JPH07216203A - Decomposable foam and its preparation - Google Patents

Decomposable foam and its preparation

Info

Publication number
JPH07216203A
JPH07216203A JP6196006A JP19600694A JPH07216203A JP H07216203 A JPH07216203 A JP H07216203A JP 6196006 A JP6196006 A JP 6196006A JP 19600694 A JP19600694 A JP 19600694A JP H07216203 A JPH07216203 A JP H07216203A
Authority
JP
Japan
Prior art keywords
lignocellulosic
group
aliphatic
polyester polyol
aliphatic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6196006A
Other languages
Japanese (ja)
Other versions
JP2604327B2 (en
Inventor
Jin-Taek Hwang
鎭 澤 黄
Seung-Ho Jeon
昇 鎬 全
Won-Bum Jung
源 凡 丁
Sung-Ju Seo
承 柱 恕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANSEI SOGO KAGAKU KK
Hanwha Impact Corp
Original Assignee
SANSEI SOGO KAGAKU KK
Samsung General Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1019930014436A external-priority patent/KR970002081B1/en
Priority claimed from KR1019930027507A external-priority patent/KR970002083B1/en
Application filed by SANSEI SOGO KAGAKU KK, Samsung General Chemicals Co Ltd filed Critical SANSEI SOGO KAGAKU KK
Publication of JPH07216203A publication Critical patent/JPH07216203A/en
Application granted granted Critical
Publication of JP2604327B2 publication Critical patent/JP2604327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4081Mixtures of compounds of group C08G18/64 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6484Polysaccharides and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6492Lignin containing materials; Wood resins; Wood tars; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2397/00Characterised by the use of lignin-containing materials
    • C08J2397/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2497/00Characterised by the use of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PURPOSE: To provide a soln. which is prepd. by dissolving lignocellulose and/or its deriv. in a low-mol.-wt. aliph. polyester polyol and which, when foamed and cured, economically gives a novel foam excellent in bio-/photodegradability.
CONSTITUTION: The objective soln. is prepd. by dissolving (A) lignocellulose and/or its deriv. in (B) a low-mol.-wt. aliph. polyester polyol (pref. having a mol.wt. of 300-2,000 and being bio-/photodegradable). The soln. is prepd. usually by stirring 100 pts.wt. component A in 10-1,000 pts.wt. component B under heating (pref. at 200-300°C) for 0.5-5 hr. Component B is obtd. e.g. by the polycondensation of an aliph. dicarboxylic acid (e.g. adipic acid) and a diol (e.g. ethylene glycol).
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分解性発泡体およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a decomposable foam and a method for producing the same.

【0002】詳しくは、本発明はリグノセルロースおよ
び/またはその誘導体を低分子量の生分解性脂肪族ポリ
エステルポリオールに溶解反応させたリグノセルロース
系溶解物およびその製造方法と、リグノセルロース系溶
解物を通常の発泡剤および硬化剤で発泡硬化させて得ら
れる生分解性が優れた発泡体およびその製造方法に関す
るものである。また、上記溶解物に光分解促進剤を添加
して同じ方法で発泡硬化して得られる生分解性と光分解
性(以下、「生/光分解性」という。)が共に優れた発
泡体およびその製造方法に関するものである。
More particularly, the present invention relates to a lignocellulosic melt obtained by dissolving and reacting a lignocellulose and / or a derivative thereof with a low molecular weight biodegradable aliphatic polyester polyol, a method for producing the same, and a lignocellulose melt. The present invention relates to a foam having excellent biodegradability obtained by foaming and curing the same with a foaming agent and a curing agent, and a method for producing the same. Further, a foam having excellent biodegradability and photodegradability (hereinafter referred to as “bio / photodegradability”) obtained by adding a photodegradation accelerator to the above-mentioned dissolved material and foam-curing by the same method, and The present invention relates to a manufacturing method thereof.

【0003】また、リグノセルロースおよび/またはそ
の誘導体を低分子量の生/光分解性脂肪族ポリエステル
ポリオールに溶解反応させたリグノセルロース系溶解物
を通常の発泡剤および硬化剤で発泡硬化させて得られる
生/光分解性が共に優れた発泡体およびその製造方法に
関するものである。
Further, it is obtained by foaming and curing a lignocellulose-based solution obtained by dissolving and reacting lignocellulose and / or its derivative in a low molecular weight raw / photodegradable aliphatic polyester polyol with a usual foaming agent and curing agent. The present invention relates to a foam excellent in both biodegradability and photodegradability and a method for producing the foam.

【0004】[0004]

【従来の技術】現在、廃プラスチックは環境汚染の主犯
であり、その廃棄処理が先進国および韓国で深刻な問題
となっている。従来、プラスチック廃棄物は埋立、焼
却、リサイクリング方法などで処理してきた。しかし、
埋立処理は、現在限界に至っている。焼却処理は、不必
要なエネルギーが浪費され、炭酸ガスの発生で地球温暖
化に悪影響を及ぼすことは勿論、焼却炉の損傷を誘発す
る場合が多く、経済性の問題も提起されている。リサイ
クリング方法は非常に良い方法として認められ、現在多
くの研究が進められており、一部実施されているが、収
集、品質管理、規格などの点について問題があり、経済
性が大いに欠如し、甚大な困難を経ているのが実情であ
る。
2. Description of the Related Art At present, waste plastics are the main cause of environmental pollution, and their disposal is becoming a serious problem in developed countries and South Korea. Traditionally, plastic waste has been disposed of by landfill, incineration, recycling methods, etc. But,
Landfill disposal is currently reaching its limit. The incineration process wastes unnecessary energy and adversely affects global warming due to the generation of carbon dioxide gas, and often causes damage to the incinerator, which poses an economic problem. The recycling method has been recognized as a very good method, and a lot of research is currently in progress, and some of it has been implemented, but there are problems in terms of collection, quality control, standards, etc. The reality is that it has undergone enormous difficulties.

【0005】特に、1回用包装用緩衝材として広く使用
しているスチロポール(styropol)(発泡性ポリスチレ
ン)は、体積がとても大きく、埋立地の確保が困難とな
っている。焼却やリサイクリング方法についても、環境
汚染の程度が大きく、現在多くの国でこれに対する法律
的規制を加えるなどの対策を準備している。
In particular, styropol (expandable polystyrene), which is widely used as a cushioning material for single-use packaging, has a very large volume, making it difficult to secure landfill. Regarding the incineration and recycling methods, the degree of environmental pollution is large, and many countries are currently preparing measures such as adding legal regulations.

【0006】一方、緩衝材に生分解性または光分解性を
付与して使用後一定時間後には自然系の微生物または日
光により分解されて自動的に自然系に循環可能にするこ
とによって前記の問題を解決しようする努力が活発に進
んでいる。その例として、澱粉と水溶性高分子を原料と
した生分解性発泡体(商品名:ノボン(NOVON))が米国の
ノボンプロダクト(NOVON PRODUCT) 社により開発されて
いる。この製品は澱粉を高含量で使用しているため生分
解性は優れているが、吸湿性が高く、耐衝撃性などの機
械的物性が多少不良であり、非常に高価で、広く実用化
するのにはまだ至っていない。また、日本の昭和高分子
株式会社では合成系生分解性脂肪族ポリエステル(商品
名:ビオノレ(BIONOLLE))の発泡体開発に成功して量産
準備を急いでいるが、経済的な側面でとても大きな困難
が予想されている。
On the other hand, the above-mentioned problems are caused by imparting biodegradability or photodegradability to the buffer material, and after a certain period of time after use, the buffer material is decomposed by natural microorganisms or sunlight and automatically circulated to the natural system. Efforts to solve the problem are active. As an example, a biodegradable foam (trade name: NOVON) made from starch and a water-soluble polymer has been developed by NOVON PRODUCT in the United States. This product has high biodegradability because it uses a high content of starch, but it has high hygroscopicity, mechanical properties such as impact resistance are somewhat poor, it is very expensive, and it is widely used in practice. Hasn't arrived yet. In addition, Showa High Polymer Co., Ltd. of Japan succeeded in developing a synthetic biodegradable aliphatic polyester (trade name: BIONOLLE) foam, and is rushing for mass production, but it is very economical Difficulties are expected.

【0007】一方、リグノセルロースには、セルロー
ス、ヘミセルロース、リグニンなどが混合されている。
リグノセルロースの例として挙げられる木粉、籾殻また
は稲わらなどは、自然界で微生物により容易に分解され
る性質を有するとともに機械的物性に寄与する結晶構造
を有するにもかかわらず、熱可塑性が無いなど多くの技
術的な問題がある。そのため、現在は殆んど捨てられて
いるが、膨大な量の廃資源であるので、これを高度に活
用する方策が切実に要求されている。
On the other hand, lignocellulose is mixed with cellulose, hemicellulose, lignin and the like.
Wood flour, rice husk, rice straw, etc., which are mentioned as examples of lignocellulose, have the property of being easily decomposed by microorganisms in the natural world and have no crystallinity even though they have a crystal structure that contributes to mechanical properties. There are many technical problems. For this reason, most of it is currently discarded, but it is an enormous amount of waste resources, and there is an urgent need for a measure to utilize this waste resource at a high level.

【0008】[0008]

【発明が解決しようとする課題】本発明者は非常に安く
得ることのできる廃木粉、籾殻などいわゆるリグノセル
ロースを効果的に活用して、分解特性が優れるだけでな
く、経済性が良好な、スチロポールなどの1回用緩衝材
に代えることのできる分解性発泡体を得るため鋭意研究
を重ねた結果、本発明に至ったのである。
The present inventor effectively utilizes so-called lignocellulose such as waste wood powder and rice husk that can be obtained at a very low price, and not only has excellent decomposition characteristics but also has good economical efficiency. As a result of earnest researches to obtain a decomposable foam that can be replaced with a single-use cushioning material such as styropol, the present invention has been achieved.

【0009】本発明の目的は分解性発泡体の製造に使用
されるリグノセルロース溶解物およびその製造方法を提
供することにある。本発明の他の目的は、生/光分解性
が共に優れた新規の発泡体およびその製造方法を提供す
ることにある。
It is an object of the present invention to provide a lignocellulosic melt used in the production of degradable foams and a process for their production. Another object of the present invention is to provide a novel foam excellent in both biodegradability and photodegradability and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明にかかる分解性発泡体およびその製造方法
は、リグノセルロースおよび/またはその誘導体を低分
子量の生分解性脂肪族ポリエステルポリオールに溶解反
応させたリグノセルロース溶解物およびその製造方法
と、リグノセルロース系溶解物を通常の発泡剤および硬
化剤で発泡硬化させて得られる生分解性が優れた発泡体
およびその製造方法に関するものである。また、上記溶
解物に光分解促進剤を添加し同じ方法で発泡硬化して得
られる生/光分解性が共に優れた発泡体およびその製造
方法に関するものである。
The decomposable foam and the method for producing the same according to the present invention for achieving the above object are obtained by converting lignocellulose and / or a derivative thereof into a low molecular weight biodegradable aliphatic polyester polyol. The present invention relates to a lignocellulosic solution that has undergone a dissolution reaction and a method for producing the same, and a foam having excellent biodegradability obtained by foaming and curing a lignocellulosic solution with an ordinary foaming agent and a curing agent, and a method for producing the same. . The present invention also relates to a foam having excellent raw / photodegradability, which is obtained by adding a photodegradation accelerator to the above-mentioned melt and foam-curing the same method, and a method for producing the same.

【0011】また、リグノセルロースおよび/またはそ
の誘導体を低分子量の生/光分解性脂肪族ポリエステル
ポリオールに溶解反応させたリグノセルロース系溶解物
およびその製造方法と、リグノセルロース系溶解物に通
常の発泡剤および硬化剤を発泡硬化させて得られる生/
光分解性が共に優れた発泡体およびその製造方法に関す
るものである。以下本発明を詳細に説明する。
Further, a lignocellulosic solution obtained by dissolving and reacting lignocellulose and / or a derivative thereof in a low-molecular weight raw / photodegradable aliphatic polyester polyol, a method for producing the same, and ordinary foaming of the lignocellulosic solution. Raw material obtained by foaming and curing a curing agent and a curing agent
The present invention relates to a foam having excellent photodegradability and a method for producing the foam. The present invention will be described in detail below.

【0012】本発明においてリグノセルロースの誘導体
は、リグノセルロース中に含まれた反応性基、例えば水
酸基などを一部エーテル化、エステル化など化学的改質
反応により生成された物質をいい、またその製造方法
は、日本公開特許公報昭56−135552、昭57−
2360、昭57−103804、昭61−13872
2、昭61−171744、昭61−215675、昭
61−215679、昭63−63769などに詳細に
記載されている。
In the present invention, the lignocellulose derivative means a substance produced by a chemical modification reaction such as partial etherification or esterification of a reactive group contained in lignocellulose, for example, a hydroxyl group. The manufacturing method is disclosed in Japanese Laid-Open Patent Publications Sho 56-135552 and Sho 57-
2360, Sho 57-103804, Sho 61-13872
2, Sho 61-171744, Sho 61-215675, Sho 61-215679, Sho 63-63769 and the like.

【0013】上記リグノセルロースの誘導体の製造方法
を簡単に説明すれば、例えば木粉を利用したリグノセル
ロースの誘導体は、木粉をより細かく微粉砕した後、水
などの溶媒または膨潤剤の存在下、室温または加温下で
リグノセルロースに含まれた水酸基をエーテル化、エス
テル化反応などをさせた後、水またはアルコールなどで
濾過、洗浄し、乾燥して得る。
The method for producing the above-mentioned lignocellulose derivative will be briefly described. For example, a lignocellulose derivative using wood flour is prepared by finely pulverizing wood flour in the presence of a solvent such as water or a swelling agent. After the etherification or esterification reaction of the hydroxyl group contained in the lignocellulose at room temperature or under heating, it is filtered, washed with water or alcohol, and dried.

【0014】エステル化には酸ハロゲン化物、2塩基酸
無水物または脂肪族などの各種酸が使用される。また、
エーテル化には、塩化メチル、塩化エチル、塩化アリー
ル、塩化ベンジル、エピクロロヒドリンなどのハロゲン
化物、モノクロロ酢酸などのα−ハロゲン酸、酢酸ジメ
チル、酢酸ジエチルなどのジアルキル酢酸、エチレンオ
キサイド、プロピレンオキサイドなどのエポキシ化合
物、アクリロニトリルなどの陰性基で活性化させたビニ
ル化合物、ジアゾメタン、ホルムアルデヒドなどのアル
デヒド類、チタンアルキレートなどの有機金属化合物が
使用される。また、これらの反応は無触媒下または触媒
下で行われ、前者では硫酸、過塩素酸、ピリジン、塩化
亜鉛などの触媒が、後者では苛性ソーダなどのアルカリ
触媒を使用することができる。
For the esterification, various acids such as acid halides, dibasic acid anhydrides and aliphatic acids are used. Also,
Etherification includes halides such as methyl chloride, ethyl chloride, aryl chloride, benzyl chloride and epichlorohydrin, α-halogen acids such as monochloroacetic acid, dialkyl acetic acid such as dimethyl acetate and diethyl acetate, ethylene oxide, propylene oxide. An epoxy compound such as, a vinyl compound activated with a negative group such as acrylonitrile, an aldehyde such as diazomethane or formaldehyde, or an organometallic compound such as titanium alkylate is used. Further, these reactions are carried out without a catalyst or under a catalyst. In the former case, a catalyst such as sulfuric acid, perchloric acid, pyridine or zinc chloride can be used, and in the latter case, an alkali catalyst such as caustic soda can be used.

【0015】導入される有機基の好適な例としては、ア
セチル基、プロピオニル基、ブチリル基、バレリル基な
どの脂肪族アシル基、カルボキシプロペノイル基など二
塩基酸モノエステル基、ベンゾイル基およびその他の芳
香族アシル基、メチル基、エチル基などの低級アルキル
基、アリール基、カルボキシメチル基、ヒドロキシエチ
ル基などのヒドロキシアルキル基、ポリオキシメチレン
基、ポリオキシエチレングリコール基などのポリオキシ
アルキレングリコール基、ベンジル基、ペンチル基、オ
クチル基などの長鎖アルキル基、シアノエチル基、メチ
レンエーテル基などを挙げることができる。さらにこれ
らの有機基を2種以上導入するのも可能である。
Preferable examples of the organic group to be introduced include aliphatic acyl groups such as acetyl group, propionyl group, butyryl group and valeryl group, dibasic acid monoester groups such as carboxypropenoyl group, benzoyl group and other groups. Aromatic acyl group, methyl group, lower alkyl group such as ethyl group, aryl group, carboxymethyl group, hydroxyalkyl group such as hydroxyethyl group, polyoxymethylene group, polyoxyalkylene glycol group such as polyoxyethylene glycol group, Examples thereof include long-chain alkyl groups such as benzyl group, pentyl group and octyl group, cyanoethyl group, methylene ether group and the like. It is also possible to introduce two or more of these organic groups.

【0016】各種処理方法中で本発明に適切なリグノセ
ルロースの誘導体は、原料の値段や最終製品の物性など
を考慮すると、メチル基、エチル基、ベンジル基、アリ
ール基、アセチル基、ヒドロキシエチル基、カルボキシ
メチル基、マレイン酸またはフタル酸によるモノエステ
ル基などが導入された化学的改質物である。
Among the various treatment methods, the lignocellulose derivative suitable for the present invention is a methyl group, an ethyl group, a benzyl group, an aryl group, an acetyl group, a hydroxyethyl group in consideration of the price of raw materials and the physical properties of the final product. , A carboxymethyl group, a monoester group derived from maleic acid or phthalic acid, and the like are chemically modified products.

【0017】本発明における生分解性脂肪族ポリエステ
ルポリオールは、脂肪族系ジカルボン酸とジオールを通
常の縮重合反応を通じて得られるものおよび/または脂
肪族環状エステル系モノマーを開環重合させて得られる
ものが使用される。本発明における生/光分解性脂肪族
ポリエステルポリオールは、脂肪族系ジカルボン酸およ
びケトン系ジカルボン酸で構成されるジカルボン酸と脂
肪族系ジオールを通常の縮重合反応を通じて得られるも
のが使用される。
The biodegradable aliphatic polyester polyol in the present invention is obtained by subjecting an aliphatic dicarboxylic acid and a diol to a general polycondensation reaction and / or obtained by ring-opening polymerization of an aliphatic cyclic ester monomer. Is used. The raw / photodegradable aliphatic polyester polyol used in the present invention is obtained by subjecting a dicarboxylic acid composed of an aliphatic dicarboxylic acid and a ketone dicarboxylic acid and an aliphatic diol to an ordinary polycondensation reaction.

【0018】脂肪族系ジカルボン酸としては脂肪族の炭
素数が8個以下であるのが使用することができる。さら
にその具体的な例を挙げるとマロン酸、スクシン酸、グ
ルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼ
ライン酸、セバシン酸、およびこれらのメチル、エチル
誘導体などが使用可能である。ケトン系ジカルボン酸ま
たはそのエステルとしてはケトン基を含む脂肪族の炭素
数が8個以下であるのを使用することができる。その具
体的な例を挙げると、アセチルスクシン酸、β−アセチ
ルグルタル酸、γ−アセチルピメリン酸、γ−ベンゾイ
ルピメリン酸、γ−アセチルスベリン酸、γ−アセチル
アゼライン酸、3−オキソグルタル酸およびこれらのメ
チル、エチル誘導体などが使用可能である。また、ジオ
ールとしてはやはり炭素数8個以下のヒドロキシ基が2
個あるジオールが使用可能であり、その具体的な例を挙
げると、エチレングリコール、プロピレングリコール、
1,4−テトラメチレングリコール、1,5−ペンタメ
チレングリコール、ヘキサメチレングリコール、ヘプタ
メチレングリコール、オクタメチルグリコール、ジエチ
レングリコール、トリエチレングリコールなどが使用可
能である。
As the aliphatic dicarboxylic acid, those having an aliphatic carbon number of 8 or less can be used. Further specific examples thereof include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and their methyl and ethyl derivatives. As the ketone-based dicarboxylic acid or its ester, it is possible to use an aliphatic carbon number containing a ketone group having 8 or less. Specific examples thereof include acetylsuccinic acid, β-acetylglutaric acid, γ-acetylpimelic acid, γ-benzoylpimelic acid, γ-acetylsuberic acid, γ-acetylazelaic acid, and 3-oxoglutaric acid. And these methyl and ethyl derivatives can be used. Also, as the diol, there are still 2 hydroxy groups having 8 or less carbon atoms.
A variety of diols can be used, and specific examples thereof include ethylene glycol, propylene glycol,
1,4-tetramethylene glycol, 1,5-pentamethylene glycol, hexamethylene glycol, heptamethylene glycol, octamethyl glycol, diethylene glycol, triethylene glycol and the like can be used.

【0019】脂肪族環状エステル系モノマーとしては、
公知の方法で開環反応をするものであれば望ましいが、
その具体的な例を挙げると、β−プロピオラクトン、β
−ブチロラクトン、α,α′−ビスクロロメチルプロピ
オラクトン、α,α′−ジメチル−β−プロピオラクト
ン、δ−バレロラクトン、β−エチル−δ−バレロラク
トン、3,4,5−トリメトキシ−δ−バレロラクト
ン、1,4−ジオキサン−2−オン、グリコリド、ラク
チド、1,4−ジチアン−2,5−ジオン、トリメチレ
ンカルボネート、ネオペンチレンカルボネート、エチレ
ンオキサレート、プロピレンオキサレート、ε−カプロ
ラクトン、α−メチル−ε−カプロラクトン、β−メチ
ル−ε−カプロラクトン、γ−メチル−ε−カプロラク
トン、4−メチル−7−イソプロピル−ε−カプロラク
トン、3,3,5−トリメチル−ε−カプロラクトン、
cis−ジサリチリド、トリサリチリドなどがあるが、
経済性を考慮すると、ε−カプロラクトン、ラクチド、
グリコリドなどが最適である。
As the aliphatic cyclic ester type monomer,
It is desirable if the ring-opening reaction is carried out by a known method,
Specific examples thereof include β-propiolactone, β
-Butyrolactone, α, α'-bischloromethylpropiolactone, α, α'-dimethyl-β-propiolactone, δ-valerolactone, β-ethyl-δ-valerolactone, 3,4,5-trimethoxy- δ-valerolactone, 1,4-dioxan-2-one, glycolide, lactide, 1,4-dithian-2,5-dione, trimethylene carbonate, neopentylene carbonate, ethylene oxalate, propylene oxalate, ε-caprolactone, α-methyl-ε-caprolactone, β-methyl-ε-caprolactone, γ-methyl-ε-caprolactone, 4-methyl-7-isopropyl-ε-caprolactone, 3,3,5-trimethyl-ε- Caprolactone,
There are cis-disalicylide, trisalicylide, etc.,
Considering economy, ε-caprolactone, lactide,
Glycolide is the best choice.

【0020】本発明において脂肪族ポリエステルポリオ
ール合成時の脂肪系ジカルボン酸およびケトン系ジカル
ボン酸で構成されるジカルボン酸またはそのエステルの
投入量は、脂肪族系ジオール対比モル比でみたとき5〜
20モル%の範囲で過剰に加えられるのが望ましい。そ
の理由は、重合されたポリエステルの末端に水酸基が結
合されたポリオールを得るためである。
In the present invention, the amount of the dicarboxylic acid composed of the fatty dicarboxylic acid and the ketone dicarboxylic acid or the ester thereof at the time of synthesizing the aliphatic polyester polyol is 5 to 5 when viewed as a molar ratio relative to the aliphatic diol.
Excessive addition in the range of 20 mol% is desirable. The reason is to obtain a polyol having a hydroxyl group bonded to the terminal of the polymerized polyester.

【0021】本発明における生/光分解性脂肪族ポリエ
ステルポリオール合成時の全体のジカルボン酸中でケト
ン系ジカルボン酸およびそのエステルの含量は0.01
モル%以下である場合には光分解性能が劣り、5.0モ
ル%以上である場合にはケトン系ジカルボン酸が高価で
あるため経済性が劣る欠点がある。ケトン系ジカルボン
酸およびそのエステルの含量は光分解性能と経済的な面
を考慮すると0.3〜2モル%の範囲が最適である。
The content of the ketone-based dicarboxylic acid and its ester in the total amount of dicarboxylic acid during the synthesis of the raw / photodegradable aliphatic polyester polyol in the present invention is 0.01.
If the amount is less than mol%, the photodecomposition performance is inferior, and if it is more than 5.0 mol%, the economical efficiency is inferior because the ketone dicarboxylic acid is expensive. The content of the ketone-based dicarboxylic acid and its ester is optimally in the range of 0.3 to 2 mol% in view of photodegradability and economical aspects.

【0022】本発明における脂肪族ポリエステルポリオ
ールの分子量は200〜5000の範囲内のものが望ま
しく、300〜2000の範囲内のものが最適である。
分子量が200未満のものは、リグノセルロースおよび
/またはその誘導体との溶液化反応面では有利である
が、硬化剤との硬化程度即ち架橋度が高いので、生分解
特性が不良になる問題があり、分子量が5、000をこ
えると、溶液化反応がよくなされない欠点がある。
The molecular weight of the aliphatic polyester polyol used in the present invention is preferably in the range of 200 to 5,000, and most preferably in the range of 300 to 2,000.
A polymer having a molecular weight of less than 200 is advantageous from the viewpoint of solution reaction with lignocellulose and / or its derivative, but has a high degree of curing with a curing agent, that is, a high degree of crosslinking, and thus has a problem of poor biodegradability. If the molecular weight exceeds 5,000, there is a drawback that the solution reaction is not performed well.

【0023】本発明においてリグノセルロースおよび/
またはその誘導体を脂肪族ポリエステルポリオールに溶
解させて得られる溶解物は、通常、リグノセルロースお
よび/またはその誘導体100重量部に対して脂肪族ポ
リエステルポリオール10〜1000重量部を加えて加
温下で約0.5〜5時間攪拌反応させることによって得
られる。添加する脂肪族ポリエステルポリオールの量が
10重量部未満である場合には十分な溶液化がなされ
ず、本発明で目標とする発泡体の機械的物性が悪くなる
問題があり、反面、添加量が1000重量部を超える場
合には脂肪族ポリエステルポリオールの値段が高いので
経済性が不良になる問題がある。これらの問題を解決す
るために、場合によっては値段が安い、例えばエチレン
グリコール、プロピレングリコールなどの低分子量の多
価アルコールや、ポリエチレングリコール、ポリプロピ
レングリコールなどのポリエーテル系ポリオールを適量
添加することも可能である。この場合添加量が多すぎる
と最終的に得られる発泡体の生分解性が不良になる欠点
があるので、これを考慮して添加するのが望ましい。
In the present invention, lignocellulose and / or
Alternatively, a solution obtained by dissolving the derivative thereof in an aliphatic polyester polyol is usually about 10 to 1000 parts by weight of the aliphatic polyester polyol with respect to 100 parts by weight of lignocellulose and / or a derivative thereof, and heated to about Obtained by reacting with stirring for 0.5 to 5 hours. When the amount of the aliphatic polyester polyol to be added is less than 10 parts by weight, the solution is not sufficiently solubilized, and there is a problem that the mechanical properties of the foam targeted by the present invention are deteriorated. If the amount exceeds 1,000 parts by weight, the cost of the aliphatic polyester polyol is high, and there is a problem that the economy is poor. In order to solve these problems, it is possible to add an appropriate amount of low-cost polyhydric alcohol having a low molecular weight such as ethylene glycol or propylene glycol, or a polyether polyol such as polyethylene glycol or polypropylene glycol in some cases. Is. In this case, if the amount of addition is too large, there is a drawback that the biodegradability of the foam finally obtained becomes poor, so it is desirable to add in consideration of this.

【0024】通常、加温条件は100〜300℃が好適
であり、200〜300℃が最適である。温度が高いほ
ど溶液化状態は良くなるが、温度が300℃を超えると
リグノセルロースおよび/またはその誘導体が炭化する
現象が発生して好ましくない。溶液化反応をより促進す
るために塩酸、硫酸、リューイス酸などの酸触媒を少量
添加することができるが、この場合そのまま置くとリグ
ニンの再縮合反応が起きるなど溶液状態が不安定となる
ので、アルカリで中和させるか、複塩として沈澱除去す
るのが望ましい。
Generally, the heating condition is preferably 100 to 300 ° C, and optimally 200 to 300 ° C. The higher the temperature, the better the solution state, but if the temperature exceeds 300 ° C., the phenomenon of carbonization of lignocellulose and / or its derivative is generated, which is not preferable. A small amount of acid catalysts such as hydrochloric acid, sulfuric acid, and Lewis acid can be added to further promote the solution reaction, but in this case, the solution state becomes unstable such that the recondensation reaction of lignin occurs if left as it is, It is desirable to neutralize with an alkali or to remove the precipitate as a double salt.

【0025】上記のように得られたリグノセルロースお
よび/またはその誘導体と生分解性脂肪族ポリエステル
ポリオールとのリグノセルロース系溶解物を通常の発泡
剤および硬化剤の存在下で発泡硬化させることによっ
て、本発明の目的とする発泡体が得られる。硬化剤とし
ては例えば、メチレンジフェニルジイソシアネート(M
DI)、トリレンジイソシアネート(TDI)など多価
イソシアネート化合物、多価グリシジル化合物、メラミ
ン誘導体などが使用できる。また、発泡剤としては、シ
クロペンタン、ヘキサン、フレオン、代替フレオンなど
の低沸点溶媒、または水を使用するのが可能である。最
近のフレオンなどによる環境汚染を考慮して、水を発泡
剤として使用するのがもっとも望ましい。発泡体の物性
向上のため整泡剤を使用するのが望ましく、特に通常の
ポリウレタン発泡体の製造時に用いるシリコン系整泡剤
が最適である。また、発泡硬化反応を促進するために通
常のアミン系または錫系触媒などを使用するのもよい。
By subjecting the lignocellulosic solution of the lignocellulose and / or its derivative and the biodegradable aliphatic polyester polyol obtained as described above to foam-curing in the presence of a conventional foaming agent and curing agent, The foam object of the present invention is obtained. Examples of the curing agent include methylene diphenyl diisocyanate (M
DI), polyvalent isocyanate compounds such as tolylene diisocyanate (TDI), polyvalent glycidyl compounds, and melamine derivatives can be used. Further, as the foaming agent, it is possible to use a low boiling point solvent such as cyclopentane, hexane, freon, alternative freon, or water. It is most desirable to use water as a foaming agent in consideration of recent environmental pollution such as Freon. In order to improve the physical properties of the foam, it is desirable to use a foam stabilizer, and in particular, a silicone-based foam stabilizer used during the production of ordinary polyurethane foam is most suitable. In addition, a usual amine-based or tin-based catalyst or the like may be used to accelerate the foam curing reaction.

【0026】発泡体の製造過程において添加される発泡
剤、整泡剤および触媒の投入量は通常のリグノセルロー
ス系溶解物100重量部に対し各々5〜50重量部、
0.1〜2.0重量部および0.1〜2.0重量部を加
えるのが望ましく、硬化剤は上記添加物を含む混合液1
00重量部に対して60〜150重量部を加えるのが望
ましい。
The amounts of the foaming agent, foam stabilizer and catalyst added in the process of producing the foam are 5 to 50 parts by weight per 100 parts by weight of the usual lignocellulosic melt, respectively.
It is desirable to add 0.1 to 2.0 parts by weight and 0.1 to 2.0 parts by weight, and the curing agent is a mixed solution 1 containing the above additives.
It is desirable to add 60 to 150 parts by weight to 00 parts by weight.

【0027】上記の方法によって得られる発泡体は、生
分解性が優れているだけでなく経済性も良好である。さ
らにその分解特性を一層向上させるため、さらに光分解
特性が付与された分解性発泡体を得ることができる。こ
れはリグノセルロースおよび/またはその誘導体と生分
解性脂肪族ポリエステルポリオールとの溶解物に光分解
促進剤を添加して、通常の発泡剤および硬化剤を用いて
発泡硬化させることによって達成することができる。
The foam obtained by the above method is not only excellent in biodegradability but also economical. Further, since the decomposition property is further improved, a decomposable foam having further photodecomposition property can be obtained. This can be achieved by adding a photodegradation accelerator to a solution of the lignocellulose and / or its derivative and the biodegradable aliphatic polyester polyol and foaming and curing the same with a usual foaming agent and curing agent. it can.

【0028】本発明で用いる光分解促進剤は米国特許第
3,797,690号、第3,860,538号、第
4,121,025号、第4,461,853号、第
3,676,401号、第2,495,286号、第
3,083,184号、日本公開特許昭48−5415
3、昭50−21079、昭50−34340などに示
すとおりの公知のもので、例えばアルドールとα−ナフ
チルアミンとの縮合物、アセチルアセトン、コバルトジ
メチル−ジチオカルバマートなどの金属ジアルキル−ジ
チオカルバマート、サリチルアルデヒド、α−メルカプ
トベンゾチアゾール、酢酸銅、ステアリン酸亜鉛などの
脂肪酸金属塩、チオジプロピオン酸、鉄アセチルアセト
ネート、コバルトアセチルアセトネートなどの金属アセ
チルアセトネート、α−ナフトキノン、アントラキノン
およびその誘導体、プロピオフェノン、ベンゾフェノン
およびその誘導体、ビニル−ケトン系共重合体(ECOLYTE
ATLANTIC 社、製品名:ECOLYTE)、エチレン−一酸化炭
素共重合体(UNION CARBIDE社、製品名;DXM-439)などで
あり、1種以上混合して使用するのが望ましい。添加量
は光分解促進剤の種類によって異なるが、通常リグノセ
ルロースおよび/またはその誘導体と脂肪族ポリエステ
ルポリオールとの溶解物100重量部にたいし0.00
1〜5重量部が望ましく、0.01〜3重量部が最適で
ある。添加量が0.001重量部未満である場合には十
分な光分解特性が得られず、反面10重量部を超える場
合には光分解性は優れるが、機械的物性が不良になり、
添加剤が高価であるため経済性が悪くなる欠点がある。
The photodegradation accelerator used in the present invention is US Pat. Nos. 3,797,690, 3,860,538, 4,121,025, 4,461,853 and 3,676. , 401, 2,495,286, 3,083,184, Japanese Published Patent Application No. 48-5415.
3, known compounds such as 50-21079, 50-34340, and the like, for example, condensation products of aldol and α-naphthylamine, metal dialkyl-dithiocarbamates such as acetylacetone, cobalt dimethyl-dithiocarbamate, salicyl. Aldehydes, α-mercaptobenzothiazole, copper acetate, fatty acid metal salts such as zinc stearate, thiodipropionic acid, iron acetylacetonate, metal acetylacetonates such as cobalt acetylacetonate, α-naphthoquinone, anthraquinone and derivatives thereof, Propiophenone, benzophenone and its derivatives, vinyl-ketone copolymer (ECOLYTE
ATLANTIC, product name: ECOLYTE), ethylene-carbon monoxide copolymer (UNION CARBIDE, product name; DXM-439), and the like, and it is desirable to use one or more kinds in combination. The addition amount varies depending on the kind of the photodegradation accelerator, but is usually 0.00 per 100 parts by weight of the dissolved product of lignocellulose and / or its derivative and the aliphatic polyester polyol.
1 to 5 parts by weight is desirable, and 0.01 to 3 parts by weight is optimal. When the addition amount is less than 0.001 part by weight, sufficient photolytic properties cannot be obtained. On the other hand, when the addition amount is more than 10 parts by weight, the photodegradability is excellent, but mechanical properties become poor,
Since the additives are expensive, there is a drawback that economic efficiency deteriorates.

【0029】また分解特性を向上させるために、リグノ
セルロースおよび/またはその誘導体と生分解性脂肪族
ポリエステルポリオールの代りの生/光分解性脂肪族ポ
リエステルポリオールを、脂肪族系ジカルボン酸および
ケトン系ジカルボン酸で構成されるジカルボン酸または
そのエステルと脂肪族系ジオールを縮重合反応させて製
造し、上記の方法でリグノセルロース系溶解物を製造し
て発泡剤および硬化剤を発泡硬化させ、生/光分解性が
優れた発泡体を製造した。
In order to improve the degrading property, lignocellulose and / or a derivative thereof and a biodegradable aliphatic polyester polyol in place of the biodegradable aliphatic polyester polyol are mixed with an aliphatic dicarboxylic acid and a ketone dicarboxylic acid. A dicarboxylic acid composed of an acid or an ester thereof is subjected to a polycondensation reaction with an aliphatic diol, and a lignocellulosic melt is produced by the above-mentioned method to foam and cure a foaming agent and a curing agent. A foam having excellent degradability was produced.

【0030】[0030]

【実施例】以下実施例により本発明を詳細に説明する
が、本発明は以下の実施例に限定されるのではない。実
施例において物性評価方法は次のとおりである。密 度 発泡体の体積が1000mm3 より大きい試片を製造し
た後、ASTM D3574の方法により密度を測定し
た。硬度(25%ILD) 試片の大きさを380×380×20mm以上に製造し
てASTM D 3574の方法により25%ILD
(INDENTATION LOAD DEFLECTION VALUE)を測定した。生分解性 試料を一定の大きさに切断した後、培地で固体寒天培地
を利用して土壌中で多く発見されるアスペルギルス・ニ
ゲル(ASPERGILLUS NIGER) 、アスペルギルス・フラブス
(ASPERGILLUS FLAVUS)、ペニシリウム・フニクロサム(P
ENICILLIUM FUNICULOSUM)およびプルラリア・プルラン
ス(PULLULARIA PULLULANS)の混合菌胞子懸濁液を散布さ
せて試料上にかびが覆い被せられる程度を次のように記
録して生分解特性を測定した。 成長しないとき(0%):0 10%以下のとき:1 10〜
30%のとき:2 30〜60%のとき:3 60〜100%のとき:4光分解性 試料を一定の大きさに切断した後、耐候性試験機(ATAL
AS社製品 Ci65A)に置き、キセノンアーク(XENON ARC)
下で放置した後、初期硬度対比5%以下の硬度を示すま
での時間を測定した。
The present invention will be described in detail with reference to the following examples, but the present invention is not limited to the following examples. The physical property evaluation methods in the examples are as follows. Density The density was measured by the method of ASTM D3574 after producing a specimen with a volume of foam larger than 1000 mm 3 . Hardness (25% ILD) Manufacture the size of the specimen to 380 x 380 x 20 mm or more, and make 25% ILD by the method of ASTM D 3574.
(INDENTATION LOAD DEFLECTION VALUE) was measured. Aspergillus niger, which is often found in soil using solid agar medium after cutting biodegradable samples to a certain size, Aspergillus flavus
(ASPERGILLUS FLAVUS), Penicillium funiculosum (P
ENICILLIUM FUNICULOSUM) and PULLULARIA PULLULANS mixed spore suspensions were sprayed, and the degree of mold cover on the sample was recorded as follows to measure the biodegradation characteristics. When not growing (0%): 0 10% or less: 110 ~
At 30%: 2 At 30-60%: 3 At 60-100%: 4 After cutting a photodegradable sample into a certain size, a weather resistance tester (ATAL
Xenon ARC)
After being left to stand, the time until the hardness was 5% or less of the initial hardness was measured.

【0031】実施例1〜5 (1)木粉とポリカプロラクトンとの溶解物の製造 リグノセルロースの一つである木粉と脂肪族ポリエステ
ルの一つであるポリカプロラクトンとの溶解物を製造し
た。110℃で10時間以上乾燥した20〜80メッシ
ュの大きさの木粉100重量部と各種分子量のポリカプ
ロラクトン(商品名:TONE POLYOL 、Union Carbide
社)400重量部を耐圧ステンレス重合容器に取り、密
封した後、250℃で2.5時間加熱攪拌し、約100
0cp程度の粘性をもつ褐色溶解物を得た。 (2)発泡体の製造 上記(1)で得られた溶解物100重量部に発泡剤とし
て水10重量部とシリコン系整泡剤L−5740M(Uni
on Carbide社製)1.5重量部を加えてよく混合した
後、アミン系触媒DABCO33LV(米国Aldrich 社
製)0.3重量部および錫系触媒であるチンオクトエー
ト(Tin Octoate) 0.3重量部を加えてよく混合し、硬
化剤MDI105重量部を加えてよく混合した後、50
℃に加熱した。2〜3分後発泡硬化が完了し分解性軟質
発泡体を得た。その物性の結果を表1に示した。
Examples 1 to 5 (1) Production of a solution of wood flour and polycaprolactone A solution of wood flour, which is one of lignocellulose, and polycaprolactone, which is one of aliphatic polyesters, was produced. 100 parts by weight of wood flour of 20 to 80 mesh size dried at 110 ° C for 10 hours or more and polycaprolactone of various molecular weights (trade name: TONE POLYOL, Union Carbide
400 parts by weight in a pressure-resistant stainless steel polymerization vessel, sealed and heated at 250 ° C. for 2.5 hours with stirring to give about 100
A brown melt having a viscosity of about 0 cp was obtained. (2) Manufacture of foam 100 parts by weight of the melt obtained in (1) above, 10 parts by weight of water as a foaming agent and a silicone type foam stabilizer L-5740M (Uni
on Carbide) (1.5 parts by weight) and mixed well, then 0.3 parts by weight of amine catalyst DABCO33LV (manufactured by Aldrich, USA) and 0.3 parts by weight of tin catalyst Tin Octoate (Tin Octoate). 50 parts by weight of hardener MDI and well mixed, and then mixed well.
Heated to ° C. After 2-3 minutes, foaming and curing were completed to obtain a degradable soft foam. The results of the physical properties are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】実施例6〜10 (1)メチル化木粉の製造 リグノセルロースの誘導体の一つとしてメチル化木粉を
製造した。先ず、乾燥されたラジエタ松の木(Radiata
pine) 木粉(20〜60メッシュ)50gを1リットル
の大きさの反応フラスコ中に投入し、トルエン500g
を加えた。続いて苛性ソーダ40gを水溶液に加えて、
1時間室温で攪拌し、ミセル化した。その後、60ml
のヨウ化メチルを加えて、容器を密閉し、80℃に昇温
して3〜6時間反応させた。反応終了時に攪拌機を止
め、反応系は二層に分離するので上層のトルエンを斜め
にして除去し、酢酸酸性アセトン/メタノール(体積比
で3:7)混合液を注いで攪拌し、中和・洗浄し、上澄
液を除去した後、引き続いて過剰のアセトンを同じ形態
で添加攪拌して、2回洗浄濾過した後、60℃の熱風乾
燥機で1日乾燥した後、最終的に50℃で真空乾燥して
試料を得た。得られたメチル化木粉はオレンジ色を帯び
た黄色の粉末固体であり、重量増加率は10%であっ
た。 (2)メチル化木粉とポリカプロラクトンとの溶解物の
製造 上記(1)で得られたメチル化木粉100重量部と各種
分子量のポリカプロラクトン400重量部を耐圧ステン
レス重合容器に取り、密封した後、230℃で3時間加
熱攪拌して、濃い褐色の粘性溶解物を得た。 (3)発泡体の製造 上記(2)で得られた溶解物を利用して実施例1〜5の
ように同一の組成の架橋剤、発泡剤、整泡剤および触媒
を加えてよく混合発泡硬化して分解性軟質発泡体を得
た。その物性の結果を表2に示した。
Examples 6 to 10 (1) Production of Methylated Wood Flour Methylated wood flour was produced as one of the derivatives of lignocellulose. First, dried Radiata pine tree (Radiata
pine) Wood flour (20-60 mesh) 50g is put into a 1 liter size reaction flask, and toluene 500g.
Was added. Then add 40 g of caustic soda to the aqueous solution,
The mixture was stirred for 1 hour at room temperature to form micelles. Then 60 ml
Of methyl iodide was added, the vessel was sealed, the temperature was raised to 80 ° C., and the reaction was performed for 3 to 6 hours. At the end of the reaction, stop the stirrer, and the reaction system separates into two layers, so remove the upper layer of toluene diagonally and pour a mixture of acetic acid acid acetone / methanol (volume ratio 3: 7) to stir to neutralize. After washing and removing the supernatant liquid, excess acetone was continuously added and stirred in the same form, washed and filtered twice, dried in a hot air dryer at 60 ° C for 1 day, and finally at 50 ° C. A sample was obtained by vacuum drying. The methylated wood flour obtained was a yellowish yellowish powder solid and had a weight gain of 10%. (2) Production of Melt of Methylated Wood Flour and Polycaprolactone 100 parts by weight of the methylated wood powder obtained in (1) above and 400 parts by weight of polycaprolactone of various molecular weights were placed in a pressure-resistant stainless steel polymerization container and sealed. Then, the mixture was heated and stirred at 230 ° C. for 3 hours to obtain a dark brown viscous melt. (3) Production of foam Using the melt obtained in (2) above, a cross-linking agent, a foaming agent, a foam stabilizer and a catalyst having the same composition as in Examples 1 to 5 are added and mixed well. Upon curing, a degradable soft foam was obtained. The results of the physical properties are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】実施例11〜15 (1)アセチル化木粉の製造 リグノセルロース誘導体の異なる実施例としてアセチル
化木粉を製造した。乾燥された熱帯産ケルイング(kerui
ng) 木粉(20〜60メッシュ)10gに対して、無水
酢酸6.0mlおよび酢酸40.0mlを加えて、1夜
室温で放置した。次いで無水酢酸100.0ml、酢酸
60.0ml、過塩素酸0.2mlを混合したアシル化
剤を−10℃前後で冷却して、前処理が終った木粉を加
えた。反応は300ml丸底三口フラスコで行った。混
酸を注入後、1時間室温で放置して、30〜45℃下で
攪拌しながら6時間反応させた。反応後よく水洗し、ガ
ラスフィルターで濾過し、上記メチル化木粉と同様の方
法で製造した。得られたアセチル化木粉は木製と色相が
同一であり、重量増加率は60%であった。 (2)ポリヘキサメチレンスクシネートの製造 脂肪族ポリエステルの一つであるポリヘキサメチレンス
クシネートを製造した。1,6−ヘキサンジオールとコ
ハク酸のモル比を1.02:1程度に若干ジオーレを過
量にして、触媒チタニウムプロポキサイドを全体の単量
体量の0.5重量%程度にして丸底三口フラスコ内に添
加した後、攪拌しながら徐々に加熱して、160℃で2
時間反応させた後、アスピレータを利用してエステル化
反応により生成された水を真空で除きながら約2〜5時
間の範囲内で反応時間を調節して各種分子量のポリヘキ
サメチレンスクシネート(表3)を得た。 (3)アセチル化木粉とポリヘキサメチレンスクシネー
トとの溶解物の製造 上記(1)および(2)で得られたアセチル化木粉とポ
リヘキサメチレンスクシネートとの溶解物を製造した。
アセチル化木粉100重量部と各種分子量のポリヘキサ
メチレンスクシネート400重量部を耐圧ステンレス重
合容器に取り密封した後、200℃で2時間加熱攪拌
し、褐色の粘性溶解物を得た。 (4)発泡体の製造 上記(3)で得られた溶解物を利用して実施例1〜5の
ように同一の組成の架橋剤、発泡剤、整泡剤および触媒
を加えてよく混合・発泡硬化して分解性軟質発泡体を得
た。その物性結果を表3に示した。
Examples 11 to 15 (1) Production of acetylated wood flour Acetylated wood flour was produced as a different example of the lignocellulose derivative. Dried tropical keruing (kerui
ng) To 10 g of wood flour (20 to 60 mesh), 6.0 ml of acetic anhydride and 40.0 ml of acetic acid were added, and the mixture was left overnight at room temperature. Then, an acylating agent obtained by mixing 100.0 ml of acetic anhydride, 60.0 ml of acetic acid, and 0.2 ml of perchloric acid was cooled at around -10 ° C, and wood flour after pretreatment was added. The reaction was performed in a 300 ml round bottom three neck flask. After injecting the mixed acid, the mixture was left at room temperature for 1 hour and reacted at 30 to 45 ° C. for 6 hours while stirring. After the reaction, the product was thoroughly washed with water, filtered through a glass filter, and produced in the same manner as in the above methylated wood flour. The obtained acetylated wood flour had the same hue as that of wood, and the weight increase rate was 60%. (2) Production of polyhexamethylene succinate Polyhexamethylene succinate, which is one of the aliphatic polyesters, was produced. The molar ratio of 1,6-hexanediol and succinic acid was adjusted to about 1.02: 1, with a slight excess of diole, and the catalyst titanium propoxide was adjusted to about 0.5% by weight of the total amount of the monomers. After adding to the three-necked flask, gradually heat with stirring to 2 ° C at 160 ° C.
After reacting for a period of time, the reaction time is adjusted within a range of about 2 to 5 hours while removing water generated by the esterification reaction using an aspirator in a vacuum, and polyhexamethylene succinate of various molecular weights (Table 3) was obtained. (3) Production of a solution of acetylated wood flour and polyhexamethylene succinate A solution of the acetylated wood flour and polyhexamethylene succinate obtained in the above (1) and (2) was produced. .
100 parts by weight of acetylated wood powder and 400 parts by weight of polyhexamethylene succinate having various molecular weights were placed in a pressure-resistant stainless steel polymerization vessel, sealed, and then heated and stirred at 200 ° C. for 2 hours to obtain a brown viscous melt. (4) Production of foam Using the melt obtained in (3) above, a cross-linking agent, a foaming agent, a foam stabilizer and a catalyst having the same composition as in Examples 1 to 5 are added and mixed well. The foam was cured to obtain a degradable soft foam. The physical property results are shown in Table 3.

【0036】[0036]

【表3】 [Table 3]

【0037】実施例16〜20 (1)木粉とポリカプロラクトンと光分解促進剤との溶
解物の製造 上記実施例1で得られた木粉とポリカプロラクトン(分
子量425)との溶解物(木粉/ポリカプロラクトン=
100/400重量比)に各種光分解促進剤を多くの組
成で(表4参照)添加して生/光分解性溶解物を製造し
た。ここで使用した光分解促進剤は鉄アセチルアセトネ
ート、ステアリン酸コバルトおよびサリチルアルデヒド
である。 (2)発泡体の製造 上記(1)で得られた溶解物を利用して実施例1〜5の
ように同一の組成の架橋剤、発泡剤、整泡剤および触媒
を加えてよく混合・発泡硬化して分解性軟質発泡体を得
た。その物性結果を表4に示した。
Examples 16 to 20 (1) Production of Dissolved Product of Wood Flour, Polycaprolactone and Photodegradation Promoter Dissolved product of wood flour and polycaprolactone (molecular weight 425) obtained in the above Example 1 (wood Powder / Polycaprolactone =
Various photodegradation accelerators (100/400 weight ratio) were added in various compositions (see Table 4) to produce raw / photodegradable lysates. The photodegradation promoters used here are iron acetylacetonate, cobalt stearate and salicylaldehyde. (2) Production of Foam Using the melt obtained in (1) above, a crosslinking agent, a foaming agent, a foam stabilizer and a catalyst having the same composition as in Examples 1 to 5 were added and mixed well. The foam was cured to obtain a degradable soft foam. The physical property results are shown in Table 4.

【0038】[0038]

【表4】 [Table 4]

【0039】実施例21〜25 (1)生/光分解性脂肪族ポリエステルポリオールの製
造 生/光分解性脂肪族ポリエステルポリオールの製造は1
リットルステンレス反応器にアジピン酸2.49モルと
アセチルスクシン酸0.015モルとジエチレングリコ
ール2.63モルを入れ、蒸溜管付きオートクレープ反
応器で窒素雰囲気下で、温度を150℃に上げ1時間攪
拌した後、触媒のチタニウムプロポキサイドを全体の単
量体量の0.5重量%程度にして反応槽に添加した後、
攪拌しながら徐々に加熱し、170℃で4時間反応させ
て脂肪族ポリエステルを得た。またグリコールとジカル
ボン酸およびケトジカルボン酸を変化させながら各種低
分子量の生/光分解性脂肪族ポリエステル(表5参照)
を得た。
Examples 21 to 25 (1) Production of Raw / Photodegradable Aliphatic Polyester Polyol Production of raw / photodegradable aliphatic polyester polyol is 1
2.49 mol of adipic acid, 0.015 mol of acetylsuccinic acid and 2.63 mol of diethylene glycol were placed in a liter stainless steel reactor and the temperature was raised to 150 ° C. for 1 hour in an autoclave reactor with a distillation tube under a nitrogen atmosphere. After stirring, the titanium propoxide of the catalyst was added to the reaction tank in an amount of about 0.5% by weight based on the total amount of the monomers.
The mixture was gradually heated with stirring and reacted at 170 ° C. for 4 hours to obtain an aliphatic polyester. In addition, various low molecular weight bio / photodegradable aliphatic polyesters (see Table 5) while changing glycol and dicarboxylic acid and ketodicarboxylic acid
Got

【0040】[0040]

【表5】 [Table 5]

【0041】(2)木粉と低分子量の生/光分解性脂肪
族ポリエステルポリオールとの溶解物の製造 リグノセルロースの一つである木粉と上記(1)で製造
した生/光分解性脂肪族ポリエステルポリオールとの溶
解物を製造した。110℃で10時間以上乾燥された2
0〜80メッシュの大きさの木粉100重量部と上記
(1)で製造した脂肪族ポリエステル400重量部を耐
圧ステンレス重合容器に取り密封した後、250℃で3
時間加熱攪拌し、約2000cp程度の粘性をもつ褐色
溶解物を得た。 (3)発泡体の製造 上記(2)で得られた溶解物100重量部に発泡剤とし
て水30重量部とシリコン系整泡剤L−580(米国 U
nion Carbide社製)1.0 重量部を加えてよく混合した
後、アミン系触媒DABCO33LV(米国Aldrich 社
製)0.5重量部および錫系触媒であるジブチルチンジ
ラウレート0.5重量部を加えてよく混合した溶液に硬
化剤MDI130重量部を加えてよく混合したところ、
2〜3分後に発泡硬化が完了して分解性軟質発泡剤を得
た。その物性結果を表6に示した。
(2) Production of Melt of Wood Flour and Raw / Photodegradable Aliphatic Polyester Polyol of Low Molecular Weight Wood flour which is one of the lignocelluloses and raw / photodegradable fat produced in (1) above A lysate with a group polyester polyol was prepared. 2 dried at 110 ℃ for more than 10 hours
100 parts by weight of wood powder having a size of 0 to 80 mesh and 400 parts by weight of the aliphatic polyester produced in the above (1) were placed in a pressure-resistant stainless steel polymerization container and sealed, and then at 250 ° C. for 3 days.
The mixture was heated and stirred for an hour to obtain a brown melt having a viscosity of about 2000 cp. (3) Production of Foamed Product 100 parts by weight of the melt obtained in (2) above, 30 parts by weight of water as a foaming agent, and a silicone-based foam stabilizer L-580 (US U.S.A.
nion Carbide) (1.0 part by weight) and mixed well, then 0.5 parts by weight of amine-based catalyst DABCO33LV (Aldrich, USA) and 0.5 parts by weight of tin-based catalyst dibutyltin dilaurate, and mixed well. When 130 parts by weight of the curing agent MDI was added to the above solution and mixed well,
After 2-3 minutes, foaming and curing were completed and a degradable soft foaming agent was obtained. The physical property results are shown in Table 6.

【0042】[0042]

【表6】 [Table 6]

【0043】実施例26〜30 (1)籾殻と低分子量の生/光分解性脂肪族ポリエステ
ルとの溶解物の製造 リグノセルロースの一つである籾殻と生/光分解性脂肪
族ポリエステル試料1〜5との溶解物を製造した。11
0℃で10時間以上乾燥された20〜80メッシュの大
きさの籾殻100重量部と試料1〜5のいずれか一つ4
00重量部を耐圧ステンレス重合容器に取り密封した
後、250℃で3時間加熱攪拌して約2000cp程度
の粘性をもつ褐色溶解物を得た。 (2)発泡体の製造 上記(1)で得られた溶解物100重量部に発泡剤とし
て水30重量部とシリコン系整泡剤L−580(米国Un
ion Carbide 社製)1.0重量部を加えてよく混合した
後、アミン系触媒DABCO33LV(米国Aldrich 社
製)0.5重量部および錫系触媒であるジブチルチンジ
ラウレート0.5重量部を加えてよく混合した溶液に硬
化剤MDI130重量部を加えてよく混合すると、2〜
3分後に発泡硬化が完了して分解性軟質発泡体を得た。
その物性結果を表7に示した。
Examples 26 to 30 (1) Production of Melt of Rice Husk and Raw / Photodegradable Aliphatic Polyester of Low Molecular Weight Rice husk which is one of lignocellulose and raw / photodegradable aliphatic polyester Samples 1 to 1 A lysate with 5 was prepared. 11
100 parts by weight of rice husk having a size of 20 to 80 mesh and dried at 0 ° C. for 10 hours or more, and one of samples 1 to 4
00 parts by weight was placed in a pressure-resistant stainless steel polymerization vessel, sealed, and then heated and stirred at 250 ° C. for 3 hours to obtain a brown melt having a viscosity of about 2000 cp. (2) Production of Foamed Body 100 parts by weight of the melt obtained in (1) above, 30 parts by weight of water as a foaming agent, and a silicone-based foam stabilizer L-580 (US Un
Ion Carbide) (1.0 parts by weight) and mixed well, then 0.5 parts by weight of amine catalyst DABCO33LV (Aldrich, USA) and 0.5 parts by weight of tin catalyst dibutyltin dilaurate were added. When 130 parts by weight of the curing agent MDI is added to the well mixed solution and mixed well,
After 3 minutes, foaming and curing were completed to obtain a degradable soft foam.
The physical property results are shown in Table 7.

【0044】[0044]

【表7】 [Table 7]

【0045】比較例1〜2 実施例1で使用した木粉100重量部と分子量150お
よび6000のポリカプロラクトン400重量部を耐圧
ステンレス重合容器に取り密封した後、230℃で3時
間加熱攪拌して濃い褐色の粘性溶解物を得た。このよう
にして得られた溶解物を利用して実施例1〜5と同一の
組成の硬化剤、発泡剤、整泡剤および触媒を加えてよく
混合発泡硬化して分解性軟質発泡体を得た。その物性結
果を表8に示した。
Comparative Examples 1 and 2 100 parts by weight of the wood powder used in Example 1 and 400 parts by weight of polycaprolactone having a molecular weight of 150 and 6000 were placed in a pressure-resistant stainless steel polymerization vessel, sealed, and then heated and stirred at 230 ° C. for 3 hours. A dark brown viscous melt was obtained. Using the thus obtained melt, a curing agent, a foaming agent, a foam stabilizer and a catalyst having the same composition as in Examples 1 to 5 were added and mixed well and cured to obtain a decomposable soft foam. It was The physical property results are shown in Table 8.

【0046】比較例3〜5 リグノセルロースおよび/またはその誘導体と脂肪族ポ
リエステルとの溶解物の代りにポリエーテル系ポリオー
ル(商品名:KONIX PP−2000,GP−30
00,FA−703,株式会社韓国ポリオール製)を利
用して実施例1〜5と同一の組成の硬化剤、発泡剤、整
泡剤および触媒を加えてよく混合発泡硬化して通常スチ
ロポールより生分解性が多少良好であると知られている
ポリエーテル系軟質および半硬質ポリウレタン発泡体を
得た。その物性結果を表8に示した。
Comparative Examples 3 to 5 Polyether type polyol (trade name: KONIX PP-2000, GP-30) was used in place of the melt of the lignocellulose and / or its derivative and the aliphatic polyester.
00, FA-703, manufactured by Korea Polyol Co., Ltd.), a curing agent, a foaming agent, a foam stabilizer and a catalyst having the same composition as in Examples 1 to 5 are added, and the mixture is well mixed and foamed to form a raw material usually from Styropol. A polyether-based soft and semi-rigid polyurethane foam, which is known to have some good degradability, was obtained. The physical property results are shown in Table 8.

【0047】[0047]

【表8】 [Table 8]

【0048】[0048]

【発明の効果】本発明により得られた発泡体は、機械的
物性が優れていることは勿論、捨てられる廃資源を原料
として用いるため経済性が良好であるとともに、自然界
で微生物および日光によって容易に分解されて環境汚染
を起こさない実に画期的なものである。
EFFECT OF THE INVENTION The foam obtained according to the present invention is excellent in mechanical properties and is economical because it uses waste resources to be discarded as a raw material. It is a groundbreaking thing that is not decomposed into environmental pollution.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丁 源 凡 大韓民国大田直轄市儒城区新星洞 ハヌル アパート102−905 (72)発明者 恕 承 柱 大韓民国大田直轄市儒城区新星洞 ハヌル アパート108−602 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Dengyuan, Hanbap, Shinseong-han, 102-905, Incheon-gu, Yuseong-gu, Daejeon, Republic of Korea

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 リグノセルロースおよび/またはその誘
導体を低分子量の脂肪族ポリエステルポリオールに溶解
させて得ることを特徴とするリグノセルロース系溶解
物。
1. A lignocellulosic melt, which is obtained by dissolving lignocellulose and / or a derivative thereof in a low molecular weight aliphatic polyester polyol.
【請求項2】 リグノセルロースは木粉、籾殻または稲
わらであることを特徴とする請求項1に記載のリグノセ
ルロース系溶解物。
2. The lignocellulosic lysate according to claim 1, wherein the lignocellulose is wood flour, rice husk or rice straw.
【請求項3】 リグノセルロースの誘導体は、リグノセ
ルロースの反応性基の一部に有機基が置換導入されたも
のであり、該有機基が脂肪族アシル基、2塩基酸モノエ
ステル基、芳香族アシル基、低級アルキル基、アリール
基、カルボキシメチル基、ヒドロキシアルキル基、ポリ
オキシアルキレングリコール基、ベンジル基、長鎖アル
キル基、シアノエチル基、およびメチレンエーテル基か
らなる群より選択される1種以上であることを特徴とす
る請求項1に記載のリグノセルロース系溶解物。
3. A lignocellulosic derivative is one in which an organic group is substituted and introduced into a part of a reactive group of lignocellulose, and the organic group is an aliphatic acyl group, a dibasic acid monoester group, or an aromatic group. One or more selected from the group consisting of an acyl group, a lower alkyl group, an aryl group, a carboxymethyl group, a hydroxyalkyl group, a polyoxyalkylene glycol group, a benzyl group, a long chain alkyl group, a cyanoethyl group, and a methylene ether group. The lignocellulosic lysate according to claim 1, wherein the lignocellulosic lysate is present.
【請求項4】 脂肪族ポリエステルポリオールの分子量
が200〜5000であることを特徴とする請求項1に
記載のリグノセルロース系溶解物。
4. The lignocellulosic melt according to claim 1, wherein the aliphatic polyester polyol has a molecular weight of 200 to 5,000.
【請求項5】 脂肪族ポリエステルポリオールは生分解
性脂肪族ポリエステルポリオールであることを特徴とす
る請求項1に記載のリグノセルロース系溶解物。
5. The lignocellulosic melt according to claim 1, wherein the aliphatic polyester polyol is a biodegradable aliphatic polyester polyol.
【請求項6】 生分解性脂肪族ポリエステルポリオール
は脂肪族系ジカルボン酸とジオールを縮重合反応させて
製造される化合物および/または脂肪族環状エステル系
モノマーを開環重合させて製造される化合物であること
を特徴とする請求項5に記載のリグノセルロース系溶解
物。
6. The biodegradable aliphatic polyester polyol is a compound produced by polycondensing an aliphatic dicarboxylic acid and a diol and / or a compound produced by ring-opening polymerization of an aliphatic cyclic ester monomer. The lignocellulosic melt according to claim 5, wherein the lignocellulosic melt is present.
【請求項7】 脂肪族系ジカルボン酸は脂肪族の炭素数
が8個以下であることを特徴とする請求項6に記載のリ
グノセルロース系溶解物。
7. The lignocellulosic melt according to claim 6, wherein the aliphatic dicarboxylic acid has an aliphatic carbon number of 8 or less.
【請求項8】 脂肪族系ジオールは炭素数が8個以下で
あることを特徴とする請求項6に記載のリグノセルロー
ス系溶解物。
8. The lignocellulosic melt according to claim 6, wherein the aliphatic diol has 8 or less carbon atoms.
【請求項9】 さらに光分解促進剤を含有することを特
徴とする請求項5に記載のリグノセルロース系溶解物。
9. The lignocellulosic melt according to claim 5, further comprising a photodegradation accelerator.
【請求項10】 光分解促進剤はアルドールとα−ナフチ
ルアミンとの縮合物、アセチルアセトン、金属ジアルキ
ルジチオカルバマート、サリチルアルデヒド、α−メル
カプトベンゾチアゾール、脂肪族金属塩、チオジプロピ
オン酸、金属アセチルアセトネート、α−ナフトキノ
ン、アントラキノンおよびその誘導体、プロピオフェノ
ン、ベンゾフェノンおよびその誘導体、ビニル−ケトン
系共重合体、エチレン−一酸化炭素共重合体からなる群
より選択される1種以上であることを特徴とする請求項
9に記載のリグノセルロース系溶解物。
10. The photodegradation accelerator is a condensate of aldol and α-naphthylamine, acetylacetone, metal dialkyldithiocarbamate, salicylaldehyde, α-mercaptobenzothiazole, an aliphatic metal salt, thiodipropionic acid, metal acetylacetoacetate. Nate, α-naphthoquinone, anthraquinone and its derivatives, propiophenone, benzophenone and its derivatives, vinyl-ketone copolymers, ethylene-carbon monoxide copolymers and at least one selected from the group consisting of The lignocellulosic lysate according to claim 9, characterized in that
【請求項11】 脂肪族ポリエステルポリオールは生/光
分解性脂肪族ポリエステルポリオールであることを特徴
とする請求項1に記載のリグノセルロース系溶解物。
11. The lignocellulosic melt according to claim 1, wherein the aliphatic polyester polyol is a raw / photodegradable aliphatic polyester polyol.
【請求項12】 生/光分解性脂肪族ポリエステルポリオ
ールは脂肪族系ジカルボン酸およびケトン系ジカルボン
酸で構成されるジカルボン酸またはそのエステルと脂肪
族系ジオールを縮重合反応させて製造されることを特徴
とする請求項11に記載のリグノセルロース系溶解物。
12. The raw / photodegradable aliphatic polyester polyol is produced by polycondensing a dicarboxylic acid composed of an aliphatic dicarboxylic acid and a ketone dicarboxylic acid or an ester thereof with an aliphatic diol. The lignocellulosic lysate according to claim 11, characterized in.
【請求項13】 脂肪族系ジカルボン酸およびケトン系ジ
カルボン酸またはそのエステルは脂肪族の炭素数が8個
以下であることを特徴とする請求項12に記載のリグノ
セルロース系溶解物。
13. The lignocellulosic melt according to claim 12, wherein the aliphatic dicarboxylic acid and the ketone dicarboxylic acid or the ester thereof has an aliphatic carbon number of 8 or less.
【請求項14】 ジカルボン酸のエステルはジカルボン酸
のメチルまたはエチルエステル誘導体であることを特徴
とする請求項13に記載のリグノセルロース系溶解物。
14. The lignocellulosic lysate according to claim 13, wherein the ester of dicarboxylic acid is a methyl or ethyl ester derivative of dicarboxylic acid.
【請求項15】 脂肪族系ジオールは炭素数が8個以下で
あることを特徴とする請求項12に記載のリグノセルロ
ース系溶解物。
15. The lignocellulosic melt according to claim 12, wherein the aliphatic diol has 8 or less carbon atoms.
【請求項16】 請求項1乃至請求項15のいずれか1項
に記載のリグノセルロース系溶解物を通常の発泡剤およ
び硬化剤で発泡硬化させて製造されることを特徴とする
分解性発泡体。
16. A degradable foam produced by subjecting the lignocellulosic solution according to any one of claims 1 to 15 to foam-curing with a usual foaming agent and a curing agent. .
【請求項17】 リグノセルロースおよび/またはその誘
導体を低分子量の脂肪族ポリエステルポリオールと混合
した後、この混合物を攪拌しながら100〜300℃で
0.5〜5時間加熱することを特徴とするリグノセルロ
ース系溶解物の製造方法。
17. A ligno characterized in that after mixing lignocellulose and / or a derivative thereof with a low molecular weight aliphatic polyester polyol, the mixture is heated with stirring at 100 to 300 ° C. for 0.5 to 5 hours. A method for producing a cellulosic melt.
【請求項18】 脂肪族ポリエステルポリオールとして生
分解性脂肪族ポリエステルポリオールを使用することを
特徴とする請求項17に記載のリグノセルロース系溶解
物の製造方法。
18. The method for producing a lignocellulosic melt according to claim 17, wherein a biodegradable aliphatic polyester polyol is used as the aliphatic polyester polyol.
【請求項19】 リグノセルロースおよび/またはその誘
導体と低分子量の生分解性脂肪族ポリエステルポリオー
ルとの混合物に光分解促進剤を添加することを特徴とす
る請求項18に記載のリグノセルロース系溶解物の製造
方法。
19. The lignocellulosic lysate according to claim 18, wherein a photodegradation accelerator is added to a mixture of lignocellulose and / or a derivative thereof and a low molecular weight biodegradable aliphatic polyester polyol. Manufacturing method.
【請求項20】 脂肪族ポリエステルポリオールとして生
/光分解性脂肪族ポリエステルポリオールを使用するこ
とを特徴とする請求項17に記載のリグノセルロース系
溶解物の製造方法。
20. The method for producing a lignocellulosic melt according to claim 17, wherein a raw / photodegradable aliphatic polyester polyol is used as the aliphatic polyester polyol.
JP6196006A 1993-07-28 1994-07-28 Lignocellulosic melt and method for producing the same Expired - Lifetime JP2604327B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1019930014436A KR970002081B1 (en) 1993-07-28 1993-07-28 Degradable foam and method for processing the same
KR1019930027507A KR970002083B1 (en) 1993-12-13 1993-12-13 Biodegradable foam and method for processing the same
KR14436/1993 1993-12-13
KR27507/1993 1993-12-13

Publications (2)

Publication Number Publication Date
JPH07216203A true JPH07216203A (en) 1995-08-15
JP2604327B2 JP2604327B2 (en) 1997-04-30

Family

ID=26629806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6196006A Expired - Lifetime JP2604327B2 (en) 1993-07-28 1994-07-28 Lignocellulosic melt and method for producing the same

Country Status (3)

Country Link
US (1) US5614564A (en)
JP (1) JP2604327B2 (en)
DE (1) DE4426847A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342353A (en) * 2000-03-31 2001-12-14 Masamitsu Funaoka Lignocellulose composition comprising lignophenol derivative and cellulose component
JP2002284791A (en) * 2001-03-23 2002-10-03 National Institute Of Advanced Industrial & Technology Polycarboxylic acid and epoxy resin composition
JP2006028528A (en) * 2005-09-09 2006-02-02 National Institute Of Advanced Industrial & Technology Epoxy resin composition
JP2008274200A (en) * 2007-04-29 2008-11-13 Sachiko Yoshida Method for producing cellulose fiber-reinforced composite, cellulose fiber-reinforced composite and material for producing cellulose fiber-reinforced composite
JP2011219734A (en) * 2010-02-10 2011-11-04 Hitachi Chem Co Ltd Woody foam
WO2024058246A1 (en) * 2022-09-16 2024-03-21 国立大学法人京都大学 Composition

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4425442A1 (en) * 1994-07-19 1996-01-25 Huels Chemische Werke Ag Process for the production of biodegradable, thermoset foams
CA2262940C (en) * 1996-08-26 2003-11-04 Kenneth R. Kurple Modified lignins
DE10016296A1 (en) * 2000-03-31 2001-10-04 Bsh Bosch Siemens Hausgeraete High-porosity foam material for packaging applications, consists of foamed pasteboard obtained by foaming mixture of cellulose and binder
GB0115240D0 (en) * 2001-06-22 2001-08-15 Ciba Sc Holding Ag Process for printing textile fabrics
US7053029B2 (en) * 2002-03-27 2006-05-30 Kimberly-Clark Worldwide, Inc. Use indicating soap
US7960326B2 (en) * 2002-09-05 2011-06-14 Kimberly-Clark Worldwide, Inc. Extruded cleansing product
BRPI0417599A (en) * 2003-12-15 2007-03-20 Shell Int Research process for liquefaction of lignocellulosic or cellulosic material
DK1765965T3 (en) * 2004-05-04 2012-09-24 Yki Ytkemiska Inst Ab Degrading surfactant
BRPI0519615A2 (en) * 2004-12-23 2009-02-25 Shell Int Research process for hydrogenation of a reagent, and, combustible composition
CN100487059C (en) * 2005-01-20 2009-05-13 中国科学院过程工程研究所 Method for preparing degradable material using stalk
US20070034345A1 (en) * 2005-06-15 2007-02-15 Leonardus Petrus Process for organosolv pulping and use of a gamma lactone in a solvent for organosolv pulping
JPWO2009038007A1 (en) * 2007-09-19 2011-01-06 株式会社豊田自動織機 Polyurethane and polyurea and process for producing the same
WO2010018142A1 (en) * 2008-08-15 2010-02-18 Basf Se Lightweight wood materials with good mechanical properties
US8580978B2 (en) * 2009-08-07 2013-11-12 Shell Oil Company Process for preparing a hydroxyacid or hydroxyester
US20110112326A1 (en) * 2009-08-07 2011-05-12 Jean-Paul Lange Process for hydrogenation
US8022257B2 (en) * 2009-09-03 2011-09-20 The Ohio State University Research Foundation Methods for producing polyols using crude glycerin
CN102120870A (en) * 2011-02-28 2011-07-13 殷正福 Degradable plastic and production method thereof
US8865802B2 (en) 2012-05-11 2014-10-21 Cyclewood Solutions, Inc. Chemical modification of lignin and lignin derivatives
US9000075B2 (en) * 2012-05-11 2015-04-07 Cyclewood Solutions, Inc. Chemical modification of lignin and lignin derivatives
US9777032B2 (en) 2012-10-30 2017-10-03 Cyclewood Solutions, Inc. Injection of a chemical reagent into a process stream that contains lignin
US20160312029A1 (en) 2013-12-16 2016-10-27 Ren Fuel K2B Ab Composition Comprising Esters Of Lignin And Organic Solvent
KR20170005418A (en) 2014-05-01 2017-01-13 렌매틱스, 인코포레이티드. Upgrading lignin from lignin-containing residues through reactive extraction
ITUB20150557A1 (en) * 2015-03-12 2016-09-12 Novamont Spa Binder composition and its use in production processes of wood fiber panels.
US11559958B2 (en) 2015-07-23 2023-01-24 Bridgestone Americas Tire Operations, Llc Degradable foam-containing tires, related methods and kits for adding degradable foam to tires
US10844159B2 (en) 2016-05-24 2020-11-24 Dow Global Technologies Llc Polyurethane foams with agricultural by-products
KR102194374B1 (en) 2016-07-13 2020-12-24 다우 실리콘즈 코포레이션 Metal aprotic organosilane oxide compound
CN108841163A (en) * 2018-07-06 2018-11-20 山东圣泉新材料股份有限公司 Modified polyurethane resin and preparation method thereof, modified polyurethane artificial leather and application
PL244632B1 (en) * 2020-03-10 2024-02-19 Politechnika Gdanska Method for production of polyurethane materials from reactive polyols and obtained from waste after processing wood or wood-like waste
CN113831496A (en) * 2021-09-28 2021-12-24 长春工业大学 Glycolic acid-based polyurethane foam and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593030A (en) * 1991-09-30 1993-04-16 Agency Of Ind Science & Technol Biodegradable polymeric material
JPH06172477A (en) * 1992-12-09 1994-06-21 Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Production of polyurethane foam

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3638456A1 (en) * 1986-11-11 1988-05-19 Dieter Ekkehard Dip Autenrieth Molten urea as agent for decomposing lignocellulose raw materials and as chemical reactant for the polyols produced in the decomposition or for other polyols from other sources
US5306550A (en) * 1990-06-29 1994-04-26 Director-General Of Agency Of Industrial Science And Technology Biodegradable composition and shaped article obtained therefrom
JP3012296B2 (en) * 1990-08-24 2000-02-21 信夫 白石 Method for producing liquefied solution of lignocellulosic material
US5075417A (en) * 1990-08-31 1991-12-24 Cape Industries Polyester polyols from tall oil fatty acid, maleic anhydride, and aromatic polyester polyols
US5270044A (en) * 1991-05-24 1993-12-14 Hampshire Chemical Corp. Degradable articles and methods of using such articles as degradable bait
JP3090349B2 (en) * 1991-08-02 2000-09-18 カルプ工業株式会社 Degradable resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593030A (en) * 1991-09-30 1993-04-16 Agency Of Ind Science & Technol Biodegradable polymeric material
JPH06172477A (en) * 1992-12-09 1994-06-21 Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Production of polyurethane foam

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342353A (en) * 2000-03-31 2001-12-14 Masamitsu Funaoka Lignocellulose composition comprising lignophenol derivative and cellulose component
JP2002284791A (en) * 2001-03-23 2002-10-03 National Institute Of Advanced Industrial & Technology Polycarboxylic acid and epoxy resin composition
JP2006028528A (en) * 2005-09-09 2006-02-02 National Institute Of Advanced Industrial & Technology Epoxy resin composition
JP2008274200A (en) * 2007-04-29 2008-11-13 Sachiko Yoshida Method for producing cellulose fiber-reinforced composite, cellulose fiber-reinforced composite and material for producing cellulose fiber-reinforced composite
JP2011219734A (en) * 2010-02-10 2011-11-04 Hitachi Chem Co Ltd Woody foam
WO2024058246A1 (en) * 2022-09-16 2024-03-21 国立大学法人京都大学 Composition

Also Published As

Publication number Publication date
DE4426847A1 (en) 1995-02-02
US5614564A (en) 1997-03-25
JP2604327B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
JP2604327B2 (en) Lignocellulosic melt and method for producing the same
EP2276789B2 (en) Aliphatic-aromatic biodegradable polyester
RU2415879C2 (en) Biodegradable aliphatic-aromatic polyethers
JP6267668B2 (en) Biodegradable aliphatic-aromatic polyester
US5470941A (en) Thermoplastic biodegradable resins and a process of preparation thereof
AU2002336114B2 (en) Biodegradable coating
KR20130118221A (en) Aliphatic-aromatic copolyesters and their mixtures
JPH11500468A (en) Biodegradable polymer, process for producing the polymer and use of the polymer for producing a biodegradable molded body
AU2003239816B2 (en) Biodegradable polyesters obtained by reactive extrusion
KR960034256A (en) Process for producing decomposable copolymer
JP3090349B2 (en) Degradable resin composition
Tabaght et al. Cellulose grafted aliphatic polyesters: Synthesis, characterization and biodegradation under controlled conditions in a laboratory test system
KR970002081B1 (en) Degradable foam and method for processing the same
JP7516377B2 (en) (J) Method for producing polyester
JPH06172624A (en) Polyester resin composition
KR970002083B1 (en) Biodegradable foam and method for processing the same
Mamiński et al. Bio-derived adhesives and matrix polymers for composites
KR100242886B1 (en) A biodegradable polycyclicester grafted lignocellulose derivatives and method thereof
KR0152454B1 (en) Biodegradable and preparation thereof
JPS61171763A (en) Production of wood-based resin
KR100373206B1 (en) Method for preparing grafted starch and biodegradable resin composition using prepared starch
KR100271874B1 (en) Degradable plastics
WO2024138263A1 (en) Biodegradable polymer based biocomposites
KR101523092B1 (en) Copolyester and method for manufacturing of it
JP2001261949A (en) Biodegradable resin composition and molding product

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 17

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term