JP5322220B2 - Insulating polymer material composition - Google Patents

Insulating polymer material composition Download PDF

Info

Publication number
JP5322220B2
JP5322220B2 JP2009057365A JP2009057365A JP5322220B2 JP 5322220 B2 JP5322220 B2 JP 5322220B2 JP 2009057365 A JP2009057365 A JP 2009057365A JP 2009057365 A JP2009057365 A JP 2009057365A JP 5322220 B2 JP5322220 B2 JP 5322220B2
Authority
JP
Japan
Prior art keywords
gallate
insulating
curing agent
curing
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009057365A
Other languages
Japanese (ja)
Other versions
JP2010209231A (en
Inventor
忠幸 和田
明大 黒住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Chubu Electric Power Co Inc
Original Assignee
Meidensha Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Chubu Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP2009057365A priority Critical patent/JP5322220B2/en
Publication of JP2010209231A publication Critical patent/JP2010209231A/en
Application granted granted Critical
Publication of JP5322220B2 publication Critical patent/JP5322220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、絶縁性高分子材料組成物に関するものであって、例えば筐体内に遮断器や断路器等の開閉機器を備えた電圧機器(例えば、重電機器等の高電圧機器)の絶縁構成に用いられるものである。   The present invention relates to an insulating polymer material composition, for example, an insulation configuration of a voltage device (for example, a high voltage device such as a heavy electrical device) provided with a switching device such as a circuit breaker or a disconnect device in a housing. It is used for.

例えば、筐体内に遮断器や断路器等の開閉機器を備えた電圧機器(高電圧機器等)の絶縁構成(絶縁性を要する部位等)に適用(例えば、屋外に直接暴露して適用)されるものとしては、化石原料(石油等)由来のエポキシ樹脂(以下、化石由来エポキシ樹脂と称する)等の絶縁性高分子成分に対し硬化剤等の各種成分を適宜混合して得た絶縁材料を用いたものであって、その絶縁材料を加熱硬化(三次元架橋)して得られる絶縁性高分子材料組成物(以下、絶縁性組成物と称する)、例えば該絶縁材料を注型して成る絶縁性組成物により構成された製品(モールド注型品;以下、絶縁性製品と称する)が、従来から広く知られている。   For example, it is applied to insulation structures (parts that require insulation) of voltage equipment (high voltage equipment, etc.) equipped with switching devices such as circuit breakers and disconnectors in the housing (for example, directly exposed to the outdoors) An insulating material obtained by appropriately mixing various components such as a curing agent with an insulating polymer component such as an epoxy resin derived from a fossil raw material (petroleum, etc.) (hereinafter referred to as a fossil-derived epoxy resin). An insulating polymer material composition (hereinafter referred to as an insulating composition) obtained by heat-curing (three-dimensional crosslinking) the insulating material, for example, by casting the insulating material 2. Description of the Related Art Products (mold cast products; hereinafter referred to as insulating products) made of an insulating composition have been widely known.

また、社会の高度化・集中化に伴って、電圧機器等の大容量化,小型化や高い物性(例えば、絶縁性(絶縁破壊電界特性等),機械的物性(曲げ強度等))等が強く要求されると共に、前記の絶縁性製品に対しても種々の特性の向上が要求されてきた。   In addition, with the sophistication and concentration of society, the capacity, size, and high physical properties of voltage devices, etc. (for example, insulation (dielectric breakdown field characteristics, etc.), mechanical properties (bending strength, etc.)), etc. In addition to the strong demand, improvements in various characteristics have been demanded for the insulating products.

例えば、処分対象である絶縁性製品(例えば、寿命,故障等によって処分される製品)の多くは単に埋立て処理する方法により処分されていたが、その埋立て処理に係る最終処分場が年々減少していく傾向を懸念して、旧・厚生省により最終処分場の残余年数に関して平成20年頃と試算され、旧・経済企画庁により前記の試算に基づいて平成20年頃に廃棄物処理費用が高騰し経済成長率が押し下げられると予測されていたことから、地球環境保全(省エネルギー化,CO2排出抑制による温暖化防止等)や再利用(リサイクル)を考慮した絶縁性製品の開発が進められてきた。 For example, many of the insulating products that are subject to disposal (for example, products that are disposed of due to lifetime, failure, etc.) were disposed of simply by landfilling methods, but the number of final disposal sites related to landfilling decreased year by year. Concerned about the tendency to continue, the former Ministry of Health and Welfare estimated the remaining years of the final disposal site as around 2008, and the former Economic Planning Agency estimated the waste treatment cost to rise around 2008 based on the above estimate. Since it was predicted that the growth rate would be pushed down, the development of insulating products considering global environmental conservation (energy saving, prevention of global warming by suppressing CO 2 emissions, etc.) and reuse (recycling) has been promoted.

しかし、その再利用方法は未だ確立されておらず殆ど行われてこなかった。例外的に、品質が比較的均一な部材(絶縁性製品に用いられているPEケーブル被覆部材)については回収しサーマルエネルギーとして利用されていたが、このサーマルエネルギーは燃焼処理工程を要するため、地球環境を害する恐れがある。また、焼却処理においても、種々の有害物質やCO2を大量に排出するため、前記同様に地球環境を害する恐れがある。 However, the reuse method has not been established yet and has hardly been performed. Exceptionally, members with relatively uniform quality (PE cable covering members used in insulating products) were recovered and used as thermal energy. However, since this thermal energy requires a combustion treatment process, May harm the environment. Also, in the incineration process, various harmful substances and CO 2 are discharged in a large amount, and thus there is a risk of harming the global environment as described above.

