JP2011227920A - マーケティング支援システム - Google Patents

マーケティング支援システム Download PDF

Info

Publication number
JP2011227920A
JP2011227920A JP2011144966A JP2011144966A JP2011227920A JP 2011227920 A JP2011227920 A JP 2011227920A JP 2011144966 A JP2011144966 A JP 2011144966A JP 2011144966 A JP2011144966 A JP 2011144966A JP 2011227920 A JP2011227920 A JP 2011227920A
Authority
JP
Japan
Prior art keywords
value
target
customerization
variable
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011144966A
Other languages
English (en)
Other versions
JP5160670B2 (ja
Inventor
Junichi Shiozaki
潤一 塩崎
Takao Matsumoto
崇雄 松本
Utahiro Inui
卯太弘 乾
Noritoshi Morimoto
教稔 森本
Yoshihiro Kuwasawa
嘉宏 桑澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Research Institute Ltd
Original Assignee
Nomura Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Research Institute Ltd filed Critical Nomura Research Institute Ltd
Priority to JP2011144966A priority Critical patent/JP5160670B2/ja
Publication of JP2011227920A publication Critical patent/JP2011227920A/ja
Application granted granted Critical
Publication of JP5160670B2 publication Critical patent/JP5160670B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】良いマーケティング戦略を立案し易くするマーケティング支援技術を提供する。
【解決手段】顧客化ステップを構成する複数の過程をそれぞれ指標化した各顧客化ステップ指標を用意し、各顧客化ステップ指標に要因種類を分類することにより分類管理情報を構築する。マーケティングダッシュボードは、その分類関係情報と、実績値群とに基づいて、目的実績値と顧客化ステップ指標値との関係性を構築し、該関係性を用いて将来の目的実績値を予測し、予測された目的実績値に基づく情報を表示する。
【選択図】図5

Description

本発明は、マーケティングを支援するためのコンピュータ技術に関し、例えば、マーケティングダッシュボードの改良に関する。
マーケティングを支援するためのコンピュータ技術の一つに、マーケティングダッシュボードがある。マーケティングダッシュボードとは、マーケティング担当者に対してさまざまなマーケティング指標を整理して提示するツールであり、本出願人によって改良が進められている技術の一つである。
http://www.nri.co.jp/publicity/mediaforum/2006/forum39.html
いわゆるB to C(Business to Customer)で商品を販売する会社では、消費者に対する自社商品のマーケティング戦略が重要である。マーケティングダッシュボードを利用すれば、様々なマーケティング指標にそれぞれ対応した値が表示されることになるので、マーケティング担当者は、表示された各指標の各値を基に、マーケティング戦略を立案することができる。
しかし、そのマーケティング戦略の良し悪しは、マーケティングダッシュボードの表示内容を見たマーケティング担当者が誰であるか(例えば、マーケティング担当者の能力や経験)に依存する部分が少なくない。このため、会社にしてみれば、誰をマーケティング担当者とするかによって、自社商品の売行きが大きく左右されてしまうことになり兼ねない。
従って、本発明の目的は、良いマーケティング戦略を立案し易くするマーケティング支援技術を提供することにある。
本発明に従うマーケティング支援システムは、第一の特定手段と、第二の特定手段と、関係性構築手段と、格納手段と、予測手段と、表示手段とを備える。第一の特定手段は、商品の販売に関する複数種類の実績値を時系列的に含んだ実績値群を各商品毎に記憶している第一の記憶域にアクセスすることにより、ターゲットの商品に対応した実績値群から、各時点について、商品販売の目的に対応する実績値である目的実績値と、該目的実績値に影響を与え得る複数の要因にそれぞれ対応した実績値である複数の要因実績値とを特定する。第二の特定手段は、消費者が顧客に至る顧客化ステップを構成する複数の過程をそれぞれ指標化したものである複数の顧客化ステップ指標と、各顧客化ステップ指標に分類された要因種類との対応関係を表す分類管理情報を記憶した第二の記憶域にアクセスすることにより、どの顧客化ステップ指標にどんな要因種類が対応するかを特定する。関係性構築手段は、前記特定された各時点での目的実績値及び複数の要因実績値と、前記特定された各顧客化ステップ指標と要因種類との対応とに基づいて、目的実績値と顧客化ステップ指標値との関係性を構築する。格納手段は、前記構築された関係性を表す関係性情報を第三の記憶域に格納する。予測手段は、前記格納された関係性情報が表す関係性を用いて、将来の目的実績値を予測する。表示手段は、前記予測された将来の目的実績値に基づく情報を表示する。前述した顧客化ステップ指標値は、その顧客化ステップ指標に分類された各要因種類に対応した各要因実績値を基に算出することが可能である。顧客化ステップ指標値の算出は、前もって行われていても良いし、関係性の構築時など必要時に行われても良い。
顧客化ステップを構成する複数の過程をそれぞれ指標化した各顧客化ステップ指標を用意し、各顧客化ステップ指標に要因種類を分類することにより分類管理情報が構築される。つまり、様々な要因種類が顧客化ステップの視点で整理されている。このマーケティング支援システムでは、その分類関係情報と、実績値群とに基づいて、目的実績値と顧客化ステップ指標値との関係性が構築され、該関係性を用いて将来の目的実績値が予測され、予測された目的実績値に基づく情報が表示される。将来の目的実績値を、ユーザが予測するのではなく、構築された上記関係性を基にコンピュータが予測するので、ユーザは、マーケティング戦略を立案し易くなる。
第一の実施態様では、前記構築される関係性は、商品販売の目的実績値である第一の変数を算出するための計算式であり、該計算式は、前記複数の顧客化ステップ指標の各々の値が代入される第二の変数と、各第二の変数のそれぞれの重みを表す各重み係数とを有する。この第一の実施態様では、関係性更新手段が更に備えられる。関係性更新手段は、前記ターゲットの商品に対応した実績値群に、新たな時点の複数種類の実績値が追加された場合、該追加された複数種類の実績値と、該新たな時点よりも過去の各時点の複数種類の実績値とを用いて、前記各第二の変数に関わる各係数を更新する。これにより、実績値群が更新された場合には、その更新に合わせて、将来の目的実績値の予測で使用される関係性をより適切なものに更新することができる。
第二の実施態様では、前記構築される関係性は、商品販売の目的実績値である第一の変数を算出するための計算式であり、該計算式は、前記複数の顧客化ステップ指標の各々の値が代入される第二の変数と、各第二の変数のそれぞれの重みを表す各重み係数とを有する。前記各第二の変数に関わる各係数として、前記各第二の変数と前記第一の変数との関連の度合いを表す各相関係数がある。目標とする第一の変数の値の入力をユーザから受け付ける目標第一変数値受付手段と、前記ユーザから入力された第一の変数の値を得るために必要な各第二の変数の値を、該各第二の変数に対応した各相関係数に基づいて計算する必要値計算手段とが更に備えられる。前記表示手段は、前記将来の目的実績値の予測のための計算で前記予測手段によって使用された各第二の変数の値と、前記必要計算手段によって算出された各第二の変数の値とをユーザが比較可能な態様で表示する。これにより、ユーザは、目標とする目的実績値を得るためにはどの顧客化ステップ指標をどれだけ変えなければいけないかを一目で把握することができる。なお、前記予測手段によって使用された各第二の変数の値は、実績値群を基にコンピュータによって算出された値であっても良いし、ユーザから入力された値であっても良い。
第三の実施態様では、将来の目的実績値に関わるアラートを表示するための条件であるアラート表示条件をユーザから受け付けるアラート表示条件受付手段が更に備えられる。前記関係性構築手段が、前記ターゲットの商品に対応した実績値群を所定の統計解析手法に基づいて解析することにより、短期の目的実績値と長期の目的実績値との第一種の比較の結果を先頭とした、アラート表示条件に至るアラート制御フローを、前記関係性として構築する。前記予測手段は、前記ターゲットの商品に対応した実績値群における最近の実績値を用いて前記アラート制御フローを辿ることで、前記アラート表示条件に達するか否かを調べる。前記表示手段は、前記アラート制御フローを辿った結果、前記アラート表示条件に達した場合に、前記予測された将来の目的実績値に基づく情報として前記アラートを表示する。これにより、各商品別に、これまでの実績値群に適したアラート制御フローが構築される。言い換えれば、全ての商品や全ての企業でアラートが表示されるタイミングが一律ではなく、各企業での各商品の販売実績に適したタイミングでのアラート表示が可能となる。
前記短期の目的実績値とは、例えば、当月の目的実績値である。また、前記長期の目的実績値とは、例えば、当月を含む過去3ヶ月の目的実績値の平均である。
第四の実施態様では、前記第三の実施態様において、前記構築されるアラート制御フローには、前記第一の比較の結果の他に、一以上の第二種の比較の結果に基づく分岐があり、各第二種の比較の結果とは、短期の顧客化ステップ指標の値と長期の顧客化ステップ指標の値との比較の結果である。
第五の実施態様では、前記第三の実施態様において、関係性更新手段が更に備えられる。関係性更新手段は、前記ターゲットの商品に対応した実績値群に、新たな時点の複数種類の実績値が追加された場合、該実績値群を前記所定の統計解析手法に従って解析し直すことにより、前記第一種の比較の結果を先頭とした、前記アラート表示条件に至るアラート制御フローの構成を更新する関係性更新手段を更に備える。ここで、「アラート制御フローの構成を更新する」とは、アラート制御フローそれ自体の構成が変わることと、アラート制御フローそれ自体の構成は変わらないが分岐の条件が変わることとの両方を含んで良い。この第五の実施態様によれば、実績値群の更新に応じて、一旦構築されたアラート制御フローを適切なフローに更新することができ、以って、アラートの表示タイミングを適切にすることができる。
第六の実施態様では、前記ターゲットの商品についての複数の顧客化ステップ指標値を結ぶことで形成されるターゲットのグラフと類似の他の商品のグラフを検索するグラフ検索手段が更に備えられる。前記グラフ検索手段は、前記ターゲットのグラフにおける各隣り合う顧客化ステップ指標値間の比が同じ傾向にあって該ターゲットのグラフとの交差が生じないグラフを検索する。
マーケティング支援システムが備える各手段は、ハードウェア(例えば回路)、コンピュータプログラム、或いはそれらの組み合わせ(例えば、一部をコンピュータプログラムで実行し残りをハードウェアで実行する)によって実現することもできる。各コンピュータプログラムは、コンピュータマシンに備えられる記憶資源(例えばメモリ)から読み込むことができる。その記憶資源には、CD−ROMやDVD(Digital Versatile Disk)等の記録媒体を介してインストールすることもできるし、インターネットやLAN等の通信ネットワークを介してダウンロードすることもできる。
図1は、本発明の一実施形態に係るコンピュータシステムの構成例を示す。 図2は、DWH109の構成例を示す。 図3は、マーケティングダッシュボード105の機能ブロック図を示す。 図4は、係数更新モジュール123が行う処理の流れの一例を示す。 図5は、アラート制御モジュールが行う処理の流れの一例を示す。 図6は、アラート制御モジュール125の作用効果の説明図である。 図7は、グラフ検索モジュール127が行う処理の流れの一例を示す。 図8Aは、予測GUIの一例である。図8Bは、必要指標値も表示された予測GUIの一例である。
図1は、本発明の一実施形態に係るコンピュータシステムの構成例を示す。
CPU103、記憶資源107、DWH109、入力装置102及び表示装置101が備えられる。CPU103、記憶資源107、DWH109、入力装置102及び表示装置101は、一つの計算機に存在しても良いし、複数の計算機に分散して存在しても良い。後者の場合、例えば、本実施形態に係るコンピュータシステムは、クライアントサーバシステムであり、表示装置101及び入力装置102が、クライアントマシンに存在し、CPU103及び記憶資源107が、サーバマシンに存在し、DWH109が、サーバマシンの補助記憶装置に存在しても良い。
記憶資源(例えばメモリ等の主記憶装置)107に、コンピュータプログラムであるマーケティングダッシュボード105が記憶されている。CPU103が、マーケティングダッシュボード105を記憶資源107から読み込んで実行する。以下、コンピュータプログラムが主語になる場合は、実際にはそのコンピュータプログラムを実行するCPUによって処理が行われるものとする。
DWH(Data Ware House)109が、記憶資源107又はそれとは別の記憶資源(例えばハードディスク或いは大規模なストレージシステム等の補助記憶装置)に構築されている。マーケティングダッシュボード105は、入力装置102を介してユーザから入力された指示に従う処理を、DWH109に含まれるデータを用いて実行し、実行した処理の結果に基づく情報を、表示装置101に表示させる(図1に例示するグラフは、表示される情報の一例である)。
図2は、DWH109の構成例を示す。
DWH109では、商品販売における最終的な目標(以下、「売上」又は「シェア」とする)に影響を及ぼす要因が、消費者が顧客に至るまでのステップ(以下、「顧客化ステップ」と称する)の視点で整理されている。なお、本実施形態において、「顧客」と言う場合には、その商品を繰返し購入してくれる消費者、つまりいわゆるお得意様を意味し、顧客と言わずに単に「消費者」と言う場合には、顧客以外の消費者を意味するものとする。
顧客化ステップは、複数の過程から成るが、本実施形態では、顧客化ステップを構成する複数の過程がそれぞれ指標とされる。顧客化ステップを構成する複数の過程として、図2Aに例示するように、「認知」、「購入意向」、「接触」、「購入」、「継続購入意向」及び「繰り返し」がある。しかし、顧客化ステップの構成は、これに限らず、例えば、過程の数、過程の順番、各過程の内容が、上記とは異なっていても良い。また、顧客化ステップの構成は、予め用意された固定の構成であってもよいし、ユーザが設定変更できるようになっていてもよい。
DWH109は、一又は複数のデータテーブルを有する。具体的には、例えば、図2Aに例示する分類管理テーブル113と、図2Bに例示する実績テーブル111とがある。
分類管理テーブル113は、複数の顧客化ステップ指標のどれに、どんな種類の要因が分類されているかを示すテーブルである。分類管理テーブル113では、顧客化ステップ指標毎に、一又は複数の要因種類が関連付けられている。言い換えれば、大カテゴリとしての顧客化ステップ指標に、小カテゴリとしての要因種類が分類されている。
ここで、「顧客化ステップ指標」とは、顧客化ステップを構成する過程が指標化されたものを意味する。具体的には、本実施形態では、前述したように、顧客化ステップは、「認知」、「購入意向」、「接触」、「購入」、「継続購入意向」及び「繰り返し」の6つの過程で構成されているが、顧客化ステップ指標は、それら6つの過程にそれぞれ対応した6つの指標の各々を指す。
「要因」とは、売上又はシェアに影響を与える要因である。要因には、様々な種類、例えば、GRP(Gross Rating Point)、WEB広告(例えば、WEB上での広告の影響率)などがある。
図2Aに示す分類管理テーブル113の構成は、一例であり、実際は、マーケティングダッシュボード105を利用する企業によって異なると考えられる。企業が保持する実績値の種類や、顧客化ステップの構成や、どの顧客化ステップ指標にどんな要因種類を分類したいかは、企業によって様々であるためである。各顧客化ステップ指標への要因種類の分類は、マーケティングダッシュボード105の機能を利用して行われて良い。例えば、マーケティングダッシュボード105が、分類先としての顧客化ステップ指標と、分類対象としての要因種類とを、GUI(Graphical User Interface)を介してユーザから受付け、入力された顧客化ステップ指標と要因種類とを分類管理テーブル113上で関連付けて良い。
図2Bに示すように、実績テーブル111には、時系列で(例えば各年月別に)、各種実績値が登録されている。実績値とは、実績としての値である。実績値には、最終目標としての実績値と、前述した要因としての実績値とがある。本実施形態では、売上値とシェア値が、最終目標としての実績値であり、それ以外の値が、要因としての実績値である。
なお、実績テーブル111は、商品が複数個ある場合には、各商品毎に用意されて良い。その場合には、例えば、商品の識別子(以下、商品ID)と、実績テーブル111とが関連付けられており、商品IDが入力されることにより、参照すべき実績テーブル111を特定することができるようになっている。以下、説明をわかり易くするために、商品は1つであるとし、必要に応じて、商品が複数あるものとする。
さて、マーケティングダッシュボード105は、このDWH109内のデータを基にした表示を行うことができる。
図3は、マーケティングダッシュボード105の機能ブロック図を示す。
マーケティングダッシュボード105は、複数の機能をそれぞれ発揮するための複数のプログラムモジュールを有する。それら複数のプログラムモジュールとして、例えば、目標指標値予測モジュール121、係数更新モジュール123、アラート制御モジュール125及びグラフ検索モジュール127がある。
目標指標値予測モジュール121は、売上又はシェアといった最終目標の指標に対応する値を、各顧客化ステップ指標に対応する各要因を基に、計算することができる。この計算は、例えば以下の重回帰式、
Y=A・X1+B・X2+C・X2+…+F・X6…(1)
y=a・X1+b・X2+c・X3+…+f・X6…(2)
で行われる。ここで、Y及びyは、目的変数である。具体的には、Yは、売上の値であり、yは、シェアの値である。X1,X2,X3,…,X6は、説明変数であり、具体的には、上述した6つの顧客化ステップ指標にそれぞれ対応した値(以下、顧客化ステップ指標値)である。A,B,C,…,Fや、a,b,c,…,fは、それぞれ、回帰係数である。
なお、各顧客化ステップ指標値も、重回帰式で算出することができる(以下、最終目標の指標値を算出するための重回帰式と区別するために、顧客化ステップ指標値を算出するための重回帰式を、「サブ重回帰式」と言う)。具体的には、例えば、顧客化ステップ指標「認知」を目的変数とした場合、その目的変数は、α1・GRPデータ+α2・WEB広告データで算出することができる(α1及びα2は、回帰係数である)。
すなわち、目標指標値予測モジュール121は、最終目標指標値を算出するために、まず、実績テーブル111に記録されている、各要因に対応した各実績値を用いて、各顧客化ステップ指標値を、その顧客化ステップ指標値に対応したサブ重回帰式で算出する。算出された各顧客化ステップ指標値は、DWH109に含めておいて良い。その後、目標指標値予測モジュール121は、算出された6つの顧客化ステップ指標値を用いて、上記(1)の重回帰式で、売上を算出することができるし、上記(2)の重回帰式で、シェアを算出することができる。なお、上記(1)の重回帰式や(2)の重回帰式で各説明変数に代入される顧客化ステップ指標値は、ユーザが入力した仮想的な値であっても良い。これにより、ユーザ所望の仮想的な値を用いて、売上或いはシェアのシミュレーションを行うことができる。また、本実施形態では、各顧客化ステップ指標値は、100を最大値とし0を最小値とした比率で表される。そのため、以下、顧客化ステップ指標を言う場合には、「○○率」と言うことがある。例えば、顧客化ステップ指標としての認知を言う場合には、「認知率」と言い、購入意向を言う場合には、「購入意向率」と言うことがある。
目標指標値予測モジュール121は、実績テーブル111に現存する全ての或いはユーザに指定された年月範囲の実績値と、分類テーブル113とに基づいて、上記(1)及び(2)の重回帰式や、各顧客化ステップ指標値を算出するための各サブ重回帰式を作成する。目標指標値予測モジュール121は、ユーザ所望の将来の日時(例えば年月)をユーザから受付け、ユーザから指定された将来の年月での各種最終目標指標値を、その作成した各重回帰式や各サブ重回帰式を用いて計算することができる。なお、その計算では、各説明変数X1,X2,…X6に、各顧客化ステップ指標値が代入され、各顧客化ステップ指標値は、種々の要因に対応した実績値から算出されるが、代入される実績値は、或る一つの年月に対応した実績値であっても良いし、複数の年月に対応した実績値の平均であってもよい。また、目標指標値予測モジュール121によって作成された各重回帰式における各回帰係数や、各サブ回帰式における各回帰係数は、後述するように、新たな年月に属する各実績値が追加された場合に、係数更新モジュール123によって、より適切な値に更新される。作成された各重回帰式や各サブ重回帰式は、例えば、記憶資源107に記憶される。
目標指標値予測モジュール121は、算出された最終目標指標値と、その算出で使用された各顧客化ステップ指標値との関連性を表示することができる。具体的には、例えば、図8Aに例示するような予測GUIを表示することができる。予測GUIには、例えば、グラフと、ユーザ所望の日時と、その日時での最終目標指標値とが表示される。グラフは、横軸を顧客化ステップとし、縦軸を顧客化ステップ指標値としたものである。横軸では、顧客化ステップ指標が時系列で並んでいる。具体的には、左から右にかけて、認知率、購入意向率、探索率、購入意向率、継続購入意向率及び繰り返し率の順で並んでいる。
ユーザは、この予測GUIを見ることで、現在の実績値からすると将来のどの時点でどのような最終目標指標値となるかを把握することができる。
また、目標指標値予測モジュール121は、この予測GUIを介して、ユーザが目標とする最終目標指標値の入力を受付けることができる。そのような最終目標指標値の入力を受けた場合、目標指標値予測モジュール121は、後述する各顧客化ステップ指標に対応する各相関係数を基に、そのような最終目標指標値を得るために必要な各顧客化ステップ指標値(以下、必要指標値)を算出し、例えば図8Bに例示するように、算出された各必要指標値を表示することができる。これにより、ユーザは、所望の最終目標指標値を達成するためには、どんな顧客化ステップ指標をどれだけ変えていかなければいけないのかを判断することができる。予測GUIには、更に、上記(1)及び(2)のうちの少なくとも一つの重回帰式の各回帰係数及び/又は各相関係数が表示されてもよい。本実施形態で言う「相関係数」とは、目的変数との関連性の度合いを表す係数であり、重回帰式における説明変数の重みを意味する回帰係数とは種類が異なる。
なお、図8Aや図8Bには、最終目標指標値と各顧客化ステップ指標値との関連性を示したが、目標指標値予測モジュール121は、予測GUIとは別のGUIで、各顧客化ステップ指標毎に、顧客化ステップ指標値と、一以上の要因種類との関連性を表示してよい。別のGUIは、予測GUIのポップアップで、或いは予測GUIを縮小することにより生じたスペースに、表示して良い。その別のGUIでは、必要指標値に対応した更新後要因値を表示して良い。更新後要因値とは、必要指標値を得るために必要であるとして算出された予測値である。更新後要因値は、顧客化ステップ指標値に関わる各種要因の各相関係数を基に算出することができる。ユーザは、その別のGUIを閲覧することにより、各必要指標値を得るためにはどの種類の要因をどれだけ変えていかなければいけないのかを判断することができる。
以上、目標指標値予測モジュール121の機能によれば、ユーザは、売上及びシェアに関する説明をし易くなる。また、マーケティング戦略の際に、どこに問題があるかや、何を変えなきゃいけないかを判断し易くなる。
目標指標値予測モジュール121によって算出される各値の正確性を向上するためのモジュールとして、係数更新モジュール123がある。
図4は、係数更新モジュール123が行う処理の流れの一例を示す。なお、以下の処理の流れは、重回帰式の回帰係数や相関係数を更新するための流れであるが、サブ重回帰式での回帰係数や相関係数の更新も、その処理の流れとほぼ同様とすることができる。
係数更新モジュール123は、新規に月次データ群(新たな年月の実績値群)が実績テーブル111に追加されたことを検出した場合に、処理を開始する。その検出は、例えば、ユーザからの入力や、各実績テーブル111を定期的に参照することにより、行うことができる。
係数更新モジュール123は、新規の月次データ群を用いて、目標指標値と顧客化ステップ指標値の重回帰分析を実施することにより、各重回帰式における各回帰係数を更新する(ステップS101)。
次に、係数更新モジュール123は、影響度の低い顧客化ステップ指標値(例えば、更新後の回帰係数が所定値未満の顧客化ステップ指標値)を除いて、重回帰分析をやり直す(S102)。
係数更新モジュール123は、最適な相関係数になるまで、S101及びS102の計算を繰り返す。
すなわち、係数更新モジュール123は、各顧客化ステップ指標毎に、回帰係数とは別種の係数の一つである相関係数を算出することができる。ここで言う相関係数とは、顧客化ステップ指標と最終目標指標との関連の深さを表す係数である。各顧客化ステップ指標に対応する各相関係数は、DWH109に含めることができる。この各相関係数を用いて、ユーザが目標とする目標指標値を得るための顧客化ステップ指標値(図8Bに例示した前述の必要指標値)が目標指標値予測モジュール121によって計算される。例えば、認知率の相関係数が購入意向率の相関係数の3倍である場合には、認知率に対応した必要指標値とその必要指標値が算出される前の認知率の値との違い(例えば、比率或いは差分)は、購入意向率に対応した必要指標値とその必要指標値が算出される前の購入意向率の値との違いの3倍となる。具体的には、例えば、購入意向率を5%向上させないといけない場合、認知率はその3倍の15%向上させないといけないという計算結果となる。
以上のように、新規な月次データ群が登録される度に、重回帰式の回帰係数や相関係数がより適切な値に更新されるので、目標指標値予測モジュール121によって算出される各値の正確性を向上することができる。
なお、前述した「最適な相関係数になるまで」とは、「新しく追加された月次データ群を利用して様々な変数や様々な期間を設定して重回帰分析を行い、重回帰式における回帰係数が最も大きくなる組み合わせが得られるまで」という意味であり、その最も大きくなる組み合わせが、「最適な相関」の状態である。ただし、目的変数と、説明変数の間には、明らかな正・負の相関がある場合(例えば購入意向率とシェアは正の相関など)があり、これらの正・負の関係が正しい関係の場合のみにおいて「最適な相関」が成り立つ。
以上が、目標指標値予測モジュール121と係数更新モジュール123の機能についての説明である。なお、上記の例では、重回帰式が利用されたが、他種の計算式が利用されても良い。重要なことは、複数の実績値を顧客化ステップの視点で整理し、複数の顧客化ステップ指標値と一つの最終目標指標値とを体系付けることで、将来の最終目標指標値を予測できるモデルを構築することにある。
さて、次に、アラート制御モジュール125の機能について説明する。
アラート制御モジュール125は、アラートを出力するための目標変数の入力を受付け、実績テーブル111を分析し、その目標変数に対応したアラート制御フローを作成する。新規の月次データ群(最新の年月の実績値群)が実績テーブル111に登録された場合、アラート制御モジュール125は、その追加された月次データ群と、過去の実績値群とに基づいて、アラート制御フローを更新する。アラート制御モジュール125は、アラート制御フローに合致する場合に、アラートを表示する。
図5は、アラート制御モジュールが行う処理の流れの一例を示す。
アラート制御モジュール125は、目標変数の入力をユーザから受付ける(S201)。ここで、「目標変数」とは、前述した重回帰式の目的変数とは異なる変数であり、アラートを出力する/出力しないの条件値である。図5では、アラートを出力する条件値として、「2ヶ月以上連続してシェアダウンする可能性が70%」と、「2ヶ月以上連続してシェアダウンする可能性が60%」との2種類がある。また、アラートを出力しない条件値として、「2ヶ月以上連続してシェアダウンする可能性が20%」の1種類がある。なお、この例では、各条件値において、70%、60%及び20%というように、具体的に数値が指定されているが、それに代えて、大、中、小といった指定でも良い。その際、大、中、小の境目の基準(例えば、前述した70%、60%及び20%といった値)は、予めユーザから設定されて良い。また、条件値は、上記のように3種類に限らず、2種類或いは4種類以上であってもよい。
アラート制御モジュール125は、分類関係テーブル113を基に、デシジョンツリーという統計解析手法に従って実績テーブル111を解析することで、目標変数に至るアラート制御フロー(デシジョンツリー)を計算する(S202)。
この計算では、アラート制御フローの先頭が、「当月シェアが3ヶ月平均シェアを下回る」となる。ここで、「当月シェア」とは、最新の年月のシェア値である。「3ヶ月平均シェア」とは、当月を含む3か月分(当月が2005年12月であれば、3か月分は、2005年10月〜12月)のシェア値の平均である。それを先頭に、各条件値に至るまでのアラート制御フローを計算することができる。なお、ここでは、当月シェアと3ヶ月平均シェアの比較になるが、それに限定する必要はなく、短期シェアと長期シェアとの比較であればよい。また、シェアに代えて、他の最終目標指標であっても良い。
また、その計算では、各顧客化ステップ指標を、フローにおける分岐の一つの基準とする。具体的には、例えば、その分岐は、短期(例えば当月)の顧客化ステップ指標値と長期(例えば3ヶ月平均)の顧客化ステップ指標値との比較とそれらの違いの大きさによる。
アラート制御モジュール125は、アラート制御フローが計算された場合、当月の実績値群がそのアラート制御フローをどのように辿っていくのかを調べる。その結果、当月シェアが3ヶ月平均シェアを下回っていない場合、或いは、下回っていても、アラートを出力しない条件値に至った場合には、アラートを表示しないが、アラートを出力する条件値に至った場合には、アラートを表示する。
このアラート制御モジュール125の作用効果を、図6を参照して説明する。図6によれば、例えば2箇所に太い矢印で示すように、当月シェアが3ヶ月平均シェアを下回った月から、シェアが2ヶ月以上連続してダウンしている。前述したアラート制御モジュール125によれば、当月シェアが3ヶ月平均シェアを下回った月の時点でアラートが表示される。このため、シェアがダウンする可能性を早い段階で検知して、シェアダウンへの対策を講じることができるようになる。
また、当月シェアが3ヶ月平均シェアを下回ったからといって必ずアラートが表示されてしまうと、本来必要がないのに余計な対策をとってしまうことになる。本実施形態では、当月シェアが3ヶ月平均シェアを下回ったことに加えて、各顧客化ステップ指標値の当月と3ヶ月平均の比較の結果を基にした分岐を有する適切なアラート制御フローが作成される。これにより、より精度の高いアラート制御を行うことができる。
なお、アラート制御モジュール125は、新たに月次データ群が登録された場合、その新たに登録された月次データ群を用いて、デシジョンツリーの計算をし直すことにより、作成済みのアラート制御フローを更新することができる。これにより、例えば、「購入率が3ヶ月平均と比べ5.5%以上の拡大」と「購入率が3ヶ月平均と比べ5.5%以内の拡大」という分岐において、「購入率」という顧客化ステップ指標が別の顧客化ステップ指標に変わったり、「5.5%」という数値が別の数値に変わったり、「拡大」が「縮小」に変わったりする可能性がある。また、アラート制御フローの構成それ自体が変わる可能性もある。すなわち、より適切なアラート制御フローが用意されることになる。
また、アラート制御モジュール125は、例えば、プルダウンメニューやラジオボックス形式等の選択方式で、目標変数の入力の受け付けることができる。例えば、どんな種類の最終目標指標(売上/シェア)がどの期間ダウン(例えば1〜5ヶ月の範囲で選択)する可能性がどの程度(例えば0〜100%の範囲で選択)あるかの入力を受付けることができる。
また、アラート制御モジュール125は、デシジョンツリーの計算に代えて、他種の統計解析手法による計算で、アラート制御フローを作成しても良い。また、作成されたアラート制御フローを、記憶資源107等の記憶域に記憶させ、その記憶されたアラート制御フローを辿ることで、アラートを表示するか否かが制御されても良い。また、アラート制御モジュール125は、ユーザからアラート制御フローの表示要求を受けた場合、記憶させたアラート制御フローを読み出して表示しても良い。その際、アラート制御フローを編集可能に表示し、ユーザからアラート制御フローの編集を受け付けても良い。
さて、アラートが表示された場合、企業では、何らかの対策を考えることになるであろう。その場合、一つの対策として、過去に類似したケースがあるかどうかを探し、ある場合に、その類似したケースでは、どのようなマーケティング戦略が行われたかを調べるといった対策が考えられる。グラフ検索モジュール127は、そのような対策をサポートするためのモジュールである。
図7は、グラフ検索モジュール127が行う処理の流れの一例を示す。
グラフ検索モジュール127は、ユーザから指定された商品(以下、指定商品)の複数の顧客化ステップ指標値を表すグラフと類似した、他の商品についてのグラフを、検索する。
具体的には、グラフ検索モジュール127は、DWH109にアクセスし、各商品(指定商品と各他の商品)について、顧客化ステップ別にデータを分解する(S301)。具体的には、例えば、各商品について、各顧客化ステップ指標値を得る。これにより、各商品について、顧客化ステップに従う並びで顧客化ステップ指標値を結んだグラフを描画することができる状態となる。
次に、グラフ検索モジュール127は、顧客化ステップにおいて隣り合う顧客化ステップ指標間の各比が指定商品のグラフにおける各比と同じ傾向にある一以上のグラフに絞り込む(S302)。ここで絞り込まれたグラフを、「第一のグラフ群」と言うことにする。なお、「比が同じ傾向にある」とは、比が同一であっても良いし、比が所定の誤差範囲にあることであっても良い。具体的には、例えば、指定商品の認知率と購入意向率が、それぞれ、80%と40%であり、或る他の商品の認知率と購入意向率が、それぞれ、60%と30%である場合、比はどちらも2:1となるので、比が同一ということになる。
次に、グラフ検索モジュール127は、第一のグラフ群の中から、指定商品のグラフと比較した場合にグラフの交差がおこることのないグラフを特定する(S303)。以下、ここで特定された一以上グラフを、「第二のグラフ群」と言うことにする。
最後に、グラフ検索モジュール127は、第二のグラフ群の中から、最小二乗法により、指定商品のグラフにおける各指標値の偏差が最小になるグラフを選ぶ(S304)。この結果、指定商品のグラフと最も類似するグラフが検索されることになる。
なお、図7に記載の処理流れ図の下に記載のグラフは、S301〜S302では対象とされたものの、S303で対象外とされたことを示すものである。すなわち、指定商品「ブランドB」のグラフと類似するグラフの検索の際に、他の商品「ブランドA」のグラフは、各顧客化ステップ指標間の比が同じ傾向にあるものの、グラフの交差が生じているので、対象外とされていることを示す。
マーケティングダッシュボード105は、類似するグラフが検索された後、ユーザから所定の指示を受けた場合、その検索されたグラフの他の商品についての過去のマーケティング戦略の履歴を表示する機能を有して良い。履歴としては、例えば、各顧客化ステップ指標値の時系列的な遷移であっても良いし、実際にどのようなマーケティング戦略をとることでどのように各顧客化ステップ指標値が遷移したかであってもよい。前者の履歴は、該他の商品の実績テーブル111に記録されている各実績値を利用して表示することができる。後者の履歴は、例えば、DWH109に、どのようなマーケティング戦略をとったのかを表す報告書データを含めておき、その報告書データや該他の商品の実績テーブル111を利用して表示することができる。
以上、本発明の一実施形態を説明したが、これは本発明の説明のための例示であって、本発明の範囲をこの実施形態にのみ限定する趣旨ではない。本発明は、他の種々の形態でも実施することが可能である。
101…表示装置 102…入力装置 103…CPU 105…マーケティングダッシュボード 107…記憶資源 109…DWH

Claims (7)

  1. 商品の販売に関する複数種類の実績値を時系列的に含んだ実績値群を各商品毎に記憶している第一の記憶域にアクセスすることにより、ターゲットの商品に対応した実績値群から、各時点について、商品販売の目的に対応する実績値である目的実績値と、該目的実績値に影響を与え得る複数の要因にそれぞれ対応した実績値である複数の要因実績値とを特定する第一の特定手段と、
    消費者が顧客に至る顧客化ステップを構成する複数の過程をそれぞれ指標化したものである複数の顧客化ステップ指標と、各顧客化ステップ指標に分類された要因種類との対応関係を表す分類管理情報を記憶した第二の記憶域にアクセスすることにより、どの顧客化ステップ指標にどんな要因種類が対応するかを特定する第二の特定手段と、
    前記特定された各時点での目的実績値及び複数の要因実績値と、前記特定された各顧客化ステップ指標と要因種類との対応とに基づいて、目的実績値と顧客化ステップ指標値との関係性を構築する関係性構築手段と、
    前記構築された関係性を表す関係性情報を第三の記憶域に格納する格納手段と、
    前記格納された関係性情報が表す関係性を用いて、将来の目的実績値を予測する予測手段と、
    前記予測された将来の目的実績値に基づく情報を表示する表示手段と
    を備えたマーケティング支援システム。
  2. 前記構築される関係性は、商品販売の目的実績値である第一の変数を算出するための計算式であり、該計算式は、前記複数の顧客化ステップ指標の各々の値が代入される第二の変数と、各第二の変数のそれぞれの重みを表す各重み係数とを有し、
    前記ターゲットの商品に対応した実績値群に、新たな時点の複数種類の実績値が追加された場合、該追加された複数種類の実績値と、該新たな時点よりも過去の各時点の複数種類の実績値とを用いて、前記各第二の変数に関わる各係数を更新する関係性更新手段を更に備える、
    請求項1記載のマーケティング支援システム。
  3. 前記構築される関係性は、商品販売の目的実績値である第一の変数を算出するための計算式であり、該計算式は、前記複数の顧客化ステップ指標の各々の値が代入される第二の変数と、各第二の変数のそれぞれの重みを表す各重み係数とを有し、
    前記各第二の変数に関わる各係数として、前記各第二の変数と前記第一の変数との関連の度合いを表す各相関係数があり、
    目標とする第一の変数の値の入力をユーザから受け付ける目標第一変数値受付手段と、
    前記ユーザから入力された第一の変数の値を得るために必要な各第二の変数の値を、該各第二の変数に対応した各相関係数に基づいて計算する必要値計算手段と
    を更に備え、
    前記表示手段は、前記将来の目的実績値の予測のための計算で前記予測手段によって使用された各第二の変数の値と、前記必要計算手段によって算出された各第二の変数の値とをユーザが比較可能な態様で表示する、
    請求項1記載のマーケティング支援システム。
  4. 将来の目的実績値に関わるアラートを表示するための条件であるアラート表示条件をユーザから受け付けるアラート表示条件受付手段を更に備え、
    前記関係性構築手段が、前記ターゲットの商品に対応した実績値群を所定の統計解析手法に基づいて解析することにより、短期の目的実績値と長期の目的実績値との第一種の比較の結果を先頭とした、アラート表示条件に至るアラート制御フローを、前記関係性として構築し、
    前記予測手段は、前記ターゲットの商品に対応した実績値群における最近の実績値を用いて前記アラート制御フローを辿ることで、前記アラート表示条件に達するか否かを調べ、
    前記表示手段は、前記アラート制御フローを辿った結果、前記アラート表示条件に達した場合に、前記予測された将来の目的実績値に基づく情報として前記アラートを表示する、
    請求項1記載のマーケティング支援システム。
  5. 前記構築されるアラート制御フローには、前記第一の比較の結果の他に、一以上の第二種の比較の結果に基づく分岐があり、各第二種の比較の結果とは、短期の顧客化ステップ指標の値と長期の顧客化ステップ指標の値との比較の結果である、
    請求項4記載のマーケティング支援システム。
  6. 前記ターゲットの商品に対応した実績値群に、新たな時点の複数種類の実績値が追加された場合、該実績値群を前記所定の統計解析手法に従って解析し直すことにより、前記第一種の比較の結果を先頭とした、前記アラート表示条件に至るアラート制御フローの構成を更新する関係性更新手段を更に備える、
    請求項4記載のマーケティング支援システム。
  7. 前記ターゲットの商品についての複数の顧客化ステップ指標値を結ぶことで形成されるターゲットのグラフと類似の他の商品のグラフを検索するグラフ検索手段を更に備え、
    前記グラフ検索手段は、前記ターゲットのグラフにおける各隣り合う顧客化ステップ指標値間の比が同じ傾向にあって該ターゲットのグラフとの交差が生じないグラフを検索する、
    請求項1記載のマーケティング支援システム。
JP2011144966A 2011-06-29 2011-06-29 マーケティング支援システム Active JP5160670B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011144966A JP5160670B2 (ja) 2011-06-29 2011-06-29 マーケティング支援システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011144966A JP5160670B2 (ja) 2011-06-29 2011-06-29 マーケティング支援システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006227003A Division JP5101846B2 (ja) 2006-08-23 2006-08-23 マーケティング支援システム

Publications (2)

Publication Number Publication Date
JP2011227920A true JP2011227920A (ja) 2011-11-10
JP5160670B2 JP5160670B2 (ja) 2013-03-13

Family

ID=45043125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144966A Active JP5160670B2 (ja) 2011-06-29 2011-06-29 マーケティング支援システム

Country Status (1)

Country Link
JP (1) JP5160670B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622698A (zh) * 2012-02-17 2012-08-01 内蒙古东部电力有限公司 电力市场分析预测系统及其分析预测方法
JP2016091539A (ja) * 2014-10-31 2016-05-23 株式会社神戸製鋼所 営業活動支援システム
JP2018018224A (ja) * 2016-07-26 2018-02-01 富士ゼロックス株式会社 プロモーション支援装置及びプログラム
WO2022254607A1 (ja) * 2021-06-02 2022-12-08 日本電気株式会社 情報処理装置、差分抽出方法、及び非一時的なコンピュータ可読媒体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003044646A (ja) * 2001-08-03 2003-02-14 Business Act:Kk 経営状態警告システム
JP2003044738A (ja) * 2001-07-27 2003-02-14 Yuichi Washida 広告効果分析システムおよびこれに用いるサーバ装置、広告効果分析方法、広告効果分析プログラム、記録媒体
JP2006072649A (ja) * 2004-09-01 2006-03-16 Toyota Motor Corp プロモーション評価装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003044738A (ja) * 2001-07-27 2003-02-14 Yuichi Washida 広告効果分析システムおよびこれに用いるサーバ装置、広告効果分析方法、広告効果分析プログラム、記録媒体
JP2003044646A (ja) * 2001-08-03 2003-02-14 Business Act:Kk 経営状態警告システム
JP2006072649A (ja) * 2004-09-01 2006-03-16 Toyota Motor Corp プロモーション評価装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622698A (zh) * 2012-02-17 2012-08-01 内蒙古东部电力有限公司 电力市场分析预测系统及其分析预测方法
JP2016091539A (ja) * 2014-10-31 2016-05-23 株式会社神戸製鋼所 営業活動支援システム
JP2018018224A (ja) * 2016-07-26 2018-02-01 富士ゼロックス株式会社 プロモーション支援装置及びプログラム
WO2022254607A1 (ja) * 2021-06-02 2022-12-08 日本電気株式会社 情報処理装置、差分抽出方法、及び非一時的なコンピュータ可読媒体

Also Published As

Publication number Publication date
JP5160670B2 (ja) 2013-03-13

Similar Documents

Publication Publication Date Title
Amiri et al. A new fuzzy BWM approach for evaluating and selecting a sustainable supplier in supply chain management
CN109213747B (zh) 一种数据管理方法及装置
JP6781602B2 (ja) 業務支援システム、および、業務支援方法
JP6603600B2 (ja) 需要予測方法、需要予測装置及び需要予測プログラムを記録したコンピュータ読み取り可能な記録媒体
AU2016247051A1 (en) Resource evaluation for complex task execution
US10140339B2 (en) Methods and systems for simulating a search to generate an optimized scoring function
US12086820B2 (en) Technology opportunity mapping
JP5101846B2 (ja) マーケティング支援システム
JP5160670B2 (ja) マーケティング支援システム
JP2013517562A (ja) オンライン商取引プラットフォームにおける広告ソースおよびキーワードセットの適合
JP6558375B2 (ja) 説明変数表示優先順位決定システム、方法およびプログラム
JPWO2012049987A1 (ja) 商品推薦システムおよび商品推薦方法とそのプログラム
Alexopoulos et al. A method for comparing flexibility performance for the lifecycle of manufacturing systems under capacity planning constraints
US20240104462A1 (en) Supply chain management system and supply chain management method
KR102319118B1 (ko) 전자상거래와 연관된 쇼핑몰의 상품 진열 업데이트 방법 및 장치
JP2012083969A (ja) 部品情報提供システム,部品情報提供装置および部品情報提供プログラム
CN111666413A (zh) 基于评论者可信赖度回归预测的商品评论推荐方法
JP6760084B2 (ja) 分析用情報表示システム、方法およびプログラム
JP6270768B2 (ja) 営業担当者候補抽出システム
US20150206158A1 (en) System and method for spend analysis of the service category
JP2019020930A (ja) 学習装置、学習方法、学習プログラム、学習用データ及びモデル
US20230044694A1 (en) Action evaluation system, action evaluation method, and recording medium
JP7247060B2 (ja) データの利活用のためのデータ準備を支援するシステム、及び、その方法
CN115943399A (zh) 生成方法、生成装置、程序、信息处理方法及信息处理装置
JP2017151731A (ja) 需要量予測プログラム、需要量予測方法、及び情報処理装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R150 Certificate of patent or registration of utility model

Ref document number: 5160670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250