JP2011219734A - Woody foam - Google Patents

Woody foam Download PDF

Info

Publication number
JP2011219734A
JP2011219734A JP2011020614A JP2011020614A JP2011219734A JP 2011219734 A JP2011219734 A JP 2011219734A JP 2011020614 A JP2011020614 A JP 2011020614A JP 2011020614 A JP2011020614 A JP 2011020614A JP 2011219734 A JP2011219734 A JP 2011219734A
Authority
JP
Japan
Prior art keywords
lignin
woody
foam according
curing agent
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011020614A
Other languages
Japanese (ja)
Other versions
JP5741904B2 (en
Inventor
Naoyuki Koyama
直之 小山
Mika Kofune
美香 小舩
Ikuko Kikuchi
郁子 菊地
Akihito Goto
昭人 後藤
Tomoji Sukegawa
智史 助川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011020614A priority Critical patent/JP5741904B2/en
Publication of JP2011219734A publication Critical patent/JP2011219734A/en
Application granted granted Critical
Publication of JP5741904B2 publication Critical patent/JP5741904B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Engineering & Computer Science (AREA)
  • Finished Plywoods (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Cosmetics (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Laminated Bodies (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a woody foam using a vegetable resource as a main raw material, and having flame retardancy and antibacterial property.SOLUTION: In this woody foam obtained by foaming and curing a resin composition containing lignin, a curing agent and a foaming agent, lignin is soluble into an organic solvent, and the content of lignin in a solid portion of the resin composition is 5-80 mass%, and a weight-average molecular weight of lignin is 100-7,000, and the content rate of sulfur atoms in lignin is 2 mass% or less.

Description

本発明は、地球環境保全を考慮した木質系発泡体に関するものである。   The present invention relates to a wood-based foam in consideration of global environment conservation.

発泡体とはプラスチックを発泡又は多孔質化したものであり、気体が固体に分散した状態のものである。発泡体は軽量かつ成形性が良いため、緩衝材、包装材料、日用品の断熱材、保温保冷機器の用途のほかに、土木建築材料の断熱材の用途として広汎に利用されている。原料となるプラスチック材料としてはポリスチレン樹脂、ポリウレタン樹脂、ポリエチレン樹脂等の石油由来のプラスチックが主である。   A foam is a foamed or made porous plastic, and is a state in which a gas is dispersed in a solid. Since the foam is lightweight and has good moldability, it is widely used as a heat insulating material for civil engineering and building materials, as well as for cushioning materials, packaging materials, heat insulating materials for daily necessities, and heat insulation and cold insulation equipment. The plastic material used as the raw material is mainly petroleum-derived plastics such as polystyrene resin, polyurethane resin, and polyethylene resin.

近年、化石資源を焼却することで発生する二酸化炭素量の増加に伴い、地球温暖化の問題が関心を集めるようになった。そこで地球温暖化防止の観点からバイオマス(生物資源)の有効活用が見直されている。近年、包装資材、家電製品の部材、自動車用部材などのプラスチックを植物由来樹脂(バイオプラスチック)に置き換える動きが活発化している。   In recent years, with the increase in the amount of carbon dioxide generated by incineration of fossil resources, the issue of global warming has attracted attention. Therefore, effective use of biomass (biological resources) has been reviewed from the viewpoint of preventing global warming. In recent years, there has been an active movement to replace plastics such as packaging materials, household appliances, and automobiles with plant-derived resins (bioplastics).

前記植物由来樹脂の具体例としては、ジャガイモやサトウキビやトウモロコシ等の糖質を醗酵させて得られた乳酸をモノマーとし、これを用いて化学重合を行い作製したポリ乳酸:PLA(PolyLactic Acid)や、澱粉を主成分としたエステル化澱粉、微生物が体内に生産するポリエステルである微生物産生樹脂:PHA(PolyHydroxy Alkanoate)、発酵法で得られる1,3−プロパンジオールと石油由来のテレフタル酸とを原料とするPTT(Poly Trimethylene Telephtalate)等が挙げられる。
また、PBS(Poly Butylene Succinate)は、現在は石油由来の原料が用いられているが、今後においては、植物由来樹脂として作製する研究が開発されており、主原料の一つであるコハク酸を植物由来で作製する技術についての開発がなされている。
Specific examples of the plant-derived resin include polylactic acid: PLA (Polylactic Acid) produced by chemical polymerization using lactic acid obtained by fermenting sugars such as potato, sugarcane, and corn as a monomer. , Starch-based esterified starch, microorganism-produced resin that is a polyester produced by microorganisms in the body: PHA (PolyHydroxy Alkanoate), 1,3-propanediol obtained by fermentation, and petroleum-derived terephthalic acid And PTT (Poly Trimethylene Telephthalate).
In addition, PBS (Poly Butylene Succinate) is currently used as a raw material derived from petroleum, but in the future, research to produce it as a plant-derived resin has been developed, and succinic acid, one of the main raw materials, has been developed. Developments have been made on technologies that are derived from plants.

これらの植物由来原料を用いた樹脂は、OA関連用部品または自動車部品に加え、便座・台所・風呂場まわり等のサニタリー分野、雑貨などの幅広い分野に導入されている。このような用途においては、安全上の問題から難燃性、耐熱性が要求される。難燃性、耐熱性に関してはこれまでにも、植物由来原料を用いた樹脂、特にポリ乳酸樹脂において種々の試みがなされてきた。しかし、植物由来樹脂はいずれも熱可塑性であり(非特許文献1参照)、耐熱性において課題がある。一方発泡体用途では、安全上の問題から不燃性があることが要求される。また、気候によっては細菌や黴(カビ)が繁殖する場合があり、抗菌性を付与することが好ましい。上記植物由来樹脂は融点が低く、耐熱性に難があった。   Resins using these plant-derived materials have been introduced into a wide range of sanitary fields such as toilet seats, kitchens, and bathrooms, as well as miscellaneous goods, in addition to OA-related parts or automobile parts. In such applications, flame retardancy and heat resistance are required for safety reasons. With respect to flame retardancy and heat resistance, various attempts have been made so far in resins using plant-derived raw materials, particularly polylactic acid resins. However, all plant-derived resins are thermoplastic (see Non-Patent Document 1), and there is a problem in heat resistance. On the other hand, in foam applications, non-flammability is required for safety reasons. Also, depending on the climate, bacteria and molds may grow, and it is preferable to impart antibacterial properties. The plant-derived resin has a low melting point and has difficulty in heat resistance.

公知の難燃剤としては、臭素系・ハロゲン系難燃剤、リン系難燃剤、窒素化合物系難燃剤、シリコーン系難燃剤、無機系難燃剤が挙げられる(特許文献1参照)。従来においても各種難燃剤が知られているが、上記の難燃剤は、有効に機能を発揮させるための添加量が多く、樹脂100質量部に対して10〜30質量部、多いものでは50質量部程度必要とする場合もある。
これらの難燃剤は、化石資源を原料として合成されているものであるから、主材料として植物由来樹脂を用いたとしても、環境負荷削減効果は低いものとなっていた。
Known flame retardants include bromine / halogen flame retardants, phosphorus flame retardants, nitrogen compound flame retardants, silicone flame retardants, and inorganic flame retardants (see Patent Document 1). Conventionally, various flame retardants are known, but the above-mentioned flame retardant has a large amount of addition for effectively exhibiting the function, and 10 to 30 parts by mass with respect to 100 parts by mass of the resin, and 50 masses in many cases. Some parts may be required.
Since these flame retardants are synthesized using fossil resources as raw materials, even if plant-derived resin is used as the main material, the effect of reducing environmental burden has been low.

植物由来の硬化性樹脂原料として、古くからリグニンが注目されてきた。国内で容易に入手できるリグニンとして、例えば、リグニンスルホン酸塩が挙げられるが、水溶性であり、有機溶媒に難溶である。そのため、硬化剤及び硬化促進剤との相溶性が悪く、均質な硬化物が得られなかった。   As a plant-derived curable resin material, lignin has attracted attention for a long time. Examples of lignin that can be easily obtained in Japan include lignin sulfonate, which is water-soluble and hardly soluble in organic solvents. Therefore, compatibility with a hardening | curing agent and a hardening accelerator was bad, and the homogeneous hardened | cured material was not obtained.

一方、抗菌性を付与する方法としては、抗菌剤を塗料に練り込むか、あるいは表面に抗菌剤を塗布する方法がある。現状では、抗菌剤としては無機系抗菌剤が主に練り込みに使用され、一方、有機系抗菌剤が主に液状で製品に塗布して使用されている。無機系抗菌剤の代表例は、銀などの金属で置換されたゼオライトや合成鉱物などが挙げられ、有機抗菌剤としては、クロロヘキシジン、第4級アンモニウム塩等が挙げられる。   On the other hand, as a method for imparting antibacterial properties, there are methods of kneading an antibacterial agent into a paint or applying an antibacterial agent to the surface. At present, as an antibacterial agent, an inorganic antibacterial agent is mainly used for kneading, while an organic antibacterial agent is mainly used in a liquid form applied to a product. Representative examples of inorganic antibacterial agents include zeolites substituted with metals such as silver and synthetic minerals, and examples of organic antibacterial agents include chlorohexidine and quaternary ammonium salts.

一方、天然由来の抗菌剤の検討もされ始めている。天然物由来の有機系抗菌剤としては、ヒノキチオール、ワサオーロ(有効成分;アリルイソチオシアネート)、わさび、しょうが、等各種あり、天然物由来という長所はあるものの、一般的に樹脂の加工温度に耐えない、供給が限られて入手困難、樹脂との相溶性を改善するために他の添加剤を加えなければならない等の問題点があった。   On the other hand, the study of naturally-derived antibacterial agents has begun. Organic antibacterial agents derived from natural products include hinokitiol, wasaolo (active ingredient: allyl isothiocyanate), wasabi, ginger, etc., and although they have the advantage of being derived from natural products, they generally cannot withstand the processing temperatures of resins. However, there are problems such as difficulty in obtaining due to limited supply, and addition of other additives to improve compatibility with the resin.

特開2007−002120号公報JP 2007-002120 A

土肥義治(編) 生分解性高分子材料、工業調査会 1990年発行Yoshiharu Tohi (Edition) Biodegradable polymer materials, Industrial Research Committee, published in 1990

そこで本発明においては、環境負荷低減化の観点から、植物由来の木質系樹脂を利用した発泡体を提供することを目的とする。特に植物由来であるリグニンを主原料とし、かつ難燃性、抗菌性を付与した木質系発泡体を提供することにある。   Then, in this invention, it aims at providing the foam using the woody resin derived from a plant from a viewpoint of environmental load reduction. In particular, it is an object of the present invention to provide a wood-based foam having lignin derived from a plant as a main raw material and imparting flame retardancy and antibacterial properties.

本発明は以下の通りである。
(1) リグニン、硬化剤及び発泡剤を含む樹脂組成物を発泡・硬化させてなる木質系発泡体であって、前記リグニンが有機溶媒に可溶であり、前記樹脂組成物の固形分中のリグニンの含有量が5〜80質量%であることを特徴とする木質系発泡体。
(2) リグニンの重量平均分子量が、100〜7000である(1)に記載の木質系発泡体。
(3) リグニン中の硫黄原子の含有率が、2質量%以下である(1)又は(2)に記載の木質系発泡体。
(4) リグニンが、水のみを用いた処理方法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである(1)〜(3)のいずれかに記載の木質系発泡体。
(5) リグニンが、植物原料に水蒸気を圧入し、瞬時に圧力を開放することで植物原料を爆砕する水蒸気爆砕法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである(1)〜(3)のいずれかに記載の木質系発泡体。
(6) 発泡剤が、金属炭酸塩、金属炭酸水素塩、炭化水素、ヒドラゾカルボンアミド、p,p′−オキシビスベンゼンスルホニルヒドラジド、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミンから選ばれる少なくとも一つであることを特徴とする(1)〜(5)のいずれかに記載の木質系発泡体。
(7) 硬化剤が、イソシアネートである(1)〜(6)のいずれかに記載の木質系発泡体。
(8) 硬化剤が、エポキシ樹脂である(1)〜(6)のいずれかに記載の木質系発泡体。
(9) 硬化剤が、アルデヒド又はホルムアルデヒドを生成する化合物である(1)〜(6)のいずれかに記載の木質系発泡体。
(10) 硬化剤が、多価カルボン酸又は多価カルボン酸無水物である(1)〜(6)のいずれかに記載の木質系発泡体。
(11) 硬化剤が、不飽和多価カルボン酸又は不飽和多価カルボン酸無水物である(1)〜(6)のいずれかに記載の木質系発泡体。
The present invention is as follows.
(1) A wood-based foam obtained by foaming and curing a resin composition containing lignin, a curing agent and a foaming agent, wherein the lignin is soluble in an organic solvent, and the solid content of the resin composition A wood-based foam having a lignin content of 5 to 80% by mass.
(2) The woody foam according to (1), wherein the lignin has a weight average molecular weight of 100 to 7000.
(3) The woody foam according to (1) or (2), wherein the content of sulfur atoms in lignin is 2% by mass or less.
(4) The wood according to any one of (1) to (3), wherein the lignin is obtained by separating from a cellulose component and a hemicellulose component by a treatment method using only water and dissolving the lignin in an organic solvent. Foam.
(5) Lignin was obtained by separating water from a cellulose component and a hemicellulose component by a water vapor explosion method in which water vapor was injected into the plant raw material and the plant raw material was explode by instantaneously releasing the pressure, and dissolved in an organic solvent. The woody foam according to any one of (1) to (3),
(6) The blowing agent is at least one selected from metal carbonate, metal bicarbonate, hydrocarbon, hydrazocarbonamide, p, p'-oxybisbenzenesulfonylhydrazide, azodicarbonamide, dinitrosopentamethylenetetramine. The woody foam according to any one of (1) to (5), wherein
(7) The woody foam according to any one of (1) to (6), wherein the curing agent is isocyanate.
(8) The wooden foam according to any one of (1) to (6), wherein the curing agent is an epoxy resin.
(9) The woody foam according to any one of (1) to (6), wherein the curing agent is a compound that generates aldehyde or formaldehyde.
(10) The woody foam according to any one of (1) to (6), wherein the curing agent is a polyvalent carboxylic acid or a polyvalent carboxylic acid anhydride.
(11) The woody foam according to any one of (1) to (6), wherein the curing agent is an unsaturated polycarboxylic acid or an unsaturated polycarboxylic anhydride.

本発明によれば、化石資源使用量の削減、及び二酸化炭素の排出量の低減効果が得られ、環境負荷低減化に好適な木質系発泡体が提供できた。また、樹脂成分の主原料としてリグニンを使用することで、耐熱性に優れた木質系発泡体を提供できた。   ADVANTAGE OF THE INVENTION According to this invention, the reduction effect of a fossil resource usage-amount and the reduction | decrease effect of the discharge | emission amount of a carbon dioxide was acquired, and the wood type foam suitable for reduction of an environmental load could be provided. Moreover, the wood type foam excellent in heat resistance was able to be provided by using lignin as a main raw material of a resin component.

本発明によれば、樹脂成分の主原料としてリグニンを使用することで、前記効果に加え、難燃効果を付与した木質系発泡体を提供できた。   According to the present invention, by using lignin as the main raw material of the resin component, it is possible to provide a wood-based foam imparted with a flame retardant effect in addition to the above effects.

本発明によれば、樹脂成分の主原料としてリグニンを使用することで、前記効果に加え、抗菌効果を付与した木質系発泡体を提供できた。   According to the present invention, by using lignin as the main raw material of the resin component, it is possible to provide a wood-based foam imparted with an antibacterial effect in addition to the above effects.

以下、本発明をさらに詳細に説明する。
本発明の木質系発泡体は、リグニン、硬化剤及び発泡剤を含む樹脂組成物を発泡・硬化させてなる木質系発泡体であって、前記リグニンが有機溶媒に可溶であり、前記樹脂組成物の固形分中のリグニンの含有量が5〜80質量%であることを特徴とする。
Hereinafter, the present invention will be described in more detail.
The woody foam of the present invention is a woody foam obtained by foaming and curing a resin composition containing lignin, a curing agent and a foaming agent, wherein the lignin is soluble in an organic solvent, and the resin composition The content of lignin in the solid content of the product is 5 to 80% by mass.

前記リグニンの含有量としては、さらに20〜80質量%の範囲であることが好ましい。より好ましくは30〜70質量%であり、特に好ましくは40〜70質量%である。リグニンの含有量が5質量%未満であると、植物由来度低下によるCO発生削減効果が低く、難燃性、抗菌性の効果が得られないおそれがある。一方リグニンの含有量が80質量%を超えると、架橋反応が不十分で3次元構造が形成されず、成形品の強度が低下してしまうおそれがある。 The content of the lignin is preferably in the range of 20 to 80% by mass. More preferably, it is 30-70 mass%, Most preferably, it is 40-70 mass%. When the content of lignin is less than 5% by mass, the effect of reducing CO 2 generation due to the decrease in the degree of plant origin is low, and there is a possibility that flame retardancy and antibacterial effects cannot be obtained. On the other hand, if the content of lignin exceeds 80% by mass, the crosslinking reaction is insufficient and a three-dimensional structure is not formed, and the strength of the molded product may be reduced.

前記リグニンの重量平均分子量は、ポリスチレン換算値において、100〜7000が好ましく、さらに200〜5000が好ましく、500〜4000であることが特に好ましい。リグニンの重量平均分子量が、7000を超えると有機溶媒への溶解性が低下するおそれがある。重量平均分子量が100未満であるとリグニンの構造を活かした木質系発泡体の強度が低下するおそれがある。
なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリスチレン換算した値を使用した。
The weight average molecular weight of the lignin is preferably from 100 to 7000, more preferably from 200 to 5000, and particularly preferably from 500 to 4000 in terms of polystyrene. When the weight average molecular weight of lignin exceeds 7000, there exists a possibility that the solubility to an organic solvent may fall. If the weight average molecular weight is less than 100, the strength of the wood-based foam utilizing the structure of lignin may be reduced.
The weight average molecular weight was measured by gel permeation chromatography (GPC), and a value converted to standard polystyrene was used.

リグニンの基本骨格は、一般的にヒドロキシフェニルプロパン単位を基本単位とする架橋構造の高分子である。樹木は、親水性の線状高分子の多糖類(セルロースとヘミセルロース)と、疎水性の架橋構造リグニンの相互侵入網目(IPN)構造を形成している。リグニンは、樹木の約25質量%を占め、不規則かつ極めて複雑なポリフェノールの化学構造をしている。フェノール類は、燃焼の際、黒鉛を形成し易いため難燃性に優れ、抗菌作用を有することが知られている。本発明は、植物から得られたこの複雑な構造をそのまま活かし、発泡体に用いる組成物の原料とすることで、難燃性、抗菌性を有する木質系発泡体を提供するものである。   The basic skeleton of lignin is a polymer having a crosslinked structure generally having a hydroxyphenylpropane unit as a basic unit. The tree forms an interpenetrating network (IPN) structure of hydrophilic linear polymer polysaccharides (cellulose and hemicellulose) and a hydrophobic cross-linked lignin. Lignin accounts for about 25% by weight of trees and has an irregular and extremely complex chemical structure of polyphenols. It is known that phenols are excellent in flame retardancy and have an antibacterial action because they easily form graphite during combustion. The present invention provides a wood-based foam having flame retardancy and antibacterial properties by utilizing this complicated structure obtained from a plant as it is and as a raw material of a composition used for the foam.

リグニンの原料に特に制限は無い。スギ、マツ、ヒノキ等の針葉樹、ブナ等の広葉樹、タケ、イネワラ、バガス等が使用される。樹木からリグニンを分離し取り出す方法としては、クラフト法、硫酸法、爆砕法などが挙げられる。現在多量に製造されているリグニンの多くは、紙やバイオエタノールの原料であるセルロース製造時に残渣として得られる。入手可能なリグニンとしては、主に硫酸法により副生するリグニンスルホン酸塩があげられる。他にもアルカリリグニン、オルガノソルブリグニン、ソルボリシスリグニン、糸状菌処理木材、ジオキサンリグニン及びミルドウッドリグニン、爆砕リグニンなどがある。本発明に用いるリグニンは、取り出す方法によらず、上記記載のリグニンを用いることができる。   There are no particular restrictions on the raw material of lignin. Conifers such as cedar, pine and cypress, broad-leaved trees such as beech, bamboo, rice straw, bagasse and the like are used. Examples of methods for separating and taking out lignin from trees include kraft method, sulfuric acid method, and explosion method. Many of the lignins currently produced in large quantities are obtained as residues during the production of cellulose, which is a raw material for paper and bioethanol. Examples of lignin that can be obtained include lignin sulfonate that is produced as a by-product mainly by the sulfuric acid method. Other examples include alkaline lignin, organosolv lignin, solvolysis lignin, filamentous fungus treated wood, dioxane lignin and milled wood lignin, and explosive lignin. The lignin described above can be used as the lignin used in the present invention, regardless of the method of taking it out.

取りだした際、リグニン以外の例えばセルロースやヘミセルロースのような成分が、含まれていても良い。また、これらのリグニンをアセチル化、メチル化、ハロゲン化、ニトロ化、スルホン化、硫化ナトリウムや硫化水素との反応等によって作製されたリグニン誘導体も含む。   When taking out, components other than lignin, such as cellulose and hemicellulose, may be included. Also included are lignin derivatives prepared by acetylation, methylation, halogenation, nitration, sulfonation, reaction with sodium sulfide or hydrogen sulfide, and the like.

主原料とするリグニンを取得する方法として、水を用いた分離技術を用いた方法が好ましい。使用するリグニンが、水のみを用いた処理方法により、セルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得たリグニンであることが好ましい。また、リグニンを取得する方法としては、水蒸気爆砕法がより好ましい。水蒸気爆砕法は高温高圧の水蒸気による加水分解と、圧力を瞬時に開放することによる物理的破砕効果により、植物を短時間に破砕するものである。
水蒸気爆砕の条件は特に限定しないが、通常、原料を水蒸気爆砕装置用の耐圧容器に入れ、3〜4MPaの水蒸気を圧入し、1〜15分間放置した後、瞬時に圧力を開放することにより爆砕する。なお、前記有機溶媒可溶リグニンは、水蒸気爆砕リグニンとも表す。また、原料としては、リグニンが抽出できれば特に限定しないが、例えば、スギ、竹、稲わら、麦わら、ひのき、アカシア、ヤナギ、ポプラ、バガス、とうもろこし、サトウキビ、米穀、ユーカリ、エリアンサスなどが挙げられる。
この方法は硫酸法、クラフト法など他の分離方法と比較し、硫酸、亜硫酸塩等を用いることなく、水のみを使用するので、クリーンな分離方法である。この方法では、リグニン中に硫黄原子を含まないリグニン、又は、硫黄原子の含有率が少ないリグニンが得られる。通常、リグニン中の硫黄原子の含有率は、2質量%以下が好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることが特に好ましい。硫黄原子の含有量が増大すると親水性のスルホン酸基が増加するため、有機溶剤への溶解性が低下するおそれがある。本発明者らは、さらに、爆砕物から有機溶媒による抽出により、リグニンの分子量を制御し得ることを見出した。
As a method for obtaining lignin as a main raw material, a method using a separation technique using water is preferable. The lignin used is preferably a lignin obtained by separating it from a cellulose component and a hemicellulose component by a treatment method using only water and dissolving it in an organic solvent. Moreover, as a method for obtaining lignin, the steam explosion method is more preferable. The steam explosion method crushes plants in a short time by hydrolysis with high-temperature and high-pressure steam and a physical crushing effect by instantaneously releasing the pressure.
The conditions for steam explosion are not particularly limited. Usually, the raw material is placed in a pressure vessel for a steam explosion apparatus, 3-4 MPa of steam is injected, left to stand for 1-15 minutes, and then the pressure is instantaneously released for explosion. To do. The organic solvent-soluble lignin is also referred to as steam explosion lignin. The raw material is not particularly limited as long as lignin can be extracted. .
This method is a clean separation method because only water is used without using sulfuric acid, sulfite or the like, compared with other separation methods such as sulfuric acid method and kraft method. In this method, lignin containing no sulfur atom in the lignin or lignin having a low content of sulfur atoms can be obtained. Usually, the content of sulfur atoms in lignin is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. When the sulfur atom content is increased, hydrophilic sulfonic acid groups are increased, which may reduce the solubility in organic solvents. The present inventors have further found that the molecular weight of lignin can be controlled from the blasted product by extraction with an organic solvent.

本発明で用いるリグニンの抽出に用いる有機溶媒は、1種又は2種以上複数の混合のアルコール溶媒、アルコールと水を混合した含水アルコール溶媒、そのほかの有機溶媒または、水と混合した含水有機溶媒を使用することができる。水には、イオン交換水を使用することが好ましい。水との混合溶媒の含水率は0質量%〜70質量%が好ましい。リグニンは、水への溶解度が低いため、水のみを溶媒とするとリグニンを抽出することが困難である。また、用いる溶媒を選択することにより、得られるリグニンの重量平均分子量を制御することが可能である。リグニンの抽出に用いられる有機溶媒としては、アルコール、トルエン、ベンゼン、N−メチルピロリドン、メチルエチルケトン、メチルイソブチルケトン、ジエチルエーテル、メチルセロソルブ(エチレングリコールモノメチルエーテル)、シクロヘキサノン、ジメチルホルムアミド、酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどがあり、これらは二種類以上、混合して用いることができる。   The organic solvent used in the extraction of lignin used in the present invention is one or a mixture of two or more kinds of alcohol solvents, a hydrous alcohol solvent in which alcohol and water are mixed, another organic solvent, or a hydrous organic solvent in which water is mixed. Can be used. It is preferable to use ion exchange water as water. The water content of the mixed solvent with water is preferably 0% by mass to 70% by mass. Since lignin has low solubility in water, it is difficult to extract lignin using only water as a solvent. Moreover, it is possible to control the weight average molecular weight of the lignin obtained by selecting the solvent to be used. Organic solvents used for the extraction of lignin include alcohol, toluene, benzene, N-methylpyrrolidone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ether, methyl cellosolve (ethylene glycol monomethyl ether), cyclohexanone, dimethylformamide, methyl acetate, ethyl acetate , Acetone, tetrahydrofuran and the like, and two or more of these can be used in combination.

本発明の木質系発泡体の構成の一つとしては、リグニンと少なくとも1種の硬化剤と発泡剤を含む組成物(樹脂組成物)を発泡・硬化させてなる成形体である。さらに、前記組成物は、硬化促進剤及び所望の添加剤を混合しても良い。また、前記組成物は、必要に応じ、有機溶媒を含んでいてもよい。発泡・硬化を促進するため加熱、加圧をして、成形しても良い。前記木質系発泡体は、硬化後に前記リグニンの構造を活かした3次元構造を形成し、さらにエラストマーと海島構造をとることで耐衝撃性や柔軟性も併せ持った強靭な材料となる。   One of the constitutions of the woody foam of the present invention is a molded article obtained by foaming and curing a composition (resin composition) containing lignin, at least one curing agent and a foaming agent. Furthermore, the said composition may mix a hardening accelerator and a desired additive. Moreover, the said composition may contain the organic solvent as needed. You may shape | mold by heating and pressurizing in order to accelerate | stimulate foaming and hardening. The wood-based foam forms a tough material having both impact resistance and flexibility by forming a three-dimensional structure utilizing the structure of the lignin after curing and further taking an elastomer and sea-island structure.

本発明で用いる発泡剤として特に制限はないが、有機系と無機系の発泡剤が使用できる。有機系発泡剤としては、石油エーテル、ナフサ、ペンタン、ヘキサン等の低沸点炭化水素、ヒドラゾカルボンアミド、p,p′−オキシビスベンゼンスルホニルヒドラジド、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン等の反応型の有機発泡剤が挙げられる。無機系の発泡剤としては、炭酸リチウム、炭酸ナトリウム、炭酸カルシウム、炭酸ルビジウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸マンガン、炭酸亜鉛、炭酸鉄等の金属炭酸塩、または炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カルシウム、炭酸水素ルビジウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マンガン、炭酸水素亜鉛、炭酸水素鉄等の金属炭酸水素塩が挙げられる。樹脂組成物成分(固形分)に対する発泡剤の含有量は、1〜40質量%の範囲が好ましく、2〜20質量%の範囲がより好ましい。発泡剤の含有量が1質量%未満であると、発泡が不十分となる。また発泡剤の含有量が40質量%を超えるとガスの生成が過剰となり、発泡体中のセルの形成が不均一になり発泡体の強度が低下してしまう。
また、本発明の発泡体は、整泡剤を含んでも良い。整泡剤としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンソルビタンステアレート、ソルビタンモノステアレート、ソルビタンモノオレエート、ポリエチレングリコールモノオレエート、ポリエチレングリコールモノアテアレート等が挙げられる。これは、1種又は2種類以上を併用しても良い。
The foaming agent used in the present invention is not particularly limited, but organic and inorganic foaming agents can be used. Organic foaming agents include low-boiling hydrocarbons such as petroleum ether, naphtha, pentane, hexane, hydrazocarbonamide, p, p'-oxybisbenzenesulfonylhydrazide, azodicarbonamide, dinitrosopentamethylenetetramine, etc. Examples include organic foaming agents of the type. Inorganic foaming agents include lithium carbonate, sodium carbonate, calcium carbonate, rubidium carbonate, magnesium carbonate, calcium carbonate, barium carbonate, manganese carbonate, zinc carbonate, iron carbonate and other metal carbonates, or lithium hydrogen carbonate, hydrogen carbonate Examples thereof include metal hydrogen carbonates such as sodium, calcium hydrogen carbonate, rubidium hydrogen carbonate, magnesium hydrogen carbonate, calcium hydrogen carbonate, barium hydrogen carbonate, manganese hydrogen carbonate, zinc hydrogen carbonate, and iron hydrogen carbonate. The range of 1-40 mass% is preferable and, as for content of the foaming agent with respect to a resin composition component (solid content), the range of 2-20 mass% is more preferable. When the content of the foaming agent is less than 1% by mass, foaming becomes insufficient. On the other hand, if the content of the foaming agent exceeds 40% by mass, gas generation becomes excessive, the formation of cells in the foam becomes nonuniform, and the strength of the foam decreases.
Moreover, the foam of the present invention may contain a foam stabilizer. Examples of the foam stabilizer include polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene sorbitan stearate, sorbitan monostearate, sorbitan monooleate, polyethylene glycol monooleate, polyethylene glycol monoateate, etc. It is done. This may be used alone or in combination of two or more.

本発明で用いる、樹脂組成物の固形分中の硬化剤の含有量は、好ましくは、20〜95質量%であり、30〜80質量%の範囲がより好ましい。硬化剤の含有量が20質量%未満であると、硬化が不十分となるおそれがある。また硬化剤の含有量が95質量%を超えても、硬化が不十分となるおそれがある。
本発明で用いる硬化剤としてイソシアネートが挙げられる。イソシアネートには、脂肪族系イソシアネート、脂環族系イソシアネートおよび芳香族系イソシアネートの他、それらの変性体が挙げられる。脂肪族系イソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等が挙げられ、脂環族系イソシアネートとしては、例えば、イソホロンジイソシアネートが挙げられる。芳香族系イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメリックジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート等が挙げられる。イソシアネート変性体としては、例えば、ウレタンプレポリマー、ヘキサメチレンジイソシアネートビューレット、ヘキサメチレンジイソシアネートトリマー、イソホロンジイソシアネートトリマー等が挙げられる。
Content of the hardening | curing agent in solid content of the resin composition used by this invention becomes like this. Preferably it is 20-95 mass%, and the range of 30-80 mass% is more preferable. If the content of the curing agent is less than 20% by mass, curing may be insufficient. Even if the content of the curing agent exceeds 95% by mass, curing may be insufficient.
An isocyanate is mentioned as a hardening | curing agent used by this invention. Isocyanates include aliphatic isocyanates, alicyclic isocyanates and aromatic isocyanates, as well as modified products thereof. Examples of the aliphatic isocyanate include hexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate. Examples of the alicyclic isocyanate include isophorone diisocyanate. Examples of the aromatic isocyanate include tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, polymeric diphenylmethane diisocyanate, triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate, and the like. Examples of the modified isocyanate include urethane prepolymer, hexamethylene diisocyanate burette, hexamethylene diisocyanate trimer, and isophorone diisocyanate trimer.

本発明で用いる硬化剤としてエポキシ樹脂が挙げられる。エポキシ樹脂には、ビスフェノールAグリシジルエーテル型エポキシ、ビスフェノールFグリシジルエーテル型エポキシ、ビスフェノールSグリシジルエーテル型エポキシ、ビスフェノールADグリシジルエーテル型エポキシ、フェノールノボラック型エポキシ、ビフェニル型エポキシ、クレゾールノボラック型エポキシがある。また、さらに天然由来物質から得られたエポキシ樹脂であることが環境負荷低減化の観点で好ましい。具体的には、エポキシ化大豆油、エポキシ化脂肪酸エステル類、エポキシ化アマニ油、ダイマー酸変性エポキシ樹脂などが挙げられる。   Examples of the curing agent used in the present invention include an epoxy resin. Epoxy resins include bisphenol A glycidyl ether type epoxy, bisphenol F glycidyl ether type epoxy, bisphenol S glycidyl ether type epoxy, bisphenol AD glycidyl ether type epoxy, phenol novolac type epoxy, biphenyl type epoxy, and cresol novolac type epoxy. Further, an epoxy resin obtained from a naturally-derived substance is preferable from the viewpoint of reducing the environmental load. Specific examples include epoxidized soybean oil, epoxidized fatty acid esters, epoxidized linseed oil, and dimer acid-modified epoxy resin.

本発明で用いる硬化剤としてアルデヒド又はホルムアルデヒドを生成する化合物が挙げられる。アルデヒドとしては、特に限定されず、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、クロラール、フルフラール、グリオキザール、n−ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、フェニルアセトアルデヒド、o−トルアルデヒド、サリチルアルデヒド等が挙げられる。また、ホルムアルデヒドを生成する化合物としては、ヘキサメチレンテトラミンが挙げられる。特にヘキサメチレンテトラミンが好ましい。これらを単独または2種類以上組み合わせて使用することもできる。また、硬化性、耐熱性の面からヘキサメチレンテトラミンが好ましい。   Examples of the curing agent used in the present invention include compounds that generate aldehyde or formaldehyde. The aldehyde is not particularly limited. For example, formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, chloral, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, benzaldehyde, crotonaldehyde, acrolein, phenylacetaldehyde , O-tolualdehyde, salicylaldehyde and the like. Moreover, hexamethylenetetramine is mentioned as a compound which produces | generates formaldehyde. Hexamethylenetetramine is particularly preferable. These may be used alone or in combination of two or more. Moreover, hexamethylenetetramine is preferable from the viewpoint of curability and heat resistance.

本発明で用いる硬化剤として多価カルボン酸または多価カルボン酸無水物が挙げられる。多価カルボン酸の具体例としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族多価カルボン酸や、トリメリット酸、ピロメリット酸、イソフタル酸、テレフタル酸、フタル酸、2,6−ナフタレンジカルボン酸等の芳香族多価カルボン酸が挙げられる。多価カルボン酸無水物の具体例としては、例えば、マロン酸無水物、コハク酸無水物、グルタル酸無水物、アジピン酸無水物、ピメリン酸無水物、スベリン酸無水物、アゼライン酸無水物、エチルナジック酸無水物、アルケニルコハク酸無水物、ヘキサヒドロフタル酸無水物等の脂肪族多価カルボン酸無水物や、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、フタル酸無水物等の芳香族多価カルボン酸無水物が挙げられる。多価カルボン酸または多価カルボン酸無水物が、リグニンが有する水酸基と反応させることにより得られるものであることが好ましい。   Examples of the curing agent used in the present invention include polyvalent carboxylic acids or polyvalent carboxylic acid anhydrides. Specific examples of the polycarboxylic acid include aliphatic polycarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, trimellitic acid, and pyromellitic acid. And aromatic polyvalent carboxylic acids such as isophthalic acid, terephthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid. Specific examples of the polyvalent carboxylic acid anhydride include, for example, malonic acid anhydride, succinic acid anhydride, glutaric acid anhydride, adipic acid anhydride, pimelic acid anhydride, suberic acid anhydride, azelaic acid anhydride, ethyl Aliphatic polycarboxylic acid anhydrides such as nadic acid anhydride, alkenyl succinic acid anhydride, hexahydrophthalic acid anhydride, trimellitic acid anhydride, pyromellitic acid anhydride, benzophenone tetracarboxylic acid anhydride, phthalic acid Aromatic polyvalent carboxylic acid anhydrides such as anhydrides may be mentioned. It is preferable that the polyvalent carboxylic acid or polyvalent carboxylic acid anhydride is obtained by reacting with the hydroxyl group of lignin.

本発明で用いる硬化剤として不飽和多価カルボン酸または不飽和多価カルボン酸無水物が挙げられる。不飽和多価カルボン酸の具体例としては、アクリル酸、クロトン酸、α−エチルアクリル酸、α−n−プロピルアクリル酸、α−n−ブチルアクリル酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸などが挙げられる。また、不飽和多価カルボン酸無水物の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、シス−1,2,3,4−テトラヒドロフタル酸無水物などが挙げられる。不飽和多価カルボン酸または不飽和多価カルボン酸無水物が、リグニンが有する水酸基と反応させることにより得られるものであることが好ましい。   Examples of the curing agent used in the present invention include unsaturated polyvalent carboxylic acid or unsaturated polyvalent carboxylic acid anhydride. Specific examples of the unsaturated polycarboxylic acid include acrylic acid, crotonic acid, α-ethylacrylic acid, α-n-propylacrylic acid, α-n-butylacrylic acid, maleic acid, fumaric acid, citraconic acid, and mesacone. An acid, itaconic acid, etc. are mentioned. Specific examples of the unsaturated polyvalent carboxylic acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, cis-1,2,3,4-tetrahydrophthalic anhydride. It is preferable that the unsaturated polyvalent carboxylic acid or unsaturated polyvalent carboxylic acid anhydride is obtained by reacting with the hydroxyl group of lignin.

硬化促進剤としては、シクロアミジン化合物、キノン化合物、三級アミン類、有機ホスフィン類、1−シアノエチル−2−フェニルイミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール等のイミダゾール類などが挙げられる。   As the curing accelerator, cycloamidine compounds, quinone compounds, tertiary amines, organic phosphines, 1-cyanoethyl-2-phenylimidazole, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, Examples thereof include imidazoles such as 2-heptadecylimidazole.

本発明の木質系発泡体の製法の一つとしては、リグニンと少なくとも1種の硬化剤と硬化促進剤に加えて、発泡剤、整泡剤を予め混合し、加熱硬化させる過程で発泡させる方法が使用できる。また成形方法としては、スラブ発泡法、注入発泡法、モールド発泡法、連続ラミネート、スプレー発泡法なども使用することができる。
例えば、モールド発泡法であれば、SUS製の金型内で、樹脂組成物を、60〜150℃、5〜20分間反応・発泡させ、木質系発泡体を製造する。また、例えば、注入発泡法であれば、射出成形機等により、樹脂組成物を、ノズル温度80〜200℃、射出圧力1〜30MPa、型締圧力1〜30MPa、金型温度50〜300℃、硬化時間1分〜100分の条件で射出、成形し、木質系発泡体としてもよい。また例えば、ブロック発泡(スラブ発泡)であれば、紙などの上で自由発泡させ、連続ラミネート発泡であれば、二枚の紙や板などの間に注入し、連続的に発泡させサンドウィッチ状の木質系発泡体を得る。また、スプレー発泡法であれば、建設現場などで、吹きつけながら反応・発泡させ、木質系発泡体を得ることができる。
As one of the methods for producing the woody foam of the present invention, in addition to lignin, at least one curing agent and a curing accelerator, a foaming agent and a foam stabilizer are mixed in advance and foamed in the process of heat curing. Can be used. As a molding method, a slab foaming method, an injection foaming method, a mold foaming method, a continuous lamination method, a spray foaming method, or the like can also be used.
For example, in the case of the mold foaming method, the resin composition is reacted and foamed in a SUS mold at 60 to 150 ° C. for 5 to 20 minutes to produce a wood-based foam. Further, for example, in the case of the injection foaming method, the resin composition is injected into an injection molding machine or the like at a nozzle temperature of 80 to 200 ° C., an injection pressure of 1 to 30 MPa, a mold clamping pressure of 1 to 30 MPa, a mold temperature of 50 to 300 ° C., It is good also as a wood-type foam by injecting and shape | molding on the conditions for 1 minute-100 minutes of hardening time. Also, for example, if it is block foaming (slab foaming), it can be freely foamed on paper, etc., and if it is continuous laminate foaming, it is injected between two sheets of paper or board and continuously foamed to form a sandwich. A woody foam is obtained. Moreover, if it is a spray foaming method, it can be made to react and foam while spraying at a construction site etc., and a wood-type foam can be obtained.

前記のようにして得られた木質系発泡体は、樹脂成分としてリグニンを含有している。リグニンはフェニルプロパンの架橋体であり、フェノール樹脂と同様に芳香族環を多く含む。芳香族環炭素は容易に燃焼せず炭化反応を起こす事から、本発明の木質系発泡体は難燃性に優れている。さらに分子内に多くのフェノール性水酸基を有する事から、微生物等に対する抗菌作用を有している。   The woody foam obtained as described above contains lignin as a resin component. Lignin is a cross-linked product of phenylpropane and contains many aromatic rings like phenolic resins. Since the aromatic ring carbon does not burn easily and causes a carbonization reaction, the woody foam of the present invention is excellent in flame retardancy. Furthermore, since it has many phenolic hydroxyl groups in the molecule, it has an antibacterial action against microorganisms and the like.

以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
(実施例1)
(リグニンの抽出)
リグニン抽出原料としては、竹を使用した。適当な大きさにカットした竹材を水蒸気爆砕装置の3Lの耐圧容器に入れ、3.5MPaの水蒸気を圧入し、4分間保持した。その後バルブを急速に開放することで爆砕処理物を得た。洗浄液のpHが6以上になるまで得られた爆砕処理物を水により洗浄して水溶性成分を除去した。その後、真空乾燥機で残存水分を除去した。得られた乾燥体:100gに抽出溶媒(アセトン)1000mlを加え、3時間攪拌した後、ろ過により繊維物質を取り除いた。得られた濾液から抽出溶媒(アセトン)を除去し、リグニンを得た。得られたリグニンは常温(25℃)で茶褐色の粉末であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited to these Examples.
(Example 1)
(Extraction of lignin)
Bamboo was used as a lignin extraction raw material. Bamboo material cut to an appropriate size was placed in a 3 L pressure-resistant container of a steam explosion apparatus, 3.5 MPa of steam was injected, and held for 4 minutes. Thereafter, the valve was rapidly opened to obtain an explosion-treated product. The explosion-treated product obtained until the pH of the cleaning solution reached 6 or more was washed with water to remove water-soluble components. Thereafter, residual moisture was removed with a vacuum dryer. The resulting dried product: 100 g of an extraction solvent (acetone) was added to 100 g, and the mixture was stirred for 3 hours, and then the fiber material was removed by filtration. The extraction solvent (acetone) was removed from the obtained filtrate to obtain lignin. The obtained lignin was a brown powder at room temperature (25 ° C.).

(リグニンの分析)
溶媒溶解性としては、前記リグニン:1gを、有機溶媒:10mlに加えて評価した。常温(25℃)で容易に溶解した場合は「○」、50〜70℃で溶解した場合は「△」、加熱しても溶解しなかった場合を「×」として、評価した。溶媒群1としてアセトン、シクロヘキサノン、テトラヒドロフラン、溶媒群2としてメタノール、エタノール、メチルエチルケトンとして溶解性を評価した結果、溶媒群1ではいずれも「○」、溶媒群2ではいずれも「△」の判定であった。
(Lignin analysis)
The solvent solubility was evaluated by adding 1 g of the lignin to 10 ml of an organic solvent. When it melt | dissolved easily at normal temperature (25 degreeC), it evaluated as "(circle)" when melt | dissolving at 50-70 degreeC, and (△) when it did not melt | dissolve even if heated. As a result of evaluating the solubility as acetone, cyclohexanone, tetrahydrofuran as the solvent group 1 and methanol, ethanol, and methyl ethyl ketone as the solvent group 2, the solvent group 1 was judged as “◯” and the solvent group 2 as “△”. It was.

リグニン中の硫黄原子の含有率は燃焼分解−イオンクロマトグラフ法により定量した。装置は株式会社三菱化学アナリテック製自動試料燃焼装置(AQF−100)及び日本ダイオネクス株式会社製イオンクロマトグラフ(ICS−1600)であり、上記リグニン中の硫黄原子の含有率は0.2質量%であった。さらに示差屈折計を備えたゲルパーミエーションクロマトグラフィー(GPC)にてリグニンの分子量を測定した。多分散度の小さいポリスチレンを標準試料として用い、移動相をテトラヒドロフランとして使用し、カラムとして株式会社日立ハイテクノロジーズ製ゲルパックGL−A120SとGL−A170Sとを直列に接続して分子量測定を行った。その重量平均分子量は2400であった。   The content of sulfur atoms in lignin was quantified by combustion decomposition-ion chromatography. The apparatus is an automatic sample combustion apparatus (AQF-100) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and an ion chromatograph (ICS-1600) manufactured by Nippon Dionex Co., Ltd., and the content of sulfur atoms in the lignin is 0.2% by mass. Met. Furthermore, the molecular weight of lignin was measured by gel permeation chromatography (GPC) equipped with a differential refractometer. Polystyrene having a low polydispersity was used as a standard sample, the mobile phase was used as tetrahydrofuran, and gel packs GL-A120S and GL-A170S manufactured by Hitachi High-Technologies Corporation were connected in series as columns to perform molecular weight measurement. Its weight average molecular weight was 2400.

上記で得られたリグニン(有機溶媒可溶リグニン)の水酸基当量は無水酢酸−ピリジン法により水酸基価、電位差滴定法により酸価を測定し求めた(下記の水酸基当量及びエポキシ当量の単位は、グラム/当量であって以下g/eq.で表わす。)。アセトン抽出竹由来リグニンの水酸基当量は140g/eq.であった。リグニンのフェノール性水酸基とアルコール性水酸基のモル比(以下P/A比)を以下の方法で決定した。リグニン:2gのアセチル化処理を行い、未反応のアセチル化剤を留去し、乾燥させたものを、重クロロホルムに溶解させ、1H−NMR(BRUKER社製、V400M、プロトン基本周波数400.13MHz)により測定した。アセチル基由来のプロトンの積分比(フェノール性水酸基に結合したアセチル基由来:2.2〜3.0ppm、アルコール性水酸基に結合したアセチル基由来:1.5〜2.2ppm)からモル比を決定したところ、P/A比は2.2/1.0であった。   The hydroxyl equivalent of the lignin (organic solvent soluble lignin) obtained above was determined by measuring the hydroxyl value by acetic anhydride-pyridine method and the acid value by potentiometric titration (the units of hydroxyl equivalent and epoxy equivalent below are gram). / Equivalent and hereinafter expressed as g / eq.). The hydroxyl equivalent of acetone-extracted bamboo-derived lignin is 140 g / eq. Met. The molar ratio (hereinafter P / A ratio) of the phenolic hydroxyl group and alcoholic hydroxyl group of lignin was determined by the following method. Lignin: 2 g of acetylation treatment was performed, unreacted acetylating agent was distilled off, and the dried product was dissolved in deuterated chloroform, and 1H-NMR (manufactured by BRUKER, V400M, proton fundamental frequency 400.13 MHz) It was measured by. Determine the molar ratio from the integral ratio of protons derived from acetyl groups (derived from acetyl groups bonded to phenolic hydroxyl groups: 2.2 to 3.0 ppm, derived from acetyl groups bonded to alcoholic hydroxyl groups: 1.5 to 2.2 ppm). As a result, the P / A ratio was 2.2 / 1.0.

(木質系発泡体の作製)
実施例1記載のリグニンとエポキシ樹脂との相溶性を評価した。前記リグニン:1g、シクロヘキサノン:1g、ビスフェノールFグリシジルエーテル型エポキシ(YDF−8170C、東都化成株式会社製):1gを混合し、常温(25℃)で2時間攪拌した。その結果、分離せず、析出物がないことを目視で確認した。
攪拌羽根のついた300mLの4ツ口セパラブルフラスコに、前記リグニン:12gと硬化剤としてビスフェノールFグリシジルエーテル型エポキシ樹脂(YDF−8170C、東都化成株式会社製、エポキシ当量:156g/eq.):9.3g、硬化促進剤としてイミダゾール(キュアゾール2PZ−CN、四国化成工業株式会社製、1−シアノエチル−2−フェニルイミダゾール)の10質量%溶液:0.93gを加え、さらに発泡剤として炭酸マグネシウム:2.7g、整泡剤としてポリオキシエチレンソルビタンモノステアレート:0.2gを常温(25℃)で2時間攪拌し、発泡体用樹脂組成物を得た。樹脂組成物の固形分中のリグニン含有量(植物由来度)は49質量%であった。
(Production of wood-based foam)
The compatibility between the lignin described in Example 1 and the epoxy resin was evaluated. The lignin: 1 g, cyclohexanone: 1 g, bisphenol F glycidyl ether type epoxy (YDF-8170C, manufactured by Tohto Kasei Co., Ltd.): 1 g were mixed and stirred at room temperature (25 ° C.) for 2 hours. As a result, it was not visually separated and visually confirmed that there was no precipitate.
In a 300 mL four-necked separable flask with a stirring blade, 12 g of the above lignin and a bisphenol F glycidyl ether type epoxy resin (YDF-8170C, manufactured by Tohto Kasei Co., Ltd., epoxy equivalent: 156 g / eq.) As a curing agent: 9.3 g, 10 mass% solution of imidazole (Cureazole 2PZ-CN, Shikoku Kasei Kogyo Co., Ltd., 1-cyanoethyl-2-phenylimidazole) as a curing accelerator: 0.93 g is added, and magnesium carbonate as a foaming agent: 2.7 g and 0.2 g of polyoxyethylene sorbitan monostearate as a foam stabilizer were stirred at room temperature (25 ° C.) for 2 hours to obtain a foam resin composition. The lignin content (plant-derived degree) in the solid content of the resin composition was 49% by mass.

この発泡体用樹脂組成物を予め180℃に保持した100×100mm、深さ50mmのSUS製の金型に充填し、120分間発泡・硬化を行い、木質系発泡体を得た。JIS K7222に準拠して測定された木質系発泡体の密度は48kg/mであった。 This foam resin composition was filled in a 100 × 100 mm, 50 mm deep SUS mold previously held at 180 ° C. and foamed and cured for 120 minutes to obtain a wood-based foam. The density of the wood-based foam measured according to JIS K7222 was 48 kg / m 3 .

(抗菌性試験)
JIS Z2801に準じて、黄色ぶどう球菌、大腸菌に対する抗菌性を評価した。試験片上に菌液(生菌数2.5〜10×10の5乗個/mL):0.4mLを播き、厚さ:1mmに切り出した上記木質系発泡体をかぶせ35℃±1℃、24時間培養した。試験片上の生菌数を測定するため、サンプリングし、サンプルを適宜希釈し、寒天平板培養にて35℃±1℃、48時間培養して生菌数を得た。
R=[Log(B/A)−Log(C/A)]=[Log(B/C)]
R:抗菌活性値
A:無加工試験片における接種直後の生菌数の平均値(個)
B:無加工試験片における24時間後の生菌数の平均値(個)
C:抗菌加工試験片における24時間後の生菌数の平均値(個)
抗菌活性値2以上を抗菌性ありとした。形成された被膜の抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.5、5.2であった。
(Antimicrobial test)
According to JIS Z2801, antibacterial activity against Staphylococcus aureus and Escherichia coli was evaluated. Bacterial liquid (viable cell count of 2.5 to 10 × 10 5 cells / mL): 0.4 mL was plated on the test piece, and the above wood-based foam cut out to a thickness of 1 mm was covered with 35 ° C. ± 1 ° C., Cultured for 24 hours. In order to measure the number of viable bacteria on the test piece, sampling was performed, the sample was appropriately diluted, and cultured in an agar plate culture at 35 ° C. ± 1 ° C. for 48 hours to obtain the viable cell count.
R = [Log (B / A) -Log (C / A)] = [Log (B / C)]
R: antibacterial activity value A: average number of viable bacteria immediately after inoculation in unprocessed test pieces (pieces)
B: Average number of viable cells after 24 hours in unprocessed test piece
C: Average number of viable bacteria after 24 hours in antibacterial processed test piece
An antibacterial activity value of 2 or more was considered to be antibacterial. The antibacterial activity value of the formed film was 6.5 and 5.2 against Escherichia coli and Staphylococcus aureus, respectively.

(実施例2)
(リグニンの抽出及び分析)
抽出溶媒としてメタノールを用いた以外は実施例1と同様にしてリグニンを得た。実施例1と同様に元素分析及び分子量測定をした結果、それぞれリグニン中の硫黄原子の含有率:0.2質量%、重量平均分子量は1900であった。実施例1と同様に溶媒溶解性を評価した結果、溶媒群1ではいずれも「○」、溶媒群2ではいずれも「○」の判定であった。リグニンのフェノール性水酸基とアルコール性水酸基のモル比(以下P/A比)を実施例1と同様の方法で実施した。
実施例2で得られたリグニンのP/A比は、1.6/1.0であった。実施例1と同様に上記で得られたリグニン(有機溶媒可溶リグニン)の水酸基当量を測定した結果、水酸基当量は、120g/eq.であった。
(Example 2)
(Extraction and analysis of lignin)
Lignin was obtained in the same manner as in Example 1 except that methanol was used as the extraction solvent. Elemental analysis and molecular weight measurement were performed in the same manner as in Example 1. As a result, the sulfur atom content in lignin was 0.2% by mass, and the weight average molecular weight was 1,900. As a result of evaluating the solvent solubility in the same manner as in Example 1, the solvent group 1 was judged as “◯”, and the solvent group 2 was judged as “◯”. The molar ratio of the phenolic hydroxyl group and alcoholic hydroxyl group of lignin (hereinafter referred to as P / A ratio) was carried out in the same manner as in Example 1.
The P / A ratio of the lignin obtained in Example 2 was 1.6 / 1.0. As a result of measuring the hydroxyl equivalent of the lignin (organic solvent-soluble lignin) obtained above in the same manner as in Example 1, the hydroxyl equivalent was 120 g / eq. Met.

(木質系発泡体の作製)
実施例2記載のリグニン:10g、硬化促進剤としてジラウリン酸ジブチルすず(IV)(和光純薬工業株式会社製):0.12gを加え、十分に攪拌した後、硬化剤としてヘキサメチレンジイソシアネート(和光純薬工業株式会社製):1.8g、さらに発泡剤として炭酸カルシウム:1.5g、整泡剤としてポリオキシエチレンソルビタンモノステアレート:0.12gを常温(25℃)で2時間攪拌し、発泡体用樹脂組成物を得た。樹脂組成物の固形分のリグニン含有量(植物由来度)は74質量%であった。
この発泡体用樹脂組成物を予め180℃に保持した100×100mm、深さ50mmのSUS製の金型に充填し、120分間発泡・硬化を行い、木質系発泡体を得た。JIS K7222に準拠して測定された木質系発泡体の密度は60kg/mであった。
(Production of wood-based foam)
Lignin described in Example 2: 10 g, dibutyltin dilaurate (IV) (manufactured by Wako Pure Chemical Industries, Ltd.): 0.12 g as a curing accelerator, and after sufficiently stirring, hexamethylene diisocyanate (Japanese sum) as a curing agent (Manufactured by Kosei Pharmaceutical Co., Ltd.): 1.8 g, further, calcium carbonate: 1.5 g as a foaming agent, polyoxyethylene sorbitan monostearate: 0.12 g as a foam stabilizer, and stirred at room temperature (25 ° C.) for 2 hours, A foam resin composition was obtained. The lignin content (plant-derived degree) of the solid content of the resin composition was 74% by mass.
This foam resin composition was filled in a 100 × 100 mm, 50 mm deep SUS mold previously held at 180 ° C. and foamed and cured for 120 minutes to obtain a wood-based foam. The density of the wood-based foam measured according to JIS K7222 was 60 kg / m 3 .

(抗菌性評価)
実施例1と同様に抗菌試験を実施した。作製した木質系発泡体の抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.4、5.1であった。
(Antimicrobial evaluation)
An antibacterial test was carried out in the same manner as in Example 1. The antibacterial activity value of the produced woody foam was 6.4 and 5.1 against Escherichia coli and Staphylococcus aureus, respectively.

(比較例1)
(溶解性評価)
リグニンとしてリグニンスルホン酸塩(バニレックスN、日本製紙株式会社製)を用い、樹脂組成物の作製を試みた。樹脂組成物の作製に先立ち、実施例1と同様に有機溶剤への溶解性を評価した。溶媒としてアセトン、シクロヘキサノン、テトラヒドロフラン、メタノール、エタノール、メチルエチルケトンを用いて溶解性を評価した結果、すべての溶媒に不溶であった。
(Comparative Example 1)
(Solubility evaluation)
Using lignin sulfonate (Vanilex N, manufactured by Nippon Paper Industries Co., Ltd.) as lignin, an attempt was made to produce a resin composition. Prior to preparation of the resin composition, the solubility in organic solvents was evaluated in the same manner as in Example 1. As a result of evaluating the solubility using acetone, cyclohexanone, tetrahydrofuran, methanol, ethanol, and methyl ethyl ketone as the solvent, it was insoluble in all the solvents.

(発泡体の作製)
実施例1と同様にエポキシ樹脂との相溶性を評価した。前記リグニンスルホン酸:1g、シクロヘキサノン1g、ビスフェノールFグリシジルエーテル型エポキシ(YDF−8170C、東都化成株式会社製、エポキシ当量156g/eq.):1gを混合し、常温(25℃)で2時間攪拌した。その結果、リグニンスルホン酸とエポキシ樹脂が相分離し、発泡体を作製できなかった。
(Production of foam)
In the same manner as in Example 1, the compatibility with the epoxy resin was evaluated. The lignin sulfonic acid: 1 g, cyclohexanone 1 g, bisphenol F glycidyl ether type epoxy (YDF-8170C, manufactured by Tohto Kasei Co., Ltd., epoxy equivalent 156 g / eq.): 1 g were mixed and stirred at room temperature (25 ° C.) for 2 hours. . As a result, the lignin sulfonic acid and the epoxy resin were phase-separated and a foam could not be produced.

(比較例2)
(発泡体の作製)
リグニンとしてリグニンスルホン酸塩(サンエキスP321、日本製紙株式会社製)を用いた以外は比較例1と同様に発泡体の作製を試みた。ワニスの作製に先立ち、比較例1と同様に有機溶剤への溶解性を評価した結果、すべての溶媒に不溶であった。
エポキシ樹脂との相溶性を評価した結果、リグニンスルホン酸とエポキシ樹脂が相分離し、発泡体を作製できなかった。
(Comparative Example 2)
(Production of foam)
An attempt was made to produce a foam in the same manner as in Comparative Example 1 except that lignin sulfonate (Sun Extract P321, manufactured by Nippon Paper Industries Co., Ltd.) was used as the lignin. Prior to the preparation of the varnish, the solubility in an organic solvent was evaluated in the same manner as in Comparative Example 1. As a result, it was insoluble in all solvents.
As a result of evaluating the compatibility with the epoxy resin, the lignin sulfonic acid and the epoxy resin were phase-separated and a foam could not be produced.

Claims (11)

リグニン、硬化剤及び発泡剤を含む樹脂組成物を発泡・硬化させてなる木質系発泡体であって、前記リグニンが有機溶媒に可溶であり、前記樹脂組成物の固形分中のリグニンの含有量が5〜80質量%であることを特徴とする木質系発泡体。   A wood-based foam obtained by foaming and curing a resin composition containing lignin, a curing agent and a foaming agent, wherein the lignin is soluble in an organic solvent, and the lignin contained in the solid content of the resin composition A wood-based foam characterized in that the amount is 5 to 80% by mass. リグニンの重量平均分子量が、100〜7000である請求項1に記載の木質系発泡体。   The woody foam according to claim 1, wherein the lignin has a weight average molecular weight of 100 to 7,000. リグニン中の硫黄原子の含有率が、2質量%以下である請求項1又は2に記載の木質系発泡体。   The woody foam according to claim 1 or 2, wherein the content of sulfur atoms in the lignin is 2% by mass or less. リグニンが、水のみを用いた処理方法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである請求項1〜3のいずれかに記載の木質系発泡体。   The woody foam according to any one of claims 1 to 3, wherein the lignin is obtained by separating from a cellulose component and a hemicellulose component by a treatment method using only water and dissolving the lignin in an organic solvent. リグニンが、植物原料に水蒸気を圧入し、瞬時に圧力を開放することで植物原料を爆砕する水蒸気爆砕法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである請求項1〜3のいずれかに記載の木質系発泡体。   The lignin was obtained by separating the cellulose component and hemicellulose component by the steam explosion method, in which steam is injected into the plant material and the plant material is blasted by instantaneously releasing the pressure, and dissolved in an organic solvent. The woody foam according to any one of claims 1 to 3. 発泡剤が、金属炭酸塩、金属炭酸水素塩、炭化水素、ヒドラゾカルボンアミド、p,p′−オキシビスベンゼンスルホニルヒドラジド、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミンから選ばれる少なくとも一つであることを特徴とする請求項1〜5のいずれかに記載の木質系発泡体。   The foaming agent is at least one selected from metal carbonate, metal bicarbonate, hydrocarbon, hydrazocarbonamide, p, p'-oxybisbenzenesulfonylhydrazide, azodicarbonamide, dinitrosopentamethylenetetramine. A woody foam according to any one of claims 1 to 5. 硬化剤が、イソシアネートである請求項1〜6のいずれかに記載の木質系発泡体。   The woody foam according to any one of claims 1 to 6, wherein the curing agent is an isocyanate. 硬化剤が、エポキシ樹脂である請求項1〜6のいずれかに記載の木質系発泡体。   The wood-based foam according to any one of claims 1 to 6, wherein the curing agent is an epoxy resin. 硬化剤が、アルデヒド又はホルムアルデヒドを生成する化合物である請求項1〜6のいずれかに記載の木質系発泡体。   The woody foam according to any one of claims 1 to 6, wherein the curing agent is a compound that generates aldehyde or formaldehyde. 硬化剤が、多価カルボン酸又は多価カルボン酸無水物である請求項1〜6のいずれかに記載の木質系発泡体。   The woody foam according to any one of claims 1 to 6, wherein the curing agent is a polyvalent carboxylic acid or a polyvalent carboxylic anhydride. 硬化剤が、不飽和多価カルボン酸又は不飽和多価カルボン酸無水物である請求項1〜6のいずれかに記載の木質系発泡体。   The woody foam according to any one of claims 1 to 6, wherein the curing agent is an unsaturated polyvalent carboxylic acid or an unsaturated polyvalent carboxylic acid anhydride.
JP2011020614A 2010-02-10 2011-02-02 Wooden foam Expired - Fee Related JP5741904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020614A JP5741904B2 (en) 2010-02-10 2011-02-02 Wooden foam

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010027547 2010-02-10
JP2010027547 2010-02-10
JP2010065953 2010-03-23
JP2010065953 2010-03-23
JP2011020614A JP5741904B2 (en) 2010-02-10 2011-02-02 Wooden foam

Publications (2)

Publication Number Publication Date
JP2011219734A true JP2011219734A (en) 2011-11-04
JP5741904B2 JP5741904B2 (en) 2015-07-01

Family

ID=45036344

Family Applications (11)

Application Number Title Priority Date Filing Date
JP2010168053A Pending JP2011219715A (en) 2010-02-10 2010-07-27 Resin compound material for molding
JP2010170394A Expired - Fee Related JP5641302B2 (en) 2010-02-10 2010-07-29 Antibacterial resin composition
JP2010173536A Expired - Fee Related JP5861856B2 (en) 2010-02-10 2010-08-02 Manufacturing method of adhesive
JP2010173535A Pending JP2011219717A (en) 2010-02-10 2010-08-02 Woody coating
JP2010175306A Pending JP2011218775A (en) 2010-02-10 2010-08-04 Woody building material
JP2010192127A Expired - Fee Related JP5618136B2 (en) 2010-02-10 2010-08-30 Resin composition and molded body
JP2010199771A Expired - Fee Related JP5582346B2 (en) 2010-02-10 2010-09-07 Prepreg and method for producing molded body
JP2010199770A Expired - Fee Related JP5720924B2 (en) 2010-02-10 2010-09-07 Wood-based decorative board
JP2010205501A Expired - Fee Related JP5652646B2 (en) 2010-02-10 2010-09-14 Wood-based film
JP2010223725A Pending JP2011219728A (en) 2010-02-10 2010-10-01 Tacky adhesive
JP2011020614A Expired - Fee Related JP5741904B2 (en) 2010-02-10 2011-02-02 Wooden foam

Family Applications Before (10)

Application Number Title Priority Date Filing Date
JP2010168053A Pending JP2011219715A (en) 2010-02-10 2010-07-27 Resin compound material for molding
JP2010170394A Expired - Fee Related JP5641302B2 (en) 2010-02-10 2010-07-29 Antibacterial resin composition
JP2010173536A Expired - Fee Related JP5861856B2 (en) 2010-02-10 2010-08-02 Manufacturing method of adhesive
JP2010173535A Pending JP2011219717A (en) 2010-02-10 2010-08-02 Woody coating
JP2010175306A Pending JP2011218775A (en) 2010-02-10 2010-08-04 Woody building material
JP2010192127A Expired - Fee Related JP5618136B2 (en) 2010-02-10 2010-08-30 Resin composition and molded body
JP2010199771A Expired - Fee Related JP5582346B2 (en) 2010-02-10 2010-09-07 Prepreg and method for producing molded body
JP2010199770A Expired - Fee Related JP5720924B2 (en) 2010-02-10 2010-09-07 Wood-based decorative board
JP2010205501A Expired - Fee Related JP5652646B2 (en) 2010-02-10 2010-09-14 Wood-based film
JP2010223725A Pending JP2011219728A (en) 2010-02-10 2010-10-01 Tacky adhesive

Country Status (1)

Country Link
JP (11) JP2011219715A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013110729A1 (en) * 2012-01-24 2013-08-01 Lenzing Ag Foams composed of lignin-furan derivative polymers and production method therefor
JP2013170245A (en) * 2012-02-22 2013-09-02 Hitachi Chemical Co Ltd Novel polyurethane
WO2013157424A1 (en) * 2012-04-18 2013-10-24 株式会社 日立製作所 Lignin-derived epoxy resin composition and use thereof
CN103910850A (en) * 2014-04-02 2014-07-09 合肥杰事杰新材料股份有限公司 Phosphated lignin-based flame-retardant and reinforced rigid polyurethane foam and preparation method thereof
KR101713438B1 (en) * 2015-09-15 2017-03-07 권혁이 Producing method of eco-friendly lightweight tiles using waste coal tailings
CN111073325A (en) * 2019-12-31 2020-04-28 华南理工大学 Lignin/fiber thermoplastic composite material and preparation method thereof
WO2023219158A1 (en) * 2022-05-12 2023-11-16 スーパーレジン工業株式会社 Foamed body and layered structure

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158008B2 (en) 2009-04-28 2013-03-06 トヨタ自動車株式会社 All solid battery
US9359651B2 (en) 2010-01-19 2016-06-07 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
JP5618153B2 (en) * 2011-02-02 2014-11-05 日立化成株式会社 Resin composition and molded body
JP2013035885A (en) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd Lignin, composition containing lignin and method for producing the lignin
US8759498B2 (en) * 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
JP2015519452A (en) * 2012-06-01 2015-07-09 ストラ エンソ オーワイジェイ Dispersed composition containing lignin, process for its production and use thereof
JP2014024933A (en) * 2012-07-26 2014-02-06 Hitachi Chemical Co Ltd Self-curable resin using lignin
JP2014077107A (en) 2012-09-19 2014-05-01 Fuji Xerox Co Ltd Resin composition and resin molded article
JP2014065825A (en) * 2012-09-26 2014-04-17 Hitachi Chemical Co Ltd Resin material for injection molding and molded body
JP6163761B2 (en) * 2013-01-16 2017-07-19 住友ベークライト株式会社 Resin composition and resin molded body
DE102013002573A1 (en) * 2013-02-11 2014-08-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoplastic polymer compounds with low molecular weight lignins, process for their preparation, moldings and uses
DE102013002574A1 (en) 2013-02-11 2014-08-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Microstructured composite material, process for its production, moldings thereof and uses
JP2014160710A (en) * 2013-02-19 2014-09-04 Hitachi Chemical Co Ltd Printed circuit board
WO2014136762A1 (en) * 2013-03-06 2014-09-12 日立化成株式会社 Coated sand
CN103112072B (en) * 2013-03-20 2014-08-13 南京林业大学 Method for improving product surface properties by pennisetum man-made board processing residues
FI125416B (en) * 2013-06-28 2015-10-15 Upm Kymmene Corp Nonwoven reinforced composite resin
KR102569807B1 (en) * 2013-10-18 2023-08-22 퀸스랜드 유니버시티 오브 테크놀로지 Lignin based waterproof coating
AU2014345929B2 (en) * 2013-11-06 2018-04-19 Wood Innovations Ltd. Core layer having wood elements, in particular wood elements having a corrugated structure
KR101514899B1 (en) * 2013-12-30 2015-04-23 최미희 Composition and Manufacturing Method of self-exitinguishing fire-retardant wood by free carbon, metallic salts and micro-fibril by Modifide of Wood
JP6296285B2 (en) * 2014-02-21 2018-03-20 清水建設株式会社 How to protect concrete
JP6296284B2 (en) * 2014-02-21 2018-03-20 清水建設株式会社 Concrete member and manufacturing method thereof
JP6384717B2 (en) * 2014-02-21 2018-09-05 清水建設株式会社 Concrete coloring agent, concrete coloring method, concrete and concrete structure
JP6296293B2 (en) * 2014-05-19 2018-03-20 清水建設株式会社 Concrete coloring agent and method for producing the same, concrete coloring method, and concrete
KR101716142B1 (en) * 2014-09-05 2017-03-15 연세대학교 산학협력단 Insoluble lignin nanofiber and method for menufactruing the insoluble lignin nanofiber
JP6406948B2 (en) * 2014-09-12 2018-10-17 日本製紙株式会社 Lignin derivative for rubber reinforcement, method for producing lignin derivative for rubber reinforcement, lignin resin composition and rubber composition
JP6422708B2 (en) * 2014-09-12 2018-11-14 日本製紙株式会社 Method for producing lignin derivative for rubber reinforcement, method for producing lignin resin composition, and method for producing rubber composition
CN104449501A (en) * 2014-12-26 2015-03-25 宁波中加低碳新技术研究院有限公司 Furfural/lignin/isocyanate adhesive
JP2017066259A (en) * 2015-09-30 2017-04-06 株式会社ファインテック Bamboo fiber composite plant-derived resin composition and method for producing the same
JP6730043B2 (en) * 2016-02-22 2020-07-29 積水化学工業株式会社 Fiber reinforced resin prepreg sheet
JP6846887B2 (en) 2016-08-04 2021-03-24 曙ブレーキ工業株式会社 Method for producing thermosetting resin composition, friction material and thermosetting resin composition
KR102571255B1 (en) * 2017-04-10 2023-08-28 유니버시티 오브 매릴랜드, 칼리지 파크 Strong and Tough Structural Wood Material, and Methods of Manufacturing and Uses Thereof
EP3679048A4 (en) 2017-09-07 2021-05-26 Renmatix Inc. Antioxidant stabilizer in polymers
JP6964251B2 (en) * 2017-11-14 2021-11-10 パナソニックIpマネジメント株式会社 Biomass composition and biomass molding
JP6964881B2 (en) * 2018-02-28 2021-11-10 国立研究開発法人産業技術総合研究所 Lignin clay composite membrane and its manufacturing method
JP7001317B2 (en) * 2018-04-10 2022-01-19 トヨタ車体株式会社 Manufacturing method of molded products
EP3818126A4 (en) * 2018-07-02 2022-03-23 Stora Enso Oyj Process for preparing a bonding resin
EP3632949A1 (en) * 2018-10-02 2020-04-08 Vito NV Process for the production of epoxy resins
CN114207076A (en) * 2019-08-08 2022-03-18 三键有限公司 Adhesive composition, cured product, and joined body
CN110900778B (en) * 2019-12-16 2021-05-14 清华大学 Plant fiber artificial board and preparation method and application thereof
US20220356308A1 (en) * 2020-10-28 2022-11-10 Lignum Inc. Method for preparation of antibacterial bio-filler for plastic and antibacterial bio-filler for plastic prepared thereby
WO2022200974A1 (en) * 2021-03-24 2022-09-29 Stora Enso Oyj Biobased adhesive mixture and the use of said adhesive mixture
CN113637245B (en) * 2021-08-16 2023-02-17 深圳市峰源化工新材料股份有限公司 Lignin modified styrene butadiene rubber thermoplastic elastomer and preparation method thereof
WO2024106457A1 (en) * 2022-11-18 2024-05-23 出光興産株式会社 Resin composition, fiber-reinforced resin composition and molded body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171744A (en) * 1985-01-24 1986-08-02 Daiken Trade & Ind Co Ltd Wood-based foamed material and production thereof
JPH07148712A (en) * 1993-11-29 1995-06-13 Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Thermosetting chemically-modifying ligneous material composition
JPH07216203A (en) * 1993-07-28 1995-08-15 Samsung General Chem Co Ltd Decomposable foam and its preparation
JPH08225628A (en) * 1994-12-06 1996-09-03 Elastogran Mas Gmbh & Co Blowing-agent-containing lignin-polyether-polyol-based isocyanate semiprepolymer mixture kept under pressure,its use for producing polyurethane foam,and production of foam thereby
JPH10251371A (en) * 1997-03-14 1998-09-22 Toropikaru Techno Center:Kk Water-soluble polyurethane foam and its production
JP2009263549A (en) * 2008-04-28 2009-11-12 Hitachi Ltd Epoxy resin composition of vegetable origin, and various instruments using the same
JP2010254952A (en) * 2009-03-31 2010-11-11 Hishie Kagaku Kk Resin composition for foaming and lignin-containing polymer foam

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215678A (en) * 1985-03-22 1986-09-25 Oji Paper Co Ltd Manufacture of lignin-epoxy resin adhesive
JP2595308B2 (en) * 1987-09-04 1997-04-02 王子製紙株式会社 Lignin-phenol resin composition
JPH08104833A (en) * 1994-10-03 1996-04-23 Oobusu Kk Marine paint
CN1094091C (en) * 1994-12-22 2002-11-13 河野刚 Board produced from malvaceous bast plant and process for producing the same
SG47174A1 (en) * 1995-09-18 1998-03-20 Ibm Cross-linked biobased materials and fabricating methods thereof
EP0812326A4 (en) * 1995-12-29 1998-05-06 Kenneth R Kurple Lignin based polyols
JPH09241615A (en) * 1996-03-11 1997-09-16 Rinyacho Shinrin Sogo Kenkyusho Composition having infrared light-absorbing property and its production
JPH10305409A (en) * 1997-04-30 1998-11-17 Takeshi Kono Board made of grass lignin and manufacture thereof
JPH11152410A (en) * 1997-11-21 1999-06-08 Asahi Chem Ind Co Ltd Resin composition including lignin
JPH11320516A (en) * 1998-03-17 1999-11-24 Bridgestone Corp Woody board
KR20010088785A (en) * 1998-07-27 2001-09-28 추후제출 Low Diisocyanate Content Polymeric MDI-containing Binders for Fiberboard Manufacture
JP2000102910A (en) * 1998-09-29 2000-04-11 Matsushita Electric Works Ltd Manufacture of fiber plate
JP2002114896A (en) * 2000-08-01 2002-04-16 Nippon Paper Industries Co Ltd Lignin-based resin composition
JP3960811B2 (en) * 2002-02-04 2007-08-15 機能性木質新素材技術研究組合 Wood paint
JP3936214B2 (en) * 2002-03-25 2007-06-27 株式会社東芝 Resin composition
JP2004107386A (en) * 2002-09-13 2004-04-08 Japan Science & Technology Corp Polyphenolic composition
JP2005041969A (en) * 2003-07-28 2005-02-17 Toyota Motor Corp Antioxidant for resin
JP2005111866A (en) * 2003-10-09 2005-04-28 Hiroshi Nakamura Method for producing decorative plate or decorative material having protrusion/recess pattern and decorative plate or decorative material
JP4339135B2 (en) * 2004-01-15 2009-10-07 Ykk株式会社 Injection casting equipment for forming amorphous alloys
JP2005279959A (en) * 2004-03-26 2005-10-13 Matsushita Electric Works Ltd Surface reinforced woody building material
JP4457195B2 (en) * 2004-06-24 2010-04-28 名古屋市 Method for producing cellulosic fiberboard
JP4561242B2 (en) * 2004-08-27 2010-10-13 株式会社明電舎 Insulating polymer material composition
JP2006150819A (en) * 2004-11-30 2006-06-15 Nichimen Kagaku Kogyo Kk Bamboo fiber reinforced plastic and its manufacturing process
JP3960996B2 (en) * 2005-01-17 2007-08-15 機能性木質新素材技術研究組合 Crude lignophenol derivative paint
JP2007169491A (en) * 2005-12-22 2007-07-05 Mitsubishi Chemicals Corp Method for producing phenol-based resin adhesive
JP2008006373A (en) * 2006-06-29 2008-01-17 Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Coating method of japanese lacquer, and resin composition
JP5045030B2 (en) * 2006-08-23 2012-10-10 富士ゼロックス株式会社 RESIN COMPOSITION, RESIN MOLDED BODY AND CASE, AND METHOD FOR MANUFACTURING AND RECYCLING METHOD OF RESIN MOLDED BODY
JP5315606B2 (en) * 2006-12-01 2013-10-16 株式会社明電舎 Insulating polymer material composition
JP4998018B2 (en) * 2007-03-06 2012-08-15 トヨタ車体株式会社 Manufacturing method of fiber molded body
JP2008247963A (en) * 2007-03-29 2008-10-16 Mitsubishi Motors Corp Lignocellulose material molding and its molding method
JP2009057433A (en) * 2007-08-30 2009-03-19 Toshiba Corp Resin composition and method for producing the same
JP5396747B2 (en) * 2008-06-02 2014-01-22 住友ベークライト株式会社 Prepreg and substrate using the same
JP2009292884A (en) * 2008-06-03 2009-12-17 Hitachi Ltd Lignophenol-based epoxy resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171744A (en) * 1985-01-24 1986-08-02 Daiken Trade & Ind Co Ltd Wood-based foamed material and production thereof
JPH07216203A (en) * 1993-07-28 1995-08-15 Samsung General Chem Co Ltd Decomposable foam and its preparation
JPH07148712A (en) * 1993-11-29 1995-06-13 Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Thermosetting chemically-modifying ligneous material composition
JPH08225628A (en) * 1994-12-06 1996-09-03 Elastogran Mas Gmbh & Co Blowing-agent-containing lignin-polyether-polyol-based isocyanate semiprepolymer mixture kept under pressure,its use for producing polyurethane foam,and production of foam thereby
JPH10251371A (en) * 1997-03-14 1998-09-22 Toropikaru Techno Center:Kk Water-soluble polyurethane foam and its production
JP2009263549A (en) * 2008-04-28 2009-11-12 Hitachi Ltd Epoxy resin composition of vegetable origin, and various instruments using the same
JP2010254952A (en) * 2009-03-31 2010-11-11 Hishie Kagaku Kk Resin composition for foaming and lignin-containing polymer foam

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013110729A1 (en) * 2012-01-24 2013-08-01 Lenzing Ag Foams composed of lignin-furan derivative polymers and production method therefor
JP2013170245A (en) * 2012-02-22 2013-09-02 Hitachi Chemical Co Ltd Novel polyurethane
WO2013157424A1 (en) * 2012-04-18 2013-10-24 株式会社 日立製作所 Lignin-derived epoxy resin composition and use thereof
CN103910850A (en) * 2014-04-02 2014-07-09 合肥杰事杰新材料股份有限公司 Phosphated lignin-based flame-retardant and reinforced rigid polyurethane foam and preparation method thereof
KR101713438B1 (en) * 2015-09-15 2017-03-07 권혁이 Producing method of eco-friendly lightweight tiles using waste coal tailings
CN111073325A (en) * 2019-12-31 2020-04-28 华南理工大学 Lignin/fiber thermoplastic composite material and preparation method thereof
WO2023219158A1 (en) * 2022-05-12 2023-11-16 スーパーレジン工業株式会社 Foamed body and layered structure

Also Published As

Publication number Publication date
JP5641302B2 (en) 2014-12-17
JP2011219718A (en) 2011-11-04
JP5618136B2 (en) 2014-11-05
JP2011219722A (en) 2011-11-04
JP2011219715A (en) 2011-11-04
JP2011219716A (en) 2011-11-04
JP5861856B2 (en) 2016-02-16
JP5582346B2 (en) 2014-09-03
JP5652646B2 (en) 2015-01-14
JP5741904B2 (en) 2015-07-01
JP2011219717A (en) 2011-11-04
JP2011218775A (en) 2011-11-04
JP2011219728A (en) 2011-11-04
JP2011219723A (en) 2011-11-04
JP2011219725A (en) 2011-11-04
JP5720924B2 (en) 2015-05-20
JP2011218777A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5741904B2 (en) Wooden foam
Sternberg et al. Green chemistry design in polymers derived from lignin: review and perspective
Bass et al. Recent developments towards performance-enhancing lignin-based polymers
Quirino et al. Thermosetting polymers from renewable sources
Sen et al. Thermal properties of lignin in copolymers, blends, and composites: a review
Fache et al. Vanillin, a key-intermediate of biobased polymers
WO2011099544A1 (en) Resin composition, molded body and composite molded body
Pan et al. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam
Raquez et al. Thermosetting (bio) materials derived from renewable resources: A critical review
Gu et al. Effects of wood fiber and microclay on the performance of soy based polyurethane foams
Khan et al. Lignin-based adhesives and coatings
Dotan Biobased thermosets
Zhou et al. Depolymerization and activation of alkali lignin by solid acid-catalyzed phenolation for preparation of lignin-based phenolic foams
Liu et al. Thermo-responsive shape-memory polyurethane foams from renewable lignin resources with tunable structures–properties and enhanced temperature resistance
Luo et al. Toward utilization of lignin-derivatized monomers: development of degradable vanillin-based polyurethane materials
Fan et al. Dynamic cross-linked poly (butylene adipate-co-terephthalate) for high-performance green foam
Bassett et al. Richard P. Wool's contributions to sustainable polymers from 2000 to 2015
Gosecki et al. Converting Unrefined Birch Suberin Monomers into Vitrimer
Wu et al. Plant oil‐based biofoam composites with balanced performance
Hipulan et al. Development of High-Performance Coconut Oil-Based Rigid Polyurethane-Urea Foam: A Novel Sequential Amidation and Prepolymerization Process
Tanasă et al. Multicomponent Polymer Systems Based on Agro-Industrial Waste
Li Synthesis and characterization of copolymers from lignin
Torr et al. Recent Advances in Thermoset and Thermoplastic Polymeric Materials Produced using Technical and Depolymerized Native Lignins
JP2014024933A (en) Self-curable resin using lignin
JP2014065779A (en) Thermosetting resin composition using lignin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150415

LAPS Cancellation because of no payment of annual fees