また、絶縁性高分子成分として生分解性樹脂(例えば、ポリ乳酸系樹脂)を適用する試みがあったが(例えば、特許文献1)、該生分解性樹脂は熱可塑性のものであり、比較的溶融(例えば、100℃程度の温度で溶融)し易い物質であるため、特に高電圧機器(使用中に100℃程度に温度上昇し得る高電圧機器)への適用は不向きとされていた。   In addition, there has been an attempt to apply a biodegradable resin (for example, polylactic acid-based resin) as an insulating polymer component (for example, Patent Document 1). Since it is a substance that is easily melted at a temperature (for example, melted at a temperature of about 100 ° C.), it has not been particularly suitable for application to a high voltage device (a high voltage device that can rise in temperature to about 100 ° C. during use).

近年においては、絶縁性高分子成分としてエポキシ化植物油を適用する試みが行われ始めている(例えば、特許文献2)。エポキシ化植物油の一例として挙げられるエポキシ化亜麻仁油は、エポキシ化大豆油と同様に塩化ビニルの安定剤として適用されてきたものである。このエポキシ化植物油自体は、有害性が殆ど無くカーボンニュートラルであり、焼却処理しても有害物質(例えば、環境ホルモン等)や二酸化炭素等が殆ど排出されず、環境保全に貢献できるものと言える。しかしながら、化石原料由来のエポキシ樹脂と比較して反応性が乏しいため硬化時間が長く、さらにTgが低いうえに機械的物性も十分ではないと見做され、実際の絶縁性製品には適用されていなかった。また、絶縁性高分子成分以外の成分に非化石原料由来物質を適用する試みもなかった。   In recent years, attempts have been made to apply epoxidized vegetable oil as an insulating polymer component (for example, Patent Document 2). Epoxidized linseed oil, which is mentioned as an example of epoxidized vegetable oil, has been applied as a stabilizer for vinyl chloride, as is epoxidized soybean oil. This epoxidized vegetable oil itself is almost neutral and carbon neutral, and even if it is incinerated, almost no harmful substances (for example, environmental hormones), carbon dioxide, etc. are discharged and it can be said that it can contribute to environmental conservation. However, since it is less reactive than epoxy resins derived from fossil raw materials, it takes a long time to cure, and it is considered that mechanical properties are not sufficient in addition to low Tg, and it is applied to actual insulating products. There wasn't. In addition, there was no attempt to apply a non-fossil raw material-derived material to components other than the insulating polymer component.

一方、化石由来エポキシ樹脂を絶縁性高分子成分として用いた場合には、それ以外の各成分(硬化剤等)において少しでも非化石原料由来物質を適用する試みはあったが、絶縁性組成物全体での適用割合としては僅かであり、大半は化石原料由来物質に依存した成分によって占められているものであった(例えば、特許文献3,4)。   On the other hand, when a fossil-derived epoxy resin is used as an insulating polymer component, there has been an attempt to apply a non-fossil raw material-derived material to any other components (curing agents, etc.). The application ratio as a whole is very small, and most of them are occupied by components depending on the fossil raw material-derived substances (for example, Patent Documents 3 and 4).

なお、高電圧機器等と異なる技術分野では非化石原料由来物質を適用する試みが進み、例えば印刷配線ボード等においては、生物由来物質を用いた熱硬化性のある架橋組成物を適用したものが知られているが(例えば、特許文献5)、硬化剤としてアルデヒド類を用いるものであり、高電圧機器のように過酷な使用環境では十分な機械的物性が得られ難いものである。   In addition, attempts to apply non-fossil raw material-derived materials have progressed in technical fields different from high-voltage devices, etc., for example, printed wiring boards, etc., to which a thermosetting crosslinked composition using biological materials is applied. Although known (for example, Patent Document 5), aldehydes are used as a curing agent, and it is difficult to obtain sufficient mechanical properties in a severe use environment such as a high-voltage device.

特開2002−358829号公報(例えば、[0007]〜[0012])JP 2002-358829 A (for example, [0007] to [0012]) 特開2007−35337号公報(例えば、[0015])JP 2007-35337 A (for example, [0015]) 特開平6−128360号公報(例えば、[0013],[0014])JP-A-6-128360 (for example, [0013], [0014]) 特開平7−10966号公報(例えば、[0029]〜[0031])JP-A-7-10966 (for example, [0029] to [0031]) 特開2002−53699号公報(例えば、[0007]〜[0011])。JP 2002-53699 A (for example, [0007] to [0011]).

本願発明者は、前記のような技術進歩等に伴って、絶縁性組成物では以下に示す第1〜第4課題があることに着目した。   The inventor of the present application has paid attention to the following first to fourth problems in the insulating composition in accordance with the technical progress as described above.

すなわち、第1課題としては、単にエポキシ化亜麻仁油に対し一般的な硬化剤等を適用するだけでは、化石原料由来のエポキシ樹脂と比較して反応性が乏しいため硬化時間が長く、さらにTgが低いうえに機械的物性も十分ではないと見做されていたが、実際の絶縁性製品に適用できるようにすることが挙げられる。   That is, as a first problem, simply applying a general curing agent or the like to epoxidized linseed oil is less reactive than an epoxy resin derived from a fossil raw material, so that the curing time is long and Tg is low. Although it was considered low and mechanical properties were not sufficient, it can be applied to actual insulating products.

第2課題としては、例えば各成分の取り扱いを容易にして、作業性を向上させることが挙げられる。   As a 2nd subject, handling of each component is made easy and workability | operativity is mentioned, for example.

第3課題としては、単に絶縁性組成物の特性の向上を図るだけでなく、例えば硬化温度を比較的低くし作業性を向上させることが挙げられる。   The third problem is not only to improve the characteristics of the insulating composition but also to improve the workability by, for example, relatively lowering the curing temperature.

第4課題としては、硬化剤の配合割合を適度にし、硬化不良が起こらないようにすることが挙げられる。   As a fourth problem, it is possible to moderate the blending ratio of the curing agent so that curing failure does not occur.

本発明は、前記の課題を解決すべく創作された技術的思想であって、請求項1〜記載の発明は、それぞれ加熱硬化して目的とする絶縁性組成物が得られるだけでなく、例えば高電圧機器の絶縁構成として適用しても十分なTg特性,体積抵抗率が得られ、第1課題を解決している。請求項記載の発明は、皮膚刺激性が低いため、作業性が向上し第2課題を解決している。請求項記載の発明は、誘導体の融点が低いため、作業性が向上し第3課題を解決している。請求項記載の発明は、硬化不良が起こらないように硬化剤の配合割合を設定することができ、第4課題を解決している。 The present invention is a technical idea created to solve the above-described problems, and the inventions of claims 1 to 6 are not only obtained by heat curing, respectively, but the intended insulating composition is obtained, For example, sufficient Tg characteristics and volume resistivity can be obtained even when applied as an insulating configuration of a high voltage device, and the first problem is solved. According to a fifth aspect of the invention, has low skin irritation, it solves the second problem to improve the workability. According to a sixth aspect of the invention, because of the low melting point of the derivative solves the third problem to improve the workability. The invention according to claim 3 can set the blending ratio of the curing agent so that curing failure does not occur, and solves the fourth problem.

より具体的に、請求項1記載の発明は、少なくともエポキシ化亜麻仁油,硬化剤から成る絶縁材料を加熱硬化し三次元架橋して得られ、電圧機器の絶縁構成に用いられる組成物であって、前記硬化剤は、植物由来ポリフェノール類の誘導体を1種類以上含有して成り、前記誘導体として、没食子酸誘導体および/またはタンニン誘導体を含有することを特徴とする。 More specifically, the invention described in claim 1 is a composition obtained by heat-curing and three-dimensionally crosslinking an insulating material comprising at least epoxidized linseed oil and a curing agent, and used for an insulating structure of a voltage device. the curing agent, Ri comprising the derivative of the plant-derived polyphenols 1 or more, as the derivative, characterized that you containing gallic acid derivatives and / or tannin derivative.

請求項2記載の発明は、請求項1記載発明において、前記硬化剤中の誘導体は、エポキシ化亜麻仁油に対し10wt%〜150wt%含有することを特徴とする。 The invention described in claim 2 is characterized in that, in the invention described in claim 1 , the derivative in the curing agent is contained in an amount of 10 wt% to 150 wt% with respect to the epoxidized linseed oil .

請求項3記載の発明は、請求項記載発明において、前記硬化剤中の誘導体は、エポキシ化亜麻仁油に対し50wt%〜150wt%含有することを特徴とする。 The invention described in claim 3 is characterized in that, in the invention described in claim 1 , the derivative in the curing agent is contained in an amount of 50 wt% to 150 wt% with respect to the epoxidized linseed oil .

請求項4記載の発明は、請求項1〜3記載発明において、前記没食子酸誘導体として、ベンゾフェノン類を1種類以上含有することを特徴とする。 The invention according to claim 4 is characterized in that, in the inventions according to claims 1 to 3 , the gallic acid derivative contains one or more benzophenones .

請求項5記載の発明は、請求項1〜3記載発明において、前記没食子酸誘導体として、ピロガロール、没食子酸メチル、没食子酸エチル、没食子酸プロピル、没食子酸イソプロピル、没食子酸ペンチル、没食子酸イソペンチル、没食子酸ヘキサデシル、没食子酸ヘプタデシル、没食子酸オクタデシルのうち何れか1種類以上を含有することを特徴とする前記没食子酸誘導体は、アルキル基の炭素数が8以上であることを特徴とする。 The invention according to claim 5 is the invention according to claims 1 to 3 , wherein as the gallic acid derivative , pyrogallol, methyl gallate, ethyl gallate, propyl gallate, isopropyl gallate, pentyl gallate, isopentyl gallate, gallic acid The gallic acid derivative containing at least one of hexadecyl acid, heptadecyl gallate, and octadecyl gallate has 8 or more carbon atoms in the alkyl group.

請求項6記載の発明は、請求項1〜記載発明において、前記没食子酸誘導体は、アルキル基の炭素数が8以上であることを特徴とする。 The invention described in claim 6 is characterized in that, in the invention described in claims 1 to 3 , the gallic acid derivative has an alkyl group having 8 or more carbon atoms .

以上、請求項1〜記載の発明によれば、地球環境保全に貢献するだけでなく、絶縁性組成物において十分良好な耐熱性,絶縁性,機械的物性等を得ることが可能となる。 As described above, according to the first to sixth aspects of the invention, it is possible not only to contribute to global environment conservation but also to obtain sufficiently good heat resistance, insulation, mechanical properties, etc. in the insulating composition.

以下、本発明の実施の形態における絶縁性高分子材料組成物を詳細に説明する。   Hereinafter, the insulating polymer material composition in the embodiment of the present invention will be described in detail.

