JP5275888B2 - Plant-derived composition, method for producing the same, and molded product - Google Patents
Plant-derived composition, method for producing the same, and molded product Download PDFInfo
- Publication number
- JP5275888B2 JP5275888B2 JP2009106952A JP2009106952A JP5275888B2 JP 5275888 B2 JP5275888 B2 JP 5275888B2 JP 2009106952 A JP2009106952 A JP 2009106952A JP 2009106952 A JP2009106952 A JP 2009106952A JP 5275888 B2 JP5275888 B2 JP 5275888B2
- Authority
- JP
- Japan
- Prior art keywords
- plant
- derived
- epoxy resin
- epoxy
- polyphenol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
本発明は、植物由来組成物とその製造方法ならびに成形品に関するものである。 The present invention relates to a plant-derived composition, a method for producing the same, and a molded product.
プラスチック材料は軽くて丈夫であること、成型が容易であること、酸素による腐食が起こりにくいこと等から各種の分野に応用されている。しかし、これらのプラスチックの原料は石油であるため、焼却廃棄による地球温暖化ガスの増加問題や枯渇問題といったことが懸念される。 Plastic materials are applied to various fields because they are light and strong, easy to mold, and hardly corrode by oxygen. However, since the raw material of these plastics is petroleum, there is a concern that there will be an increase in global warming gas and exhaustion due to incineration and disposal.
近年、これらの問題点を解決する方法の一つとして、バイオマス由来プラスチックが研究されている。中でも、とうもろこし等の植物を原料としたポリ乳酸は他のバイオマスプラスチックに比べて高い耐熱性と剛性を有しており、大量生産が行われるようになってきている。 In recent years, biomass-derived plastics have been studied as one method for solving these problems. Among them, polylactic acid made from plants such as corn has higher heat resistance and rigidity than other biomass plastics, and is mass-produced.
しかし、このポリ乳酸でも石油由来のプラスチックであるPE、PP、ABSに比べると耐熱性、機械的物性といった面で劣るため、利用される分野が限られているのが現状である。 However, since this polylactic acid is inferior in terms of heat resistance and mechanical properties as compared with PE, PP and ABS, which are plastics derived from petroleum, the field of use is currently limited.
一方、ポリフェノール類は多くの芳香族環を有することから高い耐熱性、物理特性を示すことが知られている。そこで、植物由来の原料の骨格にポリフェノール骨格を取り込むことが検討されている。例えば、植物由来原料のリノール酸やリノレン酸に石油由来フェノール類を付加させた後、エポキシ樹脂等と反応させて架橋・高分子化して物性の高い樹脂を作成する試みがなされている(特許文献1参照)。 On the other hand, polyphenols are known to exhibit high heat resistance and physical properties because they have many aromatic rings. Therefore, it has been studied to incorporate a polyphenol skeleton into the skeleton of plant-derived raw materials. For example, after adding petroleum-derived phenols to plant-derived raw materials linoleic acid and linolenic acid, attempts have been made to create resins with high physical properties by reacting with epoxy resins and the like to cross-link and polymerize them (Patent Documents) 1).
しかし、植物由来樹脂を石油由来のフェノールで変性するといったことを行う必要があり、生産性が悪くなる等の問題点がある。 However, there is a problem that the plant-derived resin needs to be modified with petroleum-derived phenol, resulting in poor productivity.
これに対して、元々ポリフェノール骨格を持つ植物由来の材料を用いれば、変性させる必要も無く高い耐熱性、物理特性を持つ樹脂を成形できることが期待される。例えば、ポリフェノール骨格を持つ植物由来の材料の一つであるタンニンの有効活用である。タンニンはフェノール樹脂と同じような骨格を持つことから、フェノール樹脂と一緒にタンニンをホルムアルデヒドと反応させフェノール樹脂とタンニンのベンゼン環にメチロール基を導入し、そのメチロール基を介して架橋・高分子化させ接着剤として用いることが検討されてきた(非特許文献1、2参照)。 On the other hand, if a plant-derived material originally having a polyphenol skeleton is used, it is expected that a resin having high heat resistance and physical properties can be molded without the need for modification. For example, effective utilization of tannin, which is one of plant-derived materials having a polyphenol skeleton. Tannin has a skeleton similar to phenolic resin, so tannin reacts with formaldehyde together with phenolic resin to introduce a methylol group into the benzene ring of phenolic resin and tannin, and crosslinks / polymerizes via the methylol group. It has been studied to use it as an adhesive (see Non-Patent Documents 1 and 2).
他には、ポリフェノールの一つであるリグニンのフェノール性水酸基を有効活用して樹脂を作成する方法が検討されている。 In addition, a method for preparing a resin by effectively utilizing the phenolic hydroxyl group of lignin, which is one of polyphenols, has been studied.
しかし、ポリフェノールの持つフェノール性水酸基は従来のフェノール樹脂よりも反応させにくいとされている。これは植物由来ポリフェノールは分子同士が水素結合によって強く結合していることに原因があると考えられる。 However, it is said that the phenolic hydroxyl group possessed by polyphenol is less likely to react than conventional phenol resins. This is considered to be caused by the fact that plant-derived polyphenols are strongly bonded to each other by hydrogen bonds.
この問題点を解決するために、まずフェノール性水酸基と反応性の高い化合物、例えばエピクロロヒドリンを反応させ、エポキシ化した後、架橋・高分子化させるという方法(非特許文献3参照)や、リグニンをフェノール誘導体でグラフト化した化合物とエポキシ樹脂とを反応させ架橋・高分子化させる方法(特許文献2参照)が提案されている。このように、植物由来ポリフェノールのフェノール性水酸基を反応させるためには何らかの特別な手段を適用する必要がある。 In order to solve this problem, first, a compound having high reactivity with a phenolic hydroxyl group, for example, epichlorohydrin is reacted and epoxidized, followed by crosslinking / polymerization (see Non-Patent Document 3) A method of reacting a compound obtained by grafting lignin with a phenol derivative and an epoxy resin to crosslink and polymerize the compound (see Patent Document 2) has been proposed. Thus, in order to react the phenolic hydroxyl group of plant-derived polyphenol, it is necessary to apply some special means.
また、特許文献3には、リグニンやタンニンを硬化促進剤の存在下にエポキシ樹脂等で架橋させ、硬化させることが提案されている。 Patent Document 3 proposes that lignin or tannin is crosslinked with an epoxy resin or the like in the presence of a curing accelerator to be cured.
しかしながら、特許文献3には、植物由来ポリフェノールのフェノール性水酸基とエポキシ樹脂のエポキシ基とを反応させるための方法については全く記載されていない。特許文献3のように何の方策も採らないまま硬化を行ってしまうとエポキシ樹脂の自重合が優先的に起こり、植物由来ポリフェノールが硬化物の結合内に取り込まれない可能性がある。 However, Patent Document 3 does not describe any method for reacting the phenolic hydroxyl group of plant-derived polyphenol with the epoxy group of epoxy resin. If curing is performed without taking any measures as in Patent Document 3, the self-polymerization of the epoxy resin occurs preferentially, and there is a possibility that the plant-derived polyphenol is not taken into the bond of the cured product.
実際、特許文献3ではプリプレグ状態の物性を判断する基準としてエポキシ基の減少量しか観測しておらず、植物由来ポリフェノールとエポキシ樹脂とが反応したプリプレグであるか否かは判断できない。さらに、特許文献3には硬化促進剤が必要である旨が記載されているが、タンニンのようなポリフェノールを用いた場合、タンニンは溶解することでH +を生成する。そのH+が触媒となる為、触媒としての硬化促進剤を添加する必要が無いのである。 Actually, in Patent Document 3, only a decrease amount of the epoxy group is observed as a standard for judging the physical properties of the prepreg state, and it cannot be judged whether or not the prepreg is a reaction between the plant-derived polyphenol and the epoxy resin. Further, Patent Document 3 describes that a curing accelerator is necessary. However, when a polyphenol such as tannin is used, tannin dissolves to generate H + . Since the H + becomes a catalyst, there is no need to add a curing accelerator as a catalyst.
以上のように、特許文献3では植物由来ポリフェノールのフェノール性水酸基とエポキシ樹脂のエポキシ基とを反応させるための手段については何ら開示されていない。 As described above, Patent Document 3 does not disclose any means for reacting the phenolic hydroxyl group of the plant-derived polyphenol with the epoxy group of the epoxy resin.
本発明は、以上の通りの事情に鑑みてなされたものであり、高い耐熱性を有する成形品を得ることができ、しかも植物由来ポリフェノールのフェノール性水酸基とエポキシ樹脂のエポキシ基との高い反応性を有する植物由来組成物とその製造方法ならびに成形品を提供することを課題としている。 The present invention has been made in view of the circumstances as described above, can obtain a molded product having high heat resistance, and has high reactivity between the phenolic hydroxyl group of the plant-derived polyphenol and the epoxy group of the epoxy resin. It is an object to provide a plant-derived composition, a method for producing the same, and a molded product.
本発明は、上記の課題を解決するために、以下のことを特徴としている。 The present invention is characterized by the following in order to solve the above problems.
本発明の植物由来組成物は、1分子中に2個以上のエポキシ基を持つエポキシ樹脂と、1分子中に2個以上のフェノール性水酸基を持つ植物由来ポリフェノールと溶媒とを混合して加熱し、エポキシ樹脂のエポキシ基と植物由来ポリフェノールのフェノール性水酸基とを反応させて半硬化状態としたものであり、沸点180℃以下の化合物の含有量が10質量%以下、かつ、植物由来ポリフェノールの含有量が1〜75質量%とされていることを特徴としている。 The plant-derived composition of the present invention is prepared by mixing and heating an epoxy resin having two or more epoxy groups in one molecule, a plant-derived polyphenol having two or more phenolic hydroxyl groups in one molecule, and a solvent. The epoxy group of the epoxy resin and the phenolic hydroxyl group of the plant-derived polyphenol are reacted to form a semi-cured state, the content of the compound having a boiling point of 180 ° C. or less is 10% by mass or less, and the plant-derived polyphenol is contained. amount it is characterized in that there is a 1 to 75 wt%.
本発明の成形品は、前記植物由来組成物を成形して得られたものであることを特徴としている。 Molded article of the present invention, it is characterized in that which is obtained by molding the plant-derived composition.
本発明の植物由来組成物の製造方法は、1分子中に2個以上のエポキシ基を持つエポキシ樹脂と、1分子中に2個以上のフェノール性水酸基を持つ植物由来ポリフェノールとを溶媒に溶解してエポキシ樹脂と植物由来ポリフェノールとを溶媒中で相溶させてワニスを作製し、次いでこのワニスを加熱することにより溶媒を除去しながらエポキシ樹脂のエポキシ基と植物由来ポリフェノールのフェノール性水酸基とを反応させて、沸点180℃以下の化合物の含有量が10質量%以下、かつ、植物由来ポリフェノールの含有量が1〜75質量%の半硬化状態とすることを特徴としている。 In the method for producing a plant-derived composition of the present invention, an epoxy resin having two or more epoxy groups in one molecule and a plant-derived polyphenol having two or more phenolic hydroxyl groups in one molecule are dissolved in a solvent. The epoxy resin and the plant-derived polyphenol are mixed in a solvent to produce a varnish, and then the varnish is heated to remove the solvent and react the epoxy group of the epoxy resin with the phenolic hydroxyl group of the plant-derived polyphenol. It is characterized by making it the semi-hardened state whose content of a compound with a boiling point of 180 degrees C or less is 10 mass% or less, and whose content of plant-derived polyphenol is 1-75 mass% .
この植物由来組成物の製造方法では、加熱温度が80〜180℃であることが好ましい。 In this method for producing a plant-derived composition, the heating temperature is preferably 80 to 180 ° C.
本発明によれば、バイオマスとしての植物由来ポリフェノールを硬化剤として用いているため、環境配慮型の成形品を得ることができ、さらに、植物由来ポリフェノールは芳香族環を有しているので高い耐熱性を有する成形品を得ることができる。 According to the present invention, since plant-derived polyphenol as biomass is used as a curing agent, an environmentally friendly molded product can be obtained, and furthermore, since plant-derived polyphenol has an aromatic ring, it has high heat resistance. A molded article having properties can be obtained.
また、加熱により半硬化状態とすることで、溶媒等の低沸点化合物の含有量を低減することができ、低沸点化合物の気化による成形時の発泡を抑制することができる。 Moreover, by making into a semi-hardened state by heating, content of low boiling point compounds, such as a solvent, can be reduced, and the foaming at the time of shaping | molding by vaporization of a low boiling point compound can be suppressed.
さらに、半硬化状態の組成物としているので、ハンドリング性が良好である。 Furthermore, since the composition is in a semi-cured state, the handling property is good.
沸点180℃以下の化合物の含有量を10質量%以下としているので、上記効果に加え、低沸点化合物の気化による成形時の発泡を特に抑制することができる。 Since the content of the boiling point 180 ° C. The following compounds is 10 wt% or less, in addition to the upper climate result, it is possible to particularly suppress foaming at the time of molding due to vaporization of low-boiling compounds.
植物由来ポリフェノールの含有量を1〜75質量%としているので、ガラス転移温度の低下、および機械的特性や透明性の低下を抑制することができる。 Since the content of the plant-derived polyphenols have a 1 to 75 wt%, it is possible to suppress lowering of the glass transition temperature, and a decrease in mechanical properties and transparency.
前記植物由来組成物を反応硬化させることで成形品としており、当該組成物は、従来の硬化性樹脂と同様に加熱、光照射、硬化促進剤の添加等により反応して3次元網状構造の硬化物となるため、熱可塑性樹脂等と比較してより高い耐熱性が得られる。 The plant-derived composition is formed into a molded product by reaction curing, and the composition reacts by heating, light irradiation, addition of a curing accelerator, and the like to cure a three-dimensional network structure in the same manner as a conventional curable resin. Since it becomes a thing, higher heat resistance is obtained compared with a thermoplastic resin etc.
植物由来ポリフェノールとエポキシ樹脂とを溶媒に溶解させてこれらを相溶させている。一般に植物由来ポリフェノールに含まれる水酸基は反応性が低く、単純にエポキシ樹脂と混合しても反応しないか、その反応は非常に遅い。そのためエポキシ樹脂同士の自重合が優先的に起こり、エポキシ樹脂のネットワーク中に植物由来ポリフェノールが分離して存在することとなる。 A plant-derived polyphenol and the epoxy resin is dissolved in a solvent which is miscible with them. In general, hydroxyl groups contained in plant-derived polyphenols have low reactivity and do not react even when simply mixed with an epoxy resin, or the reaction is very slow. Therefore, self-polymerization of epoxy resins occurs preferentially, and plant-derived polyphenols are separated and exist in the epoxy resin network.
しかし植物由来ポリフェノールとエポキシ樹脂とをこれらを共に溶解させる溶媒中に存在させることで、簡便な方法によって、植物由来ポリフェノールの水酸基の反応性が向上してエポキシ樹脂のエポキシ基と反応させることができる。 However, the presence of a plant-derived polyphenol and an epoxy resin in a solvent that dissolves them together improves the reactivity of the hydroxyl group of the plant-derived polyphenol and allows it to react with the epoxy group of the epoxy resin by a simple method. .
また、植物由来ポリフェノールは2つ以上の芳香族環を有し、それぞれに水酸基を有しているので、一分子中の複数の水酸基が複数のエポキシ基と反応することにより、反応物は3次元架橋した高い耐熱性を有する硬化物となる。 In addition, since the plant-derived polyphenol has two or more aromatic rings, each having a hydroxyl group, the reaction product is three-dimensional when a plurality of hydroxyl groups in one molecule react with a plurality of epoxy groups. It becomes the hardened | cured material which has bridge | crosslinked high heat resistance.
加熱温度を80〜180℃としているので、成形品の性能を損なうことのない植物由来組成物を効率良く製造することができる。 Since the pressurized heat temperature of 80 to 180 ° C., it can be efficiently produced a free plant-derived composition compromising the performance of the molded article.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明に用いられる1分子中に2個以上のフェノール性水酸基を持つ植物由来ポリフェノールとしては、例えば、木本植物(マツ科、スギ科、ヒノキ科等の針葉樹、広葉樹)および草本植物の樹皮、幹、茎、枝、葉等のタンニン、お茶等に含まれるフラボノイドの一種であるエピガロカテキンガレートと呼ばれるポリフェノール類等が挙げられる。 Examples of plant-derived polyphenols having two or more phenolic hydroxyl groups in one molecule used in the present invention include woody plants (pine trees, cedars, cypresses, etc., conifers, broadleafs) and herbaceous plant bark, Examples include tannins such as trunks, stems, branches, and leaves, and polyphenols called epigallocatechin gallate, which is a kind of flavonoid contained in tea.
植物の種類、部位等によって、含まれる植物由来ポリフェノールの構造は異なる。例えばタンニンの場合、フラバノール骨格を持つ化合物が重合した縮合型タンニンと、没食子酸やエラグ酸等の芳香族化合物とグルコース等の糖とがエステル結合を形成した加水分解型タンニンの2つに分類される。 The structure of the plant-derived polyphenols varies depending on the type and part of the plant. For example, tannin is classified into two types: condensed tannin polymerized with a compound having a flavanol skeleton, and hydrolyzed tannin in which an aromatic compound such as gallic acid or ellagic acid and a sugar such as glucose form an ester bond. The
縮合型タンニンは針葉樹、広葉樹のどちらにも分布している。幹の部分よりも樹皮に多く分布しており、アカシア属の樹木の樹皮タンニン含有率は20〜30質量%にのぼる。縮合型タンニンは世界で生産される総タンニン量のうち、90%を占めると言われている。 Condensed tannins are distributed in both coniferous and broadleaf trees. It is distributed more in the bark than in the trunk part, and the bark tannin content of Acacia trees is 20-30% by mass. Condensed tannin is said to account for 90% of the total amount of tannin produced in the world.
加水分解型タンニンは双子葉離弁花植物に局在して分布し、ウコギ科ヌルデの葉にヌルデノミミフシアブラムシが寄生してできる虫こぶ(五倍子と称する)に含まれるガロタンニンや、フウロソウ科ゲンノショウコに含まれるエラジタンニン等が挙げられる。 Hydrolyzed tannin is localized and distributed in dicotyledonous flowering plants, and gallotannins contained in the gallbladder (named quintuplet), which is formed by parasitizing the mulberry leaves, which are parasitic on the leaves of the urchinaceae, are And the like.
本発明に用いられる1分子中に2個以上のエポキシ基を持つエポキシ樹脂としては、例えば、石油由来のビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多官能型エポキシ樹脂等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。 Examples of the epoxy resin having two or more epoxy groups in one molecule used in the present invention include petroleum-derived bisphenol type epoxy resins, biphenyl type epoxy resins, cresol novolac type epoxy resins, polyfunctional type epoxy resins, and the like. Can be mentioned. These may be used alone or in combination of two or more.
また、植物油脂のエポキシ樹脂を用いることもできる。植物油脂のエポキシ樹脂を用いることで、植物由来組成物とその成形品における植物由来成分の比率を高めることができ、カーボンニュートラルな特性をさらに高めることができる。このような植物油脂のエポキシ樹脂としては、例えば、市販されている大豆、亜麻、桐、ごま、やしの種子等の植物油脂のエポキシ樹脂を用いることができる。 Moreover, the epoxy resin of vegetable oils and fats can also be used. By using an epoxy resin of vegetable fats and oils, the ratio of plant-derived components in the plant-derived composition and the molded product thereof can be increased, and carbon neutral characteristics can be further increased. As such vegetable oil / fat epoxy resin, for example, commercially available epoxy resin of vegetable oil / fat such as soybean, flax, paulownia, sesame, and palm seeds can be used.
本発明の植物由来組成物は、1分子中に2個以上のエポキシ基を持つエポキシ樹脂と、1分子中に2個以上のフェノール性水酸基を持つ植物由来ポリフェノールとを混合し、エポキシ樹脂のエポキシ基と植物由来ポリフェノールのフェノール性水酸基とを反応させて半硬化状態とすることにより得ることができる。 The plant-derived composition of the present invention is prepared by mixing an epoxy resin having two or more epoxy groups in one molecule with a plant-derived polyphenol having two or more phenolic hydroxyl groups in one molecule. It can be obtained by reacting the group with the phenolic hydroxyl group of the plant-derived polyphenol to obtain a semi-cured state.
本発明では、特に、1分子中に2個以上のエポキシ基を持つエポキシ樹脂と1分子中に2個以上のフェノール性水酸基を持つ植物由来ポリフェノールとを反応させるために、両者が相溶している状態を作ることが好ましい。すなわち、エポキシ樹脂と植物由来ポリフェノールとが相分離したままでは、エポキシ樹脂と植物由来ポリフェノールとの反応よりもエポキシ樹脂同士の自重合が優先的に起こり易くなり、エポキシ樹脂のネットワーク中に植物由来ポリフェノールが分離して存在してしまう。これに対して、エポキシ樹脂と植物由来ポリフェノールとが相溶状態にあることで、植物由来ポリフェノールの水酸基の反応性が向上し、エポキシ樹脂のエポキシ基と反応するようになる。 In the present invention, in particular, in order to react an epoxy resin having two or more epoxy groups in one molecule with a plant-derived polyphenol having two or more phenolic hydroxyl groups in one molecule, they are compatible with each other. It is preferable to make a state. That is, if the epoxy resin and the plant-derived polyphenol remain phase-separated, the self-polymerization of the epoxy resins is more likely to occur preferentially than the reaction between the epoxy resin and the plant-derived polyphenol, and the plant-derived polyphenol is contained in the epoxy resin network. Will exist separately. In contrast, when the epoxy resin and the plant-derived polyphenol are in a compatible state, the reactivity of the hydroxyl group of the plant-derived polyphenol is improved, and the epoxy resin of the epoxy resin reacts.
エポキシ樹脂と植物由来ポリフェノールとを相溶状態にする方法としては、特に限定されるものではないが、例えば、相溶化剤や界面活性剤等を添加する方法、エポキシ樹脂を加熱溶融し、その中に植物由来ポリフェノールを撹拌により分散させる方法、エポキシ樹脂と植物由来ポリフェノールとの両方を溶解させる溶媒を用いる方法等が挙げられる。 The method for making the epoxy resin and the plant-derived polyphenol compatible is not particularly limited. For example, a method of adding a compatibilizing agent or a surfactant, the epoxy resin is heated and melted, And a method of dispersing a plant-derived polyphenol by stirring, a method using a solvent that dissolves both the epoxy resin and the plant-derived polyphenol, and the like.
例えば、植物由来ポリフェノールとして極性が高いタンニンを用いた場合、このタンニンは水溶性である。これに対して、一般に市販されているエポキシ樹脂の大半は極性が低く非水溶性であり、タンニンとエポキシ樹脂との相溶性は良好ではない。 For example, when tannin having high polarity is used as the plant-derived polyphenol, this tannin is water-soluble. On the other hand, most of the commercially available epoxy resins are low in polarity and insoluble in water, and the compatibility between tannin and the epoxy resin is not good.
しかし、タンニンとエポキシ樹脂とをこれらを共に溶解させる溶媒中に存在させることで、簡便な方法によって、タンニンのフェノール性水酸基のエポキシ樹脂のエポキシ基に対する反応性が向上する。 However, the presence of the tannin and the epoxy resin in the solvent in which they are dissolved together improves the reactivity of the phenolic hydroxyl group of tannin to the epoxy group of the epoxy resin by a simple method.
このようにタンニン等の植物由来ポリフェノールとエポキシ樹脂とを溶媒に溶解してこれらを相溶させる場合、溶媒は、植物由来ポリフェノールおよびエポキシ樹脂の分子量や極性により適宜のものが選択され、特に限定されるものでははないが、SP値が9〜15の溶媒、例えば、メタノール、エタノール、DMF、ピリジン、アセトン、メチルエチルケトン等の溶媒は、極性の高いタンニン酸等の植物由来ポリフェノールと極性の低いエポキシ樹脂とを共に溶解させる可能性が高いので、ここで選ばれる溶媒となり得る。また、水溶性のエポキシ樹脂の場合は溶媒として水を用いることができる。 As described above, when the plant-derived polyphenol such as tannin and the epoxy resin are dissolved in the solvent and are compatible with each other, the solvent is appropriately selected depending on the molecular weight and polarity of the plant-derived polyphenol and the epoxy resin, and is particularly limited. Although not a solvent, a solvent having an SP value of 9 to 15 such as methanol, ethanol, DMF, pyridine, acetone, methyl ethyl ketone is a highly polar plant-derived polyphenol such as tannic acid and a low polarity epoxy resin. Are likely to be dissolved together, and can be a solvent selected here. In the case of a water-soluble epoxy resin, water can be used as a solvent.
溶媒の添加量は、エポキシ樹脂と植物由来ポリフェノールとの双方の溶解性を考慮して適宜に設定される。 The addition amount of the solvent is appropriately set in consideration of the solubility of both the epoxy resin and the plant-derived polyphenol.
本発明の植物由来組成物を製造するに際し、エポキシ樹脂のエポキシ基と植物由来ポリフェノールのフェノール性水酸基とを反応させて半硬化状態とするために、これらを含む混合物の加熱を行う。例えばエポキシ樹脂と植物由来ポリフェノールとを溶媒に溶解した場合には、加熱することにより溶媒を除去しながらエポキシ樹脂のエポキシ基と植物由来ポリフェノールのフェノール性水酸基とを反応させて半硬化状態とする。 In producing the plant-derived composition of the present invention, the mixture containing these is heated in order to cause the epoxy group of the epoxy resin and the phenolic hydroxyl group of the plant-derived polyphenol to react to form a semi-cured state. For example, when the epoxy resin and the plant-derived polyphenol are dissolved in a solvent, the epoxy group of the epoxy resin and the phenolic hydroxyl group of the plant-derived polyphenol are reacted while heating to remove the solvent to obtain a semi-cured state.
加熱乾燥により反応を進行させる際の加熱温度は、好ましくは80〜180℃である。加熱温度が低過ぎると、エポキシ樹脂のエポキシ基と植物由来ポリフェノールのフェノール性水酸基との反応が遅いため、半硬化状態の植物由来組成物の生産性が悪くなる。一方、加熱温度が高過ぎると、植物由来ポリフェノールの多くは融点を持たず200℃付近で分解が起こるものが多いため、成型した成形品の性能が低下するおそれがある。 The heating temperature when the reaction proceeds by heat drying is preferably 80 to 180 ° C. When the heating temperature is too low, the reaction between the epoxy group of the epoxy resin and the phenolic hydroxyl group of the plant-derived polyphenol is slow, so that the productivity of the semi-cured plant-derived composition is deteriorated. On the other hand, if the heating temperature is too high, many plant-derived polyphenols do not have a melting point, and many of them are decomposed at around 200 ° C., so that the performance of the molded product may be deteriorated.
また、このようにして半硬化状態として得られる本発明の植物由来組成物は、好ましくは、沸点180℃以下の化合物の含有量が10質量%以下である。沸点180℃以下の化合物の含有量が多くなると、加熱硬化による成形時の熱により当該化合物が気化して樹脂中で発泡し、成形品の機械的特性を低下させる場合がある。 In addition, the plant-derived composition of the present invention thus obtained in a semi-cured state preferably has a content of a compound having a boiling point of 180 ° C. or less of 10% by mass or less. When the content of the compound having a boiling point of 180 ° C. or less is increased, the compound is vaporized by the heat at the time of molding by heat curing and foams in the resin, which may deteriorate the mechanical properties of the molded product.
本発明の植物由来組成物における植物由来ポリフェノールの含有量は、好ましくは1〜75質量%である。すなわち、植物由来組成物は植物由来ポリフェノールのフェノール性水酸基とエポキシ樹脂のエポキシ基、またはエポキシ樹脂のエポキシ基同士が1対1で反応して形成されるが、植物由来ポリフェノールの含有量を当該範囲内とすることで、過剰な植物由来ポリフェノールの存在により樹脂の結合の架橋が粗くなったり、結合内に取り込まれない植物由来ポリフェノールが現れたりすることによる、ガラス転移温度の低下や機械的特性の低下を抑制することができる。従って、植物由来ポリフェノールの配合に際しては、エポキシ樹脂のエポキシ基の当量と植物由来ポリフェノールのフェノール性水酸基の当量とを等しくすることが考慮される。 The content of the plant-derived polyphenol in the plant-derived composition of the present invention is preferably 1 to 75% by mass. That is, the plant-derived composition is formed by a one-to-one reaction between the phenolic hydroxyl group of the plant-derived polyphenol and the epoxy group of the epoxy resin, or the epoxy groups of the epoxy resin. By making it inside, the presence of excess plant-derived polyphenol causes the resin bond to become coarsely crosslinked, or plant-derived polyphenol that is not incorporated into the bond appears, resulting in a decrease in glass transition temperature and mechanical properties. The decrease can be suppressed. Therefore, when blending the plant-derived polyphenol, it is considered that the equivalent of the epoxy group of the epoxy resin is equal to the equivalent of the phenolic hydroxyl group of the plant-derived polyphenol.
本発明の植物由来組成物には、上記した各成分に加えて、他の添加成分を配合してもよい。このような添加成分としては、例えば、パラトルエンスルホン酸水和物、トリフェニルホスフィン、イミダゾール、ジアザビシクロウンデセン等の硬化性樹脂に一般に用いられている硬化促進剤、および充填材、増量材等が挙げられる。また、植物由来ポリフェノールとエポキシ樹脂の相溶性をさらに向上させて反応性を高め、あるいは溶媒の使用量を抑制する目的で、オキサゾリン系、エポキシ−アクリル系、エポキシ−酸無水物系等の相溶化剤を植物由来組成物に配合することができる。 The plant-derived composition of the present invention may contain other additive components in addition to the components described above. Examples of such additive components include curing accelerators generally used in curable resins such as paratoluenesulfonic acid hydrate, triphenylphosphine, imidazole, diazabicycloundecene, and fillers and fillers. Etc. Also, compatibilization of oxazoline, epoxy-acrylic, epoxy-anhydride, etc. for the purpose of further improving the compatibility of plant-derived polyphenols and epoxy resins and increasing the reactivity or suppressing the amount of solvent used An agent can be mix | blended with a plant origin composition.
本発明の植物由来組成物は、適宜の条件にて反応させることによって硬化物とされる。硬化反応の反応機構としては、植物由来ポリフェノールの水酸基と、エポキシ樹脂のエポキシ基との反応が主反応として進行し、副反応としてエポキシ樹脂のエポキシ基同士の反応が進行する。これにより3次元網状構造の硬化物が形成される。タンニン等の植物由来ポリフェノールは2つ以上の芳香族環を有し、それぞれに水酸基を有しているので、1分子中の複数の水酸基が複数のエポキシ基と反応することにより、反応物は3次元架橋した高い耐熱性と機械的特性を有する硬化物となる。 The plant-derived composition of the present invention is cured by reacting under appropriate conditions. As the reaction mechanism of the curing reaction, the reaction between the hydroxyl group of the plant-derived polyphenol and the epoxy group of the epoxy resin proceeds as a main reaction, and the reaction between the epoxy groups of the epoxy resin proceeds as a side reaction. Thereby, a cured product having a three-dimensional network structure is formed. Plant-derived polyphenols such as tannin have two or more aromatic rings, each having a hydroxyl group. Therefore, when a plurality of hydroxyl groups in one molecule react with a plurality of epoxy groups, the reaction product becomes 3 It becomes a cured product having high heat resistance and mechanical properties that are dimensionally crosslinked.
硬化反応の条件は、特に制限はなく、従来の硬化性樹脂と同様の条件が適用できる。例えば、加熱、光照射、硬化促進剤の添加などにより硬化反応を進行させることができる。 The conditions for the curing reaction are not particularly limited, and conditions similar to those for conventional curable resins can be applied. For example, the curing reaction can be advanced by heating, light irradiation, addition of a curing accelerator, or the like.
本発明の植物由来組成物は、高い耐熱性を有する成形品を得ることができる。従って、不飽和ポリエステル樹脂、アクリル樹脂等の代替としてバスユニットや水廻り製品等に、そしてフェノール樹脂、エポキシ樹脂等の代替として電子材料の基板等に好適に用いることができる。 The plant-derived composition of the present invention can provide a molded product having high heat resistance. Therefore, it can be suitably used for bus units and water-based products as substitutes for unsaturated polyester resins and acrylic resins, and for substrates of electronic materials as substitutes for phenol resins and epoxy resins.
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<実施例1、2、4、5>
エポキシ樹脂としてエピクロン850S(ビスフェノールA型エポキシ樹脂、エポキシ当量 185g/eq、DIC(株)製)、植物由来ポリフェノールとしてタンニンを含有する植物の抽出成分であるタンニン酸AL(加水分解型、タンニン含有率96%以上、富士化学工業(株)製)を用い、これらをアセトンに溶解させ、ワニスを調製した。ワニスの組成比はエポキシ樹脂:植物由来ポリフェノール:溶媒=100:100:100とした。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.
<Examples 1, 2, 4, 5>
Epicron 850S (bisphenol A type epoxy resin, epoxy equivalent 185 g / eq, manufactured by DIC Corporation) as an epoxy resin, tannic acid AL (hydrolyzed type, tannin content) which is an extract component of a plant containing tannin as a plant-derived polyphenol 96% or more, manufactured by Fuji Chemical Industry Co., Ltd.) were dissolved in acetone to prepare a varnish. The composition ratio of the varnish was epoxy resin: plant-derived polyphenol: solvent = 100: 100: 100.
このワニスを表1に記載の加熱条件に従い乾燥機で加熱乾燥した。加熱乾燥によって、フェノール性水酸基とエポキシ基とを反応させながら同時に溶媒を取り除き、半硬化状態の植物由来組成物を得た。なお、調製した半硬化状態の植物由来組成物を熱分析装置で測定し、180℃以下の化合物の質量比率を見積もった。その結果を表1に示す。 This varnish was heat-dried with a dryer according to the heating conditions described in Table 1. The solvent was removed at the same time as the phenolic hydroxyl group and the epoxy group were reacted by heat drying to obtain a semi-cured plant-derived composition. The prepared semi-cured plant-derived composition was measured with a thermal analyzer, and the mass ratio of the compound at 180 ° C. or lower was estimated. The results are shown in Table 1.
また、半硬化状態の植物由来組成物を170℃の熱盤で加熱しゲル化までの時間を測定した。その結果を表1に示す。 In addition, the semi-cured plant-derived composition was heated with a hot plate at 170 ° C., and the time until gelation was measured. The results are shown in Table 1.
また、この条件で作製した半硬化状態の植物由来組成物について、フェノール性水酸基とエポキシ基とが反応していることを赤外吸収スペクトルの1222cm-1付近のピーク(アリールアルキルエーテル)の増加、915cm-1付近のピーク(エポキシ基)の減少で確認した。 Moreover, about the plant origin composition of the semi-hardened state produced on these conditions, the increase of the peak (aryl alkyl ether) near 1222cm < -1 > of an infrared absorption spectrum that the phenolic hydroxyl group and the epoxy group are reacting, This was confirmed by a decrease in the peak (epoxy group) near 915 cm −1 .
次に、上記で得られた植物由来組成物を厚さ1.4mm、縦15mm、横70mmの型に入れ、両面にステンレス板を配置して、温度180℃、圧力1.96MPa(20kg/cm2)、120分間の成形条件で加熱加圧を行い、硬化物の成形品を得た。そして成形体に目視で観察できる気泡が20個以上見られたものを「発泡」、5個以上20個未満のものを「やや発泡」、4個以下のものを「発泡なし」とみなして評価した。その結果を表1に示す。 Next, the plant-derived composition obtained above was put into a mold having a thickness of 1.4 mm, a length of 15 mm, and a width of 70 mm, and a stainless plate was disposed on both sides, and the temperature was 180 ° C. and the pressure was 1.96 MPa (20 kg / cm 2 ) Heating and pressing were performed under molding conditions for 120 minutes to obtain a cured product. And, when 20 or more bubbles that can be visually observed are observed in the molded product, “foaming”, 5 to less than 20 bubbles are regarded as “slightly foaming”, and 4 or less are regarded as “no foaming”. did. The results are shown in Table 1.
また、文字が記載されている紙の上に成形品を置き下の文字が見えるものを「透明」、ところどころ見えない部分が存在するものを「一部不透明」、全く見えないものを「不透明」とみなして評価した。その結果を表1に示す。 Also, if you place a molded product on the paper on which the characters are written, you can see the characters below are "transparent", some parts that are invisible are "partly opaque", those that are not visible at all are "opaque" It was regarded as being evaluated. The results are shown in Table 1.
また、成形品のガラス転移温度をセイコーインスツルメンツ社製 EXSTAR6000 DMS熱分析装置を用いて損失弾性率の最大値から求めた。測定条件は15〜180℃、昇温速度3℃/min、周波数1Hzとした。その結果を表1に示す。
<実施例3>
エポキシ樹脂としてエピクロン850S(ビスフェノールA型エポキシ樹脂、エポキシ当量 185g/eq、DIC(株)製)、植物由来ポリフェノールとしてタンニンを含有する植物の抽出成分であるタンニン酸AL(加水分解型、タンニン含有率96%以上、富士化学工業(株)製)を用い、これらをアセトンに溶解させ、ワニスを調製した。ワニスの組成比はエポキシ樹脂:植物由来ポリフェノール:溶媒=100:500:400とした。
Further, the glass transition temperature of the molded product was determined from the maximum value of the loss elastic modulus using an EXSTAR6000 DMS thermal analyzer manufactured by Seiko Instruments Inc. The measurement conditions were 15 to 180 ° C., a temperature increase rate of 3 ° C./min, and a frequency of 1 Hz. The results are shown in Table 1.
<Example 3>
Epicron 850S (bisphenol A type epoxy resin, epoxy equivalent 185 g / eq, manufactured by DIC Corporation) as an epoxy resin, tannic acid AL (hydrolyzed type, tannin content) which is an extract component of a plant containing tannin as a plant-derived polyphenol 96% or more, manufactured by Fuji Chemical Industry Co., Ltd.) were dissolved in acetone to prepare a varnish. The composition ratio of the varnish was epoxy resin: plant-derived polyphenol: solvent = 100: 500: 400.
このワニスを表1に記載の加熱条件に従い乾燥機で加熱乾燥した。加熱乾燥によって、フェノール性水酸基とエポキシ基とを反応させながら同時に溶媒を取り除き、半硬化状態の植物由来組成物を得た。なお、調製した半硬化状態の植物由来組成物を熱分析装置で測定し、180℃以下の化合物の質量比率を見積もった。その結果を表1に示す。 This varnish was heat-dried with a dryer according to the heating conditions described in Table 1. The solvent was removed at the same time as the phenolic hydroxyl group and the epoxy group were reacted by heat drying to obtain a semi-cured plant-derived composition. The prepared semi-cured plant-derived composition was measured with a thermal analyzer, and the mass ratio of the compound at 180 ° C. or lower was estimated. The results are shown in Table 1.
また、半硬化状態の植物由来組成物を170℃の熱盤で加熱しゲル化までの時間を測定した。その結果を表1に示す。 In addition, the semi-cured plant-derived composition was heated with a hot plate at 170 ° C., and the time until gelation was measured. The results are shown in Table 1.
また、この条件で作製した半硬化状態の植物由来組成物について、フェノール性水酸基とエポキシ基とが反応していることを赤外吸収スペクトルの1222cm-1付近のピーク(アリールアルキルエーテル)の増加、915cm-1付近のピーク(エポキシ基)の減少で確認した。 Moreover, about the plant origin composition of the semi-hardened state produced on these conditions, the increase of the peak (aryl alkyl ether) near 1222cm < -1 > of an infrared absorption spectrum that the phenolic hydroxyl group and the epoxy group are reacting, This was confirmed by a decrease in the peak (epoxy group) near 915 cm −1 .
次に、上記で得られた植物由来組成物を厚さ1.4mm、縦15mm、横70mmの型に入れ、両面にステンレス板を配置して、温度180℃、圧力1.96MPa(20kg/cm2)、120分間の成形条件で加熱加圧を行い、硬化物の成形品を得た。そして成形品の発泡性、透明性について実施例1、2、4、5と同じ基準で評価した。その結果を表1に示す。 Next, the plant-derived composition obtained above was put into a mold having a thickness of 1.4 mm, a length of 15 mm, and a width of 70 mm, and a stainless plate was disposed on both sides, and the temperature was 180 ° C. and the pressure was 1.96 MPa (20 kg / cm 2 ) Heating and pressing were performed under molding conditions for 120 minutes to obtain a cured product. Then, the foamability and transparency of the molded product were evaluated according to the same criteria as in Examples 1, 2, 4, and 5. The results are shown in Table 1.
また、成形品のガラス転移温度を実施例1、2、4、5と同じ条件で測定した。その結果を表1に示す。
<実施例6>
エポキシ樹脂としてエピクロン850S(ビスフェノールA型エポキシ樹脂、エポキシ当量 185g/eq、DIC(株)製)、植物由来ポリフェノールとして(−)−没食子酸エピガロカテキン(没食子酸エステル、純度98%以上、東京化成工業(株)製)を用い、これらをアセトンに溶解させ、ワニスを調製した。ワニスの組成比はエポキシ樹脂:植物由来ポリフェノール:溶媒=100:100:100とした。
Moreover, the glass transition temperature of the molded article was measured under the same conditions as in Examples 1, 2, 4, and 5. The results are shown in Table 1.
<Example 6>
Epicron 850S (bisphenol A type epoxy resin, epoxy equivalent 185 g / eq, manufactured by DIC Corporation) as an epoxy resin, (−)-epigallocatechin gallate (gallate ester, purity 98% or more, Tokyo Kasei) as a plant-derived polyphenol These were dissolved in acetone to prepare varnish. The composition ratio of the varnish was epoxy resin: plant-derived polyphenol: solvent = 100: 100: 100.
このワニスを表1に記載の加熱条件に従い乾燥機で加熱乾燥した。加熱乾燥によって、フェノール性水酸基とエポキシ基とを反応させながら同時に溶媒を取り除き、半硬化状態の植物由来組成物を得た。なお、調製した半硬化状態の植物由来組成物を熱分析装置で測定し、180℃以下の化合物の質量比率を見積もった。その結果を表1に示す。 This varnish was heat-dried with a dryer according to the heating conditions described in Table 1. The solvent was removed at the same time as the phenolic hydroxyl group and the epoxy group were reacted by heat drying to obtain a semi-cured plant-derived composition. The prepared semi-cured plant-derived composition was measured with a thermal analyzer, and the mass ratio of the compound at 180 ° C. or lower was estimated. The results are shown in Table 1.
また、半硬化状態の植物由来組成物を170℃の熱盤で加熱しゲル化までの時間を測定した。その結果を表1に示す。 In addition, the semi-cured plant-derived composition was heated with a hot plate at 170 ° C., and the time until gelation was measured. The results are shown in Table 1.
次に、上記で得られた植物由来組成物を厚さ1.4mm、縦15mm、横70mmの型に入れ、両面にステンレス板を配置して、温度180℃、圧力1.96MPa(20kg/cm2)、120分間の成形条件で加熱加圧を行い、硬化物の成形品を得た。そして成形品の発泡性、透明性について実施例1、2、4、5と同じ基準で評価した。その結果を表1に示す。 Next, the plant-derived composition obtained above was put into a mold having a thickness of 1.4 mm, a length of 15 mm, and a width of 70 mm, and a stainless plate was disposed on both sides, and the temperature was 180 ° C. and the pressure was 1.96 MPa (20 kg / cm 2 ) Heating and pressing were performed under molding conditions for 120 minutes to obtain a cured product. Then, the foamability and transparency of the molded product were evaluated according to the same criteria as in Examples 1, 2, 4, and 5. The results are shown in Table 1.
また、成形品のガラス転移温度を実施例1、2、4、5と同じ条件で測定した。その結果を表1に示す。
<実施例7>
エポキシ樹脂としてエポキシ化亜麻仁油(ダイセル化学工業(株)製、ダイマックL−500、CAS8016−11−3)、植物由来ポリフェノールとしてタンニンを含有する植物の抽出成分であるタンニン酸AL(加水分解型、タンニン含有率96%以上、富士化学工業(株)製)を用い、これらをアセトンに溶解させ、ワニスを調製した。ワニスの組成比はエポキシ樹脂:植物由来ポリフェノール:溶媒=100:100:100とした。
Moreover, the glass transition temperature of the molded article was measured under the same conditions as in Examples 1, 2, 4, and 5. The results are shown in Table 1.
<Example 7>
Epoxy linseed oil as an epoxy resin (Daicel Chemical Industries, Daimac L-500, CAS 8016-11-3), tannic acid AL (hydrolyzed type) which is an extract component of a plant containing tannin as a plant-derived polyphenol Using tannin content of 96% or more, manufactured by Fuji Chemical Industry Co., Ltd., these were dissolved in acetone to prepare varnish. The composition ratio of the varnish was epoxy resin: plant-derived polyphenol: solvent = 100: 100: 100.
このワニスを表1に記載の加熱条件に従い乾燥機で加熱乾燥した。加熱乾燥によって、フェノール性水酸基とエポキシ基とを反応させながら同時に溶媒を取り除き、半硬化状態の植物由来組成物を得た。なお、調製した半硬化状態の植物由来組成物を熱分析装置で測定し、180℃以下の化合物の質量比率を見積もった。その結果を表1に示す。 This varnish was heat-dried with a dryer according to the heating conditions described in Table 1. The solvent was removed at the same time as the phenolic hydroxyl group and the epoxy group were reacted by heat drying to obtain a semi-cured plant-derived composition. The prepared semi-cured plant-derived composition was measured with a thermal analyzer, and the mass ratio of the compound at 180 ° C. or lower was estimated. The results are shown in Table 1.
また、半硬化状態の植物由来組成物を170℃の熱盤で加熱しゲル化までの時間を測定した。その結果を表1に示す。 In addition, the semi-cured plant-derived composition was heated with a hot plate at 170 ° C., and the time until gelation was measured. The results are shown in Table 1.
次に、上記で得られた植物由来組成物を厚さ1.4mm、縦15mm、横70mmの型に入れ、両面にステンレス板を配置して、温度180℃、圧力1.96MPa(20kg/cm2)、120分間の成形条件で加熱加圧を行い、硬化物の成形品を得た。そして成形品の発泡性、透明性について実施例1、2、4、5と同じ基準で評価した。その結果を表1に示す。 Next, the plant-derived composition obtained above was put into a mold having a thickness of 1.4 mm, a length of 15 mm, and a width of 70 mm, and a stainless plate was disposed on both sides, and the temperature was 180 ° C. and the pressure was 1.96 MPa (20 kg / cm 2 ) Heating and pressing were performed under molding conditions for 120 minutes to obtain a cured product. Then, the foamability and transparency of the molded product were evaluated according to the same criteria as in Examples 1, 2, 4, and 5. The results are shown in Table 1.
また、成形品のガラス転移温度を実施例1、2、4、5と同じ条件で測定した。その結果を表1に示す。
<比較例1>
エポキシ樹脂としてエピクロン520(アルキルフェノールモノグリジジルエーテル、エポキシ当量 230g/eq、DIC(株)製)、植物由来ポリフェノールとしてタンニンを含有する植物の抽出成分であるタンニン酸AL(加水分解型、タンニン含有率96%以上、富士化学工業(株)製)を用い、これらをアセトンに溶解させ、ワニスを調製した。ワニスの組成比はエポキシ樹脂:植物由来ポリフェノール:溶媒=100:100:100とした。
Moreover, the glass transition temperature of the molded article was measured under the same conditions as in Examples 1, 2, 4, and 5. The results are shown in Table 1.
<Comparative Example 1>
Epicron 520 (alkylphenol monoglycidyl ether, epoxy equivalent 230 g / eq, manufactured by DIC Corporation) as an epoxy resin, tannic acid AL (hydrolyzable, tannin content) which is an extract component of a plant containing tannin as a plant-derived polyphenol 96% or more, manufactured by Fuji Chemical Industry Co., Ltd.) were dissolved in acetone to prepare a varnish. The composition ratio of the varnish was epoxy resin: plant-derived polyphenol: solvent = 100: 100: 100.
このワニスを表1に記載の加熱条件に従い乾燥機で加熱乾燥した。加熱乾燥によって、フェノール性水酸基とエポキシ基とを反応させながら同時に溶媒を取り除き、半硬化状態の植物由来組成物を得た。なお、調製した半硬化状態の植物由来組成物を熱分析装置で測定し、180℃以下の化合物の質量比率を見積もった。その結果を表1に示す。 This varnish was heat-dried with a dryer according to the heating conditions described in Table 1. The solvent was removed at the same time as the phenolic hydroxyl group and the epoxy group were reacted by heat drying to obtain a semi-cured plant-derived composition. The prepared semi-cured plant-derived composition was measured with a thermal analyzer, and the mass ratio of the compound at 180 ° C. or lower was estimated. The results are shown in Table 1.
また、半硬化状態の植物由来組成物を170℃の熱盤で加熱しゲル化までの時間を測定した。その結果を表1に示す。
<比較例2>
エポキシ樹脂としてエピクロン850S(ビスフェノールA型エポキシ樹脂、エポキシ当量 185g/eq、DIC(株)製)、植物由来ポリフェノールとしてタンニンを含有する植物の抽出成分であるタンニン酸AL(加水分解型、タンニン含有率96%以上、富士化学工業(株)製)を用い、これらを溶媒を用いずに混合した。混合物の組成比はエポキシ樹脂:植物由来ポリフェノール=100:100とした。
In addition, the semi-cured plant-derived composition was heated with a hot plate at 170 ° C., and the time until gelation was measured. The results are shown in Table 1.
<Comparative example 2>
Epicron 850S (bisphenol A type epoxy resin, epoxy equivalent 185 g / eq, manufactured by DIC Corporation) as an epoxy resin, and tannic acid AL (hydrolyzed type, tannin content) which is an extract component of a plant containing tannin as a plant-derived polyphenol 96% or more, manufactured by Fuji Chemical Industry Co., Ltd.), and these were mixed without using a solvent. The composition ratio of the mixture was epoxy resin: plant-derived polyphenol = 100: 100.
この混合物を表1に記載の加熱条件に従い乾燥機で加熱乾燥した。なお、調製した半硬化状態の植物由来組成物を熱分析装置で測定し、180℃以下の化合物の質量比率を見積もった。その結果を表1に示す。 This mixture was heat-dried with a dryer according to the heating conditions described in Table 1. The prepared semi-cured plant-derived composition was measured with a thermal analyzer, and the mass ratio of the compound at 180 ° C. or lower was estimated. The results are shown in Table 1.
また、半硬化状態の植物由来組成物を170℃の熱盤で加熱しゲル化までの時間を測定した。その結果を表1に示す。 In addition, the semi-cured plant-derived composition was heated with a hot plate at 170 ° C., and the time until gelation was measured. The results are shown in Table 1.
表1より、実施例1〜7では、半硬化状態の植物由来組成物は加熱加圧により硬化し、得られた硬化物の成形品は、ガラス転移温度が概ね100℃以上であった。これは、バイオマス由来の樹脂組成物の中では非常に耐熱性が高いと言える。 From Table 1, in Examples 1-7, the plant-derived composition in a semi-cured state was cured by heating and pressing, and the molded product of the obtained cured product had a glass transition temperature of approximately 100 ° C. or higher. This can be said that heat resistance is very high in the resin composition derived from biomass.
また、実施例7ではエポキシ樹脂として亜麻仁油変性エポキシ樹脂を用い、主剤、硬化剤共にバイオマス由来のものを用いてバイオマス高含有プラスチックを作製することができた。 Moreover, in Example 7, a linseed oil-modified epoxy resin was used as an epoxy resin, and a biomass-rich plastic could be produced using both a main agent and a curing agent derived from biomass.
また、ワニスの加熱乾燥時の温度を80〜180℃として半硬化状態の植物由来組成物を得た場合には、特に高い透明性が得られた。 Moreover, when the temperature at the time of heat drying of a varnish was 80-180 degreeC, and the plant-derived composition of a semi-hardened state was obtained, especially high transparency was acquired.
また、半硬化状態の植物由来組成物における沸点180℃以下の化合物の割合が10質量%以下の場合には、発泡が特に抑制された。 Further, when the ratio of the compound having a boiling point of 180 ° C. or less in the semi-cured plant-derived composition was 10% by mass or less, foaming was particularly suppressed.
また、植物由来ポリフェノールの含有量が75質量%以下である場合には、ガラス転移温度が高く透明性も良好であった。 Moreover, when content of plant-derived polyphenol was 75 mass% or less, the glass transition temperature was high and transparency was also favorable.
一方、比較例1では、エポキシ樹脂として1分子中のエポキシ基が1個のアルキルフェノールモノグリジジルエーテルを用いたが、植物由来組成物は加熱加圧しても硬化せず、硬化物の成形品は得られなかった。 On the other hand, in Comparative Example 1, alkylphenol monoglycidyl ether having one epoxy group in one molecule was used as the epoxy resin, but the plant-derived composition did not cure even when heated and pressurized, and the molded product of the cured product was It was not obtained.
また、比較例2では、溶媒を用いなかったためエポキシ樹脂と植物由来ポリフェノールとが相溶せず、そのため植物由来組成物は加熱加圧しても硬化せず、硬化物の成形品は得られなかった。 Further, in Comparative Example 2, since the solvent was not used, the epoxy resin and the plant-derived polyphenol were not compatible with each other. Therefore, the plant-derived composition was not cured even when heated and pressurized, and a molded product of a cured product was not obtained. .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009106952A JP5275888B2 (en) | 2009-04-24 | 2009-04-24 | Plant-derived composition, method for producing the same, and molded product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009106952A JP5275888B2 (en) | 2009-04-24 | 2009-04-24 | Plant-derived composition, method for producing the same, and molded product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010254820A JP2010254820A (en) | 2010-11-11 |
JP5275888B2 true JP5275888B2 (en) | 2013-08-28 |
Family
ID=43316112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009106952A Expired - Fee Related JP5275888B2 (en) | 2009-04-24 | 2009-04-24 | Plant-derived composition, method for producing the same, and molded product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5275888B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5366208B2 (en) * | 2009-09-16 | 2013-12-11 | 中部電力株式会社 | Insulating polymer material composition and method for producing the same |
JP5590544B2 (en) * | 2009-10-02 | 2014-09-17 | 中部電力株式会社 | Epoxy resin composite material and manufacturing method thereof |
US10731040B2 (en) * | 2016-07-12 | 2020-08-04 | The University Of Massachusetts | Crosslinked phenolic compound, method of forming, and polymer composition containing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004161904A (en) * | 2002-11-13 | 2004-06-10 | Sekisui Chem Co Ltd | Epoxy resin composition |
JP5315606B2 (en) * | 2006-12-01 | 2013-10-16 | 株式会社明電舎 | Insulating polymer material composition |
JP5043575B2 (en) * | 2007-07-23 | 2012-10-10 | パナソニック株式会社 | Plant-derived composition and cured product thereof |
-
2009
- 2009-04-24 JP JP2009106952A patent/JP5275888B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010254820A (en) | 2010-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Baroncini et al. | Recent advances in bio‐based epoxy resins and bio‐based epoxy curing agents | |
Auvergne et al. | Biobased thermosetting epoxy: present and future | |
Kumar et al. | Recent development of biobased epoxy resins: a review | |
JP5043575B2 (en) | Plant-derived composition and cured product thereof | |
Hernandez et al. | Synthesis and characterization of bio-based epoxy resins derived from vanillyl alcohol | |
Zhao et al. | Biobased epoxy nanocomposites derived from lignin-based monomers | |
Yadav et al. | Recent advances in plant-based vinyl ester resins and reactive diluents | |
Balgude et al. | CNSL: an environment friendly alternative for the modern coating industry | |
Lu et al. | A review on lignin-based epoxy resins: Lignin effects on their synthesis and properties | |
JP2015078383A (en) | New production method of thermosetting epoxide resin | |
JP5555520B2 (en) | Plant-derived adhesive, plant-derived composition and wood composite material | |
Ahmetli et al. | Epoxy resin/polymer blends: improvement of thermal and mechanical properties | |
JP5275888B2 (en) | Plant-derived composition, method for producing the same, and molded product | |
Kouznetsov et al. | Synthesis of eugenol‐based monomers for sustainable epoxy thermoplastic polymers | |
JP7461345B2 (en) | Epoxy resin manufacturing method | |
JP5920069B2 (en) | Lignin resin composition and lignin resin molding material | |
JP5437929B2 (en) | Epoxy resin composition and molded article using the same | |
JP2013227469A (en) | Lignin resin composition, lignin resin molding material and method for producing lignin derivative | |
Mathew et al. | Biodegradable biosourced epoxy thermosets, blends, and composites | |
JP5390250B2 (en) | Plant-derived composition and cured product thereof | |
JP5271221B2 (en) | Plant-derived composition and cured product thereof | |
JP2015048361A (en) | Lignin resin composition, resin molded article, prepreg, and molding material | |
JP2010031092A (en) | Plant-derived resin molded article | |
Liu et al. | Epoxy resins based on plant phenols | |
JP2010121096A (en) | Vegetable originated composition and cured product of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111214 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20120111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130516 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |