JP2011221612A - 補正パラメータ調整装置 - Google Patents

補正パラメータ調整装置 Download PDF

Info

Publication number
JP2011221612A
JP2011221612A JP2010087134A JP2010087134A JP2011221612A JP 2011221612 A JP2011221612 A JP 2011221612A JP 2010087134 A JP2010087134 A JP 2010087134A JP 2010087134 A JP2010087134 A JP 2010087134A JP 2011221612 A JP2011221612 A JP 2011221612A
Authority
JP
Japan
Prior art keywords
correction parameter
machine
acceleration
mechanical
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010087134A
Other languages
English (en)
Other versions
JP5404507B2 (ja
Inventor
Ryuta Sato
隆太 佐藤
Kotaro Nagaoka
弘太朗 長岡
Tomonori Sato
智典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010087134A priority Critical patent/JP5404507B2/ja
Publication of JP2011221612A publication Critical patent/JP2011221612A/ja
Application granted granted Critical
Publication of JP5404507B2 publication Critical patent/JP5404507B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

【課題】実際の使用状態にある機械の運動軌跡をジグや工具を外さずに測定でき、誤差要因を分離して補正パラメータの適切な設定が可能な補正パラメータ調整装置を得ること。
【解決手段】補正パラメータ調整装置40は、可動軸を駆動するモータ1から検出される検出位置をフィードバックし、検出位置が指令位置に追従するようにモータを駆動することで機械の位置を制御する装置における機械の加速度を測定するための加速度計13と、加速度と検出位置とから機械運動を解析する機械運動解析部14と、機械運動の解析結果から機械の運動精度を向上させるための補正パラメータを決定する補正パラメータ計算部18と、を備える。
【選択図】図3

Description

本発明は、数値制御工作機械やロボットにおいて、機械の運動精度を向上させる補正パラメータを調整する補正パラメータ調整装置に関する。
数値制御工作機械やロボットでは、モータを駆動して、指令位置にできる限り忠実に機械の位置を制御する。その場合、機械の振動や運動方向反転時の摩擦力の影響により指令位置と実際の機械の位置との間に誤差が生じ、例えば加工面に傷がついたりする。そのような問題が発生した場合には、機械の運動軌跡を測定して問題の原因を探り、モータを制御するコントローラの各種補正パラメータを調整することが行われる。そのための機械運動軌跡の測定表示方法としては、複数の方法が公知である。
特許文献1に示された方法は、2つの高精度な鋼球の間が変位計を介して結合されたものであり、2球間の相対距離を一定に保つような運動(円弧)を行わせたときの変位を読み取るものである。この方法はボールバー法と呼ばれ、補正パラメータ調整のための測定方法として広く普及している。
ボールバー法で補正パラメータの調整を行う際には、機械の運動軌跡を測定し、その結果から誤差要因を推測して補正パラメータを変更し、もう一度機械の運動軌跡を測定して補正パラメータ変更の効果を確認する。一度の変更で満足な結果が得られない場合には、上記の手順を繰り返すことが一般的である。
特許文献2には、補正パラメータの調整を行う作業者の負担を軽減するために、ボールバー法を使って機械誤差を測定し、制御装置の補正パラメータの変更を提案する方法およびシステムが記載されている。この技術のポイントは、入力された試験条件に基づいて試験が適切に行われるようなNCプログラムを自動生成し、測定器のセットアップを作業者に指示して試験を実行させること、および試験結果を解析して較正パラメータの変更を提案するとともに、予測される効果を表示することである。
特開昭61−209857号公報 特表2004−525467号公報
しかしながら、特許文献1に記載の方法では、機械運動軌跡の測定結果から調整作業者が誤差要因を推測して補正パラメータを調整する。測定結果から誤差要因を推測できるようになるためには多くの経験と専門知識を要するため、補正パラメータの調整作業ができる人材が限られていたほか、補正パラメータの調整に多大な時間を要する場合が多い。
特許文献2に記載の方法およびシステムでは、測定器のセットアップが指示されるので、専門知識がない作業者であっても補正パラメータの調整作業を行うことができる。しかしながら、機械運動軌跡の測定にはボールバー法を用いるため、決められた半径の円弧軌跡しか測定できないという問題があるほか、調整作業中には常に1名以上の作業者が必要となる。
上記の方法に共通して、機械に変位計を取付けて運動軌跡を測定するために、例えば工作機械にジグや工具が取り付けてある場合には、測定のためにそれらを外す必要があった。そのため、例えば試し削りを行って加工結果に不具合があったとしても、補正パラメータの調整を行うためには工具や工作物を取り外す必要があり、多大な労力を要するほか、一旦取り外した工具や工作物をもとの状態に戻すことが困難であるという問題があった。
また、上記の方法に共通して、測定範囲が比較的狭い範囲に限られているという問題がある。すなわち、誤って測定範囲を超えて機械が運動した場合には、測定器が破損してしまう。また、ストロークの大きな機械の運動軌跡を測定しようとすると、測定器を一旦取り外し、場所をずらして設置し直す必要があった。また、測定器を設置したくても構造上や寸法上の問題で、設置できない機械も存在し、そのような場合には補正パラメータの調整ができないという問題があった。
また、上記の方法に共通して、機械運動軌跡の測定結果のみを使って補正パラメータを調整する場合、その測定結果に、例えばモータの運動誤差による軌跡誤差と機械誤差に起因する軌跡誤差が混在していたとしても、その2つの誤差を分離することができず、調整作業がより困難なものになっていた。
本発明は、上記に鑑みてなされたものであって、実際の使用状態にある機械の運動軌跡をジグや工具を外さずに測定でき、誤差要因を分離して補正パラメータの適切な設定が可能な補正パラメータ調整装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、可動軸を駆動するモータから検出される検出位置をフィードバックし、検出位置が指令位置に追従するようにモータを駆動することで機械の位置を制御する装置における機械の加速度を測定するための加速度計と、加速度と検出位置とから機械運動を解析する機械運動解析部と、機械運動の解析結果から機械の運動精度を向上させるための補正パラメータを決定する補正パラメータ計算部と、を備えることを特徴とする。
本発明によれば、実際の使用状態にある機械の運動軌跡をジグや工具を外さずに測定でき、誤差要因を分離して補正パラメータの適切な設定が可能になるという効果を奏する。
図1は、本発明の実施の形態1に係る補正パラメータ調整装置が適用された数値制御工作機械の概略構成を示す外観斜視図である。 図2は、図1に示す数値制御工作機械のY軸の駆動機構を、横から見た場合の断面図を模式的に示す図である。 図3は、数値制御工作機械が備える補正パラメータ調整装置などの概略構成を示すブロック図である。 図4は、機械運動解析部および補正パラメータ計算部において、バックラッシ補正パラメータの調整を行う処理の概要を示すフローチャートである。 図5は、ステップS3での機械運動解析部における処理の概要を示す図である。 図6は、往復運動を行った場合における検出位置、機械位置、および機械誤差の計算結果の例を示す図である。 図7は、運動方向反転の前後0.5mmの機械誤差波形を示す図である。 図8−1は、バックラッシ補正パラメータを自動調整する前の実際の機械の円弧軌跡を示す図である。 図8−2は、バックラッシ補正パラメータを自動調整した後の実際の機械の円弧軌跡を示す図である。 図9は、本実施の形態1の変形例1について、機械運動解析部および補正パラメータ計算部における処理の概要を示すフローチャートであって、ピッチ誤差補正パラメータの調整を行う処理の概要を示すフローチャートである。 図10−1は、弾性変形による軌跡誤差発生のメカニズムを説明するための図である。 図10−2は、正弦波往復運動を指令した場合の、被駆動体の振幅を示す図である。 図11は、本実施の形態1の変形例2について、固有角振動数を計算するための手順を説明するためのフローチャートである。 図12は、本実施の形態1の変形例3について、数式(8)を使って固有角振動数を計算するための手順を説明するためのフローチャートである。 図13は、ステップS9における処理の概要を説明するための図である。 図14−1は、弾性変形量補正パラメータを調整する前の検出軌跡および機械軌跡を示す図である。 図14−2は、弾性変形量補正パラメータを調整した後の検出軌跡および機械軌跡を示す図である。 図15は、本実施の形態1の変形例4について、駆動部補正パラメータの調整の処理の概要を示すフローチャートである。 図16−1は、駆動部補正パラメータを調整する前の検出軌跡および機械軌跡を示す図である。 図16−2は、駆動部補正パラメータを調整した後の検出軌跡および機械軌跡を示す図である。
以下に、本発明にかかる補正パラメータ調整装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1に係る補正パラメータ調整装置が適用された数値制御工作機械の概略構成を示す外観斜視図である。数値制御工作機械50は、X軸、Y軸およびZ軸方向に沿うように運動を案内された複数の可動軸を有し、各可動軸はモータ1と送りねじ2を有する駆動機構によって駆動される。モータの回転角度は回転角度検出器3により検出され、制御装置(例えば、モータ駆動部12)にフィードバックされる。各可動軸の駆動方法として、モータ1と送りねじ2の代わりにリニアモータを用いる場合や、回転角度検出器3の代わりにリニアスケールを用いる場合もある。