本実施の形態は、絶縁性高分子成分等から成る絶縁材料を加熱硬化し三次元架橋して得られる絶縁性組成物であって、例えば高電圧機器の絶縁構成に適用できるものである。絶縁材料においては、単に絶縁性高分子成分としてエポキシ化亜麻仁油を適用するのではなく、硬化剤として、没食子酸やタンニン等の植物由来ポリフェノール類の誘導体(以下、植物由来誘導体と称する)を含有して成るものを適用する。   This embodiment is an insulating composition obtained by heat-curing an insulating material composed of an insulating polymer component or the like and three-dimensionally crosslinking it, and can be applied, for example, to an insulating configuration of a high-voltage device. Insulating materials do not simply apply epoxidized linseed oil as an insulating polymer component, but contain derivatives of plant-derived polyphenols such as gallic acid and tannin (hereinafter referred to as plant-derived derivatives) as curing agents. Apply what consists of.

このようにエポキシ化亜麻仁油を適用した場合においても、植物由来誘導体から成る硬化剤を適用した絶縁材料によれば、加熱硬化により三次元架橋して絶縁性組成物が得られ、たとえ高電圧機器の絶縁構成に適用しても、該高電圧機器において要求される各種特性(耐熱性,絶縁性,機械的物性等)の多くを十分満たし、さらに地球環境保全にも貢献することができる。   Even when epoxidized linseed oil is applied in this way, according to the insulating material to which the curing agent made of a plant-derived derivative is applied, an insulating composition can be obtained by three-dimensional crosslinking by heat curing, even if it is a high voltage device. Even when applied to the above-described insulation configuration, many of the various characteristics (heat resistance, insulation, mechanical properties, etc.) required for the high-voltage equipment are sufficiently satisfied, and further, it can contribute to the preservation of the global environment.

[エポキシ化亜麻仁油]
エポキシ化亜麻仁油においては、リノレン酸,リノール酸,オレイン酸などのグリセリドから成る亜麻仁油をエポキシ化したものが挙げられる。
[Epoxidized linseed oil]
Epoxidized linseed oil includes epoxidized linseed oil composed of glycerides such as linolenic acid, linoleic acid and oleic acid.

[硬化剤]
硬化剤の原料として用いられる植物由来ポリフェノール類においては、分子内に複数のフェノール性ヒドロキシ基(ベンゼン環,ナフタレン環等の芳香環に結合されたヒドロキシ基)を有するものとして知られているものであり、植物の光合成時に合成される物質である。この植物由来ポリフェノール類の具体例としては、没食子酸,タンニン,フラボノール,イソフラボン,カテキン,ケルセチン,アントシアニン等が挙げられる。
[Curing agent]
Plant-derived polyphenols used as raw materials for curing agents are known to have a plurality of phenolic hydroxy groups (hydroxy groups bonded to aromatic rings such as benzene rings and naphthalene rings) in the molecule. Yes, it is a substance synthesized during photosynthesis of plants. Specific examples of the plant-derived polyphenols include gallic acid, tannin, flavonol, isoflavone, catechin, quercetin, anthocyanin and the like.

植物由来誘導体のうち没食子酸誘導体とは、没食子酸を母体とするものであって、その没食子酸自体の構造,性質等を大幅に変化させない程度に官能基の導入,酸化,還元,原子の置き換え等の改変がなされた化合物を示すものである。その具体例としては、ピロガロール、没食子酸メチル、没食子酸エチル、没食子酸プロピル、没食子酸イソプロピル、没食子酸ペンチル、没食子酸イソペンチル、没食子酸オクチル、没食子酸デシル、没食子酸ドデシル、没食子酸トリデシル、没食子酸テトラデシル、没食子酸ペンタデシル、没食子酸ヘキサデシル、没食子酸ヘプタデシル、没食子酸オクタデシルなどが挙げられる。また、2,3,4−トリヒドロキシベンゾフェノン、2,3,4,4’−テトラヒドロキシベンゾフェノン、2,2’,3,4,4’−ペンタヒドロキシベンゾフェノン、2,3,3’,4,4’,5’−ヘキサヒドロキシベンゾフェノンなどのベンゾフェノン類が挙げられる。前記の各植物由来誘導体は、市販品としても種々の製品・グレードのものが存在する。硬化剤としては、前記の各植物由来誘導体のうち何れか1種類から成るものでも良く、複数種類から成るものでも良い。   Among the plant-derived derivatives, gallic acid derivatives are based on gallic acid and introduce functional groups, oxidize, reduce, and replace atoms to such an extent that the structure and properties of gallic acid itself do not change significantly. And the like. Specific examples thereof include pyrogallol, methyl gallate, ethyl gallate, propyl gallate, isopropyl gallate, pentyl gallate, isopentyl gallate, octyl gallate, decyl gallate, dodecyl gallate, tridecyl gallate, gallic acid Examples include tetradecyl, pentadecyl gallate, hexadecyl gallate, heptadecyl gallate, and octadecyl gallate. 2,3,4-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2 ′, 3,4,4′-pentahydroxybenzophenone, 2,3,3 ′, 4 And benzophenones such as 4 ′, 5′-hexahydroxybenzophenone. The above-mentioned plant-derived derivatives exist in various products and grades as commercial products. As a hardening | curing agent, what consists of any one of the said plant-derived derivatives may be sufficient, and what consists of multiple types may be sufficient.

なお、前記の各植物由来誘導体のうち、没食子酸オクチル、没食子酸デシル、没食子酸ドデシル、没食子酸トリデシル、没食子酸テトラデシル、没食子酸ペンタデシル等においては、少なからず皮膚刺激性が有るため、注意して取り扱うことが好ましい。このため、皮膚刺激性が殆ど無いピロガロール、没食子酸メチル、没食子酸エチル、没食子酸プロピル、没食子酸イソプロピル、没食子酸ペンチル、没食子酸イソペンチル、没食子酸ヘキサデシル、没食子酸ヘプタデシル、没食子酸オクタデシル等のほうが、作業性の観点ではより好ましいと言える。   Among the aforementioned plant-derived derivatives, octyl gallate, decyl gallate, dodecyl gallate, tridecyl gallate, tetradecyl gallate, pentadecyl gallate and the like have a considerable amount of skin irritation. It is preferable to handle. For this reason, pyrogallol, methyl gallate, ethyl gallate, propyl gallate, isopropyl gallate, pentyl gallate, isopentyl gallate, hexadecyl gallate, heptadecyl gallate, octadecyl gallate, etc., which have little skin irritation, It can be said that it is more preferable from the viewpoint of workability.

