JP2011223655A - 車両の電源装置 - Google Patents

車両の電源装置 Download PDF

Info

Publication number
JP2011223655A
JP2011223655A JP2010086929A JP2010086929A JP2011223655A JP 2011223655 A JP2011223655 A JP 2011223655A JP 2010086929 A JP2010086929 A JP 2010086929A JP 2010086929 A JP2010086929 A JP 2010086929A JP 2011223655 A JP2011223655 A JP 2011223655A
Authority
JP
Japan
Prior art keywords
storage device
power storage
converter
fuse
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010086929A
Other languages
English (en)
Inventor
Naoyoshi Takamatsu
直義 高松
Sakaki Okamura
賢樹 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010086929A priority Critical patent/JP2011223655A/ja
Publication of JP2011223655A publication Critical patent/JP2011223655A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】車両の電源装置の小型化および低コスト化を可能とする。
【解決手段】車両は、電源システム1と、駆動力発生部2と、制御装置100とを備える。電源システム1は、第1蓄電装置10−1と、第1コンバータ12−1と、第1コンバータ12−1と第1蓄電装置10−1との間に設けられた第1切替装置SMR1と、第2蓄電装置10−2と、第2コンバータ12−2と、第2蓄電装置10−2の負極と第2コンバータ12−2との間に設けられた第2切替装置SMR2とを含む。第2蓄電装置10−2は、互いに直列に接続された電気二重層キャパシタCAとヒューズHとで構成される。制御装置100は、車両の衝突が生じた場合、ヒューズHにその許容電流値を超える大電流を流してヒューズHを溶断させるように、第2コンバータ12−2を制御する。
【選択図】図1

Description

この発明は、電力で駆動力を発生する駆動装置を備えた車両の電源装置に関する。
近年、環境に配慮した車両として、ハイブリッド自動車、電気自動車、燃料電池自動車などの、電力で駆動力を得る電動車両が大きな注目を浴びている。
電動車両は、一般的に、モータ駆動用の直流電力を蓄える蓄電装置と、インバータと、インバータによって駆動されるモータとを備え、蓄電装置からの直流電力(蓄電装置の電圧を昇圧した電力を含む)をインバータによって交流電力に変換し、その変換した交流電力でモータを回転させることによって駆動力を得る。通常、蓄電装置の電圧は大きな駆動力を得るために比較的高い電圧に設定される。そのため、電動車両は、高電圧を出力する蓄電装置を外部から遮断可能な手段を備える必要がある。
たとえば特開2006−345606号公報(特許文献1)には、二次電池と、二次電池の電圧を昇圧するコンバータと、キャパシタと、コンバータおよびキャパシタの少なくともいずれかから出力される直流電力をモータ駆動用の交流電力に変換するインバータとを備える電動車両において、高電圧を出力する二次電池およびキャパシタを外部から遮断するために、二次電池の正極とコンバータとの間、二次電池の負極とコンバータとの間、キャパシタの正極とインバータとの間、および、キャパシタの負極とインバータとの間のそれぞれに、少なくとも1つのシステムメインリレーを備える構成が開示されている。
特開2006−345606号公報 特開2006−228526号公報 特開2006−254565号公報 特開2000−92614号公報 特開2003−291754号公報 特開2003−274513号公報
しかしながら、特許文献1に開示された構成では、蓄電装置(二次電池やキャパシタ)の正極側および負極側のそれぞれに必ずシステムメインリレーが必要となり、蓄電装置を含む電源装置全体の小型化、低コスト化に不利である。
本発明は、上述の課題を解決するためになされたものであって、その目的は、車両の電源装置の小型化および低コスト化を可能とすることである。
この発明に係る電源装置は、電力で駆動力を発生する駆動装置を備えた車両の電源装置である。この電源装置は、駆動装置に供給するための電力を蓄える第1蓄電装置と、駆動装置と第1蓄電装置との間に設けられ、駆動装置と第1蓄電装置との間で電圧変換を行なう第1コンバータと、第1蓄電装置と第1コンバータとの間に設けられ、許容値よりも大きい電流が流れた場合に溶断されるヒューズと、第1コンバータを制御する制御装置とを備える。制御装置は、第1蓄電装置を外部から遮断する必要が生じた場合、ヒューズを流れる電流値が許容値よりも大きくなるように第1コンバータを制御することによってヒューズを溶断する。
好ましくは、ヒューズは、第1蓄電装置の正極と第1コンバータとを結ぶ第1経路および第1蓄電装置の負極と第1コンバータとを結ぶ第2経路のうちいずれか一方の経路上に設けられる。電源装置は、一方の経路とは異なる他方の経路に設けられた第1リレーをさらに備える。制御装置は、第1蓄電装置を外部から遮断する必要が生じた場合、第1リレーをオンした状態で第1コンバータを制御することによってヒューズを溶断して一方の経路を遮断し、ヒューズを溶断した後に第1リレーをオフすることで他方の経路を遮断する。
好ましくは、ヒューズは、第1蓄電装置の正極と第1コンバータとを結ぶ第1経路および第1蓄電装置の負極と第1コンバータとを結ぶ第2経路のうちいずれか一方の経路上に設けられる。電源装置は、一方の経路とは異なる他方の経路に設けられた第1リレーと、駆動装置に第1蓄電装置とは並列に接続された第2蓄電装置と、駆動装置と第2蓄電装置との間に設けられ、駆動装置と第2蓄電装置との間で電圧変換を行なう第2コンバータと、第2コンバータと第2蓄電装置との間に設けられた第2リレーとをさらに備える。
好ましくは、制御装置は、第1蓄電装置および第2蓄電装置を外部から遮断する必要が生じた場合、第1リレーをオンした状態で第1コンバータを制御することによってヒューズを溶断し、ヒューズを溶断した後に第1リレーおよび第2リレーをオフすることで第1コンバータと第1蓄電装置とを結ぶ経路を遮断しかつ第2コンバータと第2蓄電装置とを結ぶ経路を遮断する。
好ましくは、電源装置は、第1蓄電装置、第2蓄電装置、ヒューズ、第1リレー、および、第2リレーを内部に収容するケースをさらに備える。第1コンバータ、第2コンバータおよび駆動装置は、ケースの外部に配置される。
好ましくは、電源装置は、第1蓄電装置、第2蓄電装置、ヒューズ、第1リレー、第2リレー、第1コンバータ、および、第2コンバータを内部に収容するケースをさらに備える。駆動装置は、ケースの外部に配置される。
好ましくは、第1蓄電装置と第2蓄電装置とは近接して配置される。制御装置は、第1蓄電装置および第2蓄電装置の少なくともいずれかの温度がそれぞれ対応する所定温度よりも低い場合、第1蓄電装置と第2蓄電装置との間で充放電が繰り返されるように、第1コンバータおよび第2コンバータをさらに制御する。
好ましくは、電源装置は、ヒューズを介して第1蓄電装置の正極と第1コンバータとを接続する第1正極線と、第1リレーを介して第1蓄電装置の負極と第1コンバータとを接続する第1負極線と、第2リレーを介して第2蓄電装置の正極と第2コンバータとを接続する第2正極線と、第2蓄電装置の負極と第1蓄電装置の負極とを直結する第2負極線とをさらに備える。
好ましくは、第2蓄電装置は、二次電池である。第1蓄電装置は、電気二重層キャパシタである。
好ましくは、ヒューズは、第1蓄電装置に一体的に組み込まれる。
本発明によれば、車両の電源装置の小型化および低コスト化が可能となる。
電源装置を備えた車両の全体ブロック図(その1)である。 制御装置の機能ブロック図(その1)である。 ヒューズカット制御時における電流の流れを示した図である。 制御装置の処理手順を示すフローチャート(その1)である。 電源装置の回路構成を示す図である。 制御装置の機能ブロック図(その2)である。 電源装置を備えた車両の全体ブロック図(その2)である。 充放電制御時における電流の流れを示した図である。 制御装置の機能ブロック図(その3)である。 制御装置の処理手順を示すフローチャート(その2)である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
[実施の形態1]
図1は、この発明の実施の形態1に従う電源装置を備えた車両の全体ブロック図である。図1を参照して、車両は、電源システム1と、駆動力発生部2と、制御装置100とを含む。なお、この発明に従う電源装置を適用可能な車両は、以下に示す車両(ハイブリッド車両)に限定されるものではなく、少なくとも電力を用いて駆動力を得ることが可能な電動車両全般に適用可能である。
駆動力発生部2は、第1インバータ30−1と、第2インバータ30−2と、第1モータジェネレータ(MG)32−1と、第2MG32−2と、動力分割装置34と、エンジン36と、駆動輪38とを含む。以下では、第1インバータ30−1と第2インバータ30−2とを区別することなく「インバータ30」と記載する場合がある。
第1MG32−1、第2MG32−2およびエンジン36は、動力分割装置34に連結される。車両は、エンジン36および第2MG32−2の少なくとも一方からの駆動力によって走行する。
エンジン36が発生する動力は、動力分割装置34によって、駆動輪38へ伝達される経路と、第1MG32−1へ伝達される経路とに分割される。
第1MG32−1および第2MG32−2の各々は、交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える三相交流回転電機から成る。動力分割装置34によって分割されたエンジン36の動力を用いて第1MG32−1による発電が行なわれる。第1MG32−1によって発電された電力は電源システム1へ供給される。
第2MG32−2は、電源システム1から供給される電力および第1MG32−1により発電された電力の少なくとも一方を用いて駆動力を発生する。そして、第2MG32−2の駆動力は、駆動輪38に伝達される。なお、車両の制動時等には、駆動輪38により第2MG32−2が駆動され、第2MG32−2が発電機として作動する。これにより、第2MG32−2は、制動エネルギを電力に変換する回生ブレーキとして作動する。そして、第2MG32−2により発電された電力は、電源システム1へ供給される。
動力分割装置34は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から成る。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン36のクランクシャフトに連結される。サンギヤは、第1MG32−1の回転軸に連結される。リングギヤは第2MG32−2の回転軸に連結される。
第1インバータ30−1および第2インバータ30−2は、主正極線MPLおよび主負極線MNLに接続される。そして、第1インバータ30−1および第2インバータ30−2は、電源システム1から供給される直流電力を交流電力に変換してそれぞれ第1MG32−1および第2MG32−2へ出力する。また、第1インバータ30−1および第2インバータ30−2は、それぞれ第1MG32−1および第2MG32−2が発電する交流電力を直流電力に変換して電源システム1へ出力する。
なお、第1インバータ30−1および第2インバータ30−2の各々は、たとえば、三相分のスイッチング素子を含むブリッジ回路から成る。そして、各インバータは、それぞれ制御装置100からの駆動信号PWIV1,PWIV2に応じてスイッチング動作を行なうことにより、対応するMGを駆動する。
電源システム1は、第1蓄電装置10−1と、第2蓄電装置10−2と、第1コンバータ12−1と、第2コンバータ12−2と、第1切替装置SMR1と、第2切替装置SMR2と、主正極線MPLと、主負極線MNLと、平滑コンデンサCとを含む。
平滑コンデンサCは、主正極線MPLと主負極線MNLとの間に接続され、主正極線MPLおよび主負極線MNLに含まれる電力変動成分を低減する。
第1蓄電装置10−1は、たとえばニッケル水素やリチウムイオン等の二次電池で構成される直流電源である。第2蓄電装置10−2は、電気二重層キャパシタ(Electric Double-Layer Capacitor)CAと、ヒューズHとで構成される直流電源である。なお、第1蓄電装置10−1の内部にもヒューズが設けられていてもよい。
ヒューズHは、電気二重層キャパシタCAの正極側に、電気二重層キャパシタCAと直列に接続される。ヒューズHは、通常は導体として作用するが、ヒューズHに流れる電流値が許容電流値を超えた場合には溶断される。なお、第1蓄電装置10−1にもヒューズが設けられるようにしてもよい。
第1蓄電装置10−1の出力電圧および第2蓄電装置10−2の出力電圧は、たとえば200ボルトを超える高い電圧である。第1蓄電装置10−1の容量(蓄電可能な電力量)は第2蓄電装置10−2の容量よりも大きい一方、第2蓄電装置10−2の充放電効率(単位時間あたりに充放電可能な電力量)は第1蓄電装置10−1の充放電効率よりも優れる。
第1コンバータ12−1は、スイッチング素子Q1A,Q1Bと、ダイオードD1A,D1Bと、リアクトルL1と、平滑コンデンサC1とを含む。スイッチング素子Q1A,Q1Bは、主正極線MPLと主負極線MNLとの間に互いに直列に接続される。スイッチング素子Q1A,Q1Bとして、たとえば、IGBT(Insulated Gate Bipolar Transistor)や電力用MOS(Metal Oxide Semiconductor)トランジスタ等を用いることができる。スイッチング素子Q1A,Q1Bには、それぞれダイオードD1A,D1Bが逆並列に接続される。
リアクトルL1は、環状のコア部と、コア部の外周に巻き付けられたコイルとによって構成される。リアクトルL1の一方端は、正極線PL1を介して第1蓄電装置10−1の正極端子に接続される。リアクトルL1の他方端は、スイッチング素子Q1Aとスイッチング素子Q1Bとの間の点に接続される。
第1コンバータ12−1のスイッチング素子Q1A,Q1Bは、制御装置100からの信号PWC1に基づいて、互いに逆の状態(すなわち、Q1AオンのときはQ1Bオフ、Q1AオフのときはQ1Bオン)となるように制御される。スイッチング素子Q1Aのオフ期間(スイッチング素子Q1Bのオン期間)とスイッチング素子Q1Aのオン期間(スイッチング素子Q1Bのオフ期間)とが交互に繰り返されることによって、主正極線MPLおよび主負極線MNL間の電圧(以下「システム電圧」とも称する。)が第1蓄電装置10−1の出力電圧以上の電圧に制御される。
平滑コンデンサC1は、正極線PL1と負極線NL1との間に接続され、正極線PL1および負極線NL1間の直流電圧に含まれる交流成分を低減する。
第2コンバータ12−2は、第1コンバータ12−1と駆動力発生部2との間の主正極線MPLおよび主負極線MNLに接続される。つまり、第2コンバータ12−2は、駆動力発生部2に、第1コンバータ12−1とは並列に、接続される。
第2コンバータ12−2は、スイッチング素子Q2A,Q2Bと、ダイオードD2A,D2Bと、リアクトルL2と、平滑コンデンサC2とを含む。第2コンバータ12−2の構造および動作は、第1コンバータ12−2と同様である。具体的には、スイッチング素子Q2A,Q2B、ダイオードD2A,D2B、リアクトルL2、平滑コンデンサC2、正極線PL2、負極線NL2は、それぞれ、スイッチング素子Q1A,Q1B、ダイオードD1A,D1B、リアクトルL1、平滑コンデンサC1、正極線PL1、負極線NL1に対応する。したがって、第2コンバータ12−2の構造および動作の詳細な説明は繰り返さない。
第1切替装置SMR1は、第1コンバータ12−1と第1蓄電装置10−1との間に設けられ、第1コンバータ12−1と第1蓄電装置10−1とを接続したり遮断したりする。第1切替装置SMR1は、正極側のシステムメインリレーSMR1a,SMR1bと、負極側のシステムメインリレーSMR1cとから構成される。
システムメインリレーSMR1a,SMR1bは、互いに並列に接続されている。システムメインリレーSMR1aには、制限抵抗Rが直列に接続されている。システムメインリレーSMR1aは、システムメインリレーSMR1bがオンされる前にオンされ、駆動力発生部2に突入電流が流れることを防止するプリチャージ用のリレーである。
システムメインリレーSMR1bは、第1蓄電装置10−1の正極と第1コンバータ12−1との間に設けられる。システムメインリレーSMR1bは、プリチャージの終了後にオンされる。システムメインリレーSMR1bがオンされることにより、第1蓄電装置10−1の正極と第1コンバータ12−1とが接続される。
システムメインリレーSMR1cは、第1蓄電装置10−1の負極と第1コンバータ12−1との間に設けられる。システムメインリレーSMR1cがオンされることにより、第1蓄電装置10−1の負極と第1コンバータ12−1とが接続される。
第2切替装置SMR2は、第2蓄電装置10−2の負極(電気二重層キャパシタCAの負極)と第2コンバータ12−2との間に設けられたシステムメインリレーである。以下では、第2切替装置SMR2を「システムメインリレーSMR2」とも記載する。
システムメインリレーSMR2がオンされることにより、電気二重層キャパシタCAの負極と第2コンバータ12−2とが接続される。なお、図1からもわかるように、電気二重層キャパシタCAの正極と第2コンバータ12−2とは、ヒューズHを介して接続されるのみであり、これらの間にはリレーは設けられていない。
各システムメインリレーSMR1c〜SMR1c,SMR2のオンオフは、それぞれ制御装置100からの制御信号S1a〜S1c,S2によって制御される。
第1蓄電装置10−1、第1切替装置SMR1(システムメインリレーSMR1c〜SMR1c)、制限抵抗R、第2蓄電装置10−2、第2切替装置SMR2、およびこれらを接続する配線などの周辺部品は、外部に高電圧系が露出しないように、電池ユニット3としてパッケージ化されて1つのケースの内部に収容されている。第1蓄電装置10−1と第2蓄電装置10−2とは互いに近接して配置される。電池ユニット3は、運転席の後部の空間たとえば後部座席の下またはトランクルームの中などに配置される。
一方、各コンバータ12−1,12−2、各インバータ30−1,30−2、およびこれらを接続する配線などの周辺部品は、パワーコントロールユニット4としてパッケージ化されて、電池ユニット3とは異なるケースの内部に収容されている。パワーコントロールユニット4は、運転席の前部の空間、たとえばエンジンルーム内に配置される。
そして、車両後部に配置された電池ユニット3と車両前部に配置されたパワーコントロールユニット4とは、正極線PL1,PL2、負極線NL1,NL2の合計4本のパワーケーブルによって接続される。
さらに、車両は、監視ユニット21,22、衝突センサ23、電流センサ24,25、電圧センサ26を備える。
監視ユニット21,22は、それぞれ第1蓄電装置10−1および第2蓄電装置10−2の状態(出力電圧、充放電電流、温度などを含む)を監視し、これらの監視結果を示す情報を状態情報B1,B2として制御装置100へ出力する。
衝突センサ23は、車両が他の車両や建物に衝突したか否かを判断し、判断結果を示す情報を衝突情報Dとして制御装置100へ出力する。なお、たとえば、衝突センサ23は、衝突情報Dとして車両の加速度あるいはその変化率を検出可能な加速度センサであってもよい。
電流センサ24,25は、それぞれリアクトルL1を流れる電流IL1、リアクトルL2を流れる電流IL2を検出する。電圧センサ26は、主正極線MPLと主負極線MNLとの間の電圧Vmを検出する。これらの各センサは、検出結果を制御装置100へ出力する。
制御装置100は、図示しないCPU(Central Processing Unit)およびメモリを内蔵したECU(Electronic Control Unit)である。制御装置100は、メモリに記憶されたマップおよびプログラムに基づいて、所定の演算処理を実行するように構成される。
制御装置100は、各センサの検出結果や車両の走行状況などに基づいて車両要求パワーPsを算出し、車両要求パワーPsに基づいて、第1コンバータ12−1および第2コンバータ12−2をそれぞれ駆動するための駆動信号PWC1,PWC2、第1インバータ30−1および第2インバータ30−2をそれぞれ駆動するための駆動信号PWIV1,PWIV2、エンジン36を制御するための制御信号PWENGを生成する。そして、制御装置100は、駆動信号PWC1,PWC2,PWIV1,PWIV2、制御信号PWENGを、それぞれ第1コンバータ12−1、第2コンバータ12−2、第1インバータ30−1、第2インバータ30−2、エンジン36へ出力する。
図2は、制御装置100の、第1コンバータ12−1および第2コンバータ12−2(以下、第1コンバータ12−1と第2コンバータ12−2とを区別することなく単に「コンバータ」ともいう)の制御に関する部分の機能ブロック図である。なお、図2に示した各機能ブロックについては、当該機能を有するハードウェア(電子回路等)を制御装置100に設けることによって実現してもよいし、当該機能に相当するソフトウェア処理(プログラムの実行等)を制御装置100に行なわせることよって実現してもよい。
制御装置100は、減算部104,108a、108bと、電圧制御演算部106と、分配部107と、電流制御演算部110a,110bと、駆動信号生成部112a,112bと、キャリア生成部114と、指令部120と、選択部122とを含む。
減算部104は、電圧Vmの目標値である電圧指令値VRから電圧Vmの検出値を減算し、その結果を電圧制御演算部106へ出力する。
電圧制御演算部106は、電圧指令値VRから電圧Vmの検出値を減算した値を減算部104から受け、電圧Vmを電圧指令値VRに一致させる電圧フィードバック制御のための制御演算(たとえば比例積分制御演算)を実行する。そして、電圧制御演算部106は、演算結果で得られた制御量を電流指令値IRとして出力する。
分配部107は、電圧制御演算部106から受けた電流指令値IRを、電流IL1の目標値である電流指令値IR1と、電流IL2の目標値である電流指令値IR2とに分配する。
減算部108aは、分配部107から出力される電流指令値IR1から電流IL1の検出値を減算し、その結果を電流偏差ΔIR1として電流制御演算部110aへ出力する。
電流制御演算部110aは、減算部108aから受けた電流偏差ΔIR1に基づいて、電流偏差ΔIR1を零に近づける(すなわち電流IL1を電流指令値IR1に一致させる)電流フィードバック制御のための制御演算(たとえば比例積分制御演算)を実行する。そして、電流制御演算部110aは、演算結果で得られた制御量をデューティー指令値d1として駆動信号生成部112aへ出力する。
キャリア生成部114は、後述の駆動信号生成部112a,112bにおいてPWM(Pulse Width Modulation)信号を生成するための、三角波から成るキャリア信号CR1,C2を生成し、その生成したキャリア信号CR1,C2をそれぞれ駆動信号生成部112a,112bへ出力する。
駆動信号生成部112aは、電流制御演算部110aから受けるデューティー指令値d1を、キャリア生成部114から受けるキャリア信号CR1と大小比較し、その比較結果に応じて論理状態が変化する信号PWC1を生成する。そして、駆動信号生成部112aは、その生成された信号PWC1を第1コンバータ12−1のスイッチング素子Q1,Q2へ出力する。
一方、減算部108bは、分配部107から出力される電流指令値IR2から電流IL2の検出値を減算し、その結果を電流偏差ΔIR2として選択部122に出力する。
指令部120は、第2蓄電装置10−2のヒューズHを溶断させるための電流指令値IRcutから電流IL2の検出値を減算し、その結果を電流偏差ΔIRcutとして選択部122に出力する。ここで、電流指令値IRcutは、ヒューズHの許容電流値を超える値である。なお、指令部120は、電流指令値IRcutを予め記憶するようにしてもよいし、必要に応じて算出するようにしてもよい。
選択部122は、衝突情報Dに基づいて高電圧系が収められる電池ユニット3を外部から遮断する必要があるか否かを判断する。衝突情報Dが車両の衝突が生じたことを示さない場合、選択部122は、電池ユニット3を外部から遮断する必要はないと判断し、減算部108bから受けた電流偏差ΔIR2を選択する。一方、衝突情報Dが車両の衝突が生じたことを示す場合、選択部122は、電池ユニット3を外部から遮断する必要があると判断し、指令部120から受けた電流偏差ΔIRcutを選択する。選択部122は、選択した電流偏差を電流制御演算部110bへ出力する。
なお、選択部122を、減算部108bと電流制御演算部110bとの間ではなく、分配部107と減算部108bとの間に設け、衝突情報Dに応じて電流指令値IR2および電流指令値IRcutのいずれかを選択して、減算部108bに出力するようにしてもよい。
電流制御演算部110bは、選択部122が選択した電流偏差を零に近づける(電流IL1を電流指令値IR1あるいは電流指令値IRcutに一致させる)電流フィードバック制御のための制御演算(たとえば比例積分制御演算)を実行する。そして、電流制御演算部110bは、演算結果で得られた制御量をデューティー指令値d2として駆動信号生成部112bへ出力する。
駆動信号生成部112bは、電流制御演算部110bから受けるデューティー指令値d2を、キャリア生成部114から受けるキャリア信号CR2と大小比較し、その比較結果に応じて論理状態が変化する信号PWC2を生成する。そして、駆動信号生成部112bは、その生成された信号PWC2を第2コンバータ12−2のスイッチング素子Q2A,Q2Bへ出力する。
このように、通常走行時(車両の衝突が生じていない場合)においては、制御装置100は、電圧Vmを電圧指令値VRに一致させる電圧フィードバック制御のための演算を行ない、電流指令値IRを求める。そして、制御装置100は、電流指令値IRを電流指令値IR1と電流指令値IR2とに分配し、電流IL1,IL2をそれぞれ電流指令値IR1,IR2に一致させる電流フィードバック制御のための演算を行なった結果で、第1コンバータ12−1および第2コンバータ12−2を制御する。なお、通常走行時においては、制御装置100は、各システムメインリレーSMR1c〜SMR1c,SMR2をオン状態に維持する。以下では、通常走行時に行なうこのような制御を「通常制御」ともいう。
しかしながら、車両の衝突が生じた場合には、制御装置100は、電流IL2の指令値を電流指令値IR2から電流指令値IRcutに切り替える(電流偏差ΔIR2を選択するのを止めて電流偏差ΔIRcutを選択する)ことによって、ヒューズHにその許容電流値を超える大電流を流してヒューズHを溶断させるように、第2コンバータ12−2を制御する。このようにヒューズHに大電流を流してヒューズHを溶断させるように第2コンバータ12−2を作動させる制御を、以下では「ヒューズカット制御」ともいう。そして、ヒューズカット制御を実行した後は、制御装置100は、各システムメインリレーSMR1,SMR2をオフさせる。
図3は、ヒューズカット制御時における、第2蓄電装置10−2と第2コンバータ12−2との間の電流の流れを示した図である。図3に示すように、ヒューズカット制御時には、第2蓄電装置10−2と第2コンバータ12−2(より具体的にはリアクトルL2およびスイッチング素子Q2A)との間に電流指令値IRcutに応じた大電流が流れる。この大電流によって、ヒューズHが溶断される。
図4は、上述の制御装置100の機能を実現するための処理手順を示すフローチャートである。以下に示すフローチャートの各ステップ(以下、ステップを「S」と略す)は、基本的には制御装置100によるソフトウェア処理によって実現されるが、制御装置100に設けられた電子回路等によるハードウェア処理によって実現されてもよい。
S10にて、制御装置100は、衝突情報Dに基づいて、車両の衝突が検出されたか否かを判断する。車両の衝突が検出されると(S10にてYES)、処理はS12に移される。そうでないと(S10にてNO)、処理はS16に移される。
S12にて、制御装置100は、上述したヒューズカット制御を実行する。つまり、制御装置100は、第2コンバータ12−2を作動させて、ヒューズHに大電流を流してヒューズHを溶断させる。
S14にて、制御装置100は、各システムメインリレーSMR1,SMR2をオフさせる。S16にて、制御装置100は、上述した通常制御を行なう。
以上のような構成およびフローチャートに基づく実施の形態1に従う電源装置の作用について説明する。
実施の形態1に従う電源装置は、車両の衝突が検出された場合、電池ユニット3を外部から遮断するために、まず、上述したヒューズカット制御を実行することによってヒューズHを溶断する。これにより、電気二重層キャパシタCAの正極と第2コンバータ12−2とを結ぶ経路が遮断されるため、電気二重層キャパシタCAの正極側のシステムメインリレーを削減でき、従来に比べて、電池ユニット3の小型化、低コスト化が可能となる。なお、一般的に蓄電装置にはヒューズが組み込まれているため、このヒューズを用いれば新たに専用のヒューズを設ける必要はない。
さらに、この電源装置では、第1蓄電装置10−1および第2蓄電装置10−2(以下、これらをまとめて単に「蓄電装置」ともいう)と、システムメインリレーSMR1c〜SMR1c、SMR2(以下、これらをまとめて単に「システムメインリレー」ともいう)とに限定して、1つの電池ユニット3としている。このように、蓄電装置と、蓄電装置を外部から遮断するのに最低限必要な部品(システムメインリレーなど)だけを物理的に1つにパッケージ化することによって、電池ユニット3の小型化が可能であり車両への搭載性が向上する。
さらに、実施の形態1に従う電源装置では、ヒューズカット制御およびシステムメインリレーの制御によって、蓄電装置とコンバータとを絶縁することができる。そのため、コンバータとその外部との間に絶縁性や強度の高い高コストの材料を使う必要性が低減される。すなわち、コンバータと駆動力発生部2との間にリレーを設ける従来の構成では、蓄電装置とコンバータとを絶縁するための回路を有しないため、コンバータに漏電があると蓄電装置からの高電圧がコンバータを介して外部に出力されてしまう。そのため、たとえば外部との電流経路となり得る冷却水の通路をコンバータの近傍に設ける場合には、コンバータと冷却水通路との間に絶縁性や強度の高い高コストの材料を多く使う必要があったが、実施の形態1に従う電源装置では、その必要が低減される。
さらに、実施の形態1に従う電源装置では、システムメインリレーを蓄電装置とコンバータとの間に設けるため、システムメインリレーが遮断すべき電圧が、コンバータによる昇圧後の電圧レベルではなく、蓄電装置の電圧レベルで済む。そのため、各システムメインリレーSMR1c〜SMR1c、SMR2の絶縁距離(オン状態とオフ状態との間の距離)を、小さくすることができ、各システムメインリレーSMR1c〜SMR1c、SMR2を小型化することが可能となる。
以上のように、実施の形態1に従う電源装置は、車両衝突時に、上述したヒューズカット制御によって蓄電装置の内部に組み込まれているヒューズを溶断する。そのため、蓄電装置と外部とを遮断するために必要なリレーの数を削減でき、小型化、低コスト化が可能となる。
[実施の形態1の変形例1]
上述した実施の形態1では、第1蓄電装置10−1の負極と外部とを遮断するためのシステムメインリレーSMR1c、第2蓄電装置10−2の負極と外部とを遮断するためのシステムメインリレーSMR2、をそれぞれ設けた。
これに対し、システムメインリレーSMR1cおよびシステムメインリレーSMR2のいずれか一方を共有して用いるように回路構成を変形することで、いずれか一方のリレーを削減することも可能である。
図5は、実施の形態1の変形例1に従う電源装置の回路構成を示す図である。図5に示すように、第1蓄電装置10−1の負極と第2蓄電装置10−2の負極とを負極線NL3で接続してシステムメインリレーSMR2を共有して用いることで、上述の図1に示したシステムメインリレーSMR1cを削減することができる。
[実施の形態1の変形例2]
上述した実施の形態1では、電圧フィードバック制御と電流フィードバック制御とを組合せてコンバータを制御していた。しかしながら、コンバータの制御手法はこれに限定されず、たとえば、一般的な制御手法によって制御コンバータを制御するようにしてもよい。
図6は、実施の形態1の変形例2に従う制御装置100のコンバータの制御に関する部分の機能ブロック図である。なお、図6に示すブロックの中で、前述の図2に示したブロックと同じ機能については同じ符号を付してある。したがって、それらについての詳細な説明はここでは繰り返さない。
実施の形態1の変形例2に従う制御装置100は、電圧制御演算部210a,210bと、駆動信号生成部112a,112bと、キャリア生成部114と、指令部220と、選択部222とを含む。
電圧制御演算部210aは、第1コンバータ12−1の出力電圧値をその目標値である電圧指令値VR1に一致させるためのデューティー指令値d1を算出し、駆動信号生成部112aに出力する。
電圧制御演算部210bは、第2コンバータ12−2の出力電圧値をその目標値である電圧指令値VR2に一致させるためのデューティー指令値d2を算出し、選択部222に出力する。
指令部220は、スイッチング素子Q2Aを常にオンさせる(スイッチング素子Q2Bを常にオフさせる)ためのデューティー指令値d2cutを、選択部222に出力する。
選択部222は、衝突情報Dが車両の衝突が生じたことを示さない場合、電池ユニット3を外部から遮断する必要はないと判断し、デューティー指令値d2を選択して駆動信号生成部112bに出力する。一方、選択部222は、衝突情報Dが車両の衝突が生じたことを示す場合、電池ユニット3を外部から遮断する必要があると判断し、デューティー指令値d2cutを選択して、駆動信号生成部112bに出力する。
このように、実施の形態1の変形例2に従う制御装置100は、車両衝突時に、スイッチング素子Q2Aを常にオンさせスイッチング素子Q2Bを常にオフさせるためのデューティー指令値d2cutを選択する。これによって、上述の実際の形態1と同様、第2蓄電装置10−2と第2コンバータ12−2との間に大電流を流してヒューズHを溶断させることができる(上述の図3参照)。
[実施の形態1の変形例3]
上述した実施の形態1では、図1の電池ユニット3に示したように、蓄電装置およびシステムメインリレーを同一のケース内に収容した。
これに対して、蓄電装置およびシステムメインリレーに加えて、コンバータを同一のケース内に収容するようにしてもよい。
図7は、実施の形態1の変形例3に従う電源装置を備えた車両の全体ブロック図である。図7に示す電源装置は、蓄電装置(第1蓄電装置10−1および第2蓄電装置10−2)、システムメインリレー(システムメインリレーSMR1c〜SMR1c、SMR2)、コンバータ(第1コンバータ12−1および第2コンバータ12−2)を同一ケース内に収容する電池ユニット3aと、第1インバータ30−1および第2インバータ30−2を同一ケース内に収容するパワーコントロールユニット4aとを備える。その他の構造、機能、処理は、図1に示す電源装置と同じであるため、ここでの詳細な説明は繰り返さない。
このようにパッケージ化すると、互いに離れた位置に配置される電池ユニット3aとパワーコントロールユニット4とを接続するパワーケーブルの径を小さくできるため、低コスト化、小型化が可能となる。以下、この点について説明する。
一般的に、キャパシタに蓄えられている電荷量は、キャパシタの両端電圧の2乗に比例する関係がある。つまり、電気二重層キャパシタCAの出力電圧は、蓄えられている電荷量に応じて大きく変動する。
電気二重層キャパシタCAのエネルギを有効に使うためには、電気二重層キャパシタCAの電圧が十分に低い値になるまで(つまりキャパシタに蓄えられている電荷量を十分に使いきるまで)電気二重層キャパシタCAの放電を行なうことが望ましいが、この場合、同じ電力を出力する場合であっても、電圧値が低い分、電流値が大きくなる。この大きな電流は、図7の範囲αに含まれる経路を流れるため、この範囲αに含まれる経路の許容電流値を向上させるために、正極線PL2および負極線NL2の径を大きくする必要がある。
実施の形態1に従う電源装置では、電気二重層キャパシタCAを車両後部の電池ユニット3の内部に収容し、第2コンバータ12−2を車両前部のパワーコントロールユニット4の内部に収容していた。そのため、径を大きくする必要がある正極線PL2および負極線NL2を車両後部から車両前部までの長い距離を取り回すことになる。また、正極線PL2、負極線NL2だけでなく、正極線PL1、負極線NL1を含む合計4本のパワーケーブルを車両後部から車両前部まで長く取り回すことになる。
これに対し、本変形例3に従う電源装置では、電気二重層キャパシタCAと第2コンバータ12−2とを同じ電池ユニット3aの内部に収容する。したがって、径を大きくする必要がある正極線PL2および負極線NL2が非常に短くなる。さらに、電池ユニット3aとパワーコントロールユニット4aとが主正極線MPLおよび主負極線MNLによって接続されることになるが、主正極線MPLおよび主負極線MNLにはコンバータで昇圧した後の電圧が出力されるため、同じ電力を出力する場合であっても、主正極線MPLおよび主負極線MNLを流れる電流は、正極線PL2および負極線NL2を流れる電流値よりも小さくなる。そのため、電池ユニット3aとパワーコントロールユニット4aとを接続するパワーケーブル(主正極線MPLおよび主負極線MNL)を細くできるため、低コスト化、小型化が可能となる。また、電池ユニット3aとパワーコントロールユニット4aとを、主正極線MPLおよび主負極線MNLの合計2本のパワーケーブルで接続するだけでよい。
[実施の形態2]
上述した実施の形態1では、制御装置100が車両衝突時にヒューズカット制御を行なう点について説明した。
これに対し、実施の形態2では、蓄電装置の充放電効率が低下する低温時に制御装置100が第1蓄電装置10−1と第2蓄電装置10−2との間で充放電が繰り返されるようにコンバータを制御する「充放電制御」を実行する。
図8は、この充放電制御時における、第1蓄電装置10−1と第2蓄電装置10−2との間の電流の流れβを示した図である。図8に示すように、充放電制御時には、第1蓄電装置10−1と第2蓄電装置10−2との間で充放電が繰り返される。これにより、第1蓄電装置10−1および第2蓄電装置10−2の内部には電流が流れ、第1蓄電装置10−1および第2蓄電装置10−2が昇温される。
さらに、第1蓄電装置10−1と第2蓄電装置10−2とを近接して配置しているため、両者間での熱伝達が可能となり、お互いの発熱を有効利用できる。そのため、蓄電装置を早期に昇温し、蓄電装置の充放電効率を早期に大きくして走行時のエネルギ出し入れに備えることができる。
図9は、実施の形態2に従う制御装置100aのコンバータの制御に関する部分の機能ブロック図である。制御装置100aは、図2に示した制御装置100の分配部107の機能に加えて、充放電制御の機能を有する分配部207を備える。その他の機能は同じであるため、ここでの詳細な説明は繰り返さない。
分配部207は、監視ユニット21,22からの情報B1,B2に基づいて、蓄電装置の昇温が必要な低温時であるか否かを判断する。分配部207は、第1蓄電装置10−1の温度が所定温度T1よりも低い場合(第1蓄電装置10−1の充放電効率が所定効率r1よりも低下する場合)、および、第2蓄電装置10−2の温度が所定温度T2よりも低い場合(第2蓄電装置10−2の充放電効率が所定効率r2よりも低下する場合)、の少なくともいずれかの場合に、蓄電装置の昇温が必要な低温時であると判断する。
分配部207は、低温時と判断しない場合、電流指令値IRを、通常の配分で、電流指令値IR1と電流指令値IR2とに分配する。
分配部207は、低温時と判断した場合、電流指令値IRを、制御装置100が第1蓄電装置10−1と第2蓄電装置10−2との間で充放電が繰り返されるような配分で、電流指令値IR1と電流指令値IR2とに分配する。
たとえば、電流指令値IRがプラス1.0アンペアである場合、通常の配分であれば、電流指令値IR1をプラス0.5アンペア、電流指令値IR2をプラス0.5アンペアに設定する一方、低温時であれば、電流指令値IR1をプラス1.2アンペア、電流指令値IR2をマイナス0.2アンペアに設定する期間(第1蓄電装置10−1から出力される1.2アンペアの電流のうち、1.0アンペアが駆動力発生部2に供給され、0.2アンペアが第2蓄電装置10−2に供給される期間)と、電流指令値IR1をマイナス0.2アンペア、電流指令値IR2をプラス1.2アンペアに設定する期間(第2蓄電装置10−2から出力される1.2アンペアの電流のうち、1.0アンペアが駆動力発生部2に供給され、0.2アンペアが第1蓄電装置10−1に供給される期間)とを交互に繰り返す。これにより、第1蓄電装置10−1と第2蓄電装置10−2との間で充放電が繰り返される。
図10は、上述した充放電制御を実現するための制御装置100aの処理手順を示すフローチャートである。
S20にて、制御装置100aは、情報B1,B2に基づいて、蓄電装置10の昇温が必要な低温時であるか否かを判断する。低温時であると(S20にてYES)、処理はS22に移される。そうでないと(S20にてNO)、処理はS24に移される。
S22にて、制御装置100aは、上述した充放電制御を実行する。つまり、第1蓄電装置10−1と第2蓄電装置10−2との間で充放電が繰り返されるようにコンバータを制御する。S24にて、制御装置100は、通常制御を行なう。
このような充放電制御を実行することにより、低温時に蓄電装置を早期に昇温し、蓄電装置の充放電効率を早期に大きくして走行時のエネルギ出し入れに備えることができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 電源システム、2 駆動力発生部、3,3a 電池ユニット、4,4a パワーコントロールユニット、10−1 第1蓄電装置、10−2 第2蓄電装置、12−1 第1コンバータ、12−2 第2コンバータ、21,22 監視ユニット、23 衝突センサ、24,25 電流センサ、26 電圧センサ、30−1 第1インバータ、30−2 第2インバータ、34 動力分割装置、36 エンジン、38 駆動輪、100,100a 制御装置、104,108a,108b 減算部、106,210a,210b 電圧制御演算部、107,207 分配部、110a,110b 電流制御演算部、112a,112b 駆動信号生成部、114 キャリア生成部、120,220 指令部、122,222 選択部、C,C1,C2, 平滑コンデンサ、CA 電気二重層キャパシタ、D1A,D1B,D2A,D2B ダイオード、H ヒューズ、L1,L2 リアクトル、MNL 主正極線、MPL 主負極線、NL1〜NL3 正極線、PL1,PL2 負極線、Q1A,Q1B,Q2A,Q2B スイッチング素子、R 制限抵抗、SMR1a〜SMR1c,SMR2 システムメインリレー。

Claims (10)

  1. 電力で駆動力を発生する駆動装置を備えた車両の電源装置であって、
    前記駆動装置に供給するための電力を蓄える第1蓄電装置と、
    前記駆動装置と前記第1蓄電装置との間に設けられ、前記駆動装置と前記第1蓄電装置との間で電圧変換を行なう第1コンバータと、
    前記第1蓄電装置と前記第1コンバータとの間に設けられ、許容値よりも大きい電流が流れた場合に溶断されるヒューズと、
    前記第1コンバータを制御する制御装置とを備え、
    前記制御装置は、前記第1蓄電装置を外部から遮断する必要が生じた場合、前記ヒューズを流れる電流値が前記許容値よりも大きくなるように前記第1コンバータを制御することによって前記ヒューズを溶断する、車両の電源装置。
  2. 前記ヒューズは、前記第1蓄電装置の正極と前記第1コンバータとを結ぶ第1経路および前記第1蓄電装置の負極と前記第1コンバータとを結ぶ第2経路のうちいずれか一方の経路上に設けられ、
    前記電源装置は、前記一方の経路とは異なる他方の経路に設けられた第1リレーをさらに備え、
    前記制御装置は、前記第1蓄電装置を外部から遮断する必要が生じた場合、前記第1リレーをオンした状態で前記第1コンバータを制御することによって前記ヒューズを溶断して前記一方の経路を遮断し、前記ヒューズを溶断した後に前記第1リレーをオフすることで前記他方の経路を遮断する、請求項1に記載の車両の電源装置。
  3. 前記ヒューズは、前記第1蓄電装置の正極と前記第1コンバータとを結ぶ第1経路および前記第1蓄電装置の負極と前記第1コンバータとを結ぶ第2経路のうちいずれか一方の経路上に設けられ、
    前記電源装置は、
    前記一方の経路とは異なる他方の経路に設けられた第1リレーと、
    前記駆動装置に前記第1蓄電装置とは並列に接続された第2蓄電装置と、
    前記駆動装置と前記第2蓄電装置との間に設けられ、前記駆動装置と前記第2蓄電装置との間で電圧変換を行なう第2コンバータと、
    前記第2コンバータと前記第2蓄電装置との間に設けられた第2リレーとをさらに備える、請求項1に記載の車両の電源装置。
  4. 前記制御装置は、前記第1蓄電装置および前記第2蓄電装置を外部から遮断する必要が生じた場合、前記第1リレーをオンした状態で前記第1コンバータを制御することによって前記ヒューズを溶断し、前記ヒューズを溶断した後に前記第1リレーおよび前記第2リレーをオフすることで前記第1コンバータと前記第1蓄電装置とを結ぶ経路を遮断しかつ前記第2コンバータと前記第2蓄電装置とを結ぶ経路を遮断する、請求項3に記載の車両の電源装置。
  5. 前記電源装置は、前記第1蓄電装置、前記第2蓄電装置、前記ヒューズ、前記第1リレー、および、前記第2リレーを内部に収容するケースをさらに備え、
    前記第1コンバータ、前記第2コンバータおよび前記駆動装置は、前記ケースの外部に配置される、請求項3に記載の車両の電源装置。
  6. 前記電源装置は、前記第1蓄電装置、前記第2蓄電装置、前記ヒューズ、前記第1リレー、前記第2リレー、前記第1コンバータ、および、前記第2コンバータを内部に収容するケースをさらに備え、
    前記駆動装置は、前記ケースの外部に配置される、請求項3に記載の車両の電源装置。
  7. 前記第1蓄電装置と前記第2蓄電装置とは近接して配置され、
    前記制御装置は、前記第1蓄電装置および前記第2蓄電装置の少なくともいずれかの温度がそれぞれ対応する所定温度よりも低い場合、前記第1蓄電装置と前記第2蓄電装置との間で充放電が繰り返されるように、前記第1コンバータおよび前記第2コンバータをさらに制御する、請求項3に記載の車両の電源装置。
  8. 前記電源装置は、
    前記ヒューズを介して前記第1蓄電装置の正極と前記第1コンバータとを接続する第1正極線と、
    前記第1リレーを介して前記第1蓄電装置の負極と前記第1コンバータとを接続する第1負極線と、
    前記第2リレーを介して前記第2蓄電装置の正極と前記第2コンバータとを接続する第2正極線と、
    前記第2蓄電装置の負極と前記第1蓄電装置の負極とを直結する第2負極線とをさらに備える、請求項3に記載の車両の電源装置。
  9. 前記第2蓄電装置は、二次電池であり、
    前記第1蓄電装置は、電気二重層キャパシタである、請求項3に記載の車両の電源装置。
  10. 前記ヒューズは、前記第1蓄電装置に一体的に組み込まれる、請求項1に記載の車両の電源装置。
JP2010086929A 2010-04-05 2010-04-05 車両の電源装置 Withdrawn JP2011223655A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010086929A JP2011223655A (ja) 2010-04-05 2010-04-05 車両の電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010086929A JP2011223655A (ja) 2010-04-05 2010-04-05 車両の電源装置

Publications (1)

Publication Number Publication Date
JP2011223655A true JP2011223655A (ja) 2011-11-04

Family

ID=45039896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086929A Withdrawn JP2011223655A (ja) 2010-04-05 2010-04-05 車両の電源装置

Country Status (1)

Country Link
JP (1) JP2011223655A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110813A (ja) * 2011-11-18 2013-06-06 Toyota Motor Corp 車両
JP2013223330A (ja) * 2012-04-16 2013-10-28 Toyota Motor Corp 車載用のバッテリ装置
JP2019110626A (ja) * 2017-12-15 2019-07-04 トヨタ自動車株式会社 衝突検知装置
WO2021010007A1 (ja) 2019-07-17 2021-01-21 パナソニックIpマネジメント株式会社 電力遮断装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110813A (ja) * 2011-11-18 2013-06-06 Toyota Motor Corp 車両
JP2013223330A (ja) * 2012-04-16 2013-10-28 Toyota Motor Corp 車載用のバッテリ装置
JP2019110626A (ja) * 2017-12-15 2019-07-04 トヨタ自動車株式会社 衝突検知装置
JP7056130B2 (ja) 2017-12-15 2022-04-19 トヨタ自動車株式会社 衝突検知装置
WO2021010007A1 (ja) 2019-07-17 2021-01-21 パナソニックIpマネジメント株式会社 電力遮断装置
CN114128070A (zh) * 2019-07-17 2022-03-01 松下知识产权经营株式会社 电力切断装置

Similar Documents

Publication Publication Date Title
JP5605436B2 (ja) 電動車両およびその制御方法
US8659182B2 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
JP4900535B2 (ja) 車両の電力変換装置およびそれを搭載する車両
JP5287983B2 (ja) 電源システムおよびそれを備える車両
US8681457B2 (en) Power source system for electric powered vehicle and control method therefor
US7898103B2 (en) Power supply apparatus for vehicle and vehicle incorporating the same
US9493092B2 (en) Electric automobile
JP5234179B2 (ja) 電動車両の電源システムおよびその制御方法
JP4337797B2 (ja) 電力制御装置および電動車両
CN101267960B (zh) 电力控制装置、包含该装置的电动车和控制电动车电力的方法
US8674637B2 (en) Vehicle
JP5228824B2 (ja) 車両の電源システムおよび車両
WO2010032320A1 (ja) 車両の異常検出装置および車両
CN101616828A (zh) 混合动力车辆
JP2013192278A (ja) 電動車両
JP2019054673A (ja) 電源装置
US20120187775A1 (en) Battery pack active discharge integration
WO2011155014A1 (ja) 車両の電力制御装置および車両の電力制御方法
JP2009296820A (ja) 二次電池の充電制御装置および充電制御方法ならびに電動車両
JP2011041386A (ja) 車両および車両の制御方法
JP4905204B2 (ja) 負荷駆動装置
JP4915273B2 (ja) 電気機器および電気機器の制御方法
JP2011223655A (ja) 車両の電源装置
JP2017103950A (ja) 電源装置
WO2010061449A1 (ja) 電源システムおよびハイブリッド車両、ならびに電源システムの充電制御方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130702