数値制御工作機械50では、Y軸の駆動機構によりワークテーブル4が駆動され、X軸の駆動機構によりコラム5が駆動される。コラム5に取付けられたZ軸の駆動機構により、ラム6を介して主軸頭7が駆動される。これら駆動の結果として、主軸頭7の先端に取付けられる工具と、ワークテーブル4上に設置される工作物との間に3次元形状が創成される。
図2は、図1に示す数値制御工作機械50のY軸の駆動機構を、横から見た場合の断面図を模式的に示す図である。ここでは、Y軸の駆動機構のみ示すが、X軸およびZ軸の駆動機構についても同様の構成となっている。モータ1の回転運動はカップリング8を介して送りねじ2に伝達され、ナット9を介して直進運動に変換される。送りねじ2の回転軸は、サポートベアリング10により拘束されており、ワークテーブル4の直進運動を可能とする。コントローラ(例えば、指令生成部11)から指令位置が出力され、その指令位置はモータ駆動部12に伝送される。モータ駆動部12では、回転角度検出器3により検出されたモータ回転角度を位置に変換した検出位置と、伝送された指令位置との誤差が、可能な限り小さくなるように、すなわち検出位置が指令位置に追従するようにモータ1を駆動する。
なお、モータ1の回転角度に加えて、リニアスケールやレーザ変位計を付加してワークテーブル4の位置(機械の位置)を検出して、検出位置をモータ駆動部12にフィードバックする場合もあるし、モータ1と送りねじ2の代わりにリニアモータを用いる場合もある。なお、X軸やZ軸に関しても、Y軸と同様に、検出位置が指令位置に追従するようにモータ1が駆動されて、主軸頭7の先端に取付けられる工具の位置(機械の位置)が制御される。
数値制御工作機械50においては、主軸頭7の先端に取付けられる工具とワークテーブル4との相対変位が重要であり、この相対変位を予め測定して、指令生成部11またはモータ駆動部12において、数値制御工作機械50に存在する誤差を補正することが一般的に行われている。誤差の原因として、まず可動軸間の直角度や送りねじのピッチ誤差といった静的な誤差があり、これらは機械を組立てる段階で測定および調整が行われ、通常の使用中に変化することは少ない。
一方、主にカップリング8や送りねじ2、サポートベアリング10部分で生じる弾性変形やバックラッシ、コラム5やラム6の姿勢変化による誤差、また摩擦力による誤差といった動的な誤差が生じることも知られている。これらの動的な誤差は、数値制御工作機械50の使用状況やワークテーブル4上の負荷質量、機械の経年変化や摩耗等によって特性が大きく変化してしまう。そこで、数値制御工作機械50の使用中に定期的または継続的に機械運動軌跡を測定し、コントローラの各種補正パラメータを調整して、動的な誤差を抑えることができることが望ましい。
数値制御工作機械50の運動精度を向上させるための補正パラメータは、数値制御工作機械50の静的または動的な誤差モデルを構成するパラメータ群に相当する。仮に、制御装置も含めた数値制御工作機械50が有する誤差を完全にモデル化できるとすれば、補正によって運動誤差は限りなくゼロに近づくことになる。すなわち、機械の運動精度を向上させるための補正機能およびその補正パラメータは、機械の数学的モデルと表裏一体の関係にあり、補正機能の進歩とともに補正パラメータも変化していく性格のものである。
なお、数値制御工作機械50の運動精度を向上させるために、現在の一般的なコントローラが有する補正パラメータは、指令生成部補正パラメータと、駆動部補正パラメータとに大別される。指令生成部補正パラメータは、指令生成部11において指令位置を補正する効果を持ち、駆動部補正パラメータは、モータ駆動部12において指令速度または指令トルクを補正する効果を持つ。
指令生成部補正パラメータとしては、例えばバックラッシ補正パラメータやピッチ誤差補正パラメータ、弾性変形量補正パラメータや前置フィルタのパラメータなどがある。駆動部補正パラメータとしては、例えば摩擦補償パラメータやバックラッシ加速パラメータ、振動抑制制御パラメータなどがある。機械運動精度を向上させるためには、誤差要因を分離したうえで、指令生成部補正パラメータと駆動部補正パラメータを適切に設定する必要がある。
図3は、数値制御工作機械50が備える補正パラメータ調整装置40などの概略構成を示すブロック図である。図3に示すように、補正パラメータ調整装置40は、主軸頭7の先端に取付けられる工具や、ワークテーブル4の加速度を測定するための加速度計13と、同期して測定された加速度と検出位置とから機械運動を解析する機械運動解析部14と、機械運動の解析結果から機械の運動精度を向上させるための補正パラメータを決定する補正パラメータ計算部18とを備える。なお、数値制御工作機械50は、機械運動軌跡などを表示する運動軌跡表示部15も備えている。
まず、指令生成部補正パラメータ調整の事例として、バックラッシ補正パラメータの調整を例に挙げて説明する。図4は、機械運動解析部14および補正パラメータ計算部18において、バックラッシ補正パラメータの調整を行う処理の概要を示すフローチャートである。まず、数値制御工作機械50に試験運動が実行される(ステップS1)。次に、機械運動解析部14によって、試験運動中の検出位置と加速度が取得される(ステップS2)。ここで、バックラッシ補正パラメータ調整のための試験運動としては、同時2軸制御による円運動が適しており、そのときの検出位置と加速度は時間的に同期したデータとして同時に測定される。なお、ステップS1における試験運動の実行は、オペレータが制御装置を操作することで行われてもよいし、より上位の装置からの指示により実行されてもよい。
次に、ステップS2において取得された検出位置と加速度から、機械運動解析部14によって機械位置が計算される(ステップS3)。ここで、ステップS3での機械運動解析部14における処理を、図面を用いて説明する。図5は、ステップS3での機械運動解析部14における処理の概要を示す図である。ステップS3では、加速度を2回積分して求めた位置と、検出位置との誤差波形を所定の近似式をもって近似する。そして、加速度を2回積分した結果から近似式による解を差し引くことで機械位置を計算する。なお、所定の近似式としては、例えば、8次多項式が使用可能であり、8次多項式の各係数は最小二乗法や滑降シンプレックス法といった公知の方法により決定することができる。
図4に戻って、ステップS3で計算された機械位置から、ステップS2で取得された検出位置を差し引くことで、補正パラメータ計算部18によって機械誤差が計算される。図6は、往復運動を行った場合における検出位置、機械位置、および機械誤差の計算結果の例を示す図である。図6によると、振幅10mmの往復運動中に、約±2μmの機械誤差が生じており、運動方向が反転する箇所では機械誤差がステップ状に変化している。このステップ状の変化は、主には駆動機構に存在するバックラッシによって生じるものである。
機械位置と検出位置とが別々の測定システムを使って取得された場合には、2つのデータのサンプリング間隔や取得タイミングがずれているために、正確な機械誤差を計算することが難しい。しかしながら、本実施の形態では、ステップS2により検出位置と加速度が同時に取得されるため、サンプリング間隔や取得タイミングを考慮せずにステップS4において比較的簡単に正確な機械誤差の計算ができる。
図4に戻って、ステップS2で取得された検出位置から、補正パラメータ計算部18によって運動方向反転箇所が抽出される(ステップS5)。また、ステップS4で計算された機械誤差と検出位置との関係をもとに、運動方向反転前後の所定変位内の機械誤差波形から、バックラッシ特徴量としてバックラッシ量と立ち上がり係数とが補正パラメータ計算部18によって抽出される(ステップS6)。
図7は、運動方向反転の前後0.5mmの機械誤差波形を示す図である。図7によると、運動方向反転後の機械誤差は、ある傾きをもって増加し、変位が大きくなると一定値に収束する。このような特性を、本実施例においては、バックラッシの大きさAとバックラッシの立ち上がり係数Bとして抽出する。
なお、特徴量をどのような形で抽出するかは調整対象のコントローラがどのような補正機能を備えているかによって決まり、例えば検出位置を微分した検出速度と機械誤差との関係、指令位置と機械誤差との関係、指令位置を微分した指令速度と機械誤差との関係、運動の加速度と機械誤差との関係、または時間と機械誤差との関係などから特徴量を抽出してもよい。すなわち、時間、検出位置、指令位置、検出位置を微分した検出速度または検出加速度、および指令位置を微分した指令速度または指令加速度の少なくとも1つと、機械誤差との関係から特徴量を抽出してもよい。また、特徴量としては、2つないしは3つ以上のパラメータで表現してもよいし、数式で表現したり、機械誤差をルックアップテーブル形式で表現したりしてもよい。
図4に戻って、指令生成部補正パラメータとしてのバックラッシ補正パラメータが、補正パラメータ計算部18によって計算される(ステップS7)。具体的には、ステップS6で抽出されたバックラッシ特徴量が、補正パラメータ計算部18によって、コントローラに設定されるべき値に換算される。コントローラでは、例えば回転角度検出器3の分解能や0.01μm単位としてバックラッシ補正パラメータが設定される。
本実施の形態において、バックラッシ補正パラメータを自動調整した場合の効果を、図面を用いて説明する。図8−1は、バックラッシ補正パラメータを自動調整する前の実際の機械の円弧軌跡を示す図である。図8−2は、バックラッシ補正パラメータを自動調整した後の実際の機械の円弧軌跡を示す図である。図8−1、図8−2では、半径10mm、送り速度1500mm/minの円運動を機械に行わせている。また、図8−1、図8−2において、破線で示される検出軌跡は2軸分の検出位置を合成して求め、実線で示される機械軌跡は、同様に2軸分の機械位置を合成して求めている。また、図8−1、図8−2では、半径方向の軌跡誤差を拡大して表示している。
図8−1に示すように、バックラッシ補正パラメータを調整する前では、各象限切替え部の機械軌跡上に段差状の軌跡誤差が観察される(円で囲まれた部分)。これが主にバックラッシの影響による軌跡誤差である。図8−2に示すように、本発明の方法でバックラッシ補正パラメータを調整することで、機械軌跡上に現れていた段差状の軌跡誤差を抑えることができている。
なお、同様の調整作業を従来の人手による方法で調整した場合には、本発明による調整結果と同等の結果を得るためには調整に約2時間を要した。一方、本発明による方法でバックラッシ補正パラメータを調整した場合には、調整に要した時間は5分程度であり、本発明による補正パラメータ自動調整方法の優位性が確認された。
同様の方法で、バックラッシ補正パラメータ以外のパラメータ、例えばピッチ誤差補正パラメータを調整することもできる。そこで、本実施の形態1の変形例1について、ピッチ誤差補正パラメータの調整を例に挙げて説明する。図9は、本実施の形態1の変形例1として、機械運動解析部14および補正パラメータ計算部18における処理の概要を示すフローチャートであって、ピッチ誤差補正パラメータの調整を行う処理の概要を示すフローチャートである。
バックラッシ補正パラメータの調整を行う場合との違いは、図4に示すフローチャートにおけるステップS5とステップS6に代えて、補正パラメータ計算部18によってピッチ誤差補正量を計算する(ステップS8)ことである。
このように、補正パラメータ調整装置40を用いることで、機械誤差のみを抽出できる。これにより、コントローラがもつ補正機能にあわせて機械運動精度を向上するために必要な補正パラメータを計算できるという効果を有する。
次に、本実施の形態1の変形例2について、弾性変形量補正パラメータの調整を例に挙げて説明する。
図10−1は、弾性変形による軌跡誤差発生のメカニズムを説明するための図である。回転角度検出器3で検出される信号から求めた検出位置xと、加速度計13が設置された箇所における機械位置xとの間には、送りねじ2やサポートベアリング10、コラム5やラム6といった弾性要素が存在し、その剛性をK [N/m]とする。また、モータ1により駆動される被駆動体(ワークテーブル4、コラム5、またはラム6)の質量をM [kg]とすると、ある加速度a [m/s]で運動中に被駆動体に作用する慣性力F [N]によって生じる弾性変形量Δx [m]は、以下の数式(1)により表される。
Figure 2011221612
数式(1)において、ωは固有角振動数である。すなわち、モータ1から加速度計13の設置箇所までの間に存在する機械要素の固有角振動数ωがわかれば、数式(1)により弾性変形量を計算して指令生成部11において補正することができる。図10−2は、正弦波往復運動を指令した場合の、被駆動体の振幅を示す図である。図10−2に示すように、正弦波往復運動を指令した場合には、最大の加速度は運動方向反転時に生じるので、弾性変形量分だけ振幅が増大する。
なお、弾性変形量Δxを用いた補正方法としては様々な方法が公知であり、指令生成部11が補正機能を有する場合もあるし、モータ駆動部12が補正機能を有する場合もある。補正パラメータの形態としても、加速度に依存する変位として設定する場合もあるし、機械要素の固有振動数や機械要素の剛性といった、前記加速度に対する機械の変形量を表す係数を計算して設定する場合もある。本変形例2では、補正パラメータ計算部18において、機械運動解析部14で解析される機械要素の固有角振動数ωを、調整対象のコントローラがもつ補正機能に適した形態の補正パラメータに変換して設定することと特徴としており、その設定について以下に説明する。
機械の変位振幅をR [m]、速度振幅をV [m/s]とし、弾性変形による誤差(弾性変形量)をΔx [m]とした場合の機械位置x [m]および機械速度V [m/s]は、数式(2)により表される。ここで、tは時間[s]である。
Figure 2011221612
よって、弾性変形がない場合の速度振幅、すなわち検出位置を微分して得られる速度の振幅をA[m/s]とし、弾性変形による振幅の増大分を考慮した速度振幅、すなわち加速度計13により測定される加速度を積分して得られる速度の振幅をAvt [m/s]とすると、2つの速度振幅の間には数式(3)に示す関係がある。
Figure 2011221612
ここで、数式(3)のRを速度振幅比として定義する。数式(3)に数式(1)の結果を代入して整理すると、数式(4)を得る。ここで、ωは正弦波往復運動の角周波数[rad/s]であり、速度振幅Vと変位振幅Rの比として計算できる。
Figure 2011221612
すなわち、弾性変形による速度振幅の増加率は、機械要素の固有角振動数ωと往復運動の角周波数ωとの関係によって決まることになる。よって、速度振幅比Rと往復運動の角周波数ω を測定することで、機械要素の固有角振動数ωを計算できる。数式(4)を変形して固有角振動数ωを導くことで、以下の数式(5)を得る。
Figure 2011221612
図3に示す構成において、数式(5)を使って固有角振動数を計算するための手順を、図面を用いて説明する。図11は、本実施の形態1の変形例2について、固有角振動数を計算するための手順を説明するためのフローチャートである。まず、ステップS1において試験運動が実行される。そして、ステップS2において、試験運動中の検出位置と加速度が、機械運動解析部14によって取得される。固有角振動数計算のための試験運動としては、正弦波往復運動が適しており、例えば速度振幅を6000mm/min、変位振幅を10mm程度に設定するとよい。また、そのときの検出位置と加速度は時間的に同期したデータとして同時に測定される。なお、ステップS1における試験運動の実行は、オペレータが制御装置を操作することで行われてもよいし、より上位の装置からの指示により実行されてもよい。
次に、ステップS2において取得された検出位置と加速度から、速度振幅比Rが機械運動解析部14によって計算される(ステップS9)。図13は、ステップS9における処理の概要を説明するための図である。図13に示すように、ステップS9における処理では、検出位置を微分することで得た検出速度と、加速度を積分することで得た機械速度とから、検出速度振幅Avfbと機械速度振幅Avtとを計算する。速度振幅の計算に際しては、運動開始直後と運動終了直前のデータを取り除いておく。
図11に戻って、ステップS2で取得された検出位置から計算される変位振幅Rと、検出位置を微分して得られる検出速度から計算される速度振幅Vとから、往復運動の角周波数ωが機械運動解析部14によって計算される(ステップS10)。この場合にも、運動開始直後と運動終了直前のデータを取り除いておく。
ステップS9とステップS10により計算された速度振幅比Rと角周波数ωとを数式(5)に適用して、固有角振動数ωが機械運動解析部14によって計算される(ステップS11)。ステップS7では、ステップS11で計算された固有角振動数ωが調整対象のコントローラがもつ補正機能に応じたパラメータに変換される。
なお、弾性変形量の補正機能がモータ駆動部12に具備されている場合には、ステップS7における指令生成部補正パラメータの計算に代えて、後述するステップS14(図15を参照)のように駆動部補正パラメータを計算するように構成してもよい。また、コントローラ内に該当する補正機能を有しない場合には、別途目標位置を修正するように構成してもよい。
また、機械要素の固有角振動数ωを使えば、弾性変形量の補正に限らず、例えば前置フィルタや振動抑制制御機能等のパラメータ調整にも適用できる。このように、本発明による機械運動解析部14では機械要素の固有角振動数ωを計算できるので、調整対象のコントローラが持つ様々な機能に対応した補正パラメータの調整が可能になるという、効果を奏する。
さらに、固有角振動数の同定のために従来行われてきた、スイープサイン波やM系列信号による加振試験を行わなくても、機械要素の固有角振動数を計算できるという効果を奏する。
次に、本実施の形態1の変形例3について、弾性変形量補正パラメータの調整を例に挙げて説明する。
加速度計13を機械に設置する場合には、測定したい可動軸の運動方向と加速度計がもつ感度方向とを完全に一致させることは困難であり、その結果、真の加速度と測定される加速度との間には微妙な誤差が生じる。これまでは、既知の加速度で運動させた場合の測定結果を使い、加速度計を事前に高精度に校正することで、加速度の測定誤差による問題を回避していた。本変形例3では、機械運動解析部14において、加速度計の校正作業を行わなくても加速度の測定誤差による問題を回避できるように、以下の方法で固有角振動数ωが計算される。
すなわち、振幅および速度の少なくとも一方を2通りに変化させて正弦波往復運動を行い、それぞれの検出位置と加速度とから速度振幅比を計算する。1つめの測定結果における速度振幅比と角周波数をそれぞれR(1)とω(1)、2つめの測定結果における速度振幅比と角周波数をそれぞれR(2)とω(2)とおくと、各速度振幅比と各角周波数との間には、数式(4)の場合と同様に、数式(6)に示す関係が成り立つ。
Figure 2011221612
ここで、加速度に測定誤差がある場合、その誤差は速度振幅比Rに影響を及ぼすが、その影響の割合は振幅や速度といった運動条件によらず一定であるから、加速度計を取り付けたまま2通りの運動条件で測定を行えば、数式(7)に示すように、2つの速度振幅比の比を計算することで、加速度計の測定誤差による影響を相殺できる。また、数式(7)を固有角振動数ωについて解くことで、数式(8)を得る。
Figure 2011221612
Figure 2011221612
このように、本発明の機械運動解析部14によれば、加速度の測定誤差があったとしても、2つの運動条件で連続して測定することで測定誤差を相殺し、機械要素の固有角振動数ωを計算できるという効果を奏する。
図3に示す構成において、数式(8)を使って固有角振動数を計算するための方法を、図面を用いて説明する。図12は、本実施の形態1の変形例3について、数式(8)を使って固有角振動数を計算するための手順を説明するためのフローチャートである。まず、ステップS1において試験運動が実行されると、ステップS2において試験運動中の検出位置と加速度が機械運動解析部14によって取得される。本実施の形態による固有角振動数計算のための試験運動としては、正弦波往復運動が適しており、例えば、1つめの運動条件での速度振幅は3000mm/min、変位振幅を10mm程度に設定するとよい。また、そのときの検出位置と加速度は時間的に同期したデータとして同時に測定される。なお、ステップS1における試験運動の実行は、オペレータが制御装置を操作することで行われてもよいし、より上位の装置からの指示により実行されてもよい。
ステップS2において取得された検出位置と加速度から、1つめの速度振幅比R(1)が機械運動解析部14によって計算される(ステップS9)。ステップS9における処理の概要は、上述したように、検出位置を微分することで得た検出速度と、加速度を積分することで得た機械速度とから、検出速度振幅Avfbと機械速度振幅Avtとが計算される(図13も参照)。速度振幅の計算に際しては、運動開始直後と運動終了直前のデータを取り除いておく。ステップS10では、1つめの往復運動の角周波数ω(1)が計算される。この場合にも、運動開始直後と運動終了直前のデータを取り除いておく。
数式(8)による固有角振動数の計算には2組のデータが必要であるから、2組のデータの取得が完了していない場合には(ステップS15,No)、往復運動の振幅および速度の少なくとも一方を変更し(ステップS12)、ステップS1に戻る。2つめの運動条件での速度振幅は6000mm/min、変位振幅を10mm程度に設定するとよい。なお、ステップS12およびステップS1は、オペレータが制御装置を操作することで行われてもよいし、より上位の装置からの指示により行われてもよい。
試験運動中の検出位置および加速度は、ステップS2で同期して取得され、その結果を使ってステップS9で2つめの速度振幅比R(2)が計算される。ステップS10では、ステップS2で取得された検出位置から計算される変位振幅Rと、検出位置を微分して得られる検出速度から計算される速度振幅Vとから、2つめの往復運動の角周波数ω(2)が計算される。
2組のデータの取得が完了すると(ステップS15,Yes)、ステップS9で計算された速度振幅比R(1)およびR(2)と、ステップS10で計算された角周波数ω(1)およびω(2)とから、数式(8)にしたがって固有角振動数ωが計算される(ステップS11)。さらに、ステップS7において、ステップS11で計算された固有角振動数の、調整対象のコントローラがもつ補正機能に応じたパラメータへの変換が、補正パラメータ計算部18によってなされる。
なお、弾性変形量の補正機能がモータ駆動部12に具備されている場合には、ステップS7における指令生成部補正パラメータの計算に代えて、後述するステップS14(図15を参照)のように駆動部補正パラメータを計算するように構成してもよい。また、コントローラ内に該当する補正機能を有しない場合には、別途目標位置を修正するように構成してもよい。
また、機械要素の固有角振動数を使えば、弾性変形量の補正に限らず、例えば前置フィルタや振動抑制制御機能等のパラメータ調整にも適用できる。このように、本発明による機械運動解析部14では機械要素の固有角振動数を計算できるので、調整対象のコントローラが持つ様々な機能に対応した補正パラメータの調整が可能になるという、効果を奏する。
さらに、固有角振動数の同定のために従来行われてきた、スイープサイン波やM系列信号による加振試験を行わなくても、機械要素の固有角振動数を計算できるという効果を奏する。
本発明にかかる補正パラメータ調整装置40により、弾性変形量補正パラメータを調整したことによる効果の一例を、図面を用いて説明する。図14−1は、弾性変形量補正パラメータを調整する前の検出軌跡および機械軌跡を示す図である。図14−2は、弾性変形量補正パラメータを調整した後の検出軌跡および機械軌跡を示す図である。図14−1、図14−2では、X軸方向の固有振動数がY軸方向の固有振動数と比べて大幅に小さい特性をもつ機械装置における円弧軌跡の測定結果であり、検出位置から合成された検出軌跡は破線、機械運動解析部14で計算された機械位置から合成した機械軌跡は実線でそれぞれ示されている。なお、結果は半径方向の誤差を拡大して表示している。
補正を行わない場合の結果(図14−1)をみると、象限切替え部で生じている突起状の軌跡誤差(象限突起)を除いて考えれば、検出軌跡はほぼ真円に近いのに対して、機械軌跡はX軸方向に長軸をもつ楕円形状になっている。これがX軸方向の剛性が小さいことに起因する弾性変形による軌跡誤差である。一方、本発明の方法により補正パラメータを調整した場合の結果(図14−2)をみると、象限突起を除いて機械軌跡が真円に近づいている。
同様の調整を従来の方法で行う場合、ボールバー法では弾性変形が生じるほどの高加速度での測定ができないため、グリッドエンコーダ(交差格子法)と呼ばれる測定機を用いる必要があったが、グリッドエンコーダによる測定ができる機械は限られており、調整作業ができない場合が多かった。また、測定結果をみながら試行錯誤的に調整が行われていたため、多大な時間を要していた。
一方、本発明による補正パラメータ調整装置では、設置対象がほとんど限定されない加速度計を用いて機械位置の測定を行うため、ほとんどの機械装置に適用可能であるほか、機械要素の固有角振動数を短時間で計算できるので、補正パラメータの調整に要する時間を大幅に短縮できるという優れた効果を有する。
次に、本実施の形態1の変形例4について、駆動部補正パラメータの調整を例に挙げて説明する。図15は、本実施の形態1の変形例4について、駆動部補正パラメータの調整の処理の概要を示すフローチャートである。
まず、ステップS1において試験運動が実行されると、ステップS2において試験運動中の検出位置と加速度とが機械運動解析部14によって取得される。なお、ステップS1における試験運動の実行は、オペレータが制御装置を操作することで行われてもよいし、より上位の装置からの指示により実行されてもよい。
ステップS2において取得された検出位置と加速度から、機械位置が計算される(ステップS3)。ステップS3における処理は、上述したものと同様であるため(図5も参照)、詳細な説明を省略する。ステップS3で計算された機械位置から、パラメータの調整により改善が見込まれる所定範囲内における軌跡誤差が、機械運動解析部14によって計算される(ステップS13)。軌跡誤差は、例えば、指令位置と機械位置との差、コーナ部運動中に生じる振動の振幅、もしくは同時2軸制御による円運動であれば、平均半径と機械軌跡の半径との差などとして計算できる。
補正パラメータ計算部18では、ステップS13で計算された軌跡誤差量が、あらかじめ設定された設定値以下であるかを判定し、軌跡誤差量が設定値より大きい場合には(ステップS16,No)、補正パラメータ計算部18によって駆動部補正パラメータが調整され(ステップS14)、ステップS1に戻る。軌跡誤差量が設定値以下になるまで(ステップS16,Yes)、上記のステップが繰り返される。
なお、ステップS14における駆動部補正パラメータの調整方法については、例えば滑降シンプレックス法など、様々な方法が公知であるほか、検出位置から求めた検出軌跡を使って軌跡誤差量を計算し、駆動部補正パラメータを調整する方法も公知である。しかし、上記の公知技術においては、機械位置から求められた機械軌跡に基づいた調整が不可能であるため、真に改善が求められる機械軌跡の精度を補正パラメータの自動調整により改善することはできなかった。
一方、本発明による補正パラメータ調整装置40では、加速度計を用いて機械位置を測定し、機械位置から合成される機械軌跡から軌跡誤差量を計算して補正パラメータを調整するため、真に改善が望まれる機械軌跡の精度を自動調整により改善することが可能となる。また、設置対象がほとんど限定されない加速度計を用いて機械位置の測定を行うため、ほとんどの機械装置に適用可能であるという効果を奏する。
なお、本変形例では、駆動部補正パラメータの調整を例に挙げて説明しているが、同様の方法で指令生成部補正パラメータを調整してもよいし、目標位置の修正に適用することも可能である。
本発明にかかる補正パラメータ自動調整装置による、駆動部補正パラメータの自動調整による効果の一例を、図を用いて説明する。図16−1は、駆動部補正パラメータを調整する前の検出軌跡および機械軌跡を示す図である。図16−2は、駆動部補正パラメータを調整した後の検出軌跡および機械軌跡を示す図である。図16−1、図16−2では、送り速度を3000mm/min、半径を25mmとした場合の円弧軌跡を示しており、検出位置から合成された検出軌跡は破線、機械運動解析部で計算された機械位置から合成した機械軌跡は実線でそれぞれ示している。なお、結果は半径方向の誤差を拡大して表示している。
補正パラメータを調整する前の結果(図16−1)をみると、各象限切替え部分で高さ約5μmの突起状の軌跡誤差(象限突起)が機械軌跡上に発生していることがわかる。この軌跡誤差は、主にワークテーブルの運動を案内する案内面に生じる摩擦力によるものであり、誤差量低減のためには、摩擦補償パラメータやバックラッシ加速パラメータ等の調整が有効である。しかし、従来の補正パラメータ自動調整装置では、検出軌跡上に生じる象限突起を基準に駆動部補正パラメータを調整するために、機械軌跡上に生じる象限突起は低減されにくかった。
一方、本発明による補正パラメータ調整装置で駆動部補正パラメータを調整した場合の結果(図16−2)をみると、調整前の結果と比べて機械軌跡上に生じる象限突起が大幅に低減されていることがわかる。すなわち、本変形例4では、調整前に象限突起が現れていた領域を、パラメータの調整により改善が見込まれる所定範囲内としている。なお、駆動部補正パラメータの調整は、90度付近と270度付近の象限突起についてのみ行っており、0度付近と180度付近に生じている象限突起には調整前後での違いは生じていない。0度付近と180度付近に生じている象限突起についても、当然、本発明の補正パラメータ調整装置により低減することが可能である。
このように、本発明による補正パラメータ調整装置では、真に改善が必要な機械軌跡上に生じる誤差量に基づいて補正パラメータを調整するため、機械軌跡の精度が向上するという優れた効果を有する。
以上のように、本発明にかかる補正パラメータ調整装置は、数値制御工作機械やロボットにおいて機械の運動精度を向上させる補正パラメータを調整する補正パラメータ調整装置に適している。
1 モータ
2 送りねじ
3 回転角度検出器
4 ワークテーブル
5 コラム
6 ラム
7 主軸頭
8 カップリング
9 ナット
10 サポートベアリング
11 指令生成部
12 モータ駆動部
13 加速度計
14 機械運動解析部
15 運動軌跡表示部
18 補正パラメータ計算部
40 補正パラメータ調整装置
50 数値制御工作機械

Claims (7)

  1. 可動軸を駆動するモータから検出される検出位置をフィードバックし、前記検出位置が指令位置に追従するように前記モータを駆動することで機械の位置を制御する装置における前記機械の加速度を測定するための加速度計と、
    前記加速度と前記検出位置とから機械運動を解析する機械運動解析部と、
    前記機械運動の解析結果から前記機械の運動精度を向上させるための補正パラメータを決定する補正パラメータ計算部と、を備えることを特徴とする補正パラメータ調整装置。
  2. 前記加速度と前記検出位置とは同期して測定され、
    前記機械運動解析部は、前記加速度と前記検出位置とから機械位置を求めるとともに、前記機械位置と前記検出位置との差である機械誤差を求め、
    前記補正パラメータ計算部は、前記機械誤差を前記解析結果として前記補正パラメータを決定することを特徴とする請求項1に記載の補正パラメータ調整装置。
  3. 前記補正パラメータ計算部は、時間、前記検出位置、前記指令位置、前記検出位置を微分した検出速度または検出加速度、および前記指令位置を微分した指令速度または指令加速度の少なくとも1つと、前記機械誤差との関係を表す特徴量を求め、前記補正パラメータに換算することを特徴とする請求項2に記載の補正パラメータ調整装置。
  4. 前記機械運動解析部は、前記機械に往復運動が指令されたときの前記加速度および前記検出位置から、前記検出位置を微分した検出速度の振幅と、前記加速度を積分した機械速度の振幅との振幅比を計算し、前記振幅比から機械構造物がもつ固有振動数を計算するか、または前記加速度に対する前記機械の変形量を表す係数を計算することを特徴とする請求項1に記載の補正パラメータ調整装置。
  5. 前記機械運動解析部は、前記機械の振幅および速度の少なくとも一方を異ならせた2通りの往復運動を指令したときの前記加速度および前記検出位置から、それぞれの往復運動において前記検出位置を微分した検出速度の振幅と、前記加速度を積分した機械速度の振幅との振幅比を計算し、2通りの前記振幅比から機械構造物がもつ固有振動数を計算するか、または前記加速度に対する前記機械の変形量を表す係数を計算することを特徴とする請求項1に記載の補正パラメータ調整装置。
  6. 前記補正パラメータ計算部は、前記機械運動解析部において計算された固有振動数または前記加速度に対する機械の変形量を表す係数を使って、機械の運動精度を向上させるための補正パラメータを決定することを特徴とする請求項4または5に記載の補正パラメータ調整装置。
  7. 前記機械運動解析部は、前記加速度と前記検出位置とから機械位置を求めるとともに、前記指令位置から合成される指令軌跡と前記機械位置から合成される機械軌跡とを求め、あらかじめ設定された範囲内における指令軌跡と機械軌跡との軌跡誤差量を計算し、
    前記補正パラメータ計算部は、前記誤差が小さくなるように前記補正パラメータを変更し、
    前記軌跡誤差量が予め設定された設定値以下になるまで、前記軌跡誤差量の計算と、前記補正パラメータの変更が繰り返されることを特徴とする請求項1に記載の補正パラメータ調整装置。
JP2010087134A 2010-04-05 2010-04-05 補正パラメータ調整装置 Active JP5404507B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010087134A JP5404507B2 (ja) 2010-04-05 2010-04-05 補正パラメータ調整装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010087134A JP5404507B2 (ja) 2010-04-05 2010-04-05 補正パラメータ調整装置

Publications (2)

Publication Number Publication Date
JP2011221612A true JP2011221612A (ja) 2011-11-04
JP5404507B2 JP5404507B2 (ja) 2014-02-05

Family

ID=45038558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010087134A Active JP5404507B2 (ja) 2010-04-05 2010-04-05 補正パラメータ調整装置

Country Status (1)

Country Link
JP (1) JP5404507B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599523B1 (ja) * 2013-02-12 2014-10-01 三菱電機株式会社 数値制御装置
WO2015083417A1 (ja) * 2013-12-06 2015-06-11 三菱電機株式会社 摩擦同定方法および摩擦同定装置
CN107305364A (zh) * 2016-04-22 2017-10-31 发那科株式会社 数值控制装置以及原因解析方法
DE102018209951A1 (de) 2017-06-22 2019-02-21 Fanuc Corporation Maschinenlerngerät, servosteuergerät, servosteuersystem und maschinenlernverfahren
WO2022091941A1 (ja) * 2020-10-28 2022-05-05 ファナック株式会社 サーボ制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326102A (ja) * 1991-04-25 1992-11-16 Okuma Mach Works Ltd Nc非円形加工機
JP2006158026A (ja) * 2004-11-26 2006-06-15 Fanuc Ltd 制御装置
JP2011101908A (ja) * 2009-11-10 2011-05-26 Apic Yamada Corp 切削装置及び切削方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326102A (ja) * 1991-04-25 1992-11-16 Okuma Mach Works Ltd Nc非円形加工機
JP2006158026A (ja) * 2004-11-26 2006-06-15 Fanuc Ltd 制御装置
JP2011101908A (ja) * 2009-11-10 2011-05-26 Apic Yamada Corp 切削装置及び切削方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599523B1 (ja) * 2013-02-12 2014-10-01 三菱電機株式会社 数値制御装置
US9791846B2 (en) 2013-02-12 2017-10-17 Mitsubishi Electric Corporation Numerical control device
WO2015083417A1 (ja) * 2013-12-06 2015-06-11 三菱電機株式会社 摩擦同定方法および摩擦同定装置
JP5996127B2 (ja) * 2013-12-06 2016-09-21 三菱電機株式会社 摩擦同定方法および摩擦同定装置
US10162912B2 (en) 2013-12-06 2018-12-25 Mitsubishi Electric Corporation Friction identification method and friction identification device
CN107305364A (zh) * 2016-04-22 2017-10-31 发那科株式会社 数值控制装置以及原因解析方法
CN107305364B (zh) * 2016-04-22 2019-04-05 发那科株式会社 数值控制装置以及原因解析方法
US10317851B2 (en) 2016-04-22 2019-06-11 Fanuc Corporation Numerical control device and cause analyzing method
DE102018209951A1 (de) 2017-06-22 2019-02-21 Fanuc Corporation Maschinenlerngerät, servosteuergerät, servosteuersystem und maschinenlernverfahren
US10747193B2 (en) 2017-06-22 2020-08-18 Fanuc Corporation Machine learning apparatus, servo control apparatus, servo control system, and machine learning method
WO2022091941A1 (ja) * 2020-10-28 2022-05-05 ファナック株式会社 サーボ制御装置

Also Published As

Publication number Publication date
JP5404507B2 (ja) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5127934B2 (ja) 機械運動軌跡測定装置、数値制御工作機械および機械運動軌跡測定方法
JP6199003B1 (ja) 機械運動軌跡測定装置
JP5189806B2 (ja) 表面形状測定装置
JP6316323B2 (ja) モータ制御装置
JP4829359B2 (ja) 機上計測装置のプローブ取り付け位置算出方法
JP5404507B2 (ja) 補正パラメータ調整装置
JP5249452B1 (ja) 補正データを考慮した軌跡表示装置
JP2009036699A (ja) 表面形状測定装置
Kato et al. Analysis of circular trajectory equivalent to cone-frustum milling in five-axis machining centers using motion simulator
US20150268658A1 (en) Servo controller for reducing interference between axes in machining
US9152142B2 (en) Servo controller for correcting position error when moving member reverses
WO2009104676A1 (ja) 送り駆動装置のバックラッシ量検知方法、及び送り駆動装置のバックラッシ量検知装置
JP5388823B2 (ja) 軌跡測定装置
US9110458B2 (en) Positioning control apparatus and machine tool provided therewith
JP5738490B1 (ja) 軌跡測定装置、数値制御装置および軌跡測定方法
JP4618616B2 (ja) 数値制御装置
CN111624940B (zh) 信息处理装置以及信息处理方法
JP4503148B2 (ja) 数値制御工作機械の送り機構の補正装置および数値制御工作機械
JP6582814B2 (ja) 数値制御装置と数値制御装置のロストモーション補償方法
JP2003157114A (ja) ロストモーション補正方法およびロストモーション補正装置
JP6038063B2 (ja) 軌跡誤差表示装置
JP5225060B2 (ja) 機械運動測定装置
JPH0661674B2 (ja) 工作機械の熱変形補正方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250