また、各植物由来誘導体は、その植物由来誘導体中のアルキル基の数が増加するに連れてエポキシ化亜麻仁油との相溶性が向上する。例えば、没食子酸自体の融点は260℃付近であるが、没食子酸誘導体においてはアルキル基の炭素数が8以上の場合(没食子酸オクチル、没食子酸デシル、没食子酸ドデシル、没食子酸トリデシル、没食子酸テトラデシル、没食子酸ペンタデシル、没食子酸ヘキサデシル、没食子酸ヘプタデシル、没食子酸オクタデシル等)融点が100℃前後であり、硬化温度を低く設定することができることから、作業性の観点では好ましいと言える。   In addition, each plant-derived derivative improves compatibility with epoxidized linseed oil as the number of alkyl groups in the plant-derived derivative increases. For example, the melting point of gallic acid itself is around 260 ° C., but the gallic acid derivative has an alkyl group with 8 or more carbon atoms (octyl gallate, decyl gallate, dodecyl gallate, tridecyl gallate, tetradecyl gallate) And pentadecyl gallate, hexadecyl gallate, heptadecyl gallate, octadecyl gallate, etc.) have a melting point of around 100 ° C. and can be set at a low curing temperature, which is preferable from the viewpoint of workability.

硬化剤は、当該硬化剤中に含まれる有効成分(本実施形態では、架橋作用に寄与する植物由来誘導体)の量によって配合量が異なるが、硬化不良が起こらない範囲で目的とする絶縁性組成物に応じて適宜用いることが好ましい。例えば、後述の実施例のように単に植物由来誘導体から成る硬化剤の場合には、その硬化剤自体の配合量を適宜設定(後述の実施例ではエポキシ化亜麻仁油に対し10wt%〜150wt%、好ましくは50wt%〜150wt%配合)すれば良いが、植物由来誘導体以外の成分(例えば、各種添加剤等)が含まれている場合には、硬化剤中の植物由来誘導体の含有量を考慮して設定することが好ましい。   Although the amount of the curing agent varies depending on the amount of the active ingredient contained in the curing agent (in this embodiment, the plant-derived derivative that contributes to the crosslinking action), the intended insulating composition is within the range where curing failure does not occur. It is preferable to use appropriately depending on the product. For example, in the case of a curing agent composed solely of a plant-derived derivative as in the examples described later, the blending amount of the curing agent itself is appropriately set (in the examples described later, 10 wt% to 150 wt% with respect to epoxidized linseed oil, Preferably, 50 wt% to 150 wt% may be added), but when components other than plant-derived derivatives (for example, various additives) are included, the content of plant-derived derivatives in the curing agent is taken into consideration. Is preferably set.

[その他の成分]
例えば作業性(例えば、作業時間の短縮等),成形性,Tg特性,機械的物性,電気的物性等の更なる改善を図る目的で、種々の添加剤を適宜用いることができ、硬化促進剤(硬化剤の硬化の起点;例えば、有機過酸化物,アミン類(三級アミン,芳香族アミン等),イミダゾール類),充填剤(例えば、シリカ,アルミナ等の無機充填剤),反応抑制剤,反応助剤(反応(Tg特性)を制御する目的;パーオキサイド等)等を適宜併用することが可能である。
[Other ingredients]
For example, various additives can be appropriately used for the purpose of further improving workability (for example, shortening of work time, etc.), moldability, Tg characteristics, mechanical properties, electrical properties, etc., and a curing accelerator. (Starting point of curing of the curing agent; for example, organic peroxides, amines (tertiary amine, aromatic amine, etc.), imidazoles), fillers (for example, inorganic fillers such as silica, alumina), reaction inhibitors , Reaction aids (the purpose of controlling the reaction (Tg characteristics); peroxides, etc.) can be used in combination as appropriate.

[製法]
絶縁材料は、以上示した各種成分を適宜配合し、例えばミル処理や撹拌処理等により混合して得ることができる。そして、前記の絶縁材料を所定形状の金型に注型し加熱硬化することにより、目的とする絶縁性組成物が成形される。なお、前記のミル処理,撹拌処理等の条件は、絶縁材料の各種成分の配合量,種類等に応じて適宜設定されるものである。また、成形条件においては、適宜設定することができるものであり、例えば真空注型,加圧注型,トランスファ注型,射出成形等の種々の成形方法を適用することができる。
[Production method]
The insulating material can be obtained by appropriately blending the various components shown above and mixing them by, for example, milling or stirring. And the target insulating composition is shape | molded by casting the said insulating material to the metal mold | die of a predetermined shape, and heat-hardening. In addition, conditions, such as the said mill process and stirring process, are suitably set according to the compounding quantity, kind, etc. of the various components of an insulating material. The molding conditions can be set as appropriate, and various molding methods such as vacuum casting, pressure casting, transfer casting, injection molding, and the like can be applied.

なお、本実施形態の絶縁材料の各成分の配合割合は、目的とする絶縁性製品に応じて適宜設定すれば良いが、例えば充填剤等を配合する場合には分散性や成形性を損なわないように設定することが好ましい。また、エポキシ樹脂とフェノール樹脂とを反応させる場合の配合割合は、エポキシ当量と水酸基当量とから化学量論的に求められることが一般的に知られている。一方、本実施形態のようにエポキシ化亜麻仁油を適用した場合は、エポキシ基が分子鎖中に存在し反応性が乏しいため、その配合割合は必ずしも化学量論的に定められるとは言えないが、絶縁材料の各成分に応じて適宜設定され得る。   In addition, the blending ratio of each component of the insulating material of the present embodiment may be appropriately set according to the target insulating product, but for example, when a filler or the like is blended, the dispersibility and moldability are not impaired. It is preferable to set so. Moreover, it is generally known that the blending ratio in the case of reacting an epoxy resin and a phenol resin is determined stoichiometrically from the epoxy equivalent and the hydroxyl equivalent. On the other hand, when the epoxidized linseed oil is applied as in this embodiment, the epoxy group is present in the molecular chain and the reactivity is poor, so the blending ratio is not necessarily determined stoichiometrically. It can be appropriately set according to each component of the insulating material.

絶縁性組成物における架橋は、本質的に硬化剤によるものであって、硬化条件や前記の硬化促進剤,反応抑制剤,反応助剤等の有無によって架橋構造が影響を受けることはない。   The crosslinking in the insulating composition is essentially due to the curing agent, and the crosslinking structure is not affected by the curing conditions and the presence or absence of the curing accelerator, reaction inhibitor, reaction aid and the like.

例えば、硬化条件(温度,時間等)は、目的とする絶縁性組成物の物性を得るために適宜設定(例えば、硬化促進剤の種類や配合量等に応じて適宜設定)される、すなわち最適解はそれぞれ異なるものであり、該硬化条件が異なっても該物性自体に大きな差が生じることはない。   For example, the curing conditions (temperature, time, etc.) are appropriately set (for example, appropriately set according to the type and blending amount of the curing accelerator) in order to obtain the desired properties of the insulating composition, that is, optimal. The solutions are different, and even if the curing conditions are different, the physical properties themselves do not vary greatly.

また、反応促進剤,反応抑制剤は、反応性を高めたり安全(抑制)にして作業性や生産性等を改善する目的で適宜適用されるものであり、該反応促進剤,反応抑制剤の種類や配合割合が異なっても該物性自体に大きな差が生じることはない。さらに、反応助剤は、前記の反応促進剤,反応抑制剤と同様に反応性を調整(例えば、パーオキサイドの場合は、Tg特性の調整)するために適宜適用(例えば、硬化条件や硬化促進剤等の種類,配合量に応じて適宜適用)されるものであり、該反応助剤の種類や配合量が異なっても該物性自体に大きな差が生じることはない。   Moreover, the reaction accelerator and reaction inhibitor are appropriately applied for the purpose of improving the workability and productivity by increasing the reactivity or making it safe (suppressed). Even if the kind and the blending ratio are different, there is no great difference in the physical properties themselves. Further, the reaction aid is appropriately applied to adjust the reactivity (for example, adjustment of Tg characteristics in the case of peroxide) in the same manner as the reaction accelerator and reaction inhibitor (for example, curing conditions and acceleration of curing). This is applied as appropriate according to the type and blending amount of the agent and the like, and even if the kind and blending amount of the reaction aid is different, there is no significant difference in the physical properties themselves.

<実施例>
次に、本実施形態における絶縁性組成物の実施例を説明する。
<Example>
Next, examples of the insulating composition in the present embodiment will be described.

まず、エポキシ化亜麻仁油(ADEKA社製のアデカサイザーO−180A)に対し、種々の硬化剤(後述の硬化剤A〜J)、硬化促進剤として2−エチル−4−メチル−イミダゾール(四国化成工業社製のキュアゾール2E4MZ)1phrを配合し、種々の絶縁材料を作製した。   First, for epoxidized linseed oil (ADEKA Sizer O-180A manufactured by ADEKA), various curing agents (curing agents A to J described later) and 2-ethyl-4-methyl-imidazole (Shikoku Chemicals) as a curing accelerator. Various insulating materials were prepared by blending 1 phr of Curesol 2E4MZ) manufactured by Kogyo Co., Ltd.

なお、前記の硬化剤としては、それぞれ富士化学工業社製の没食子酸プロピル(以下、硬化剤A)、タンニン酸(以下、硬化剤B)、没食子酸オクタデシル(以下、硬化剤C)を下記表1,2に示すように用いた。また、それぞれ岩手ケミカル社製のピロガロール(以下、硬化剤D)、没食子酸メチル(以下、硬化剤E)、没食子酸エチル(以下、硬化剤F)、2,3,4−トリヒドロキシベンゾフェノン(以下、硬化剤G)、2,3,4,4’−テトラヒドロキシベンゾフェノン(以下、硬化剤H)、2,2’,3,4,4’−ペンタヒドロキシベンゾフェノン(以下、硬化剤I)、2,3,3’,4,4’,5’−ヘキサヒドロキシベンゾフェノン(以下、硬化剤J)を下記表1,2に示すように用いた。   As the curing agent, propyl gallate (hereinafter referred to as curing agent A), tannic acid (hereinafter referred to as curing agent B), and octadecyl gallate (hereinafter referred to as curing agent C) manufactured by Fuji Chemical Industry Co., Ltd. 1 and 2 were used. In addition, pyrogallol (hereinafter referred to as curing agent D), methyl gallate (hereinafter referred to as curing agent E), ethyl gallate (hereinafter referred to as curing agent F), 2,3,4-trihydroxybenzophenone (hereinafter referred to as “hardening agent D”) manufactured by Iwate Chemical Co., Ltd. , Curing agent G), 2,3,4,4′-tetrahydroxybenzophenone (hereinafter referred to as curing agent H), 2,2 ′, 3,4,4′-pentahydroxybenzophenone (hereinafter referred to as curing agent I), 2 , 3,3 ′, 4,4 ′, 5′-hexahydroxybenzophenone (hereinafter referred to as curing agent J) was used as shown in Tables 1 and 2 below.

そして、前記の各絶縁材料をそれぞれ所定形状に加熱硬化(温度170℃,16時間)することにより種々の絶縁性組成物を得、それぞれのTg特性(℃),体積抵抗率(Ω/cm)を測定し、その結果を表1,表2に示した。なお、前記Tg特性は、前記絶縁性組成物を円柱状(4mmφ×15mm)に切り出して試料片を作製し、TMA法に基づいて線膨張率の変曲点から測定した。また、体積抵抗率は、JIS K 6911に準拠して、前記絶縁性組成物に対して1000Vの直流電圧を印加することにより測定した。表中の記号「−」は、絶縁性組成物を複数個作製し、一つでも硬化不良が生じた場合を示すものとする。   Each of the insulating materials is heat-cured into a predetermined shape (temperature 170 ° C., 16 hours) to obtain various insulating compositions, and each Tg characteristic (° C.) and volume resistivity (Ω / cm) The results are shown in Tables 1 and 2. The Tg characteristic was measured from the inflection point of the linear expansion coefficient based on the TMA method by cutting the insulating composition into a cylindrical shape (4 mmφ × 15 mm) to produce a sample piece. Moreover, the volume resistivity was measured by applying a DC voltage of 1000 V to the insulating composition according to JIS K 6911. The symbol “-” in the table indicates a case where a plurality of insulating compositions are produced and at least one defective curing occurs.

Figure 0005322220
Figure 0005322220

Figure 0005322220
Figure 0005322220

表1,表2に示す結果において、それぞれ加熱硬化して目的とする絶縁性組成物を得ることができ、例えば高電圧機器の絶縁構成として適用しても十分なTg特性,体積抵抗率が得られることを確認できた。   In the results shown in Tables 1 and 2, the target insulating composition can be obtained by heating and curing, respectively. For example, sufficient Tg characteristics and volume resistivity can be obtained even when applied as an insulating configuration of high voltage equipment. I was able to confirm that

硬化剤が少ない場合は、その硬化剤による架橋作用が小さくなるため硬化不良が生じ易くなる傾向があるが、硬化剤の配合量が50wt%以上の場合は、硬化不良が全く観られなかった。また、硬化不良が全く起こらなかった絶縁性組成物においては、例えば高電圧機器の絶縁構成として適用しても良好なTg特性(常温以上),体積抵抗率が得られることが判った。   When the amount of the curing agent is small, the crosslinking action by the curing agent is small, so that a curing failure tends to occur. However, when the amount of the curing agent is 50 wt% or more, the curing failure was not observed at all. In addition, it was found that an insulating composition in which curing failure did not occur at all can provide good Tg characteristics (above room temperature) and volume resistivity even when applied as an insulating configuration of a high voltage device, for example.

以上示した結果から、絶縁性高分子成分としてエポキシ化亜麻仁油を適用すると共に、没食子酸やタンニン等の植物由来誘導体を含有して成る硬化剤を適用(例えば、エポキシ化亜麻仁油に対し10wt%〜150wt%、より好ましくは50wt%〜150wt%の植物由来誘導体を含有して成る硬化剤を適用)することにより、例えば特許文献2のように単に絶縁性高分子成分に非化石原料由来物質を適用した場合と比較して地球環境保全に貢献できると共に、例えば過酷な使用環境下に曝される高電圧機器の絶縁構成として十分良好な絶縁性,耐熱性,機械的物性が得られることを判明した。   From the results shown above, epoxidized linseed oil is applied as an insulating polymer component, and a curing agent containing a plant-derived derivative such as gallic acid or tannin is applied (for example, 10 wt% with respect to epoxidized linseed oil) By applying a curing agent containing a plant-derived derivative of ˜150 wt%, more preferably 50 wt% to 150 wt%, the non-fossil raw material-derived substance is simply added to the insulating polymer component as in Patent Document 2, for example. It has been found that it can contribute to global environmental protection compared to the case where it is applied, and provides sufficiently good insulation, heat resistance, and mechanical properties as an insulation configuration for high-voltage equipment exposed to harsh usage environments, for example. did.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、絶縁材料の混合条件や硬化条件等は、目的とする絶縁性組成物を得るために、エポキシ化亜麻仁油や各種成分(硬化剤,硬化促進剤等)の種類や配合量に応じて適宜設定されるものであり、本実施例で示した内容に限定されるものではない。   For example, the mixing conditions and curing conditions of the insulating material are appropriately determined according to the type and blending amount of the epoxidized linseed oil and various components (curing agent, curing accelerator, etc.) in order to obtain the target insulating composition. It is set and is not limited to the contents shown in the present embodiment.

また、前記のエポキシ化亜麻仁油,硬化剤,硬化促進剤の他に、目的とする絶縁性組成物の特性を損なわない程度の範囲で種々の添加剤(例えば、実施例以外の成分)を適宜配合した場合においても、本実施例に示したものと同様の作用効果が得られることは明らかである。   In addition to the epoxidized linseed oil, curing agent, and curing accelerator, various additives (for example, components other than the examples) are appropriately added within a range that does not impair the properties of the target insulating composition. Even when blended, it is clear that the same effects as those shown in this example can be obtained.

Claims (6)

少なくともエポキシ化亜麻仁油,硬化剤から成る絶縁材料を加熱硬化し三次元架橋して得られ、電圧機器の絶縁構成に用いられる組成物であって、
前記硬化剤は、植物由来ポリフェノール類の誘導体を1種類以上含有して成り、
前記誘導体として、没食子酸誘導体および/またはタンニン誘導体を含有することを特徴とする絶縁性高分子材料組成物。
A composition obtained by heat-curing an insulating material comprising at least epoxidized linseed oil and a curing agent and three-dimensionally cross-linking, and used for an insulating structure of a voltage device
The curing agent, Ri comprising the derivative of the plant-derived polyphenols 1 or more,
As the derivatives, insulating polymer material composition which is characterized that you containing gallic acid derivatives and / or tannin derivative.
前記硬化剤中の誘導体は、エポキシ化亜麻仁油に対し10wt%〜150wt%含有することを特徴とする請求項1記載の絶縁性高分子材料組成物。 The insulating polymer material composition according to claim 1, wherein the derivative in the curing agent is contained in an amount of 10 wt% to 150 wt% with respect to the epoxidized linseed oil . 前記硬化剤中の誘導体は、エポキシ化亜麻仁油に対し50wt%〜150wt%含有することを特徴とする請求項記載の絶縁性高分子材料組成物。 The derivatives in the curing agent is an insulating polymer material composition of claim 1, wherein the containing 50wt% ~150wt% relative epoxidized linseed oil. 前記没食子酸誘導体として、ベンゾフェノン類を1種類以上含有することを特徴とする請求項1〜3のうち何れかに記載の絶縁性高分子材料組成物。 The insulating polymer material composition according to any one of claims 1 to 3, wherein the gallic acid derivative contains one or more benzophenones . 前記没食子酸誘導体として、ピロガロール、没食子酸メチル、没食子酸エチル、没食子酸プロピル、没食子酸イソプロピル、没食子酸ペンチル、没食子酸イソペンチル、没食子酸ヘキサデシル、没食子酸ヘプタデシル、没食子酸オクタデシルのうち何れか1種類以上を含有することを特徴とする請求項1〜3のうち何れかに記載の絶縁性高分子材料組成物。 As the gallic acid derivative , one or more of pyrogallol, methyl gallate, ethyl gallate, propyl gallate, isopropyl gallate, pentyl gallate, isopentyl gallate, hexadecyl gallate, heptadecyl gallate, and octadecyl gallate insulating polymer material composition as claimed in any one of claims 1 to 3, characterized in that it contains. 前記没食子酸誘導体は、アルキル基の炭素数が8以上であることを特徴とする請求項1〜3のうち何れかに記載の絶縁性高分子材料組成物。 The insulating polymer material composition according to any one of claims 1 to 3, wherein the gallic acid derivative has an alkyl group having 8 or more carbon atoms .
JP2009057365A 2009-03-11 2009-03-11 Insulating polymer material composition Expired - Fee Related JP5322220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057365A JP5322220B2 (en) 2009-03-11 2009-03-11 Insulating polymer material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009057365A JP5322220B2 (en) 2009-03-11 2009-03-11 Insulating polymer material composition

Publications (2)

Publication Number Publication Date
JP2010209231A JP2010209231A (en) 2010-09-24
JP5322220B2 true JP5322220B2 (en) 2013-10-23

Family

ID=42969743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057365A Expired - Fee Related JP5322220B2 (en) 2009-03-11 2009-03-11 Insulating polymer material composition

Country Status (1)

Country Link
JP (1) JP5322220B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299919B2 (en) * 2009-11-27 2013-09-25 中部電力株式会社 Insulating polymer material composition and method for producing the same
JP6180075B2 (en) * 2011-09-30 2017-08-16 Dic株式会社 Polyarylene sulfide resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU713023B2 (en) * 1995-07-05 1999-11-18 Preform Raumgliederungssysteme Gmbh Polymeric material, method for its manufacture, and its utilisation
JP5315606B2 (en) * 2006-12-01 2013-10-16 株式会社明電舎 Insulating polymer material composition
JP5043575B2 (en) * 2007-07-23 2012-10-10 パナソニック株式会社 Plant-derived composition and cured product thereof

Also Published As

Publication number Publication date
JP2010209231A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5315606B2 (en) Insulating polymer material composition
JP2007035337A (en) Insulating polymer material composition and insulator
JP4961691B2 (en) Insulated polymer material cured product
JP5322220B2 (en) Insulating polymer material composition
JP2011184645A (en) Insulating polymeric material composition
EP2048173A1 (en) Insulating polymer material composition
JP5359008B2 (en) Method for producing insulating polymer material composition
JP2006066237A (en) Insulating polymeric material composition
JP5532562B2 (en) Insulating polymer material composition
JP5110689B2 (en) Insulating composition for high voltage equipment
JP5499863B2 (en) Insulating polymer material composition and method for producing the same
JP2010209232A (en) Insulating polymer composition
JP5366208B2 (en) Insulating polymer material composition and method for producing the same
JP5229787B2 (en) Insulating polymer material composition
JP5275888B2 (en) Plant-derived composition, method for producing the same, and molded product
JP2008195759A (en) Insulating polymer material composition
JP2010100727A (en) Non-conductive polymer material composition
JP4862543B2 (en) Insulating polymer material composition
JP5299919B2 (en) Insulating polymer material composition and method for producing the same
JP4862544B2 (en) Insulating polymer material composition
JP2008037922A (en) Insulative high polymer material composition
JP2011074337A (en) Epoxy resin composite material and method for producing the same
JP2005290131A (en) Method for manufacturing thermosetting resin composition for casting, thermosetting resin composition for casting and electorical/electronic component device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5322220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees