JP4561242B2 - Insulating polymer material composition - Google Patents

Insulating polymer material composition Download PDF

Info

Publication number
JP4561242B2
JP4561242B2 JP2004247675A JP2004247675A JP4561242B2 JP 4561242 B2 JP4561242 B2 JP 4561242B2 JP 2004247675 A JP2004247675 A JP 2004247675A JP 2004247675 A JP2004247675 A JP 2004247675A JP 4561242 B2 JP4561242 B2 JP 4561242B2
Authority
JP
Japan
Prior art keywords
polymer material
lignin
bisphenol
polymer
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004247675A
Other languages
Japanese (ja)
Other versions
JP2006066237A (en
Inventor
保幸 蔵田
浩三 森田
雄大 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2004247675A priority Critical patent/JP4561242B2/en
Publication of JP2006066237A publication Critical patent/JP2006066237A/en
Application granted granted Critical
Publication of JP4561242B2 publication Critical patent/JP4561242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Organic Insulating Materials (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、絶縁性高分子材料組成物に関するものであって、例えば筐体内に遮断器や断路器等の開閉機器を備えた高電圧機器の絶縁構成に用いられるものである。   The present invention relates to an insulating polymer material composition, and is used, for example, in an insulating configuration of a high-voltage device including a switchgear such as a circuit breaker or a disconnector in a housing.

例えば筐体内に遮断器や断路器等の開閉機器を備えた電圧機器(高電圧機器等)の絶縁構成(例えば、絶縁性を要する部位)に適用(例えば、屋外に直接暴露して適用)される材料として、石油由来の熱硬化性樹脂(石油を出発物質とした樹脂;エポキシ樹脂等)を主成分とした高分子材料を硬化して成る組成物、例えば高分子材料を注型して成る組成物により構成された製品(モールド注型品;以下、高分子製品と称する)が、従来から広く知られている。   For example, it is applied to insulation configurations (for example, parts that require insulation) of voltage equipment (high voltage equipment, etc.) equipped with switchgear such as circuit breakers and disconnectors in the housing (for example, directly exposed to the outdoors) A composition obtained by curing a polymer material mainly composed of petroleum-derived thermosetting resin (resin using petroleum as a starting material; epoxy resin, etc.), for example, a polymer material is cast. A product (mold cast product; hereinafter referred to as a polymer product) composed of the composition has been widely known.

社会の高度化・集中化に伴って高電圧機器等の大容量化,小型化や高い信頼性(例えば、機械的物性,電気的物性)等が強く要求されると共に、前記の高分子製品に対しても種々の特性の向上が要求されてきた。   Along with the sophistication and concentration of society, there is a strong demand for high-voltage devices, etc. that have large capacities, miniaturization, and high reliability (for example, mechanical properties and electrical properties). On the other hand, improvement of various characteristics has been demanded.

一般的には、高分子材料の主成分として例えばガラス転移点(以下、Tgと称する)100℃以上の耐熱性エポキシ樹脂や比較的に機械的物性(強度等)の高いビスフェノールA型のエポキシ樹脂を用いた高分子製品が知られているが、前記の高分子製品を処分(例えば、寿命,故障等の理由で処分)する場合を考慮して、生分解性を有する高分子材料から成る高分子製品の開発が試みられている(例えば、特許文献1)。
特開2002−358829号公報。
Generally, as a main component of a polymer material, for example, a glass transition point (hereinafter referred to as Tg) 100 ° C. or higher heat-resistant epoxy resin or a bisphenol A type epoxy resin having relatively high mechanical properties (strength etc.) In consideration of the case where the above-mentioned polymer product is disposed (for example, due to the reason of life or failure), a high polymer material having biodegradability is known. Development of molecular products has been attempted (for example, Patent Document 1).
JP 2002-358829 A.

なお、種々の技術分野において、植物由来の高分子材料を硬化して成る組成物を適用(例えば印刷配線ボードに適用)する試みが行われ(例えば、特許文献2)、例えば室温雰囲気下で使用した場合には十分な機械的物性が得られることが知られているが、その組成物はアルデヒド類を硬化剤として用いたものであり、高温雰囲気下では機械的物性が低くなるため高電圧機器には適用されていなかった。
特開2002−53699号公報。
In various technical fields, attempts have been made to apply a composition obtained by curing a plant-derived polymer material (for example, to a printed wiring board) (for example, Patent Document 2), for example, in a room temperature atmosphere. In this case, it is known that sufficient mechanical properties can be obtained. However, the composition uses an aldehyde as a curing agent, and the mechanical properties are lowered in a high temperature atmosphere. It was not applied to.
Japanese Patent Laid-Open No. 2002-53699.

前記のように、高分子材料の主成分としてガラス転移点(以下、Tgと称する)100℃以上の耐熱性エポキシ樹脂等を用いて成る高分子製品は、硬く脆弱であり、温度変化が激しい環境下で使用した場合にはクラックが発生し易い恐れがある。このため、例えば高分子材料の主成分として固形エポキシ樹脂(例えば、金属導体を用いた耐クラック性試験の結果が−30℃以下のもの)を用いたり、該高分子材料に多量の充填材を添加して耐クラック性等を向上させる試みが行われているが、その高分子材料の粘度が著しく高くなってしまい、例えば注型作業等において十分なポットライフ(工業的な作業に必要な最低限の時間)を確保できず、作業性が悪化する恐れがある。   As described above, a polymer product using a heat-resistant epoxy resin having a glass transition point (hereinafter referred to as Tg) of 100 ° C. or higher as a main component of the polymer material is hard and fragile, and has a severe temperature change. If used underneath, there is a risk of cracking. For this reason, for example, a solid epoxy resin (for example, a result of a crack resistance test using a metal conductor of −30 ° C. or lower) is used as the main component of the polymer material, or a large amount of filler is added to the polymer material. Attempts have been made to improve the crack resistance and the like by adding it, but the viscosity of the polymer material becomes extremely high. For example, the pot life (minimum required for industrial work) Time), and workability may be deteriorated.

また、前記のビスフェノールA型のエポキシ樹脂は、機械的物性が高い特性を有することから工業製品として広く使用されているが、そのビスフェノールA自体は環境ホルモンとして有害性を有するものとみなされ、環境性の観点から懸念され始めている。高分子製品のように硬化された組成物中であれば、その組成物中からビスフェノールAが漏出することは殆どなく有害性はないとの報告もあるが、極めて微量(ppmレベルの量)であっても有害性を有する物質であることから、たとえ前記のように組成物中であっても該組成物中に未反応のビスフェノールA(低分子量成分)が存在する場合には、そのビスフェノールAが気中に漏洩してしまう可能性があり、懸念されている。   The bisphenol A type epoxy resin is widely used as an industrial product because of its high mechanical properties. However, the bisphenol A itself is considered to be harmful as an environmental hormone, It is beginning to be a concern from the point of view of sex. If it is in a cured composition such as a polymer product, there is a report that bisphenol A hardly leaks out from the composition, and there is a report that it is not harmful. Even if it exists in the composition as described above, if unreacted bisphenol A (low molecular weight component) is present in the composition, the bisphenol A is present. May be leaked into the air and there are concerns.

例えば、高分子製品の製造施設において、ビスフェノールA型エポキシ樹脂と種々の添加剤等とを合成する工程や、その合成工程後の高分子材料を注型する工程等の限定された環境下では、高濃度のビスフェノールA雰囲気下になる恐れがある。たとえ前記製造設備の各工程において完全無人化(高分子製品の製造ラインの無人化)を図っても、それら各工程において換気設備(使用環境における空気を浄化するための設備)を要することとなるため(すなわち、従来では想定しなかった換気設備を要するため)、その製品コストの増加を招く恐れがある。   For example, in a polymer product manufacturing facility, in a limited environment such as a step of synthesizing a bisphenol A type epoxy resin and various additives, a step of casting a polymer material after the synthesis step, etc. There is a risk of a high concentration bisphenol A atmosphere. Even if each process of the production equipment is completely unmanned (the production line for polymer products is unmanned), ventilation equipment (equipment for purifying air in the use environment) is required in each process. For this reason (that is, a ventilation facility that was not assumed in the past is required), the product cost may increase.

前記の高分子製品を処分(例えば、寿命,故障等の理由で処分)する場合については、種々の処理方法を適用することが可能であるが、それぞれ以下に示す問題点がある。   In the case of disposing of the above-mentioned polymer product (for example, disposing for reasons such as lifetime or failure), various treatment methods can be applied, but each has the following problems.

石油由来の物質(例えば、エポキシ樹脂等)を主成分とする高分子材料から成る高分子製品の場合、焼却処理する方法を適用すると種々の有害物質や二酸化炭素を大量に排出し、環境汚染,地球温暖化等の問題を引き起こす恐れがある点で懸念されていた。一方、前記の高分子製品を単に埋立て処理する方法を適用することもできるが、その埋立て処理に係る最終処分場は年々減少している傾向である。この最終処分場の残余年数に関して、旧・厚生省では平成20年頃と試算している。また、旧・経済企画庁では、前記の旧・厚生省の試算に基づいて、平成20年頃に廃棄物処理費用が高騰し、経済成長率が押し下げられると予測している。   In the case of polymer products made of polymer materials mainly composed of petroleum-derived substances (for example, epoxy resins, etc.), applying the method of incineration will emit a large amount of various harmful substances and carbon dioxide, resulting in environmental pollution, There was concern about the possibility of causing problems such as global warming. On the other hand, a method of simply landfilling the polymer product can be applied, but the final disposal sites related to the landfill process tend to decrease year by year. The remaining years of this final disposal site are estimated around 2008 by the former Ministry of Health. In addition, the former Economic Planning Agency predicts that the cost of waste disposal will rise around 2008, and the economic growth rate will be pushed down, based on the previous calculations by the former Ministry of Health and Welfare.

なお、前記の高分子製品を回収し再利用(リサイクル)する試みもあるが、その再利用方法は確立されておらず殆ど行われていない。例外的に、品質が比較的均一な部材(高分子製品に用いられているPEケーブル被覆部材)のみを回収しサーマルエネルギーとして利用されているが、このサーマルエネルギーは燃焼処理工程を要するため、前記のように環境汚染,地球温暖化等の問題を招く恐れがある。   In addition, there is an attempt to collect and reuse (recycle) the polymer product, but the reuse method has not been established and is hardly performed. Exceptionally, only members with relatively uniform quality (PE cable covering members used in polymer products) are recovered and used as thermal energy. However, since this thermal energy requires a combustion treatment step, Like this, there is a risk of causing problems such as environmental pollution and global warming.

一方、生分解性を有する高分子材料から成る高分子製品の場合は、例えば温度100℃以上の雰囲気下で使用すると溶融してしまう恐れがある。また、生物由来の架橋組成物から成る高分子製品の場合は、アルデヒド類を硬化物として用いるため、常温程度の温度雰囲気下(例えば、印刷配線ボードにおける温度環境)では高い機械的物性を有するものの、高温雰囲気下(例えば、高電圧機器等の使用環境)では十分な機械的物性が得られない恐れがある。   On the other hand, in the case of a polymer product made of a biodegradable polymer material, there is a risk of melting when used in an atmosphere at a temperature of 100 ° C. or higher. In the case of polymer products composed of biologically derived cross-linked compositions, aldehydes are used as cured products, and therefore have high mechanical properties under a normal temperature atmosphere (for example, a temperature environment in a printed wiring board). In a high temperature atmosphere (for example, an environment where a high voltage device or the like is used), sufficient mechanical properties may not be obtained.

以上示したようなことから、高分子製品の特性(機械的物性,電気的特性等)を良好に維持すると共に、その高分子製品の処分に係る諸問題の改善が求められている。   As described above, there is a demand for improving the various problems associated with the disposal of the polymer product while maintaining good properties (mechanical properties, electrical properties, etc.) of the polymer product.

本発明は、前記課題に基づいて成されたものであり、作業性を悪化させることなく、高電圧機器等の高分子製品において十分な特性(機械的物性,電気的物性)を付与できると共に、環境性に優れた絶縁性高分子材料組成物を提供することにある。   The present invention has been made based on the above problems, and can impart sufficient characteristics (mechanical properties, electrical properties) in polymer products such as high voltage devices without deteriorating workability, An object of the present invention is to provide an insulating polymer material composition having excellent environmental properties.

本発明は、前記の課題の解決を図るためのものであって、請求項1記載の発明は、高分子材料から成り電圧機器の絶縁構成に用いられるものであって、前記の高分子材料の主成分として植物系バイオマスから抽出されエポキシ化(例えば、アルカリ雰囲気下にて)したリグニンを用い、その高分子材料を加熱し3次元架橋して成ることを特徴とする。 The present invention is for solving the above-mentioned problems, and the invention according to claim 1 is made of a polymer material and is used for an insulation configuration of a voltage device, As a main component , lignin extracted from plant biomass and epoxidized (for example, in an alkaline atmosphere) is used, and the polymer material is heated and three-dimensionally crosslinked.

請求項2記載の発明は、前記請求項1記載の発明において、高分子材料に硬化剤を添加したことを特徴とする。 The invention according to claim 2 is characterized in that, in the invention according to claim 1 , a curing agent is added to the polymer material.

本発明のように、高分子材料の主成分として植物系バイオマスから抽出されたリグニンを用いることにより、そのリグニンがビスフェノールA型エポキシ樹脂と同様に芳香環と脂肪族の側鎖を有するため、例えば従来の高分子製品のように大量の充填剤を用いなくとも、十分な電気的物性(絶縁性等),機械的物性(引張り強度等)が得られる(少なくとも、ビスフェノールA型エポキシ樹脂を用いた高分子材料組成物と同様の電気的物性,機械的物性が得られる)。   As in the present invention, by using lignin extracted from plant biomass as the main component of the polymer material, the lignin has an aromatic ring and an aliphatic side chain like the bisphenol A type epoxy resin. Sufficient electrical properties (insulating properties, etc.) and mechanical properties (tensile strength, etc.) can be obtained without using a large amount of filler as in conventional polymer products (at least using bisphenol A type epoxy resin) Electrical properties and mechanical properties similar to those of polymer material compositions can be obtained).

前記の高分子材料組成物は、焼却処理しても有害物質や二酸化炭素等が発生することはなく、土中に埋立て処理した場合には生分解される。   The above-described polymer material composition does not generate harmful substances or carbon dioxide even when incinerated, and is biodegraded when landfilled in soil.

以上、本発明によれば、作業性を悪化させることなく(例えば、十分なポットライフを確保)、従来のビスフェノールA型エポキシ樹脂を用いた高分子製品と同等以上の電気的物性,機械的物性が得られると共に、地球環境保全に貢献することが可能となる。   As described above, according to the present invention, electrical properties and mechanical properties equivalent to or higher than those of conventional polymer products using bisphenol A type epoxy resin are obtained without deteriorating workability (for example, ensuring sufficient pot life). As well as contributing to the conservation of the global environment.

以下、本発明の実施の形態における絶縁性高分子材料組成物を詳細に説明する。   Hereinafter, the insulating polymer material composition in the embodiment of the present invention will be described in detail.

本実施の形態は、例えば高分子製品の絶縁性を要する部位に適用される絶縁性高分子材料組成物において、エポキシ樹脂等の石油由来の高分子材料を用いる替わりに、天然由来の高分子材料であって分子構造がビスフェノールAに近似した高分子材料を用いるものである。   In this embodiment, for example, in an insulating polymer material composition applied to a portion of a polymer product that requires insulation, instead of using a petroleum-derived polymer material such as an epoxy resin, a naturally-derived polymer material In this case, a polymer material having a molecular structure close to that of bisphenol A is used.

すなわち、前記のような高分子材料であれば十分良好な電気的物性,機械的物性が得られ高電圧機器に適用できると共に、その高分子材料自体はカーボンニュートラルであるため、該高分子材料から成る組成物(高分子製品等)を焼却処理しても、有害物質や二酸化炭素等の排出を防止または抑制でき、例えば土中に埋めた場合には生分解できることを見出したものである。このような天然由来の高分子材料から成る組成物において、印刷配線ボードに適用した例は知られているが、高電圧機器に適用した例はなかった。   That is, if the polymer material is as described above, sufficiently good electrical and mechanical properties can be obtained and applied to a high voltage device, and the polymer material itself is carbon neutral. It has been found that even if the composition (polymer product or the like) formed is incinerated, emission of harmful substances and carbon dioxide can be prevented or suppressed. For example, it can be biodegraded when buried in soil. In such a composition composed of a naturally derived polymer material, an example applied to a printed wiring board is known, but there was no example applied to a high voltage device.

前記のように、天然由来の高分子材料であって分子構造がビスフェノールAに近似した高分子材料としては、植物系バイオマス(生体)の主成分の一種であるリグニンが挙げられる。このリグニンは、植物系バイオマス中ではフェニルプロパンを構造ユニットとする三次元架橋体として存在する。すなわち、リグニンは、構造ユニット中に芳香環,脂肪族の側鎖を有しビスフェノールAと近似した構造であり、そのリグニンを誘導体化(エポキシ化)させたものはビスフェノールA型エポキシ樹脂と近似した物性を有することが読み取れる。   As described above, lignin, which is a naturally occurring polymer material and has a molecular structure similar to bisphenol A, is one of the main components of plant biomass (living body). This lignin exists as a three-dimensional crosslinked body having phenylpropane as a structural unit in plant biomass. That is, lignin has a structure similar to bisphenol A having an aromatic ring and an aliphatic side chain in the structural unit, and derivatized (epoxidized) of lignin approximated to bisphenol A type epoxy resin. It can be read that it has physical properties.

前記リグニンは、植物系バイオマスのうち特に木質バイオマス中に含まれているものが一般的に知られており、有効利用することが検討されているが、その他の植物系バイオマス、例えば1年草であるケナフ中にも含まれている。特に、前記ケナフの芯部に関しては、その芯部全体の約1/4がリグニンで占められている。   The lignin is generally known among plant biomass, particularly those contained in woody biomass, and is being studied for effective use. However, other plant biomass such as annual grasses is used. It is also included in a certain kenaf. In particular, about the core part of the kenaf, about 1/4 of the whole core part is occupied by lignin.

前記の植物系バイオマスにおけるリグニンの抽出方法としては、化学パルプ製造プロセス法(水酸化ナトリウムと硫化ナトリウムとの水溶液中に溶出させる方法)、木材糖化法(無機酸,酸素を用いた方法)、ソルベント法(有機溶媒(例えば、アルコール類等の低沸点溶媒やフェノール,蟻酸,DMSO等の高沸点溶媒、あるいは前記の溶媒に触媒(キノン類や硫酸等)を添加したもの)に溶出させる方法)、蒸煮爆砕法(例えば、約200℃,数気圧〜数十気圧での亜臨界水中に溶出させる方法)等が挙げられる。これら各抽出方法によれば、植物系バイオマス中のリグニンはクラッキングし誘導体化される。   Extraction methods of lignin in the above plant biomass include chemical pulp production process method (method of elution in an aqueous solution of sodium hydroxide and sodium sulfide), wood saccharification method (method using inorganic acid and oxygen), solvent Method (elution with an organic solvent (for example, a low-boiling point solvent such as alcohol, a high-boiling point solvent such as phenol, formic acid, DMSO, or a solvent (quinone or sulfuric acid) added to the above solvent)), Steam explosion method (for example, a method of elution in subcritical water at about 200 ° C. and several to several tens of atmospheres) and the like. According to each of these extraction methods, lignin in plant biomass is cracked and derivatized.

なお、前記のように誘導体化されたリグニンの平均分子量や構造式は、原料である植物系バイオマスの種類,抽出方法,抽出条件等に応じて異なり、その誘導体化されたリグニンの反応活性度も異なってしまう場合があるが、それぞれビスフェノールA型エポキシ樹脂と近似した物性を有し、そのビスフェノールA型エポキシ樹脂の代替材料として高分子製品に適用できる。   In addition, the average molecular weight and structural formula of derivatized lignin as described above vary depending on the type of plant biomass as a raw material, the extraction method, extraction conditions, etc., and the reaction activity of the derivatized lignin is also determined. Although they may differ, they have properties similar to those of bisphenol A type epoxy resins, and can be applied to polymer products as substitute materials for the bisphenol A type epoxy resins.

前記のように植物系バイオマスから抽出されるリグニンの反応活性部は、その抽出過程で用いられる添加剤等との反応により活性が低下、あるいは失活する場合がある。このような場合には、前記の反応活性部を別途誘導体化したり、置換基を導入することにより、前記のリグニンに関して目的のエポキシ化を図ることが可能となる。   As described above, the activity of the reaction active part of lignin extracted from plant biomass may be reduced or deactivated by reaction with additives used in the extraction process. In such a case, it is possible to achieve the desired epoxidation with respect to the lignin by separately derivatizing the reaction active part or introducing a substituent.

前記のエポキシ化は、例えば過酸化水素によるエポキシド合成(リグニン中の不飽和結合部に対するエポキシド合成),光‐酸素酸化,グリシジルエーテル化(エピハロヒドリンとのグリシジルエーテル化)等の方法により達成することができる。蒸煮爆砕法により抽出したリグニンの場合には、高アルカリ雰囲気下にて前記リグニンとエピクロルヒドリンとをグリシジルエーテル化反応させることにより、そのリグニンをより効率良くエポキシ化することができる。   The epoxidation can be achieved by methods such as epoxide synthesis with hydrogen peroxide (epoxide synthesis for unsaturated bonds in lignin), photo-oxygen oxidation, glycidyl etherification (glycidyl etherification with epihalohydrin), etc. it can. In the case of lignin extracted by the steam explosion method, the lignin can be epoxidized more efficiently by subjecting the lignin and epichlorohydrin to a glycidyl etherification reaction in a highly alkaline atmosphere.

前記のエポキシ化されたリグニン(以下、エポキシ化リグニンと称する)を熱硬化(例えば、3次元架橋)させることにより、絶縁性高分子材料組成物を得ることができるが、その熱硬化の際には必要に応じて種々の硬化剤,硬化促進剤を用いても良い。   An insulating polymer material composition can be obtained by thermosetting (for example, three-dimensional crosslinking) the epoxidized lignin (hereinafter referred to as epoxidized lignin). If necessary, various curing agents and curing accelerators may be used.

前記の硬化剤,硬化促進剤には、前記のエポキシ化リグニンを熱硬化(3次元架橋等)出来るものであれば種々のものを適用でき、その具体例としては、ポリアミン類(例えば、ジエチレントリアミン,イソホロンジアミン,ジアミノジアミノジフェニルメタン,ジシアンジアミド,ポリアミド,エポキシド変性,ケチミン等),酸無水物(例えば、ドデセニル無水コハク酸,無水メチルナジック酸,無水トリメリット酸,無水ピロリット酸等),ノボラック型フェノール樹脂、フェノールポリマー、ポリサルファイド,カルボン酸含有ポリエステル樹脂,三級アミン(例えば、ベンジルメチル等),イミダゾール(例えば、2メチルイミダゾール等),ルイス酸(BF3モノエチルアミン,BF3ピペラジン等),芳香族スルホニウム塩,芳香族ジアゾニウム塩,レゾール型フェノール樹脂,メチロール基含有尿素樹脂、メチロール基含有メラミン樹脂等が挙げられる。 Various curing agents and curing accelerators can be applied as long as the epoxidized lignin can be thermally cured (three-dimensional crosslinking, etc.). Specific examples thereof include polyamines (for example, diethylenetriamine, Isophoronediamine, diaminodiaminodiphenylmethane, dicyandiamide, polyamide, epoxide modification, ketimine, etc.), acid anhydrides (eg, dodecenyl succinic anhydride, methyl nadic acid anhydride, trimellitic anhydride, pyrophosphoric anhydride, etc.), novolac type phenol resins, Phenol polymer, polysulfide, carboxylic acid-containing polyester resin, tertiary amine (eg, benzylmethyl, etc.), imidazole (eg, 2-methylimidazole, etc.), Lewis acid (BF 3 monoethylamine, BF 3 piperazine, etc.), aromatic sulfonium salt , Yoshi Aromatic diazonium salts, resol type phenol resins, methylol group-containing urea resins, methylol group-containing melamine resins and the like can be mentioned.

[実施例]
次に、本実施の形態における絶縁性高分子材料組成物の実施例を説明する。まず、本実施例では、蒸煮爆砕法により植物系バイオマスからリグニンを抽出し、その抽出したリグニンとエピクロルヒドリンとを高アルカリ化雰囲気下でグリシジルエーテル化反応させて合成することにより、エポキシ化リグニンを得た。
[Example]
Next, examples of the insulating polymer material composition in the present embodiment will be described. First, in this example, lignin was extracted from plant biomass by steam explosion method, and the extracted lignin and epichlorohydrin were synthesized by glycidyl etherification reaction in a highly alkaline atmosphere to obtain an epoxidized lignin. It was.

その後、前記のエポキシ化リグニンに対し、下記の表1,表2に示すように種々の硬化剤をそれぞれ所定量(化学量論量)添加し、各々の条件(硬化温度,硬化時間)にて加熱し硬化(3次元架橋)させることにより、絶縁性高分子材料組成物の試料S1〜S42をそれぞれ作成した。   Thereafter, to the epoxidized lignin, various curing agents were added in predetermined amounts (stoichiometric amounts) as shown in Tables 1 and 2 below, respectively, under the respective conditions (curing temperature and curing time). Samples S1 to S42 of the insulating polymer material composition were prepared by heating and curing (three-dimensional crosslinking), respectively.

Figure 0004561242
Figure 0004561242

Figure 0004561242
Figure 0004561242

また、前記の試料S1〜S42との比較例として、ビスフェノールA型エポキシ樹脂(エポキシ当量が約190のビスフェノールA型エポキシ樹脂)に対し、下記の表3,表4に示す種々の硬化剤(表1,表2と同様の硬化剤)のうち何れかを所定量(化学量論量)添加し、各々の条件(硬化温度,硬化時間)にて加熱し硬化(3次元架橋)させることにより、絶縁性高分子材料組成物の試料P1〜P42をそれぞれ作成した。   In addition, as comparative examples with the samples S1 to S42, various curing agents shown in Tables 3 and 4 below (Tables) are used for bisphenol A type epoxy resins (bisphenol A type epoxy resins having an epoxy equivalent of about 190). 1, by adding a predetermined amount (stoichiometric amount) of the same curing agent as in Table 2, and heating and curing (three-dimensional crosslinking) under each condition (curing temperature, curing time) Samples P1 to P42 of the insulating polymer material composition were prepared.

Figure 0004561242
Figure 0004561242

Figure 0004561242
Figure 0004561242

そして、前記の各試料S1〜S42,P1〜P42において、電気的物性(絶縁性)として体積抵抗率を測定し,機械的物性(高分子製品に適用した際の支持構造物物性,埋め込み金属に対する耐熱応力性)として引張り強度,引張り伸び率を測定し、生分解性として土中に所定時間埋めた後の引張り強度値(以下、経過後強度値と称する)の変化率を測定し、各測定結果を下記表5,表6,表7,表8に示した。   In each of the samples S1 to S42 and P1 to P42, the volume resistivity is measured as the electrical physical property (insulating property), and the mechanical physical property (support structure physical property when applied to a polymer product, with respect to the embedded metal) Measures tensile strength and tensile elongation as heat stress resistance), and measures rate of change of tensile strength value (hereinafter referred to as strength value after lapse) after being buried in soil as biodegradability. The results are shown in Table 5, Table 6, Table 7 and Table 8.

なお、下記表5乃至表8に示す経過後強度値の変化率は、まず前記の各試料S1〜S42,P1〜P42に関してJIS−K7113に基づいた1号形試験片(厚さ0.5mmの試験片)をそれぞれ作成し、それら試験片を土中に埋め実験室容器内(30℃,80%RHの雰囲気下)にて6ヶ月放置した後、それぞれの経過後強度値を測定し、初期値(土中に埋める前の引張り強度値)と比較することにより求めた変化率(初期値を100%とした場合の変化の割合)である。   In addition, the change rate of the intensity value after progress shown in the following Tables 5 to 8 is the first type test piece (thickness of 0.5 mm) based on JIS-K7113 for each of the samples S1 to S42 and P1 to P42. Test specimens), buried in the soil and left in a laboratory container (30 ° C, 80% RH atmosphere) for 6 months, and then measured the strength value after each passage. It is the change rate (ratio of change when the initial value is 100%) obtained by comparing with the value (tensile strength value before being buried in the soil).

Figure 0004561242
Figure 0004561242

Figure 0004561242
Figure 0004561242

Figure 0004561242
Figure 0004561242

Figure 0004561242
Figure 0004561242

前記表5乃至表8に示す結果において、エポキシ化リグニンを用いた試料S1〜S42は、ビスフェノールA型エポキシ樹脂を用いた試料P1〜P42と同様に体積抵抗率が十分高く、その試料P1〜P42と比較(同じ硬化剤を用いた試料同士で比較;例えば、試料S1と試料P1)してそれぞれ引張り強度,引張り伸び率も高いことが確認できた。また、試料S1〜S42は、試料P1〜P42と比較して経過後強度値が大きく低下することを確認できた。   In the results shown in Tables 5 to 8, the samples S1 to S42 using the epoxidized lignin have a sufficiently high volume resistivity similarly to the samples P1 to P42 using the bisphenol A type epoxy resin, and the samples P1 to P42. (Comparing between samples using the same curing agent; for example, sample S1 and sample P1), it was confirmed that the tensile strength and tensile elongation were also high. Moreover, it was confirmed that the strength values of the samples S1 to S42 greatly decreased after the lapse of time as compared with the samples P1 to P42.

前記のように試料S1〜S42が良好な引張り強度,引張り伸び率を有する理由として、リグニンが脂肪鎖と芳香環を構成し、そのエポキシ化リグニンにおける硬化時の応力がビスフェノールA型エポキシ樹脂における硬化時の応力よりも緩和され易いためと考えられる。また、試料S1〜S42の経過後強度が試料P1〜P42よりも低下する理由は、リグニン自体が植物由来の材料であり、試料P1〜P42よりも土中の微生物や酵素等の影響を受け易い(生分解され易い)ためと考えられる。   The reason why the samples S1 to S42 have good tensile strength and tensile elongation as described above is that lignin constitutes an aliphatic chain and an aromatic ring, and the stress at the time of curing in the epoxidized lignin is the curing in the bisphenol A type epoxy resin. This is thought to be because it is easier to relax than the stress of time. In addition, the reason why the strength after the passage of samples S1 to S42 is lower than that of samples P1 to P42 is that lignin itself is a plant-derived material and is more susceptible to soil microorganisms and enzymes than samples P1 to P42. (It is likely to be biodegraded).

したがって、試料S1〜S42のような高分子材料組成物により高分子製品を構成することにより、その高分子製品に対し良好な電気的物性,機械的物性を付与できることが読み取れる。また、該高分子製品を処理する場合において、たとえ焼却処分しても従来の高分子製品(例えば、ビスフェノールA型エポキシ樹脂を用いた製品)のように大量の有害物質や二酸化炭素が発生することはなく、埋立て処理した場合には時間経過と共に生分解されることが読み取れる。   Therefore, it can be read that by forming a polymer product with the polymer material composition such as samples S1 to S42, good electrical and mechanical properties can be imparted to the polymer product. Moreover, when processing the polymer product, even if it is incinerated, a large amount of harmful substances and carbon dioxide are generated like conventional polymer products (for example, products using bisphenol A type epoxy resin). However, it can be seen that when landfilled, biodegradation occurs over time.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、本発明はリグニン(エポキシ化リグニン)を高分子材料組成物に適用したものであり、そのリグニンによる作用効果は硬化剤の種類や硬化条件に限定されるものではない。また、本発明に適用できる硬化剤は本実施例で用いたものに限定されるものではなく、例えば作業環境性の改善や作業時間の短縮化等を考慮して、2種類以上の硬化剤を混合したもの,該硬化剤のアダクツ,塩類(例えば、ジメチルアミノメチルフェノール)等を用いることができ、その硬化剤の他に硬化促進剤を用いても良い。   For example, in the present invention, lignin (epoxidized lignin) is applied to a polymer material composition, and the effect of the lignin is not limited to the type of curing agent and the curing conditions. Further, the curing agent applicable to the present invention is not limited to the one used in the present embodiment. For example, two or more types of curing agents are used in consideration of improvement of work environment and shortening of work time. A mixture, an adduct of the curing agent, salts (for example, dimethylaminomethylphenol), and the like can be used, and a curing accelerator may be used in addition to the curing agent.

さらに、本実施例における硬化剤では、試料S1〜S42と試料P1〜P42とを比較する目的で硬化剤をそれぞれ化学量論量用いたが、その硬化剤の添加量は必要に応じて種々変化させることができるものであって、本実施例で示した値に限定されるものではない。一般的に、前記の硬化剤の添加量に関して、化学量論量の80%〜90%程度に調整することにより、高分子材料組成物の電気的物性,機械的物性を良好に出来ることが知られている。   Further, in the curing agent in this example, the stoichiometric amount of the curing agent was used for the purpose of comparing the samples S1 to S42 and the samples P1 to P42, but the addition amount of the curing agent varied depending on necessity. However, the present invention is not limited to the values shown in this embodiment. In general, it is known that the electrical and mechanical properties of the polymer material composition can be improved by adjusting the addition amount of the curing agent to about 80% to 90% of the stoichiometric amount. It has been.

さらにまた、例えば、前記の硬化剤をマイクロカプセルに入れて用いたり、モレキュラーシーブ等に吸着させて用いることにより、該硬化剤を潜在的に機能させて用いても良い。   Furthermore, for example, the above-mentioned curing agent may be used by putting it in a microcapsule or by allowing it to be adsorbed on a molecular sieve or the like, thereby causing it to function potentially.

Claims (2)

高分子材料から成り電圧機器の絶縁構成に用いられるものであって、
前記の高分子材料の主成分として植物系バイオマスから抽出されエポキシ化したリグニンを用い、その高分子材料を加熱し3次元架橋して成ることを特徴とする絶縁性高分子材料組成物。
It is made of a polymer material and is used for the insulation structure of voltage devices,
As the main component of the polymeric material, with a lignin epoxidized extracted from plant biomass, insulating polymer material composition characterized by comprising heating and three-dimensionally crosslinked the polymeric material.
前記の高分子材料に硬化剤を添加したことを特徴とする請求項1記載の絶縁性高分子材料組成物。 The insulating polymer material composition according to claim 1, wherein a curing agent is added to the polymer material.
JP2004247675A 2004-08-27 2004-08-27 Insulating polymer material composition Active JP4561242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247675A JP4561242B2 (en) 2004-08-27 2004-08-27 Insulating polymer material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247675A JP4561242B2 (en) 2004-08-27 2004-08-27 Insulating polymer material composition

Publications (2)

Publication Number Publication Date
JP2006066237A JP2006066237A (en) 2006-03-09
JP4561242B2 true JP4561242B2 (en) 2010-10-13

Family

ID=36112547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247675A Active JP4561242B2 (en) 2004-08-27 2004-08-27 Insulating polymer material composition

Country Status (1)

Country Link
JP (1) JP4561242B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960654B2 (en) * 2006-05-26 2012-06-27 パナソニック株式会社 Inorganic board containing kenaf core crushed pieces
JP2008037921A (en) * 2006-08-02 2008-02-21 Meidensha Corp Insulating polymeric material composition
JP5043575B2 (en) * 2007-07-23 2012-10-10 パナソニック株式会社 Plant-derived composition and cured product thereof
JP2009263549A (en) * 2008-04-28 2009-11-12 Hitachi Ltd Epoxy resin composition of vegetable origin, and various instruments using the same
JP5072822B2 (en) 2008-12-23 2012-11-14 株式会社日立製作所 Biomass-derived epoxy compound and method for producing the same
JP2011144340A (en) * 2010-01-14 2011-07-28 Kono Shinsozai Kaihatsu Kk Epoxy resin
CN104497605A (en) * 2010-02-10 2015-04-08 日立化成工业株式会社 Composite Molded Body
JP2011219715A (en) * 2010-02-10 2011-11-04 Hitachi Chem Co Ltd Resin compound material for molding
DE102010008393A1 (en) * 2010-02-10 2011-10-06 Technische Universität Dresden Substrate for soil improvement with water-retaining property, process for its preparation and its use
JP5920069B2 (en) * 2012-03-30 2016-05-18 住友ベークライト株式会社 Lignin resin composition and lignin resin molding material
JP2018178023A (en) * 2017-04-19 2018-11-15 日本化薬株式会社 Method for producing lignin-derived epoxy resin, lignin-derived epoxy resin, epoxy resin composition and cured product thereof
JP2018178024A (en) * 2017-04-19 2018-11-15 日本化薬株式会社 Method for producing lignin-derived epoxy resin, lignin-derived epoxy resin, epoxy resin composition and cured product thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143305A (en) * 1995-09-18 1997-06-03 Internatl Business Mach Corp <Ibm> Crosslinked biomaterial and its use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143305A (en) * 1995-09-18 1997-06-03 Internatl Business Mach Corp <Ibm> Crosslinked biomaterial and its use

Also Published As

Publication number Publication date
JP2006066237A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP5315606B2 (en) Insulating polymer material composition
JP4961692B2 (en) insulator
JP4561242B2 (en) Insulating polymer material composition
JP4961691B2 (en) Insulated polymer material cured product
Kocaman Chemical modification of apricot kernel shell waste and its effect on phenolic novolac epoxy composites
JP2008037921A (en) Insulating polymeric material composition
JP5359008B2 (en) Method for producing insulating polymer material composition
JP5532562B2 (en) Insulating polymer material composition
JP5303840B2 (en) Insulating polymer material composition
JP5110689B2 (en) Insulating composition for high voltage equipment
JP4862543B2 (en) Insulating polymer material composition
JP2013221113A (en) Lignin-derived epoxy resin composition and application thereof
JP5322220B2 (en) Insulating polymer material composition
JP4862544B2 (en) Insulating polymer material composition
JP5322222B2 (en) Insulating polymer material composition
JP5319206B2 (en) Insulating structural materials
JP2008257978A (en) Insulating composition for high voltage equipment
JP2010209232A (en) Insulating polymer composition
JP5299919B2 (en) Insulating polymer material composition and method for producing the same
JP2008037922A (en) Insulative high polymer material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4561242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250