JP6000161B2 - 面光源装置および液晶表示装置 - Google Patents

面光源装置および液晶表示装置 Download PDF

Info

Publication number
JP6000161B2
JP6000161B2 JP2013032714A JP2013032714A JP6000161B2 JP 6000161 B2 JP6000161 B2 JP 6000161B2 JP 2013032714 A JP2013032714 A JP 2013032714A JP 2013032714 A JP2013032714 A JP 2013032714A JP 6000161 B2 JP6000161 B2 JP 6000161B2
Authority
JP
Japan
Prior art keywords
light
light source
led element
emitting
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013032714A
Other languages
English (en)
Other versions
JP2014164833A (ja
Inventor
菜美 中野
菜美 中野
晶章 花井
晶章 花井
郁生 長嶋
郁生 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013032714A priority Critical patent/JP6000161B2/ja
Publication of JP2014164833A publication Critical patent/JP2014164833A/ja
Application granted granted Critical
Publication of JP6000161B2 publication Critical patent/JP6000161B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

本発明は、面状の光源を有する面光源装置、および面光源装置を有する液晶表示装置に関する。
一般に、液晶表示装置は、面状光を放射する発光面を有する面光源装置と、その面状光の強度を空間的に変調して画像光をつくりだす空間光変調素子である液晶表示素子とを有している。液晶表示素子は、自ら光を発しないので、画像光をつくりだすためには面光源装置が必要である。
近年、液晶表示装置の薄型化を実現するためにエッジライト方式の面光源装置が広く用いられている。エッジライト方式は、薄い導光板の端面から導光板内に光束を入射させて面状光をつくりだす方式である。なお、エッジライト方式では、導光板の発光面を正面としたときの側方端面、底端面あるいは上端面のいずれかから導光板内に光束が入射させられるが、特に導光板の側方端面から導光板内に光束を入射させて面状光をつくりだす方式は、サイドライト方式と呼ばれている。エッジライト方式の面光源装置では、光源は、導光板の光入射端面と対向する位置に配置されることが多い。
また、近年では、光源として発光ダイオード(以下、LED(Light Emitting Diode)と記載する)を用いた面光源装置に対する需要が高まっている。光源にLEDを採用したエッジライト方式の面光源装置においては、複数のLEDが導光板の光入射端面の長辺に沿って配置されることが多い。
白色LEDは、電気−光変換効率が高く、低消費電力化に有効である。しかしながら一方で、白色LEDはその波長帯域幅が広く、色再現範囲が狭いという問題を有する。液晶表示装置は、液晶表示素子の内部にカラーフィルタを備えている。液晶表示装置は、このカラーフィルタによって赤色、緑色および青色のスペクトル範囲だけを取り出して、色表現を行っている。白色LEDのように波長帯域幅の広い連続スペクトルを有する光源は、色再現範囲を広げるために、カラーフィルタの表示色の色純度を高める必要がある。つまり、カラーフィルタを透過する波長帯域は狭く設定される。しかし、カラーフィルタを透過する波長帯域を狭く設定すると、光の利用効率が低下する。なぜなら、液晶表示素子の画像表示に用いられない不要な光の量が多くなるからである。
カラーフィルタによる光損失を最小限に抑制しながらも、色再現範囲を広げるためには、波長帯域幅の狭い光を発する光源を採用する必要がある。すなわち、色純度の高い光を発する光源を採用する必要がある。
例えば、特許文献1では異なる色の単色光を発するLEDを、重ねて配置された複数の導光板のエッジに取り付ける技術が開示されている。単色光は波長帯域幅の狭い光である。特許文献1のように色純度が高い光である単色光を光源に採用することで、広い色域の液晶表示装置を実現できる。
特開2007−48465号公報
特許文献1では、複数の導光板の同一方向の端面を光入射端面として、光入射端面に異なる色の単色光を発するLEDが配列される。LEDは発光とともに周囲に熱を発する。周囲に発せられた熱によりLED素子周辺の温度は上昇する。LED素子周辺の温度が上昇すると、LEDの発光効率が低下し、輝度の低下や波長の変化が起こるため、好ましくない。
そのため、LED素子間の距離は可能な限り大きくとることが望ましく、例えば、導光板の異なる方向の端面を光入射面として、光源の配置位置を導光板毎に変える方法が考えられる。
しかしながら、導光板毎に異なる端面を光入射面とした場合、液晶表示素子の各画素の透過率を変化させるタイミングに合わせて光源の点灯を制御するスキャニング制御が不可能となってしまう。スキャニング制御が実施できなければ、3D映像表示時にクロストークが発生し、立体感が感じられなくなってしまう。
本発明は以上のような課題を解決するためになされたものであり、光源の温度上昇による発光効率の低下を改善するために、複数の導光板の異なる面に、異なる色の光源を配置する構成とした場合であっても、スキャニング制御が可能な面光源装置を提供することを目的とする。
本発明に係る面光源装置は、白色LED素子と非白色LED素子とを含む第1の光源と、第1の光源で得られる白色および非白色と異なる色の発光素子を含む第2の光源と、側面に第1の光入射面、主面に第1の光出射面を有する第1の面発光導光板と、側面に第2の光入射面、主面に第2の光出射面を有する第2の面発光導光板と、を備え、第1、第2の面発光導光板は、第1、第2の光入射面が同一面に来ず、第1、第2の光出射面が同方向を向くように、主面を重ねて配置され、第1の光源は、第1の光入射面に対向して配置され、第2の光源は、第2の光入射面に対向して配置され、第1、第2の光源の発光を制御する制御部を更に備え、制御部は、白色LED素子を用いず発光制御を行う第1のモードと、白色LED素子を用いて発光制御を行う第2のモードとを有する。
本発明に係る面光源装置によれば、通常の画像表示を行う場合は、第1のモードによって、白色LED素子を用いずに、非白色LED素子と、白色および非白色と異なる色の発光素子とを用いて発光制御を行う。よって、第1の光源における非白色LED素子と、第2の光源における発光素子は同一面に配置されないため、温度上昇による発光効率の低下を改善することが可能である。一方、3D表示等を行う場合は、第2のモードによって、白色LED素子を用いて発光制御を行うため、スキャニング制御を行うことが可能である。このように、第1のモードと第2のモードを切り替えて発光制御を行うことにより、光源の温度上昇による発光効率の低下の改善と、スキャニング制御の実現を両立することが可能となる。
実施の形態1に係る面光源装置を含む液晶表示装置の分解斜視図である。 実施の形態1に係る面光源装置を含む液晶表示装置の断面図である。 実施の形態1に係る面光源装置の第1の面発光導光板の平面図である。 実施の形態1に係る面光源装置の第2の面発光導光板の平面図である。 実施の形態1に係る面光源装置の制御系の機能ブロック図である。 実施の形態2に係る面光源装置を含む液晶表示装置の断面図である。 実施の形態2に係る面光源装置の制御系の機能ブロック図である。
<実施の形態1>
<構成>
図1は、本実施の形態1における、面光源装置200を含む液晶表示装置100の分解斜視図である。また、図2は図1の断面図である。説明を容易にするために、各図中にxyz直交座標系の座標軸を示す。以下の説明において、液晶表示素子を備えた液晶パネル1の表示面1aの短辺方向をy軸方向(図2において紙面に垂直な方向)とし、液晶パネル1の表示面1aの長辺方向をx軸方向(図1,2において紙面の左右方向)とし、x軸及びy軸を含む平面であるxy平面に垂直な方向をz軸方向(図1,2における紙面の上下方向)とする。
また、図1,2において、右から左に向かう方向を、x軸の正方向(+x軸方向)とし、その反対方向を、x軸の負方向(−x軸方向)とする。また、図2が描かれている紙面の手前から紙面に向かう方向を、y軸の正方向(+y軸方向)とし、その反対方向を、y軸の負方向(−y軸方向)とする。さらに、図1,2において、下から上に向かう方向を、z軸の正方向(+z軸方向)とし、その反対方向を、z軸の負方向(−z軸方向)とする。さらに、液晶表示装置100の表示面1aの水平方向をx軸方向とし、表示面1aの垂直方向をy軸方向とし、液晶表示装置100の厚み方向をz軸方向とする。
図1,2に示すように、液晶表示装置100は、透過型の液晶パネル1、第1の光学シート2、第2の光学シート3および面光源装置200を備える。面光源装置200は、第2の光学シート3および第1の光学シート2を介して液晶パネル1の背面1bに光を照射する。液晶パネル1、第1の光学シート2、第2の光学シート3および面光源装置200は、−z軸方向に向かって順に配列されている。
液晶パネル1の表示面1aは、xy平面に平行な面である。液晶パネル1の液晶層は、xy平面に平行な方向に広がる面状の構造を有している。液晶パネル1の表示面1aは、通常、矩形であり、表示面1aの隣接する2辺(y軸方向の短辺とx軸方向の長辺)は、直交している。ただし、表示面1aの形状は、他の形状であってもよい。
図1,2に示すように、面光源装置200は、薄板状の第1、第2の面発光導光板4,5、反射シート6、第1の光源7および第2の光源8を備える。第1、第2の面発光導光板4,5、光反射シート6は−z軸方向に向かって順に配列されている。第1の光源7は非白色の青緑色LED素子71と、白色LED素子72を備える。第2の光源8は、青緑色および白色と異なる色(即ち赤色)の光を発する発光素子として、赤色LED素子81を備える。
第1の面発光導光板4は、−x軸方向の側面に第1の光入射面41cを、+z軸方向の主面に第1の光出射面41aを備える。第1の光入射面41cから入射した光線は、第1の光出射面41aから面状の光として出射される。また、第2の面発光導光板5は、−y軸方向の側面に第2の光入射面51cを、+z軸方向の主面に第2の光出射面51aを備える。第2の光入射面51cから入射した光線は、第2の光出射面51aから面状の光として出射される。
図1に示すように、第1の面発光導光板4と第2の面発光導光板5は、第1の光入射面41cと、第2の光入射面51cとが同一面に来ないように配置される。また、第1の面発光導光板4と第2の面発光導光板5は、第1の光出射面41aと第2の光出射面51aが同じ方向(即ち+z軸方向)を向くように、主面を重ねて配置される。
第1の光源7は、第1の面発光導光板4の−x軸方向側面(即ち第1の光入射面41c)に対向して配置されている。第1の光源7は、y軸方向に交互に1次元配列した青緑色LED素子71と白色LED素子72から構成される。つまり、第1の光源7は、表示面1aの側面側に垂直方向に並んで配置される。青緑色LED素子71の発する青緑色の光線は、赤色LED素子81の発する赤色の光線と補色関係にある。つまり、青緑色LED素子71の光線と赤色LED素子81の光線とを混色することで白色の光線を得る。白色LED素子72は、白色の光線を発する。
第2の光源8に備わる赤色LED素子81は、第2の面発光導光板5の−y軸方向側面(即ち第2の光入射面51c)に対向して配置されている。第2の光源8は、x軸方向に1次元配列した赤色LED素子81から構成される。つまり、第2の光源8は、表示面1a下部側に水平方向に並んで配置される。
第1の光源7より出射されたLED光線は第1の面発光導光板4の第1の光入射面41cより第1の面発光導光板4内部へ入射する。第1の面発光導光板4の第1の光入射面41cは、第2の面発光導光板5の第2の光入射面51cと、xy平面上で直行する。第1の面発光導光板4は、例えば、アクリル樹脂(例えば、PMMA)などの透明材料で作製された部材である。また、第1の面発光導光板4は、厚み3mmの板状部材である。第1の面発光導光板4は、第2の光学シート3と第2の面発光導光板5の間に積層され、その主面は、液晶パネル1の表示面1aに対して平行に配置されている。
第1の光源7より出射された光線は、第1の面発光導光板4内部を通過することによって液晶パネル1の裏面1bを均一な強度分布で照らす面状の照明光L70に変換される。第1の面発光導光板4の裏面41b(−z軸方向)には、例えば凸レンズ形状をした微細光学素子42が配置され、微細光学素子42の配置密度を第1の面発光導光板4の裏面41bにおいてxy平面内で変化させる。詳しく説明すると、例えば図3の様に、微細光学素子42は面発光導光板4における光入射面41c近傍から光入射面41cと対向する側の面までの領域において設けられ、その配置密度が光入射面41c近傍から対向する側の面方向に向かって疎から密へと段階的に変化する構成をとる。
なお、配置密度とは、微細光学素子42の単位面積当たりの数や大きさなどである。微細光学素子42の配置密度の変化により、照明光L70の面内輝度分布を制御することができる。
第2の光源8を構成する赤色LED素子81は、赤色の光線を発する。第2の光源8より出射された光線は第2の面発光導光板5の第2の光入射面51cより第2の面発光導光板5内へ入射する。例えば、第2の面発光導光板5は、アクリル樹脂(例えば、PMMA)などの透明材料で作製された部品である。また、第2の面発光導光板5は、厚み3mmの板状部材である。第2の面発光導光板5は、第1の面発光導光板4と反射シート6の間に積層され、液晶パネル1の表示面1aに対して平行に配置されている。
赤色LED素子81より出射された赤色光線は、第2の面発光導光板5内部を通過することによって、均一な強度分布を持つ面状の照明光L80に変換される。第2の面発光導光板5の裏面51b(−z軸方向)には、第1の面発光導光板4の裏面41b(−z軸方向)と同様に、例えば凸レンズ形状をした微細光学素子52が配置されている。微細光学素子52の配置密度は、第2の面発光導光板5の裏面51bにおいてxy平面内で変化する。詳しく説明すると、例えば図4の様に、微細光学素子52は第2の面発光導光板5の光入射面51c近傍から光入射面51cと対向する側の面までの領域において裏面51bに設けられる。微細光学素子52の配置密度は、光入射面51c近傍から対向する側の面方向に向かって、疎から密へと段階的に変化する。
第1、第2の面発光導光板4,5の微細光学素子42,52は、例えば、その表面の曲率が約0.15mm、最大高さが約0.005mm、屈折率が約1.49の凸レンズ形状を有する。なお、第1、第2の面発光導光板4,5や微細光学素子42,52の材質はアクリル樹脂とすることができるが、この材質に限定されるものではない。光透過率が良く、成形加工性に優れた材質であれば、アクリル樹脂に代えてポリカーボネート樹脂などの他の樹脂材料、あるいはガラス材料を使用してもよい。
なお、本実施の形態においては、微細光学素子42,52を凸レンズ形状としたが、これに限るものではない。微細光学素子42は、第1の面発光導光板4内を−x軸方向に進行する光を、z軸方向に屈折し液晶パネル1の背面1bに向かって放射する構造を有していれば、他の形状でもよい。同様に、微細光学素子52は、第2の面発光導光板5内をy軸方向に進行する光を、z軸方向に屈折し液晶パネル1の背面1bに向かって放射する構造を有していれば、他の形状でもよい。微細光学素子42,52として、例えば、プリズム形状やランダムな凹凸パターンから成る形状を採用してもよい。
図5に、本実施の形態における面光源装置200の制御系の機能ブロック図を示す。本実施の形態における面光源装置200は、第1、第2の光源4,5の発光を制御する制御部11、液晶表示素子駆動部12および光源駆動部13を備える。制御部11には、映像信号と、表示モード信号(第1のモードまたは第2のモード)が入力される。制御部11は、映像信号に基づいて液晶表示素子制御信号を生成して、液晶表示素子駆動部12に入力する。液晶表示素子駆動部12は、液晶表示素子制御信号に基づいて、液晶パネル1の液晶層の光透過率を画素単位で変化させる。
液晶パネル1の各画素は、3つの副画素から構成されている。第1の副画素は、赤色の光のみが透過するカラーフィルタを有している。第2の副画素は、緑色の光のみが透過するカラーフィルタを有している。第3の副画素は、青色の光のみが透過するカラーフィルタを有している。制御部11が各副画素の透過率を制御することで、液晶パネル1はカラー画像を作り出す。つまり、液晶パネル1は、入射した照明光L90を空間的に変調することで画像光を作り出す。この画像光は表示面1aから出射する。なお、画像光とは、画像情報を有する光のことである。
また、制御部11は、映像信号と表示モード信号に基づいて光源制御信号を生成して、光源駆動部13に入力する。光源駆動部13は、光源制御信号に基づいて、第1の光源7(即ち、青緑色LED素子71、白色LED素子72)および第2の光源8(即ち、赤色LED素子81)の発光を制御する。発光を制御するとは、各発光素子の発光量を調整することである。つまり、制御部11は、映像信号と表示モード信号に基づいて、各光源の輝度の割合を調整する。これにより、液晶表示装置100の消費電力を低減できる。
なお、青緑色LED素子71は、青緑色の光線を出射する。この青緑色の光は、例えば450nm付近と530nm付近にピークを有し、420nmから580nmの帯域に連続的なスペクトルを有する光である。青緑色LED素子71は、例えば青色の光を発する青色LEDチップを備えたパッケージに、この青色の光を吸収して緑色の光を発する緑色蛍光体を充填したものである。また、青緑色LED素子71は、例えば励起光源にLED以外の光源を採用しその励起光源により緑色の蛍光体を励起し青緑色の光を発するものであってもよい。また、青緑色LED素子71は、例えば紫外領域の波長の光を放射する光源により青色と緑色の光を発する蛍光体を励起し青緑色の光を発するものであってもよい。
<動作>
一般に、LED素子は発光とともに熱を発する。LED素子より発せられた熱は、周辺の空気を暖める。LED素子は周辺の温度が上昇すると発光効率が低下する。LED素子を密集させて配置すると周辺の温度が上昇しやくなるため、LED素子を分散させて配置することが望ましい。本実施の形態では、第2の光源(即ち赤色LED素子81)8を表示面1aの下部側に、水平方向に配列し、第1の光源7を表示面1aの側面側に、垂直方向に配列している。このように、異なる方向に光源を配置することによって、熱源が分散されるため、周囲の温度上昇を緩和でき、発光効率の低下を抑制できる。
一般に、液晶表示装置において色再現範囲を広げるために表示色の色純度を高める場合、液晶パネルのカラーフィルタの透過波長帯域の幅を狭く設定しなければならない。しかし、透過波長帯域の幅を狭く設定すると、カラーフィルタを透過する光の透過光量は減少する。このため、表示色の色純度を高めようとする場合、カラーフィルタを透過する光の透過光量の減少によって輝度が落ちるという問題が発生していた。さらに、従来使用されていた蛍光ランプは、赤色領域の発光スペクトルのピークがオレンジ色の波長領域にある。同様に、黄色蛍光体を利用した白色のLED素子も、赤色領域の発光スペクトルのピークがオレンジ色の波長領域にある。すなわち、赤色領域の波長のピークは、赤色領域からずれたオレンジ色の領域にある。特に赤色において色純度を高めようとすると、カラーフィルタの透過光量が落ち、著しく輝度が低下してしまうという問題があった。
本実施の形態の液晶表示装置100は、白色LED素子72を用いずに発光制御を行う、通常の画像表示動作(後述する第1のモード)においては、青緑色LED素子71と赤色LED素子81を用いて白色の光線を得る。赤色LED素子81は、単色の光であるため波長幅が狭い。すなわち、単色のLED素子の光は、色純度が高い。このため、赤色LED素子81を用いることにより、赤色の色純度が向上する。すなわち、本実施の形態における液晶表示装置100は、従来の白色LED素子を用いた液晶表示装置に比べ、表示色の色再現範囲を広げることができる。なお、単色とは、一定の波長のみからなる光のことである。色純度とは、単色性の高さを現す。
一般に、液晶パネル1は画面左上の画素から水平方向に各画素の透過率を変化させることで画像を表示している。この走査タイミングに合わせて、LEDの点灯タイミングを制御するスキャン制御技術がある。つまり、液晶パネル1の走査線に合わせて、該当する部分のLEDを消灯する。特に3D映像の表示においては、スキャン制御を実施することで、クロストークを低減することが出来る。ここで、クロストークとは右目用(左目用)の画像が左目(右目)に見えてしまう現象であり、クロストークが発生すると3D映像の立体感が感じられなくなる。
例えば、面発光導光板の画面縦方向にLED素子を配置したサイドライト方式における、スキャン制御では、液晶パネル1の走査タイミングに合わせて、該当するLEDを消灯させることで、画面水平方向のエリアが消灯される。
本実施の形態においては、青緑色LED素子71は表示面1aの側面側に、垂直方向(y軸方向)に配列されている。また、赤色LED素子81は表示面1aの下部側に、画面水平方向(x軸方向)に配列されている。この様な配列のため、青緑色LED素子71と赤色LED素子81を点灯制御して、例えば画面水平方向のエリアを消灯させることは出来ない。つまり、複数種類の光源を用いて白色光を得る場合、光源の入射方向が異なると、スキャン制御が出来なくなってしまう。そこで、本実施の形態では、白色LED素子72を青緑色LED素子71と同様に表示面1aの側面側に、垂直方向(y軸方向)に配列する。スキャン制御が必要な場面(主に3D映像表示)においては、制御部11は後述する第2のモードで発光制御を行う。
本実施の形態では、スキャン制御が不要な映像、例えば通常の画面表示等においては、制御部11は、第1のモードにより発光制御を行う。第1のモードでは、制御部11は、白色LED素子72を用いずに、青緑色LED素子71と赤色LED素子81を用いて、発光制御を行う。第1のモードでは、それぞれの面発光導光板4,5の出射面41a,51aより出射された青緑色の照明光L70と赤色の照明光L80とが混色され、液晶パネル1の背面1bを照明する白色の照明光L90として、映像表示に用いられる。
一方、スキャン制御が必要な映像、例えば3D映像表示においては、制御部11は、第2のモードにより発光制御を行う。第2のモードでは、制御部11は、白色LED素子72を用いて発光制御を行う。つまり、白色LED素子72を点灯させて、第1の面発光導光板4の出射面41aより出射された白色の照明光L70を映像表示に用いる。ただし、白色LED素子72のみの点灯では十分な輝度が得られない場合は、スキャン制御の効果を低減させない程度、例えば3D映像表示時にはクロストークが発生しない程度の輝度で青緑色LED素子71と赤色LED素子81を点灯させることで、明るい映像を提供できる。
なお、本実施の形態においては、青緑色LED素子71と白色LED素子72は、y軸方向に交互に1次元配列して成るとしたが、本発明はこれに限るものではない。青緑色LED素子71および白色LED素子72の配置個数や発散角等を考慮して適切な間隔で各LED素子が配置されればよい。ここで適切な間隔とは、第1の面発光導光板4の第1の出射面41aより出射される光が、第1の出射面41a内において均一な強度の分布を持つ面光源となるために必要な配置間隔である。
なお、本実施の形態においては、第1の光源7に備わる青緑色LED素子71の発する光と、第2の光源8に備わる赤色LED素子81の発する光とを混色することで、白色光を得る構成としたが、本発明はこれに限るものではない。本実施の形態では、第1の光源7に備わる非白色LED素子と、第2の光源に備わる発光素子は、混色することで白色となる異なる色の光を発する光源であればよい。つまり、第1の光源7に備わる非白色LED素子と、第2の光源8に備わる発光素子は、補色の関係となる色の光を発すればよい。
ただし、上述したように液晶表示装置100の色再現範囲を広げるためには色純度の高い光が必要である。そのため、第1の光源7に備わる非白色LED素子もしくは第2の光源8に備わる発光素子の少なくともどちらか一方は単色の光を発するLED素子であることが望ましい。
また、上述したように人間は赤色の色差に対する感度が高いこと、従来の白色LED素子は赤色の再現範囲が弱いことを考慮すると、単色のLED光源として赤色のLED素子を用いることで液晶表示装置100の赤色の色純度を向上させることができる。つまり、液晶表示装置100の色再現範囲を向上させるには効果的である。従って、本実施の形態では、第2の光源8に備わる発光素子として赤色LED素子81を用い、第1の光源7に備わる非白色LED素子として、赤色の補色となる青緑色LED素子71を用いた。
<効果>
本実施の形態における面光源装置200は、白色LED素子72と非白色LED素子(即ち青緑色LED素子71)とを含む第1の光源7と、第1の光源7で得られる白色および非白色と異なる色の発光素子(即ち赤色LED素子81)を含む第2の光源8と、側面に第1の光入射面41c、主面に第1の光出射面41aを有する第1の面発光導光板4と、側面に第2の光入射面51c、主面に第2の光出射面51aを有する第2の面発光導光板5と、を備え、第1、第2の面発光導光板4,5は、第1、第2の光入射面41c,51cが同一面に来ず、第1、第2の光出射面41a,51aが同方向を向くように、主面を重ねて配置され、第1の光源7は、第1の光入射面41cに対向して配置され、第2の光源8は、第2の光入射面51cに対向して配置され、第1、第2の光源7,8の発光を制御する制御部11を更に備え、制御部11は、白色LED素子72を用いず発光制御を行う第1のモードと、白色LED素子72を用いて発光制御を行う第2のモードとを有する。
従って、通常の画像表示を行う場合は、第1のモードによって、白色LED素子72を用いずに、非白色LED素子(即ち青緑色LED素子71)と、白色および非白色と異なる色の発光素子(即ち赤色LED素子81)とを用いて発光制御を行う。よって、青緑色LED素子71と赤色LED素子81は同一面に配置されないため、温度上昇による発光効率の低下を改善することが可能である。一方、3D表示等を行う場合は、第2のモードによって、白色LED素子72を用いて発光制御を行うため、スキャニング制御を行うことが可能である。このように、表示モード(第1のモード、第2のモード)を切り替えて発光制御を行うことにより、光源の温度上昇による発光効率の低下の改善と、スキャニング制御の実現を両立することが可能となる。
また、本実施の形態における面光源装置200において、第1の光源7における非白色LED素子と、第2の光源8における発光素子は、互いに補色の関係にある光をそれぞれ発する。
従って、本実施の形態では、第1の光源7における非白色LED素子として青緑色LED素子71を用い、第2の光源8における発光素子として赤色LED素子81を用いる。よって、青緑色LED素子71の発する光と、赤色LED素子81の発する光とは補色関係にあるため、これらを混ぜることにより白色光が得られる。よって、液晶パネル1のバックライトとして使用するのに便利である。
また、本実施の形態における面光源装置200において、第1の光源7における非白色LED素子と、第2の光源8における発光素子との少なくとも一方は、単色光を発する。
従って、本実施の形態では、第2の光源8における発光素子として赤色LED素子81を用いることにより、混色された光は、より色純度の高い光となるため、液晶表示装置100の色再現範囲を広くすることが可能である。
また、本実施の形態における面光源装置200において、第1の光源7における非白色LED素子(即ち青緑色LED素子71)と、第2の光源8における発光素子(即ち赤色LED素子81)は、青緑色の光と赤色の光をそれぞれ発する。
従って、人間は赤色の色差に対する感度が高く、また従来の白色LEDは赤色の再現範囲が弱いため、第2の光源8における発光素子として赤色LED素子81を用いることで、面光源装置200の赤色の色純度を向上させることができる。よって、液晶表示装置100の色再現範囲を向上させる効果が得られる。このとき、第2の光源8の補色となるように、第1の光源7における非白色LED素子として青緑色LED素子71を用いる。
また、本実施の形態における面光源装置200において、第1の光源7における非白色LED素子(即ち青緑色LED素子71)は、青色LEDチップを備えたパッケージに緑色蛍光体を充填した青緑色の光を発する素子である。
従って、青色LEDチップを備えたパッケージに緑色蛍光体を充填することにより、1つのLED素子で青色と緑色の光を得ることができる。よって、LED素子の種類を削減して、簡易な構成とすることが可能である。
また、本実施の形態における液晶表示装置100は、面光源装置200を備える。従って、液晶表示装置100において、面光源装置200をバックライトとして用いた画像表示が可能となる。
<実施の形態2>
<構成>
図6に、本実施の形態における液晶表示装置101(面光源装置201を含む)の分解斜視図を示す。本実施の形態における面光源装置201において、第1の光源7は、実施の形態1と同様に、非白色LED素子としての青緑色LED素子71と、白色LED素子72を備える。第2の光源8は、青緑色および白色と異なる色、即ち赤色の光を発する発光素子として、赤色のレーザー発光素子82を備える。
レーザー発光素子82は波長帯域幅が非常に狭く、高い色純度の光が得られる。赤色の光の光源として、非常に単色性の高いレーザー発光素子を用いることで、色再現範囲の広い液晶表示装置101を実現できる。
図7は、本実施の形態における液晶表示装置101の制御系の機能ブロック図である。図6及び図7において、実施の形態1に示される構成要素と同一又は対応する構成要素には、同じ符号を付し、詳細な説明は省略する。
人間は赤色の色差に対する感度が高い。そのため、赤色における波長帯域幅の差は、人間の視覚にはより顕著な差となって感じられる。ここで、波長帯域幅の差は色純度の差である。従来、液晶表示装置に光源として使用されていた白色LEDは、特に600nmから700nm帯の赤色のスペクトルのエネルギー量が少ない。つまり、波長域幅の狭いカラーフィルタを用いて純赤として好ましい630〜640nmの波長領域で色純度を高めようとすると、極めて透過光量が減少し、光の利用効率が低下する。従って、著しく輝度が低下するという問題が発生する。一方で、レーザー発光素子は波長帯域幅が狭いため、光を損失することなしに高い色純度の光が得られる。3原色の色の中でも特に、赤色の光の光源として非常に単色性の高いレーザー発光素子を用いることによって、低消費電力化および色純度向上に対する効果を得られる。そこで、本実施の形態における液晶表示装置101においては、第2の光源8として、赤色の光を発するレーザー発光素子82を採用する。
レーザー発光素子82は、第2の面発光導光板5の光入射面51cに対向して配置されている。つまり、表示面1aの下部(−y軸方向)側に配置されている。第2の光源8は、レーザー発光素子82をx軸方向に1次元配列して成る。第2の光源8を構成するレーザー発光素子82は、赤色のレーザー光線を発する。この赤色のレーザー光線は、例えば波長640nm付近にピークを有する光である。また、レーザー光線の波長幅は、半値全幅で1nmであり、レーザー光線は、極めて狭い幅のスペクトルを有する。
レーザー発光素子82より出射されたレーザー光線は、第2の面発光導光板5の第2の光入射面51cより第2の面発光導光板5内部へ入射する。レーザー光線は第2の面発光導光板5によって、液晶パネル1の背面1bを均一な強度分布で照らす面状の照明光L80に変換される。第2の面発光導光板5の裏面51b(−z軸方向)には実施の形態1と同様に、微細光学素子52が配置されている。微細光学素子52の配置密度を第2の面発光導光板5の裏面51bにおいてxy平面内で変化させることにより、レーザー照明光L80の面内輝度分布を制御することができる。
第1の光源7は、実施の形態1と同様に青緑色LED素子71および白色LED素子72より構成される。青緑色LED素子71および白色LED素子72は、第1の面発光導光板4の光入射面41c(+x軸方向)に配置されている。青緑色LED素子71の発する光と、赤色のレーザー発光素子82の発する光は混色され、白色の照明光L90となって、液晶パネル1を照らす。また、スキャン制御が必要な場合(第2のモード)は白色LED素子72を点灯させて得られた白色の照明光L70を映像表示に用いる。
図7は、図5において赤色LED素子81を、レーザー発光素子82に置き換えた構成である。それ以外の構成は実施の形態1と同じであるため、説明を省略する。制御部11は映像信号と表示モード信号に基づいて、光源駆動部13を制御して、青緑色LED素子71、白色LED素子72およびレーザー発光素子82の発光量を調整する。つまり、制御部11は、映像信号と表示モード信号に基づいて、各光源の輝度の割合を調整する。これにより、液晶表示装置101の消費電力を低減できる。
<動作>
本実施の形態における面光源装置の動作は、実施の形態1と同様である。つまり、スキャン制御が不要な映像、例えば通常の動画表示等においては、制御部11は、第1のモードにより発光制御を行う。第1のモードでは、制御部11は、白色LED素子72を用いずに、青緑色LED素子71と赤色のレーザー発光素子82を用いて、発光制御を行う。一方、スキャン制御が必要な映像、例えば3D映像表示においては、制御部11は、第2のモードにより発光制御を行う。第2のモードでは、制御部11は、白色LED素子72を用いて発光制御を行う。ただし、白色LED素子72のみの点灯では十分な輝度が得られない場合は、スキャン制御の効果を低減させない程度、例えば3D映像表示時にはクロストークが発生しない程度の輝度で青緑色LED素子71と赤色のレーザー発光素子82を点灯させることで、明るい映像を提供できる。
一般的に空気は暖かくなると上昇する性質がある。例えば、光源となる素子を表示面1aに対して画面縦方向(y軸方向)に並べて配置した場合、発光素子の点灯により光源自身が発した熱は上昇(+y軸方向)する。そのため、光源の上部の周辺温度は下部と比べると高くなる。つまり、画面縦方向(y軸方向)に発光素子を並べた場合、発光素子間に温度差が生じる。LEDやレーザーの様な発光素子は温度によって発光効率が変化する。発光素子間に温度差が生じると、各発光素子の輝度がばらつき、均一な面(線)状光を作り出すことが難しくなる。
特にレーザー発光素子82は、温度によって出射光量や波長が変化しやすい。このため、レーザー発光素子82を表示面1aに対して、画面縦方向に並べた場合、上部に位置するレーザー発光素子82と下部に位置するレーザー発光素子82に生じた温度差によって、表示面1aの明るさや色にむらができる。
そこで、本実施の形態ではレーザー発光素子82間の温度差をなくすために、表示面1aに対してレーザー発光素子82を横方向(x軸方向)に並べる構成としている。これによりレーザー発光素子間の出力のばらつきを抑制でき、均一な面(線)状光を作り出すことが出来る。また、上述のように発光素子の点灯により光源自身が発する熱は、+y軸方向へ上昇する。本実施の形態ではレーザー発光素子82は表示面1aの下部側(−y軸方向)に配置されているため、レーザー発光素子82は、自身が発した熱による影響を受けにくい。さらに、第1の光源7より発せられた熱も+y軸方向へ上昇するため、第2の光源8(即ちレーザー発光素子82)は、第1の光源7の発光による周辺温度上昇の影響を受けにくい。
なお、本実施の形態においては、第1の光源7に備わる青緑色LED素子71の発する光と、第2の光源8に備わる赤色のレーザー発光素子82の発する光とを混色することで、白色光を得る構成としたが、本発明はこれに限るものではない。本実施の形態では、第1の光源7に備わる非白色LED素子と、第2の光源に備わるレーザー発光素子82は、混色することで白色となる、異なる色の光を発する光源であればよい。つまり、第1の光源7に備わる非白色LED素子と、第2の光源8に備わるレーザー発光素子82は、補色の関係となる色の光をそれぞれ発すればよい。
ただし、上述したように人間は赤色の色差に対する感度が高いこと、従来の白色LEDは赤色の再現範囲が弱いことを考慮すると、赤色のレーザー発光素子82を用いて赤色の色純度を向上させるのが液晶表示装置101の色再現範囲向上の観点から好ましい。そのため、第1の光源7に備わる非白色LED素子として、赤色の補色となる青緑色LED素子71を用いる構成とすることが、液晶表示装置101の色再現範囲を向上させるためには効果的である。
以上より、本実施の形態の面光源装置201によれば、補色関係にある光源を表示面1aの側面側と下部側のそれぞれに配置して、これらを混色して白色光を得る構成であっても、表示面1a側面側に白色の光源をさらに配置することで、スキャン制御が可能となる。また、第2の光源8に純度の高い色の光を発光できるレーザー発光素子82を用いることで、液晶表示装置101の色再現範囲を大きく広げることが出来る。
<効果>
本実施の形態における面光源装置201において、第2の光源8における発光素子は、レーザー発光素子82である。従って、実施の形態1で述べた効果に加えて、第2の光源8に純度の高い色の光を発光できるレーザー発光素子82を用いることで、液晶表示装置101の色再現範囲を大きく広げることが可能である。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1 液晶パネル、1a 表示面、1b 背面、2 第1の光学シート、3 第2の光学シート、4 第1の面発光導光板、5 第2の面発光導光板、6 光反射シート、7 第1の光源、8 第2の光源、11 制御部、12 液晶表示素子駆動部、13 光源駆動部、41a 第1の光出射面、41b,51b 裏面、41c 第1の光入射面、51a 第2の光出射面、51c 第2の光入射面、71 青緑色LED素子、72 白色LED素子、81 赤色LED素子、82 レーザー発光素子。

Claims (7)

  1. 白色LED素子と非白色LED素子とを含む第1の光源と、
    前記第1の光源で得られる白色および非白色と異なる色の発光素子を含む第2の光源と、
    側面に第1の光入射面、主面に第1の光出射面を有する第1の面発光導光板と、
    側面に第2の光入射面、主面に第2の光出射面を有する第2の面発光導光板と、
    を備え、
    前記第1、第2の面発光導光板は、前記第1、第2の光入射面が同一面に来ず、前記第1、第2の光出射面が同方向を向くように、主面を重ねて配置され、
    前記第1の光源は、前記第1の光入射面に対向して配置され、
    前記第2の光源は、前記第2の光入射面に対向して配置され、
    前記第1、第2の光源の発光を制御する制御部を更に備え、
    前記制御部は、前記白色LED素子を用いず発光制御を行う第1のモードと、前記白色LED素子を用いて発光制御を行う第2のモードとを有する、
    面光源装置。
  2. 前記第1の光源における前記非白色LED素子と、前記第2の光源における前記発光素子は、互いに補色の関係にある光をそれぞれ発する、
    請求項1に記載の面光源装置。
  3. 前記第1の光源における前記非白色LED素子と、前記第2の光源における前記発光素子との少なくとも一方は、単色光を発する、
    請求項1または請求項2に記載の面光源装置。
  4. 前記第1の光源における前記非白色LED素子と、前記第2の光源における前記発光素子は、青緑色の光と赤色の光をそれぞれ発する、
    請求項1〜3のいずれかに記載の面光源装置。
  5. 前記第1の光源における前記非白色LED素子は、青色LEDチップを備えたパッケージに緑色蛍光体を充填した青緑色の光を発する素子である、
    請求項4に記載の面光源装置。
  6. 前記第2の光源における前記発光素子は、レーザー発光素子である、
    請求項1〜5のいずれかに記載の面光源装置。
  7. 請求項1〜6のいずれかに記載の面光源装置を備える、液晶表示装置。
JP2013032714A 2013-02-22 2013-02-22 面光源装置および液晶表示装置 Expired - Fee Related JP6000161B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013032714A JP6000161B2 (ja) 2013-02-22 2013-02-22 面光源装置および液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013032714A JP6000161B2 (ja) 2013-02-22 2013-02-22 面光源装置および液晶表示装置

Publications (2)

Publication Number Publication Date
JP2014164833A JP2014164833A (ja) 2014-09-08
JP6000161B2 true JP6000161B2 (ja) 2016-09-28

Family

ID=51615300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013032714A Expired - Fee Related JP6000161B2 (ja) 2013-02-22 2013-02-22 面光源装置および液晶表示装置

Country Status (1)

Country Link
JP (1) JP6000161B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748013B (zh) 2015-04-02 2018-05-25 深圳市华星光电技术有限公司 背光模组及显示装置
CN205450502U (zh) 2016-03-25 2016-08-10 武汉华星光电技术有限公司 支撑结构及烤炉
KR102635544B1 (ko) * 2016-12-02 2024-02-07 엘지디스플레이 주식회사 화면 모드에 따른 백라이트 유닛 제어 방법 및 이를 수행하는 표시 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526290A (ja) * 2001-04-10 2004-08-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 照明系およびディスプレイデバイス
WO2011048830A1 (ja) * 2009-10-20 2011-04-28 シャープ株式会社 バックライト装置と、それを備えた画像表示装置、並びに、駆動方法
JP2012138222A (ja) * 2010-12-25 2012-07-19 Omron Corp 面光源装置及び立体表示装置

Also Published As

Publication number Publication date
JP2014164833A (ja) 2014-09-08

Similar Documents

Publication Publication Date Title
TWI474082B (zh) 背光裝置及液晶顯示裝置
JP6358894B2 (ja) 面光源装置および液晶表示装置
JP6358895B2 (ja) 面光源装置および液晶表示装置
US20120306861A1 (en) Light source device and display
US9739921B2 (en) Surface light source device and liquid crystal display device
WO2014020844A1 (ja) 面光源装置及び液晶表示装置
JP5323274B2 (ja) 面光源装置及び液晶表示装置
JP4656444B2 (ja) プロジェクタ
JP6391360B2 (ja) 面光源装置および液晶表示装置
JP2011228078A (ja) バックライト装置および液晶表示装置
US9715057B2 (en) Surface light source device and liquid crystal display device
US9753213B2 (en) Planar light source device and liquid crystal display apparatus
JP6000161B2 (ja) 面光源装置および液晶表示装置
JP2012252937A (ja) 光源デバイスおよび表示装置
JP6066810B2 (ja) 面光源装置および液晶表示装置
TWI494662B (zh) Surface light source device and liquid crystal display device
JP2014164834A (ja) 面光源装置および液晶表示装置
JP2004110062A (ja) 光源装置,光学装置および液晶表示装置
TWI626472B (zh) High efficiency head-up display illumination system using three primary color sources
JP2013025034A (ja) 照明装置及び画像表示装置
JP2017091984A (ja) 面光源装置および液晶表示装置
JP2007004197A (ja) 光源装置,光学装置および液晶表示装置
WO2012147650A1 (ja) Ledモジュール、バックライトユニット及び液晶表示装置
JP2015138613A (ja) 面光源装置及び液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160830

R150 Certificate of patent or registration of utility model

Ref document number: 6000161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees