JP2011074337A - Epoxy resin composite material and method for producing the same - Google Patents

Epoxy resin composite material and method for producing the same Download PDF

Info

Publication number
JP2011074337A
JP2011074337A JP2009230266A JP2009230266A JP2011074337A JP 2011074337 A JP2011074337 A JP 2011074337A JP 2009230266 A JP2009230266 A JP 2009230266A JP 2009230266 A JP2009230266 A JP 2009230266A JP 2011074337 A JP2011074337 A JP 2011074337A
Authority
JP
Japan
Prior art keywords
epoxy resin
derived
resin composite
composite material
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009230266A
Other languages
Japanese (ja)
Other versions
JP5590544B2 (en
Inventor
Tadayuki Wada
忠幸 和田
Akihiro Kurozumi
明大 黒住
Yasuyuki Kurata
保幸 蔵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Chubu Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Chubu Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Chubu Electric Power Co Inc, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2009230266A priority Critical patent/JP5590544B2/en
Publication of JP2011074337A publication Critical patent/JP2011074337A/en
Application granted granted Critical
Publication of JP5590544B2 publication Critical patent/JP5590544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an epoxy resin composite material having a substrate impregnated with an insulating material which includes an epoxy resin, being a non-petroleum material, and a gallic acid derivative as raw materials, has Tg equal to or higher than room temperature, and is excellent in insulation performance. <P>SOLUTION: A liquid-state compatible material is obtained by mixing a vegetable oil-derived epoxy resin with a plant-derived polyphenol and by treating the mixture at a predetermined temperature, pressure, time, and stirring conditions, wherein a part of the vegetable oil-derived epoxy resin and the plant-derived polyphenol form crosslinking structure. The epoxy resin composite material is obtained by impregnating a substrate with the compatible material thus obtained and by performing heat treatment. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、絶縁性能が要求される高分子材料に関するものであり、特に高電圧機器の絶縁構成に適用される熱硬化性樹脂に関するものである。具体的には、非石油由来材料から構成され、絶縁性能と耐熱性に優れたエポキシ樹脂を基材に含浸させてなるエポキシ樹脂複合材料(例えば、プリプレグ)に関するものである。   The present invention relates to a polymer material that requires insulating performance, and particularly to a thermosetting resin applied to an insulating configuration of a high-voltage device. Specifically, the present invention relates to an epoxy resin composite material (for example, prepreg) made of a non-petroleum-derived material and having a base material impregnated with an epoxy resin excellent in insulation performance and heat resistance.

高電圧機器の絶縁材料及び構造材料は、石油を出発物質とした石油由来のエポキシ樹脂等の熱硬化性樹脂をマトリックスとした高分子複合硬化物が広く用いられている(例えば、特許文献1、2)。   As the insulating material and the structural material of high-voltage equipment, polymer composite cured products using a thermosetting resin such as an epoxy resin derived from petroleum starting from petroleum as a matrix are widely used (for example, Patent Document 1, 2).

また、ガラス繊維、炭素繊維、芳香族ポリアミド繊維等を強化剤とし、エポキシ樹脂等の熱硬化性樹脂をマトリックスとした複合材料が高電圧機器の分野で使用されている。   Further, composite materials using glass fiber, carbon fiber, aromatic polyamide fiber or the like as a reinforcing agent and a thermosetting resin such as epoxy resin as a matrix are used in the field of high voltage equipment.

このような複合材料は、繊維強化剤に未硬化のマトリックス樹脂を含浸させた、いわゆるプリプレグを使用し、成形する方法が広く採用されている。   As such a composite material, a so-called prepreg obtained by impregnating a fiber reinforcing agent with an uncured matrix resin is widely used.

しかし、石油資源の枯渇化が世界的に問題となってきており、さまざまな分野において石油資源から再生可能資源への転換が急がれている。電気絶縁複合材料も自然界の物質循環サイクルに適合した環境配慮型絶縁材料の開発が重要な課題となっている。   However, the depletion of petroleum resources has become a global problem, and there is an urgent need to switch from petroleum resources to renewable resources in various fields. The development of environmentally friendly insulating materials that are compatible with the natural material cycle is also an important issue for electrical insulating composite materials.

これらの懸念に対して、プリプレグに含浸するマトリックス樹脂の硬化剤に植物由来物質を使用する技術が提案されている(例えば、特許文献3)。また、植物由来のエポキシ樹脂からなる絶縁組成物に関する技術も提案されている(例えば、特許文献4)。   In response to these concerns, a technique of using a plant-derived substance as a curing agent for a matrix resin impregnated in a prepreg has been proposed (for example, Patent Document 3). Moreover, the technique regarding the insulating composition which consists of a plant-derived epoxy resin is also proposed (for example, patent document 4).

特開2004−137425号公報JP 2004-137425 A 特開2006−137825号公報JP 2006-137825 A 特開2002−53699号公報JP 2002-53699 A 特開2007−35337号公報JP 2007-35337 A

しかしながら、特許文献3に記載の発明では、エポキシ樹脂が石油由来物質であるため、エポキシ樹脂の硬化剤として植物由来物質を用いても植物度が低く、従来樹脂の代替品となることは困難である。また、エポキシ化植物油の硬化剤としてリグニンをしているが、高温物性に対し配慮がなされていない組成となっているので高電圧機器への適用は困難である。   However, in the invention described in Patent Document 3, since the epoxy resin is a petroleum-derived substance, the plant degree is low even if a plant-derived substance is used as a curing agent for the epoxy resin, and it is difficult to replace the conventional resin. is there. In addition, although lignin is used as a hardener for epoxidized vegetable oil, it is difficult to apply to high voltage equipment because it has a composition that does not give consideration to high temperature properties.

また、特許文献4に記載の発明では、エポキシ化亜麻仁油の硬化剤に石油由来のフェノール樹脂を使用しており、植物度が低い。したがって、今後、長期的に既存の熱硬化性樹脂の完全代替品となることはできない。   Moreover, in invention of patent document 4, the phenol resin derived from petroleum is used for the hardening | curing agent of epoxidized linseed oil, and a plant degree is low. Therefore, it cannot become a complete replacement for existing thermosetting resins in the long term in the future.

上記課題を解決する本発明のエポキシ樹脂複合材料は、1種類以上のエポキシ化植物油と1種類以上の植物由来ポリフェノール誘導体を相溶させた相溶物を基材に含浸させ、該相溶物が含浸された基材を加熱処理してなることを特徴としている。   The epoxy resin composite material of the present invention that solves the above problems impregnates a base material with a compatible material in which at least one kind of epoxidized vegetable oil and at least one type of plant-derived polyphenol derivative are compatible. It is characterized by heat-treating the impregnated base material.

そして、前記植物由来ポリフェノール誘導体としては、没食子酸誘導体が挙げられ、前記エポキシ化植物油としては、エポキシ化亜麻仁油が挙げられる。   The plant-derived polyphenol derivative includes a gallic acid derivative, and the epoxidized vegetable oil includes epoxidized linseed oil.

また、上記課題を解決する本発明のエポキシ樹脂複合材料の製造方法は、1種類以上のエポキシ化植物油と1種類以上の植物由来ポリフェノール誘導体を相溶させる相溶工程と、前記相溶工程で得られた相溶物を基材に含浸させる含浸工程と、前記含浸工程で得られた、前記相溶物が含浸された基材を加熱処理する加熱処理工程と、を備えたことを特徴としている。   Moreover, the manufacturing method of the epoxy resin composite material of this invention which solves the said subject is obtained by the compatibility process which makes 1 or more types of epoxidized vegetable oil and 1 or more types of plant-derived polyphenol derivatives compatible, and the said compatibility process. An impregnation step of impregnating the base material with the compatible material obtained, and a heat treatment step of heat-treating the base material impregnated with the compatible material obtained in the impregnation step. .

以上の発明によれば、非石油原料であるエポキシ樹脂と没食子酸誘導体を原料としてTgが室温以上であり絶縁性能に優れた絶縁物を基材に含浸させたエポキシ樹脂複合材料を得ることができる。   According to the above invention, it is possible to obtain an epoxy resin composite material in which a base material is impregnated with an insulator having a Tg of not less than room temperature and having excellent insulation performance, using an epoxy resin which is a non-petroleum raw material and a gallic acid derivative as raw materials. .

本発明の実施形態に係るエポキシ樹脂複合材料は、基材に含浸させる樹脂の原料に、天然原料を出発物質とするエポキシ樹脂を用い、さらに、該エポキシ樹脂の硬化剤として植物由来ポリフェノールを使用したものである。   The epoxy resin composite material according to the embodiment of the present invention uses, as a raw material for the resin impregnated in the base material, an epoxy resin starting from a natural raw material, and further uses a plant-derived polyphenol as a curing agent for the epoxy resin. Is.

前記天然原料を出発原料とするエポキシ樹脂としては、エポキシ化できるものであればよく、エポキシ化亜麻仁油、エポキシ化大豆油等が例示される。   The epoxy resin starting from the natural raw material may be anything that can be epoxidized, and examples thereof include epoxidized linseed oil and epoxidized soybean oil.

前記エポキシ樹脂と反応する硬化剤として、これも天然原料である没食子酸及び没食子酸誘導体に着目した。没食子酸誘導体としては、没食子酸メチル、没食子酸エチル、没食子酸ブチル、没食子酸ペンチル、没食子酸プロピル、没食子酸イソプロピル、没食子酸イソペンチル、没食子酸オクチル、没食子酸デシル、没食子酸ドデシル、没食子酸トリデシル、没食子酸テトラデシル、没食子酸ペンタデシル、没食子酸ヘキサデシル、没食子酸ヘプタデシル、没食子酸オクタデシル、ピロガロール等が挙げられる。これら没食子酸誘導体のなかでも、低分子で融点が低い没食子酸プロピル、ピロガロールが好ましい。   As a curing agent that reacts with the epoxy resin, attention was focused on gallic acid and gallic acid derivatives, which are also natural raw materials. As gallic acid derivatives, methyl gallate, ethyl gallate, butyl gallate, pentyl gallate, propyl gallate, isopropyl gallate, isopentyl gallate, octyl gallate, decyl gallate, dodecyl gallate, tridecyl gallate, Examples include tetradecyl gallate, pentadecyl gallate, hexadecyl gallate, heptadecyl gallate, octadecyl gallate, and pyrogallol. Among these gallic acid derivatives, propyl gallate and pyrogallol having a low molecular weight and a low melting point are preferable.

植物油由来のエポキシ樹脂と植物由来フェノール類の配合比は特に限定されないが、食物油由来のエポキシ樹脂100重量部に対して、植物由来フェノール類を10〜50重量部含んでいることが好ましい。また、硬化促進剤や充填剤の添加量についても特に限定せず、最終的に得られる硬化物の物性を鑑みて添加量を決定することが好ましい。   Although the compounding ratio of the epoxy resin derived from vegetable oil and the phenol derived from plant is not specifically limited, It is preferable to contain 10-50 weight part of plant derived phenols with respect to 100 weight part of epoxy resin derived from dietary oil. Moreover, it does not specifically limit about the addition amount of a hardening accelerator or a filler, It is preferable to determine addition amount in view of the physical property of the hardened | cured material finally obtained.

硬化促進剤には、イミダゾール系、三級アミン、芳香族アミンなどが使用できる。充填剤には、シリカやアルミナを使用することができるが、充填剤と樹脂の界面を調整するため、シランカップリング剤を添加してもよい。   As the curing accelerator, imidazole, tertiary amine, aromatic amine and the like can be used. Silica or alumina can be used as the filler, but a silane coupling agent may be added to adjust the interface between the filler and the resin.

植物油由来のエポキシ樹脂と植物由来ポリフェノールとを混合した状態では、植物由来ポリフェノールが植物油由来のエポキシ樹脂中に分散した状態である。この混合物を所定の温度、圧力、時間、攪拌条件で処理することで、植物由来のエポキシ樹脂と植物由来ポリフェノールの一部とが架橋構造を形成した、液状の相溶物を得ることができる。   In a state where the vegetable oil-derived epoxy resin and the plant-derived polyphenol are mixed, the plant-derived polyphenol is dispersed in the vegetable oil-derived epoxy resin. By treating this mixture under a predetermined temperature, pressure, time, and stirring conditions, a liquid compatible material in which a plant-derived epoxy resin and a part of the plant-derived polyphenol form a crosslinked structure can be obtained.

この相溶物の粘度は、80℃で10000mPa・s以下であることが好ましい。さらに、80℃で1000mPa・s以下であることがより好ましい。   The viscosity of the compatible material is preferably 10,000 mPa · s or less at 80 ° C. Furthermore, it is more preferable that it is 1000 mPa * s or less at 80 degreeC.

繊維材料(基材)には、ガラス繊維、炭素繊維、芳香族ポリアミド繊維、炭化珪素繊維、アルミナ繊維等公知の繊維材料を用いることができる。低誘電性(低比誘電率、低誘電正接)を有するガラス繊維からなるガラスクロスが好ましい。繊維材料の厚みは、特に限定されるものではないが、10〜300μmが好ましく、20〜200μmがより好ましく、さらに50〜180μmが好ましい。   As the fiber material (base material), known fiber materials such as glass fiber, carbon fiber, aromatic polyamide fiber, silicon carbide fiber, and alumina fiber can be used. A glass cloth made of glass fibers having low dielectric properties (low relative dielectric constant, low dielectric loss tangent) is preferable. Although the thickness of a fiber material is not specifically limited, 10-300 micrometers is preferable, 20-200 micrometers is more preferable, Furthermore, 50-180 micrometers is preferable.

ガラスクロス等の繊維材料には、糸束内部に含浸した樹脂とガラス繊維との接着性を向上させるために、予め表面処理が施されていることが好ましい。該表面処理に用いる表面処理剤としては、例えば、アミノシラン系化合物、ビニルシラン系化合物、スチレン系シラン化合物、メタクリルシラン系化合物等のシランカップリング剤を挙げることができる。特に、メタクリルシラン系、及びビニルシラン系がビニルベンジル化合物との組合せにおいて好適である。   The fiber material such as glass cloth is preferably subjected to surface treatment in advance in order to improve the adhesion between the resin impregnated in the yarn bundle and the glass fiber. Examples of the surface treatment agent used for the surface treatment include silane coupling agents such as aminosilane compounds, vinylsilane compounds, styrene silane compounds, and methacrylsilane compounds. In particular, methacrylic silanes and vinyl silanes are preferred in combination with vinyl benzyl compounds.

メタクリルシラン系化合物としては、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン等が例示される。   Examples of the methacrylic silane compound include γ-methacryloxypropyltrimethoxysilane and γ-methacryloxypropylmethyldimethoxysilane.

以下、具体的に実施例を挙げて本発明の実施形態に係るエポキシ樹脂複合材料、及びその製造方法について説明する。なお、本発明に係るエポキシ樹脂複合材料は、下記実施例に限定されるものではなく、各工程での加熱温度や加熱時間等は、用いるエポキシ樹脂や植物由来ポリフェノール等の種類により適宜決定すればよい。   Hereinafter, the epoxy resin composite material according to the embodiment of the present invention and the manufacturing method thereof will be described with specific examples. In addition, the epoxy resin composite material according to the present invention is not limited to the following examples, and the heating temperature and heating time in each step may be appropriately determined depending on the type of epoxy resin or plant-derived polyphenol used. Good.

エポキシ化亜麻仁油の硬化剤である没食子酸誘導体として、ピロガロール及び没食子酸プロピルを用いた。そして、硬化促進剤としてはイミダゾールを用いた。これらを混合したのち、得られた混合物を繊維材料(基材)に含浸させ、加熱処理を行うことでエポキシ樹脂複合材料(例えば、プリプレグ)を得た。そして、該エポキシ樹脂複合材料をさらに熱処理することにより該エポキシ樹脂複合材料の硬化物を得た。   Pyrogallol and propyl gallate were used as gallic acid derivatives that are curing agents for epoxidized linseed oil. And imidazole was used as a hardening accelerator. After mixing these, the obtained mixture was impregnated into a fiber material (base material) and subjected to heat treatment to obtain an epoxy resin composite material (for example, prepreg). And the hardened | cured material of this epoxy resin composite material was obtained by heat-processing this epoxy resin composite material further.

エポキシ化植物油としては、エポキシ化亜麻仁油((株)ADEKA、エポキシ化アマニ油(品名アデカサイザー O−180A))、硬化剤(ポリフェノール)としてピロガロール(富士化学工業株式会社製)、没食子酸プロピル(富士化学工業株式会社製)を用いた。硬化促進剤としては、2−エチル−4−メチル−イミダゾール(四国化成工業(株)、品名キュアゾール 2E4MZ)を用いた。   As the epoxidized vegetable oil, epoxidized linseed oil (ADEKA, epoxidized linseed oil (product name: Adeka Sizer O-180A)), pyrogallol (manufactured by Fuji Chemical Industry Co., Ltd.), propyl gallate (polyphenol) as a curing agent (polyphenol) Fuji Chemical Industry Co., Ltd.) was used. As a curing accelerator, 2-ethyl-4-methyl-imidazole (Shikoku Kasei Kogyo Co., Ltd., product name Curesol 2E4MZ) was used.

また、繊維材料には、熱硬化性樹脂用ガラスクロスを使用した。本実施例では、熱硬化性樹脂用グラスファイバーシリーズ((株)日清紡)を用いた。   Moreover, the glass cloth for thermosetting resins was used for the fiber material. In this example, glass fiber series for thermosetting resin (Nisshinbo Co., Ltd.) was used.

まず、エポキシ化亜麻仁油100重量部に対して、ピロガロールまたは没食子酸プロピルを35重量部添加し、150℃で5分加熱処理し、エポキシ化亜麻仁油とピロガロール(または没食子酸プロピル)を相溶させた(相溶工程)。   First, to 100 parts by weight of epoxidized linseed oil, 35 parts by weight of pyrogallol or propyl gallate is added and heat-treated at 150 ° C. for 5 minutes to make epoxidized linseed oil and pyrogallol (or propyl gallate) compatible. (Compatible process).

本発明でいう相溶とは、主剤(例えば、エポキシ化亜麻仁油)と硬化剤(例えば、ピロガロール)の混合物がクリアな外観を有するものを意味する。相溶させると、植物油由来エポキシ樹脂と植物由来ポリフェノールとの一部が架橋構造を形成した液状の相溶物が得られる。この相溶物の架橋の範囲は、1〜80%、好ましくは1〜50%、より好ましくは1〜20%である。前記架橋の範囲は、相溶物の温度、及び加熱時間により制御することができる。なお、相溶させる温度、及び加熱時間は、主剤と硬化剤により適宜決定すればよいが、硬化剤の融点以下の温度で相溶させると硬化剤の気化を抑制できるため好ましい。   The term “compatible” as used in the present invention means that a mixture of a main agent (for example, epoxidized linseed oil) and a curing agent (for example, pyrogallol) has a clear appearance. When compatible, a liquid compatible material in which a part of the vegetable oil-derived epoxy resin and the plant-derived polyphenol forms a crosslinked structure is obtained. The range of cross-linking of this compatible material is 1 to 80%, preferably 1 to 50%, more preferably 1 to 20%. The range of the crosslinking can be controlled by the temperature of the compatible material and the heating time. The compatible temperature and the heating time may be appropriately determined depending on the main agent and the curing agent, but it is preferable to perform the compatibility at a temperature equal to or lower than the melting point of the curing agent because vaporization of the curing agent can be suppressed.

この相溶物に対して、硬化促進剤を3重量部添加した。そして、硬化促進剤が添加された相溶物をガラスクロスに含浸させ(含浸工程)、130℃で2時間加熱処理し、プリプレグを得た(加熱処理工程)。   3 parts by weight of a curing accelerator was added to this compatible material. Then, the glass cloth was impregnated with the compatible material to which the curing accelerator was added (impregnation step), and heat-treated at 130 ° C. for 2 hours to obtain a prepreg (heat treatment step).

加熱処理工程では、エポキシ化亜麻仁油とピロガロール(または、没食子酸プロピル)の相溶物が半硬化状(Bステージ)となるように処理する。加熱処理温度、及び加熱処理時間は、実施例に限定されるものではなく、使用環境や保存状態を鑑みて、加熱処理温度、及び加熱処理時間等の条件を決定するとよい。つまり、加熱温度や加熱時間を調節することにより、プリプレグの硬さを調整すればよい。   In the heat treatment step, the epoxidized linseed oil and pyrogallol (or propyl gallate) are treated so as to be semi-cured (B stage). The heat treatment temperature and the heat treatment time are not limited to the examples, and conditions such as the heat treatment temperature and the heat treatment time may be determined in consideration of the use environment and the storage state. That is, the hardness of the prepreg may be adjusted by adjusting the heating temperature and the heating time.

なお、含浸工程において、前記相溶物を冷却した後に、硬化促進剤等を加えてガラスクロスに含浸させると、該相溶物の硬化速度を低下させることができる。すなわち、含浸作業時間を確保し、硬化促進剤等を均一に分散させることができる。すなわち、得られる硬化物の物性に対する信頼性が向上する。ここで、冷却温度は、70℃以下であればよい。   In the impregnation step, when the compatible material is cooled and then a curing accelerator or the like is added to impregnate the glass cloth, the curing rate of the compatible material can be reduced. That is, the impregnation work time can be secured and the curing accelerator and the like can be uniformly dispersed. That is, the reliability with respect to the physical properties of the obtained cured product is improved. Here, the cooling temperature should just be 70 degrees C or less.

また、含浸工程において、前記相溶物の温度を100℃以下に加熱し、前記相溶物を繊維材料に含浸することで、該相溶物の粘度を低下させ、該相溶物を繊維材料に隙間なく含浸させることができる。   Further, in the impregnation step, the temperature of the compatible material is heated to 100 ° C. or lower, and the fiber material is impregnated with the compatible material, thereby reducing the viscosity of the compatible material, and the compatible material is made into the fiber material. Can be impregnated without gaps.

さらに、得られたプリプレグを150℃で10時間熱処理し、プリプレグを硬化させた(硬化工程)。なお、硬化工程における処理温度、及び処理時間により得られる硬化物の物性(Tg等)が変化する。したがって、処理温度、及び処理時間は、得られる硬化物の物性を鑑みて適宜決定するとよい。   Furthermore, the obtained prepreg was heat-treated at 150 ° C. for 10 hours to cure the prepreg (curing step). In addition, the physical properties (Tg etc.) of the hardened | cured material obtained by the process temperature in a hardening process and process time change. Accordingly, the treatment temperature and the treatment time may be appropriately determined in view of the physical properties of the obtained cured product.

この硬化工程で熱処理することにより得られた硬化物の物性評価を行った。硬化物の評価方法は、耐熱性を示すTg、体積抵抗率で行った。   The physical properties of the cured product obtained by heat treatment in this curing step were evaluated. The evaluation method of hardened | cured material was performed by Tg and volume resistivity which show heat resistance.

Tgは加熱処理によって得られた硬化物(Tg測定ではプリプレグではなく、相溶物をそのまま加熱硬化したものを用いた)を4mmφ×15mmの円柱状に切り出し、TMA法によって線膨張率の変曲点から求めた。体積抵抗率はJIS K 6911に準拠し、1000Vの直流電圧印加で求めた。   Tg was obtained by cutting a cured product obtained by heat treatment (not a prepreg but using a heat-cured compatible material as it was in Tg measurement) into a 4 mmφ × 15 mm cylindrical shape, and changing the linear expansion coefficient by the TMA method. Obtained from the point. The volume resistivity was determined in accordance with JIS K 6911 by applying a DC voltage of 1000V.

Tgの測定結果は、ピロガロールを用いた場合、及び没食子酸プロピルを用いた場合においても、約80℃であった。   The measurement result of Tg was about 80 ° C. when pyrogallol was used and when propyl gallate was used.

また、体積抵抗率の測定結果は、ピロガロールを用いた場合、及び没食子酸プロピルを用いた場合においても、55E+14Ω・cmであった。   Moreover, the measurement result of the volume resistivity was 55E + 14 Ω · cm even when pyrogallol was used and when propyl gallate was used.

以上、Tg、及び体積抵抗率の測定結果より、本発明の実施例に係るエポキシ樹脂複合材料は、Tgが室温以上であり、絶縁性能に優れた絶縁物であることがわかる。したがって、電気絶縁材料として使用することが可能であり、例えば、回転機の巻き線部の絶縁補強や機械的物性の向上(回転機の導体絶縁等)に用いることができる。   As mentioned above, it can be seen from the measurement results of Tg and volume resistivity that the epoxy resin composite material according to the example of the present invention is an insulator having a Tg of room temperature or more and excellent insulation performance. Therefore, it can be used as an electrical insulating material, and can be used, for example, for insulation reinforcement of a winding portion of a rotating machine and improvement of mechanical properties (conductor insulation of a rotating machine, etc.).

また、本発明に係るエポキシ樹脂複合材料の製造方法によれば、非石油原料であるエポキシ樹脂と没食子酸誘導体を原料として、Tgが室温以上であり絶縁性能に優れた絶縁物からなるエポキシ樹脂複合材料(例えば、プリプレグ)を得ることができる。   In addition, according to the method for producing an epoxy resin composite material according to the present invention, an epoxy resin composite comprising an epoxy resin and a gallic acid derivative which are non-petroleum raw materials and an insulating material having a Tg of room temperature or more and excellent insulation performance A material (eg, prepreg) can be obtained.

したがって、本発明に係るエポキシ樹脂複合材料の製造方法は、例えば、回転機絶縁システムの製造方法におけるヒートプレスコイル成型方法に適用でき、コイル導体にプリプレグを巻きつけ、加熱加圧して所定の寸法に成型して仕上げることができる。そして、本発明に係るエポキシ樹脂複合材料の製造方法は、風力発電機、水力発電機、大型ディーゼル発電機の固定子の製造方法等に適用することができる。   Therefore, the method for producing an epoxy resin composite material according to the present invention can be applied to, for example, a heat press coil molding method in a method for producing a rotating machine insulation system. A prepreg is wound around a coil conductor, and heated and pressed to a predetermined size. Can be molded and finished. And the manufacturing method of the epoxy resin composite material which concerns on this invention is applicable to the manufacturing method of the stator of a wind power generator, a hydroelectric generator, a large sized diesel generator, etc.

また、植物油由来のエポキシ樹脂と没食子酸誘導体を相溶させて得られる相溶体を繊維材料(基材)に含浸させることで、該相溶体に添加する硬化促進剤や充填剤、シランカップリング剤などの混合・分散が良好となり、均一な硬化物を得ることができ、硬化物の物性が均一になる。   In addition, by impregnating a fiber material (base material) with a compatible solution obtained by compatibilizing an epoxy resin derived from vegetable oil and a gallic acid derivative, a curing accelerator or filler added to the compatible material, a silane coupling agent The mixing / dispersion of the above becomes good, a uniform cured product can be obtained, and the physical properties of the cured product become uniform.

さらに、植物油由来のエポキシ樹脂と没食子酸誘導体を相溶させて得られる相溶体を冷却することにより、該相溶体を繊維材料(基材)に含浸させる時間を確保することができるので、相溶体とガラス繊維との接着性が向上する。   Furthermore, by cooling a compatible solution obtained by compatibilizing an epoxy resin derived from vegetable oil and a gallic acid derivative, it is possible to ensure time for impregnating the compatible material into the fiber material (base material). Adhesion between glass and glass fiber is improved.

Claims (4)

1種類以上のエポキシ化植物油と1種類以上の植物由来ポリフェノール誘導体を相溶させて得られる相溶物を基材に含浸させ、該相溶物が含浸された基材を加熱処理してなる
ことを特徴とするエポキシ樹脂複合材料。
Impregnating a base material with a compatible material obtained by compatibilizing one or more types of epoxidized vegetable oil and one or more types of plant-derived polyphenol derivatives, and heating the base material impregnated with the compatible material Epoxy resin composite material.
前記植物由来ポリフェノール誘導体は、没食子酸誘導体である
ことを特徴とする請求項1に記載のエポキシ樹脂複合材料。
The epoxy resin composite material according to claim 1, wherein the plant-derived polyphenol derivative is a gallic acid derivative.
前記エポキシ化植物油は、エポキシ化亜麻仁油である
ことを特徴とする請求項1または請求項2に記載のエポキシ樹脂複合材料。
The epoxy resin composite material according to claim 1, wherein the epoxidized vegetable oil is an epoxidized linseed oil.
1種類以上のエポキシ化植物油と1種類以上の植物由来ポリフェノール誘導体を相溶させる相溶工程と、
前記相溶工程で得られた相溶物を基材に含浸させる含浸工程と、
前記含浸工程で得られた前記相溶物が含浸された基材を加熱処理する加熱処理工程と、
を備えた
ことを特徴とするエポキシ樹脂複合材料の製造方法。
A compatibility step of compatibilizing one or more epoxidized vegetable oils and one or more plant-derived polyphenol derivatives;
An impregnation step of impregnating a base material with a compatible material obtained in the compatibility step;
A heat treatment step of heat-treating the base material impregnated with the compatible material obtained in the impregnation step;
The manufacturing method of the epoxy resin composite material characterized by the above-mentioned.
JP2009230266A 2009-10-02 2009-10-02 Epoxy resin composite material and manufacturing method thereof Active JP5590544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009230266A JP5590544B2 (en) 2009-10-02 2009-10-02 Epoxy resin composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230266A JP5590544B2 (en) 2009-10-02 2009-10-02 Epoxy resin composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011074337A true JP2011074337A (en) 2011-04-14
JP5590544B2 JP5590544B2 (en) 2014-09-17

Family

ID=44018652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230266A Active JP5590544B2 (en) 2009-10-02 2009-10-02 Epoxy resin composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5590544B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333880A (en) * 2020-04-21 2020-06-26 万华化学集团股份有限公司 Super water-absorbing polymer and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102400A (en) * 1976-05-14 1978-09-06 Dainippon Toryo Co Ltd Solventiless epoxy resin composition having chelate formability
JPS57192428A (en) * 1981-05-20 1982-11-26 Ajinomoto Co Inc One-pack type epoxy resin composition
JP2008138061A (en) * 2006-12-01 2008-06-19 Meidensha Corp Insulating polymer material composition
JP2009046646A (en) * 2007-07-23 2009-03-05 Panasonic Electric Works Co Ltd Plant-derived composition and its cured product
JP2010254820A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Plant-derived composition, method for producing the same and molded product
JP2011063682A (en) * 2009-09-16 2011-03-31 Chubu Electric Power Co Inc Liquid epoxy resin composition, insulating polymer material composition and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102400A (en) * 1976-05-14 1978-09-06 Dainippon Toryo Co Ltd Solventiless epoxy resin composition having chelate formability
JPS57192428A (en) * 1981-05-20 1982-11-26 Ajinomoto Co Inc One-pack type epoxy resin composition
JP2008138061A (en) * 2006-12-01 2008-06-19 Meidensha Corp Insulating polymer material composition
JP2009046646A (en) * 2007-07-23 2009-03-05 Panasonic Electric Works Co Ltd Plant-derived composition and its cured product
JP2010254820A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Plant-derived composition, method for producing the same and molded product
JP2011063682A (en) * 2009-09-16 2011-03-31 Chubu Electric Power Co Inc Liquid epoxy resin composition, insulating polymer material composition and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333880A (en) * 2020-04-21 2020-06-26 万华化学集团股份有限公司 Super water-absorbing polymer and preparation method thereof
CN111333880B (en) * 2020-04-21 2022-04-22 万华化学集团股份有限公司 Super water-absorbing polymer and preparation method thereof

Also Published As

Publication number Publication date
JP5590544B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5611182B2 (en) Dry mica tape, and electrically insulated wire ring and rotating electric machine using the same
JP4961692B2 (en) insulator
RU2704804C2 (en) Solid insulating material, use of solid insulating material and electric machine
WO2009109216A1 (en) Electrical hollow core insulator
WO2009062543A1 (en) Fiber-reinforced composite system as electrical insulation
RU2609914C2 (en) Insulating composite materials for electric power transmission and distribution systems
KR20100074171A (en) Polymer concrete electrical insulation system
CA3016634A1 (en) A process for the preparation of insulation systems for electrical engineering, the articles obtained therefrom and the use thereof
CN108068415A (en) Electrical insulation system and the insulating element for motor
CN100420715C (en) Solventless immersion resin used for high voltage electric machine vacuum pressure immersion
Luo et al. Dielectric and mechanical properties of diglycidyl ether of bisphenol a modified by a new fluoro‐terminated hyperbranched poly (phenylene oxide)
JP2016072301A (en) Insulation material, isolated coil using the insulation material, manufacturing method thereof and device including the isolated coil
JP2010193673A (en) Dry mica tape, electrical insulation coil using it, stator coil, and rotary electric machine
JP5590544B2 (en) Epoxy resin composite material and manufacturing method thereof
CN105484103A (en) Preparation method for epoxy-resin-combined modified vegetable-fiber insulation paper
JP5499863B2 (en) Insulating polymer material composition and method for producing the same
JP4476646B2 (en) Insulating resin composition for high voltage equipment, insulating material and method for producing the same, and insulating structure
CN1443818A (en) High-strength epoxy impregnating varnish capable of using at ultra-low temp. and its preparation and application method
CN106065161B (en) A kind of composition epoxy resin of good insulating and application thereof
KR20140148081A (en) Low temperature curing epoxy resin composition, prepreg using the same, and low temperature curing fiber reinforced polymer composites laminating the prepreg
JP5366208B2 (en) Insulating polymer material composition and method for producing the same
WO2008000104A1 (en) Nano-composite dielectrics
JP2009099333A (en) Insulating composition for high-voltage device
CN110815960B (en) Accelerant-containing expanded felt material and preparation method thereof
CN113214602B (en) Insulating resin composite material, high-voltage insulating sleeve, and preparation methods and applications thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140723

R150 Certificate of patent or registration of utility model

Ref document number: 5590544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250