源として用いたバックライト装置を有する液晶表示装置が提案されている。特にレーザは、非常に優れた単色性や、高い発光効率を有するため、色再現域が広く高輝度な画像を提供し、また消費電力の低い液晶表示装置を可能にする。
しかしながら、LEDやレーザのような点光源をサイドライト方式のバックライト装置の光源として採用した場合、光源近傍の輝度が著しく高くなり、その結果光入射端付近において輝度むらが生じるといった課題を有している。このような問題は、例えば多数の点光源を狭い間隔で一列に配置し線状光源に近づける様な構成とすることにより改善することが可能であるが、高い面内輝度分布の均一性を求められる液晶表示装置のバックライト装置では非常に多数の光源が必要となるため、消費電力、組立性やコストの面において問題を有する。
そこで、従来ではできる限り少ない光源数で面内輝度分布の均一な面光源を得るための技術が報告されている。例えば特許文献1の液晶表示装置では、屈折率の異なる複数の材料から成り半球形状を成す透光性材料で発光素子を被覆することにより、発光素子から放射される光を屈折効果にて拡散することができ、導光板入光部における光の分布をより線状光源に近づけることが可能となる。
また、例えば特許文献2の面光源では、導光板の背面に設けられる光拡散面において、点光源を線状光源に変換するための光拡散面と、バックライト装置の面内輝度分布を均一にするための光拡散面とをそれぞれ設ける構成としている。点光源を線状光源に変換するための拡散面においては、点光源の輝度が高い部分の拡散物質の被覆率を低くし、一方で点光源の輝度が低い部分の拡散物質の被覆率を高くすることにより、点光源を線状光源に変換することが可能となる。
特開2006−269289号公報 特許第2917866号
上記技術によれば、点光源を線状光源に変換する光学素子を追加することにより、1次元方向に略均一な輝度分布を有した光を導光板の側面から入射することができ、面内輝度分布の均一性が高い面光源を得ることが可能であるが、このような光学素子は複雑な構造を要する。また、光源にレーザのような指向性の高い点光源を採用した場合には、より拡散性の高い複雑な光学素子が必要となり、点光源から線状光源に変換するために必要な光学距離が長くなるため装置が大型化するといった欠点を有する。このためレーザ光源を用いる場合には最適ではない。
本発明は、上記に鑑みて成されたものであって、簡易でコンパクトな構成で輝度むらを抑えたバックライト装置および液晶表示装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明のバックライト装置は、発散角を有し単色光を放射する複数の第1の光源と前記第1の光源から放射される光を線状の光に変換する光伝播部および前記線状の光を液晶表示素子に向けて面状光として放射する光学素子部を有する第1の導光板とを備える第1のバックライトユニットと、第2の光源と前記第2の光源から放射される光を液晶表示素子に向けて放射する拡散反射構造部を有する第2の導光板とを備える第2のバックライトユニットを備え、前記第1バックライトユニットは前記第2バックライトユニットから放射される光に対し透明であり、前記第1バックライトユニットと前記第2バックライトユニットとは前記液晶表示素子の表示面の法線方向に積層され、前記第1のバックライトユニットから放射された光と前記第2のバックライトユニットから放射された光とを混色することにより白色光を生成し前記液晶表示素子を照明することを特徴とする。
本発明によれば、点光源であるレーザを光源に採用したバックライト装置においても、簡易な構成で複雑な光学素子を用いることなく、輝度むらを抑えたコンパクトなバックライト装置、および液晶表示装置を提供することができる。
本発明に係る実施の形態1の液晶表示装置(透過型液晶表示装置)の構成を模式的に示す図である。 (a)(b)は、本発明に係る実施の形態1の第1のバックライトユニットを構成する面状レーザ光源の構成の一例を概略的に示す図である。 導光板内を伝播するレーザ光源のY軸方向における1次元輝度分布を概略的に示す図である。 第1バックライトユニットから放射される照明光のX軸方向における1次元輝度分布のシミュレーションによる計算結果を示すグラフである。 第1バックライトユニットから放射される照明光のX軸方向における1次元輝度分布の実測結果を示すグラフである。 本発明に係る実施の形態2の液晶表示装置(透過型液晶表示装置)の構成を模式的に示す図である。
以下に、本発明に係る液晶表示装置およびバックライト装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。
実施の形態1.
図1は、本発明に係る実施の形態1の透過型表示装置である液晶表示装置100の構成を模式的に示す図である。図の説明を容易にするために液晶光学素子1の短辺方向をY軸方向、長辺方向をX軸方向、X−Y平面に垂直な方向をZ軸方向とし、液晶表示素子1の表示面1a側を+Z軸方向とする。また、液晶表示装置の上方向を+Y軸方向、後述する第1の光源20aの光出射方向を+X軸方向とする。
図1に示されるように、液晶表示装置100は、透過型の液晶表示素子1、第1の光学シート31、第2の光学シート32、第1のバックライトユニットである第1バックライトユニット2、第2のバックライトユニットである第2バックライトユニット3、及び光反射シート15を備えており、これら構成要素1、31、32、2、3、15は、Z軸方向に配列されている。液晶表示素子1は、Z軸に直交するX軸及びY軸を含むX−Y平面と平行な表示面1aを有する。尚、X軸及びY軸は互いに直交している。
液晶表示装置100は、さらに、液晶表示素子1を駆動する図示しない液晶表示素子駆動部と、第1バックライトユニット2に含まれる第1の光源である光源20a、20bを駆動する図示しない光源駆動部と、第2バックライトユニット3に含まれる第2の光源である光源10を駆動する図示しない光源駆動部とを有している。液晶表示素子駆動部と光源駆動部の動作は、図示しない制御部によって制御される。
制御部は図示しない信号源から供給された映像信号に画像処理を施して制御信号を生成し、これら制御信号を液晶表示素子駆動部及び光源駆動部に供給する。光源駆動部は、それぞれ、制御部からの制御信号に応じて光源20a、20b、10を駆動してこれら光源20a、20b、10から光を出射させる。
第1バックライトユニット2は、光源20a、20bから出射される赤色の出射光22a、22bを+Z軸方向に向かう照明光33a、33bに変換して液晶表示素子1の背面1bに向けて放射する。この照明光33a、33bは、第2の光学シート32と第1の光学シート31と、を介して液晶表示素子1の背面1bに照射される。第2バックライトユニット3は、光源10から出射される青色の光と緑色の光にピーク輝度を有する青緑色の出射光13をZ軸方向に向かう照明光14に変換して液晶表示素子1の背面1bに向けて放射する。この照明光14は、第1バックライトユニット2と第2の光学シート32と第1の光学シート31とを介して液晶表示素子1の背面1bに照射される。ここで、第1の光学シート31とは、バックライトユニットから放射された光を液晶表示装置100の画面に対する法線方向に集光する作用を有するものであり、また第2の光学シート32とは、細かな照明ムラなどの光学的影響を抑制するものである。
第2バックライトユニット3の直下には光反射シート15が配置されている。第1バックライトユニット2及び第2バックライトユニット3からその背面側に放射された光は、光反射シート15で反射され、液晶表示素子1の背面1bを照射する照明光として利用される。光反射シート15としては、たとえば、ポリエチレンテレフタラートなどの樹脂を基材とした光反射シートや、基板の表面に金属を蒸着させた光反射シートを使用することができる。
液晶表示素子1は、Z軸方向に直交するX−Y平面に沿って延在する液晶層を有する。液晶表示素子1の表示面1aは矩形状を有しており、図1に示すX軸方向及びY軸方向は、それぞれ、この表示面1aの互いに直交する2辺に沿った方向である。液晶表示素子駆動部は、制御部から供給された制御信号に応じて液晶層の光透過率を画素単位で変化させる。各画素はさらに3つの副画素から構成されており、当該副画素は各々赤、緑、青色の光のみを透過させるカラーフィルタを備え、各副画素の透過率を制御することによりカラー画像を生成する。これにより、液晶表示素子1は、第1バックライトユニット2及び第2バックライトユニット3から入射した照明光を空間的に変調して画像光を生成し、この画像光を表示面1aから出射することができる。本実施の形態1によれば、例えば、制御部により各光源駆動部を個別に制御して、第1バックライトユニット2から放射される赤色の照明光33a、33bの輝度と、第2バックライトユニット3から放射される青緑色の照明光14の輝度との割合を調整することが可能であるため、各映像信号に対し必要となる各色輝度の割合に応じて各光源の発光量を調整することにより、低消費電力化を実現することも可能である。
第1のバックライトユニット2は、レーザ光源20aと液晶表示素子1の表示面1aに対して平行に配置された導光板21aとから成る第1の面状レーザ光源200aと、レーザ光源20bと液晶表示素子1の表示面1aに対して平行に配置された導光板21bとから成る第2の面状レーザ光源200bとから構成される。図2(a)に第1の面状レーザ光源200aを+Z軸方向から見た概略図、図2(b)に第2の面状レーザ光源を+Z軸方向から見た概略図を示す。
第1の面状レーザ光源200aが有するレーザ光源20aは、第1の導光板である導光板21aのX軸方向の光入射端面である一端面23aに対向配置されており、例えば、複数のレーザ発光素子をY軸方向に等間隔で配列したものである。また、第1の面状レーザ光源200aが有する導光板21aは、透明材料から成る板状部材であり、その液晶表示素子1と反対側の面である裏面24aに光学素子部である微細光学素子25aを有する。レーザ光源20aから発せられた光は、導光板21aの入射端面23aから導光板21aに入射し、導光板21a内を全反射されながら伝播する。同様に、第2の面状レーザ光源200bにおいて、レーザ光源20bは、第1の導光板である導光板21bのX軸方向の光入射端面である一端面23bに対向配置されており、例えば、複数のレーザ発光素子をY軸方向に等間隔で配列したものである。また、第2の面状レーザ光源200bが有する導光板21bは透明材料から成る板状部材であり、その裏面24bに光学素子部である微細光学素子25bを有する。レーザ光源20bから発せられた光は、導光板21bの光入射端面23bから導光板21bに入射し、導光板21b内を全反射されながら伝播する。
第1の面状レーザ光源200aと第2の面状レーザ光源200bが有するレーザ光源20a、20bは互いに、同じ特性を有するレーザ発光素子を採用しており、またレーザを配置する間隔や導光板の光入射端面23a,23bに対する配置方向、角度等、同様の配置方法をとる。また、第1の面状レーザ光源200aと第2の面状レーザ光源200bが有する導光板21aと21bは、同じ構造から成る。すなわち、第1の面状レーザ光源200aと第2の面状レーザ光源200bとは同じ特性を有している。
第1のバックライトユニット2は、等しい特性を有するこれら2つの面状レーザ光源200a、200bが、液晶表示素子1の表示面1aに対する法線(図1中Z軸)を軸として互いに180度回転した関係を成し、導光板21aと21bの各4つの側端面が互いに同一平面上に揃う様、積層配置される。すなわち、第1の面状レーザ光源200aが有する光源20aと第2の面状レーザ光源200bが有する光源20bとは対向する向きに配置されており、光源20aは+X軸方向に向けて光を放射し、一方、光源20bは−X軸方向に向けて光を放射するため、各々の光源から放射される光の進行方向は逆方向となる。但し、面状レーザ光源から放射される照明光33a、33bは何れも、液晶表示素子1の背面1bに向かって放射される。
本実施の形態1における第1バックライトユニット2は、上記のように、2つの面状レーザ光源200a、200bが、照明光が放射される方向(+Z軸方向)に積層配置される構成をとるため、第1バックライトユニット2が有する光源20a、20bを点灯した際に得られる第1バックライトユニット2から放射される照明光は、前記2つの面状レーザ光源200a、200bから放射される照明光33a、33bが足し合わされて成り、従って、第1バックライトユニット2から放射される照明光のX−Y平面における面内輝度分布は、前記2つの面状レーザ光源200a、200bのX−Y平面における面内輝度分布の足し合わせとなる。
導光板21a、21bは、透明部材で形成された例えば厚み2mmの板状部材であり、図1、図2に示すように、その裏面24a、24b(液晶表示素子1と反対側の面)に設けられる光学素子部には、導光板21a、21b内を伝播する光を、液晶表示素子1の背面1b方向(+Z軸方向)に向けて放射する光に変換するための半球状の凸形状(以後、凸レンズ形状と呼ぶ。)の微細光学素子25а、25bを有している。導光板端面23a、23bから入射したレーザ光22a、22bは、導光板21a、21bと空気層との界面における全反射により導光板21a、21b内を、反射を繰り返しながらX軸に沿って進行するが、微細光学素子25a、25bに入射すると、その曲面により屈折され、導光板21a、21bの表面(液晶表示素子1側の面)と空気層との界面における全反射条件を満たさなくなる光が生じ、その光が導光板21a、21bの表面から液晶表示素子1の背面1bに向かって放射される。
導光板21a、21bの光学素子部に配される微細光学素子25a、25bは、導光板21a、21b上のX−Y平面内の位置に対しその配置密度すなわち単位面積当たりの数やその大きさなどを変化させることにより、導光板21a、21bから放射される照明光33a、33bの面内輝度分布を制御することが可能である。本実施の形態1においては、図2に示すように、レーザ光22a、22bの進行方向(図中±X軸方向)の位置に対して微細光学素子25a、25bの配置密度が変化する構造を有しており、詳しくは導光板21a、21bにおけるレーザ光入射端面23a、23b近傍では微細光学素子25a、25bを有さず、導光板21a、21bのX軸方向における中心位置近傍からレーザ光入射端面23a、23bと対向する側の端面位置までの領域において微細光学素子25a、25bが設けられ、その配置密度が中心位置近傍から導光板端面方向に向かって疎から密へと段階的に変化する構成をとる。
微細光学素子25a、25bの実施例としては、たとえば、その表面の曲率が約0.15mm、最大高さが約0.005mm、屈折率が約1.49の凸レンズ形状の微細光学素子を採用できる。なお、導光板21a、21bや微細光学素子25a、25bの材質はアクリル樹脂とすることができるが、この材質に限定されるものではない。光透過率が良く、成形加工性に優れた材質であれば、アクリル樹脂に代えてポリカーボネート樹脂などの他の樹脂材料、あるいはガラス材料を使用してもよい。
尚、本実施の形態1においては、微細光学素子25a、25bを凸レンズ形状としたが、本発明はこれに限るものではない。導光板内をX軸方向に進行するレーザ光を、Z軸方向に屈折し液晶表示素子1の背面1bに向かって放射する構造を有していれば、他の形状でもよく、例えば、プリズム形状や、ランダムな凹凸パターンから成る微細光学素子を採用してもよい。
本実施の形態1においては、導光板の厚みを2mmとしたが、本発明はこれに限るものではない。液晶表示装置の薄型化、軽量化、さらには多重反射回数の増加による光の利用効率向上といった点においては、厚みの小さい導光板を採用することが望ましい。レーザ光源は発光面の面積が小さく且つ指向性が高い光源であるから、厚みの小さい導光板に対しても高い光結合効率を得ることが可能である。但し、このとき、導光板の厚みを薄型化することによる剛性低下の問題等も考慮する必要がある。
レーザ光源20a、20bは、640nmをピークとし、波長幅が半値全幅で1nmの極めて単色性の高いスペクトルを有する。また、その発散角は速軸方向においては半値全幅で40度、遅軸方向においては半値全幅で10度である。本実施の形態1においては、レーザ発光素子は、その速軸方向が導光板の側端面の短辺方向と平行になるように備えられる。これは、発散角の大きい速軸方向が、導光板の側端面における短辺方向すなわち導光板の対向する面と面の間隔が最も狭くなる方向(図1中ではZ軸方向)と平行となるように配置することにより、レーザ光の導光板内での反射回数が増大し、導光板21a、21bに設けられる微細光学素子25a、25bに入射する光線が多くなるため、微細光学素子25a、25bによる光の取り出し効率(液晶表示素子の方向に向かって放射される光量/導光板内を伝播する光量)を向上させることが可能となるためである。
本実施の形態1によると、レーザ光源20a、20bから放射されるレーザ光の光径は、導光板入射端面23a、23bのY軸方向の大きさに対し極めて小さい点光源であるが、導光板21a、21bの光源入射端面近傍に設けられる光伝播部である微細光学素子25a、25bを有さない領域において十分な光学距離を全反射しながら伝播することができるため、自らの発散角により拡がり、隣接する他のレーザ発光素子の光と重なり合うことによりY軸方向における輝度分布が均一な線状の光、つまり線状光源となる。
図3は、隣り合う2つのレーザ光源から放射されるレーザ光が一定の光学距離を伝播することによって線状光源を成すことを説明する概念図である。図3に示すように、X軸方向の任意の位置における、単一のレーザ光源から放射されるレーザ光のY軸方向位置に対する輝度分布40は、レーザ光が元々有するガウシアン形状の角度輝度分布に起因して、中心輝度が高く、中心から離れるにつれ急激に輝度が低下する様な形状を有する。そのため、単一のレーザ光が微細光学構造に入射すると、レーザ光の輝度分布が導光板から放射される照明光の面内輝度分布に反映され輝度むらが生じてしまう。しかしながら、近接して配置されるレーザ光源から放射される複数のレーザ光を空間的に重ね合わせると、例えば図3中の輝度分布40を有する単一のレーザ光と輝度分布41を有する単一のレーザ光とを重ね合わせると、それらの分布が平均化され、輝度分布42の様な均一の輝度分布となるように、光源配列方向に均一な輝度分布を有する線状光源を作り出すことができる。従って、単一では均一でない分布を有する光であっても、複数の光を重ね合わせることによってそれらの分布を平均化することができるため、光源配列方向において輝度分布が均一な線状光源を作り出すことが可能となる。
このように、近接するレーザ発光素子の光を重ね合わせるためには、レーザの発散角とレーザ光源の配置間隔により決まる一定以上の光学距離を、レーザが伝播する必要があるが、本実施の形態1の面状光源200a、200bが有する導光板21a、21bは、微細光学素子25a、25bにレーザ光が入射するまでに、レーザ光が自らの発散角でレーザ発光素子の配列方向において十分に空間的に拡がるために必要な光学伝播距離が備えられるため、均一性の高い線状光源となってから微細光学素子25a、25bに入射することが可能となる。
また、本実施の形態1では、レーザ光源20a、20bは等しい発散角と角度輝度分布を有する複数のレーザ発光素子を等間隔で配置した構成をとるため、より輝度分布の均一性が高い線状レーザ光源が得られる。
上記のようにして、線状レーザ光源となって光学素子部である微細光学素子25a、25bに入射した光は、導光板21a、21bの裏面24a、24bの微細光学素子25a、25bにより光の一部が屈折され、照明光33a、33bとして導光板21a、21bの表面から液晶表示素子1の背面1bに向けて放射される。このとき、微細光学素子に入射する光は、レーザ光源配列方向(Y軸方向)において均一な線状光源であるので、光源の輝度分布の差による輝度むらを生じることなく、均一な照明光33a、33bとして、液晶表示素子1を照明する。
一方、面状レーザ光源200a、200bは、光進行方向(X軸方向)において、それぞれレーザ光源を線状の光源に変換するために設けられる光伝播部のため、照明光を放射しない領域を有しているが、本実施の形態1においては、上記面状レーザ光源200a、200bは互いが照明光を発光しない領域を補い合う様に積層配置される、つまりは面状レーザ光源200аが発光しない領域と面状レーザ光源200bが発光する領域(図2中X軸中心近傍から−X軸方向に向かう領域)がZ軸方向に積層され、面状レーザ光源200bが発光しない領域と面状レーザ光源200аが発光する領域(図2中X軸中心近傍から+X軸方向に向かう領域)がZ軸方向に積層されるよう配置されるため、面状レーザ光源200aと面状レーザ光源200bとから成る第1バックライトユニット2は面全体から照明光を放射することが可能となる。
さらに、本実施の形態1においては、面状レーザ光源200aと面状レーザ光源200bのX軸方向における輝度分布が足し合わされて成る輝度分布が均一となるよう、各々の輝度分布を決定する微細光学素子25a、25bのX軸方向における配置密度を最適化している。
図4は、第1バックライトユニット2から放射される照明光33a、33bのX軸方向における1次元輝度分布のシミュレーションによる計算結果を示すグラフである。詳しくは、第1の面状レーザ光源200aのX軸方向における1次元輝度分布50、第2の面状レーザ光源200bのX軸方向における1次元輝度分布51、及びそれらの輝度分布を足し合わせてなる第1バックライトユニット2のX軸方向における1次元輝度分布52のシミュレーションによる計算結果を示すグラフである。
図4より明らかなように、第1の面状レーザ光源200aから放射される照明光33aの1次元輝度分布50は、−X軸方向であるレーザ光入射端面23a側から導光板21aのX軸方向中心位置近傍にかけては光が放射されず、導光板21aのX軸方向における中心位置近傍から+X軸方向に向けて徐々に輝度が高くなり、+X軸方向であるレーザ光入射端面23aと対向する端面側近傍付近では一定の輝度を保つ。一方、第2の面状レーザ光源200bから放射される照明光33bの1次元輝度分布51は、第1の面状レーザ光源200aと逆転する輝度分布を有しており、+X軸方向であるレーザ光入射端面23b側から導光板21bのX軸方向中心位置近傍にかけては光が放射されず、導光板21bのX軸方向における中心位置近傍から−X軸方向に向けて徐々に輝度が高くなり、−X軸方向であるレーザ光入射端面23bと対向する端面側近傍付近では一定の輝度を保つ。
上記第1の面状レーザ光源200aから放射される照明光33aと第2の面状レーザ光源200bから放射される照明光33bとの足し合わせにより生成される第1バックライトユニット2から放射される照明光の面内輝度分布52は、X軸方向において均一な分布となる。本実施の形態1の構成に従い試作した第1バックライトユニット2から放射される照明光の面内輝度分布を実際に計測した結果を図5に示す。図5より明らかなように、2つの面状レーザ光源200a、200bをZ軸方向に積層した第1バックライトユニット2において、レーザ光進行方向(X軸方向)において均一性に優れた照明光が得られることが分かる。
本実施の形態1においては、点光源であるレーザ光源を線状レーザ光源に変換するために必要とされる領域を有効画像表示領域内に設けており、レーザ光が伝播する十分な光学距離を確保しながらも、画像表示平面(X−Y平面)における液晶表示装置の面積に対するバックライト装置の面積の比率を抑制することが可能となるため、画質の良好な画像を提供しながらも、スタイリッシュな外観を有する液晶表示装置を実現することが可能となる。
第2のバックライトユニットである第2バックライトユニット3は、広い発散角を有しY軸方向において線状の輝度分布を有する光源10と、液晶表示素子1の表示面1aに対して平行に配置されその裏面(液晶表示素子1とは反対側の面)に拡散反射構造12を有する導光板11とからなる。光源10は、導光板11のX軸方向の両端面(光入射端面)に対向配置され、導光板両端面から中心方向に向かって光が入射される。その入射光13は、第2の導光板である導光板11の内部を全反射されながら伝播し、拡散反射構造部である背面の拡散反射構造12により伝播光の一部が拡散反射されて照明光14として導光板11の前面(液晶表示素子1側の面)から放射される。第2バックライトユニット3から放射される照明光14は、第1バックライトユニット2、第2の光学シート32、第1の光学シート31を介して、液晶表示素子1を照明する。
先にも記述した通り、第2バックライトユニット3の上に積層される第1バックライトユニット2の導光板21a、21bは、透明部材で形成された板状部材の裏面に同じく透明部材で形成される光学微細素子25a、25bを有する構造であり、それを透過する第2バックライトユニット3から放射される照明光14に対して吸収、反射などの光学的影響を及ぼすことがない。従って、照明光14は光の損失を生じることなく、液晶表示素子1を照明する照明光として効率良く利用されることができる。
光源10は、第1バックライトユニット2から放射される赤色照明光33a、33bとの混色により白色を作り出すために必要とされる緑色と青色の光13を放射する光源であり、連続スペクトルの白色光を発する発光体101とカラーフィルタ102を備える。発光体101は、例えば、450nm付近と530nm付近にピークを有し、420nmから730nmの帯域に連続的なスペクトルを有する白色の光を第1の白色光として放射する。このような光源10としては、例えば、励起光源と蛍光体との組み合わせにより構成される光源を採用することができ、詳しくは、黄色の蛍光体を青色光で励起して青色光と黄色光(緑色光と赤色光)を発光させることで白色光を生成する構成から成るLEDを採用することが考えられる。黄色の蛍光体を青色光で励起するLEDは、発光効率に優れ、すなわち低消費電力で明るい光が得られ、照明用途や液晶のバックライト用途で広く用いられている。このため、入手が容易であり、このタイプのLEDを用いることで低消費電力、低コストで明るい光を得ることができる。一方で、このタイプのLEDからの白色光では、赤色帯域の発光スペクトルがオレンジ色にシフトした波長にピーク強度を有しており、赤色の光が含まれる比率が少ないという欠点もある。
カラーフィルタ102は、発光体からの第1の白色光のうち青色の光と緑色の光を透過し、赤色の光は透過しない。よって、カラーフィルタを通して放射される光源10からの放射光は緑色光と青色光を含む青緑色の光となり、第1バックライトユニット2から放射される赤色の光と合わさって第2の白色光となり、液晶表示素子を照明する。以上のように、入手が容易で発光効率の高い発光体によって生成した青緑色の光と、レーザ光源を用いて生成される明るく色純度の高い(色鮮やかな)赤色光を合成して第2の白色光を生成することで、低コスト、低消費電力で明るく、色純度の高い赤色を含む照明光を得ることができる。なお、低消費電力で明るい光を得るとともに、赤色の色純度の低下を抑えるためには、カラーフィルタ102の緑色の光の透過波長帯域は、液晶表示素子に備える緑色のカラーフィルタの透過波長帯域に近い(例えば5nm以下の差異)ことが望ましい。
導光板11は、透明部材で形成された例えば厚み4mmの板状部材であり、その裏面には光源10から放射された光を液晶表示素子1の背面1b方向に向けて放射するための拡散反射構造12を有する。拡散反射構造12は、例えば、導光板11の裏面に拡散反射材をドット状に塗布することにより構成することができる。その際、ドット状に塗布される拡散反射材の密度を、光源10入射端近傍においては疎とし、光源10から離れるにつれ密になり、導光板11の中心において最も密になるような分布とすることにより、導光板11から放射される照明光14のX−Y平面における面内輝度分布を均一にすることが可能となる。
以上に説明したように、本実施の形態1の液晶表示装置100によれば、従来面内の輝度むらが問題となっていた、点光源で且つ指向性の高いレーザ光源をサイドライトの光源に採用した場合においても、レーザ光が自ら有する発散角により近接する他のレーザ光と空間的に重なり合い線状のレーザ光源となるために必要な光学伝播距離を十分に設けることが可能となるため、面内輝度分布が均一な照明光を生成することが可能となり、従って輝度むらの無い良好な画像を表示可能な液晶表示装置を提供することができる。さらに、本実施の形態1においては、上記構成を、液晶表示装置の有効画像表示領域を有効に活用し、簡易な構成、且つ液晶表示装置の有効画像表示領域に対しバックライト装置を大型化することなく実現することを可能にしている。
本実施の形態1においては、第1バックライトユニットの光源にレーザ光源を採用したが、本発明はこれに限るものではない。本発明はレーザ光源の様に発光面積が小さく且つ発散角を有する何れの光源に対しても有効であり、そのような光源に適用することにより、レーザ光源と同様に高い面内輝度分布均一性を有する面状光源を作り出すことが可能となる。例えば、LED光源に対して適用することによっても、高い効果を得ることができる。
本実施の形態1の液晶表示装置100のように、バックライト光源として単色性に優れたレーザを採用することにより、表示色の色純度を高めることができ、従来広く用いられている蛍光ランプやLEDを採用した場合よりも鮮やかな色彩表現が可能な液晶表示装置が得られる。
本実施の形態1の液晶表示装置100においては、第1バックライトユニット2の光源20a、20bに単色の赤色レーザ光源を、第2バックライトユニット3の光源10に青色と緑色が混色された光を発光する光源を適用した構成としている。これは、前述したように、蛍光ランプや黄色蛍光体を利用した白色LEDでは、赤色域の発光スペクトルがオレンジ色にシフトした波長にピーク強度を有しており、他の色に対して、赤色の光を蛍光ランプの光から単色レーザ光源に置き換えることによる色純度向上の効果が最も大きいためである。
なお、本実施の形態1においては、第1バックライトユニットの光源に640nmにピーク波長を有する赤色レーザ光源を採用したが、本発明はこれに限るものではない。例えば、波長の異なる赤色レーザや、あるいは青色、緑色の光を放射する可視単色光を放射するレーザを採用してもよい。例えば、比較的単色性に優れた単色光を発光するLEDを第1バックライトユニット2の光源20a、20bとして採用することも有効であるが、より広い色再現領域を得るためにはできる限り波長幅の短い、すなわち単色性に優れたレーザ光源を採用する方が色再現領域の広域化に対する効果が高く望ましい。尚、本実施の形態1においては、第1バックライトユニット2の光源として採用する単色光源20a、20bに対し、白色を作り出すために必要となる補色の光を放射する光源を第2バックライトユニット3の光源10として採用する必要がある。
光源には蛍光ランプやLEDを用いるが、液晶表示素子が有するカラーフィルタの透過波長を狭く設定し色純度を高めさせる場合には、カラーフィルタによる光ロスが増加して画像の輝度が低下してしまう。一方、本実施の形態1では、光源の単色性を高めて色純度を向上させているので、光ロスは減少し明るさの低下を招くことなく、低消費電力で、色純度を高めることができる。
また、単色のLED光源に対し、レーザ光源の方が、単色性に優れて、低消費電力駆動が可能であり、さらにはその指向性の高さにより導光板への結合効率を向上させるといった利点を有する。
本実施の形態1における、複数の面状光源を積層して成る第1のバックライトユニット、さらには複数のバックライトユニットを積層してなるバックライト装置は、その上層に備えられる導光板や、その導光板に設けられる微細光学素子が何れも透明部材からなり、それらより下層に配置されるバックライトの背面から入射する光に対し透明であるため、光の損失を抑え、高い光利用効率を得ることが可能である。
本実施の形態1においては、第1のバックライトユニット2が有する複数の面状レーザ光源200a、200bに同様の特性を有するものを採用したが、本発明はこれに限るものでは無い。前述したように、本実施の形態1は、複数の面状レーザ光源から放射される照明光をX−Y平面方向において足し合わせることにより面内輝度分布が均一な第1バックライトユニットを生成する構成が発明の要素の一つであり、これを達成するのであれば、複数の面状レーザ光源から放射される照明光の面内輝度分布が異なるものであっても構わない。
また、本実施の形態1においては、レーザ光源を備える2組の面状レーザ光源200a、200bを積層する構成としたが、本発明はこれに限るものではない。上記理由と同様に、各面状レーザ光源が放射する照明光をX−Y平面で足し合わせることにより、液晶表示素子全体を均一に照明する照明光が生成される構成であれば、何組積層した構成としても良い。
上記に記述したように、複数の面状レーザ光源から放射される照明光をX−Y平面方向において足し合わせることにより面内輝度分布が均一な第1バックライトユニットを生成する構成であれば、各面状レーザ光源の面内輝度分布が如何なるものであっても、また何組積層する構成としてもよいが、その際に各面状レーザ光源が有する導光板は、必ず、レーザ光源入射端近傍において、レーザ発光素子から放射された光が隣接する他のレーザ発光素子から放射された光と空間的に重なり合うことによってレーザ発光素子の配列方向における輝度分布を均一とするために必要な光学伝播距離を有し且つ微細光学素子は有さない光伝播部が設けられ、微細光学素子に入射するレーザ光は必ず線状光源を成している。これにより、微細光学素子により屈折され、導光板前面から液晶表示素子1の背面1bに向かって放射される照明光は、輝度分布むらを持たず、従って、表示むらのない高画質な液晶表示装置100を提供することが可能となる。
上記構成を達成することができれば、配置間隔や導光板の入射端面に対する配置方向、角度等、レーザ光源の配置方法に制限はなく、また、レーザ光源を導光板4辺の何れの端面に対向配置させる構成としてもよい。このとき、レーザ光源の入射端面を、液晶表示装置の短辺側端面とすることにより、レーザ光の光学伝播距離を効率良く長くすることが可能となるため、より面内輝度分布の均一性に優れた照明光を得ることが可能となる。
また、本実施の形態1によると、レーザ光源が導光板内の十分に長い光学伝播距離を多重反射しながら伝播すること、また複数のレーザ光源を空間的に重ね合わせて用いることにより、従来、コヒーレンスが高いレーザ光源を用いた画像表示装置で問題となるスペックルノイズが低減されるといった効果も得られる。
実施の形態2.
図6は、本発明に係る実施の形態2の液晶表示装置(透過型液晶表示装置)600の構成を模式的に示す図である。実施の形態1の液晶表示装置100の第2のバックライト3に代わって、構成の異なる第2のバックライトユニット4となっている点以外は、実施の形態1と同じである。
第2のバックライトユニット4は、実施の形態1の第2バックライトユニット3に搭載した光源10と同様の発散角の広い青緑色の光を放射する光源が、第1バックライトユニット2の直下にX−Y平面上に複数個2次元的に配列される光源直下型バックライトとして構成される。光源10から放射された光は、拡散板60、第1バックライトユニット2、第1光学シート32、第2光学シート31を介して、液晶表示素子1の背面1bを照明する。
拡散板60は、第2のバックライトユニット4の2次元配列された光源10から放射される光を拡散透過するために設けられ、照明光の14の面内均一性を確保するために拡散度の高い材料から成る。
上記第2バックライトユニット4は、大きな発光量が求められる場合において効果的である。例えば、液晶表示装置600が大画面化した場合や、液晶表示素子1のカラーフィルタの青色や緑色の透過帯域を狭め色再現範囲を広げる場合などにおいても、光源直下型の第2バックライトユニット4を使用することで十分な明るさを確保することが可能となる。
以上のように、本発明は、面内輝度分布が均一な液晶表示装置およびバックライト装置について有用であり、高画質、スタイリッシュな液晶表示装置を実現する。
1 液晶表示素子、 2 第1バックライトユニット、 3,4 第2バックライトユニット、 200a,200b 面状光源、 10,20a,20b 光源、 101 発光体、 102 カラーフィルタ、 21a,21b,11 導光板、 25a,25b 微細光学素子、 15 拡散反射構造、 31,32 光学シート、15 光反射シート、 60 拡散板。

Claims (11)

  1. 発散角を有し単色光を放射する複数の第1の光源と前記第1の光源から放射される光を線状の光に変換する光伝播部および前記線状の光を液晶表示素子に向けて面状光として放射する光学素子部を有する第1の導光板とを備える第1のバックライトユニット、
    連続スペクトルの第1の白色光を発する発光体および前記第1の白色光のうち一部の波長の光のみを透過して放射光を生成するカラーフィルタから成る第2の光源と前記第2の光源から放射される光を液晶表示素子に向けて放射する拡散反射構造部を有する第2の導光板とを備える第2のバックライトユニットを備え、
    前記第1のバックライトユニットは前記第2のバックライトユニットから放射される光に対し透明であり、前記第1のバックライトユニットと前記第2のバックライトユニットとは前記液晶表示素子の表示面の法線方向に積層され、前記第1のバックライトユニットから放射された光と前記第2のバックライトユニットから放射された光とを混色することにより第2の白色光を生成し前記液晶表示素子を照明することを特徴とするバックライト装置。
  2. 第1のバックライトユニットは、複数の第1の導光板を液晶表示素子の表示面の法線方向に積層し面状光源となる複数の光学素子部を前記液晶表示素子の表示面に対応する位置に配置して前記複数の第1の導光板からの放射された光を足し合わせることで前記液晶表示素子を照明することを特徴とする請求項1に記載のバックライト装置。
  3. 光学素子部は、第1の光源からの光が線状の光となる領域の近傍から第1の導光板の光入射端と対向する端面にかけて形成されていることを特徴とする請求項1または2に記載のバックライト装置。
  4. 光学素子部は、液晶表示素子と反対側の面に複数の半球状の凸形状部が形成されていることを特徴とする請求項1から3のいずれか1項に記載のバックライト装置。
  5. 第1の導光板の光入射端面は、前記液晶表示素子の短辺方向に平行な側面であることを特徴とする請求項1から4のいずれか1項に記載のバックライト装置。
  6. 第1の光源は可視単色光を放射するレーザ光源であることを特徴とする請求項1から5のいずれか1項に記載のバックライト装置。
  7. 第2の光源が備える発光体は、単色の励起光と蛍光体との組み合わせから成り、前記第2の光源が備えるカラーフィルタは、青色の光と緑色の光を透過することを特徴とする請求項1から6のいずれか1項に記載のバックライト装置。
  8. 第2の光源が備える発光体は、発光ダイオードであることを特徴とする請求項7に記載のバックライト装置。
  9. 第1の光源は赤色の光を放射することを特徴とする請求項1から8のいずれか1項に記載のバックライト装置。
  10. 第2の光源は、青色の光と緑色の光を含む光を放射することを特徴とする請求項9に記載のバックライト装置。
  11. 請求項1から10のいずれか1項に記載のバックライト装置を備えた液晶表示装置。
JP2010095863A 2010-04-19 2010-04-19 バックライト装置および液晶表示装置 Pending JP2011228078A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010095863A JP2011228078A (ja) 2010-04-19 2010-04-19 バックライト装置および液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095863A JP2011228078A (ja) 2010-04-19 2010-04-19 バックライト装置および液晶表示装置

Publications (1)

Publication Number Publication Date
JP2011228078A true JP2011228078A (ja) 2011-11-10

Family

ID=45043221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095863A Pending JP2011228078A (ja) 2010-04-19 2010-04-19 バックライト装置および液晶表示装置

Country Status (1)

Country Link
JP (1) JP2011228078A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161811A1 (ja) * 2012-04-27 2013-10-31 三菱電機株式会社 面光源装置及び液晶表示装置
JP2013246186A (ja) * 2012-05-23 2013-12-09 Mitsubishi Electric Corp 液晶表示装置
US9418601B2 (en) 2014-03-19 2016-08-16 Samsung Display Co., Ltd. Display device with luminance boosting unit
US9753213B2 (en) 2012-07-31 2017-09-05 Mitsubishi Electric Corporation Planar light source device and liquid crystal display apparatus
JP2018120793A (ja) * 2017-01-26 2018-08-02 シャープ株式会社 照明装置、表示装置及びテレビ受信装置
WO2018139347A1 (ja) * 2017-01-26 2018-08-02 シャープ株式会社 照明装置、表示装置及びテレビ受信装置
JP2018120792A (ja) * 2017-01-26 2018-08-02 シャープ株式会社 照明装置、表示装置及びテレビ受信装置
JP2019036557A (ja) * 2015-12-24 2019-03-07 ミネベアミツミ株式会社 面状照明装置および導光板の成形方法
US11313526B2 (en) 2018-05-18 2022-04-26 Mitsubishi Electric Corporation Lighting unit and lighting fixture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161811A1 (ja) * 2012-04-27 2013-10-31 三菱電機株式会社 面光源装置及び液晶表示装置
TWI494662B (zh) * 2012-04-27 2015-08-01 Mitsubishi Electric Corp Surface light source device and liquid crystal display device
JPWO2013161811A1 (ja) * 2012-04-27 2015-12-24 三菱電機株式会社 光路変更素子、面光源装置及び液晶表示装置
JP2013246186A (ja) * 2012-05-23 2013-12-09 Mitsubishi Electric Corp 液晶表示装置
US9753213B2 (en) 2012-07-31 2017-09-05 Mitsubishi Electric Corporation Planar light source device and liquid crystal display apparatus
US9418601B2 (en) 2014-03-19 2016-08-16 Samsung Display Co., Ltd. Display device with luminance boosting unit
JP2019036557A (ja) * 2015-12-24 2019-03-07 ミネベアミツミ株式会社 面状照明装置および導光板の成形方法
JP2018120793A (ja) * 2017-01-26 2018-08-02 シャープ株式会社 照明装置、表示装置及びテレビ受信装置
WO2018139347A1 (ja) * 2017-01-26 2018-08-02 シャープ株式会社 照明装置、表示装置及びテレビ受信装置
JP2018120792A (ja) * 2017-01-26 2018-08-02 シャープ株式会社 照明装置、表示装置及びテレビ受信装置
US11313526B2 (en) 2018-05-18 2022-04-26 Mitsubishi Electric Corporation Lighting unit and lighting fixture

Similar Documents

Publication Publication Date Title
JP5523538B2 (ja) 面光源装置
JP2011228078A (ja) バックライト装置および液晶表示装置
US8998474B2 (en) Surface light source device and liquid crystal display apparatus
KR100769066B1 (ko) 백-라이팅 유닛 및 이를 이용한 액정 디스플레이
US8120726B2 (en) Surface light source device and display
JP4902566B2 (ja) 面状照明装置および表示装置
US8640368B2 (en) Light source device, lighting device, and display device
WO2011067911A1 (ja) 液晶表示装置
JP4702176B2 (ja) バックライト及び液晶表示装置
JP5940157B2 (ja) 面光源装置及び液晶表示装置
WO2012017613A1 (ja) 面光源装置および液晶表示装置
JP6358894B2 (ja) 面光源装置および液晶表示装置
JP2001281458A (ja) 導光板、面光源装置及び液晶ディスプレイ
JP2011238484A (ja) バックライト装置および液晶表示装置
JP5323274B2 (ja) 面光源装置及び液晶表示装置
JP2009289701A (ja) 照明装置、面光源装置、および液晶表示装置
JP2011517040A (ja) 照明システム、バックライトシステム及び表示装置
JP6358895B2 (ja) 面光源装置および液晶表示装置
WO2019056985A1 (zh) 导光板、背光模组及显示装置
TWI431327B (zh) 混色透鏡及具有該混色透鏡之液晶顯示裝置
JP5287084B2 (ja) 面発光装置及び表示装置
JP6000161B2 (ja) 面光源装置および液晶表示装置
JP2011258458A (ja) バックライト装置および液晶表示装置
JP2013025034A (ja) 照明装置及び画像表示装置
JP2005276734A (ja) 面発光装置