JP4476646B2 - Insulating resin composition for high voltage equipment, insulating material and method for producing the same, and insulating structure - Google Patents

Insulating resin composition for high voltage equipment, insulating material and method for producing the same, and insulating structure Download PDF

Info

Publication number
JP4476646B2
JP4476646B2 JP2004059854A JP2004059854A JP4476646B2 JP 4476646 B2 JP4476646 B2 JP 4476646B2 JP 2004059854 A JP2004059854 A JP 2004059854A JP 2004059854 A JP2004059854 A JP 2004059854A JP 4476646 B2 JP4476646 B2 JP 4476646B2
Authority
JP
Japan
Prior art keywords
equipment
clay mineral
insulating
layered clay
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004059854A
Other languages
Japanese (ja)
Other versions
JP2005251543A (en
Inventor
隆浩 今井
史雄 澤
多文 尾崎
敏夫 清水
哲夫 吉満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004059854A priority Critical patent/JP4476646B2/en
Publication of JP2005251543A publication Critical patent/JP2005251543A/en
Application granted granted Critical
Publication of JP4476646B2 publication Critical patent/JP4476646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Description

本発明は、例えば発電機、回転電機、送変電機器等の高電圧機器に用いられる絶縁樹脂組成物、それを用いた絶縁材料とその製造方法、および絶縁構造体に関する。   The present invention relates to an insulating resin composition used for high voltage devices such as a generator, a rotating electrical machine, and a power transmission / transformation device, an insulating material using the same, a manufacturing method thereof, and an insulating structure.

発電機や回転電機等に組み込まれる絶縁コイルは、電気を流すための導体と、導体同士間や導体と対地間を遮断するための絶縁層とを具備する。このような絶縁コイルの絶縁層には絶縁樹脂材料が使用されている。また、六弗化硫黄ガス絶縁開閉装置や管路気中送電装置等の送変電機器においては、例えば金属容器内で高圧導体を絶縁支持する絶縁部材として絶縁樹脂の注型部材が用いられている。このような高電圧機器の絶縁構造部材には、電気絶縁性、化学的安定性、機械的強度、耐熱性、コスト等の観点から、一般的にエポキシ樹脂をベース材料とする絶縁樹脂材料が用いられている。   An insulating coil incorporated in a generator, a rotating electrical machine, or the like includes a conductor for flowing electricity and an insulating layer for blocking between conductors or between the conductor and ground. An insulating resin material is used for the insulating layer of such an insulating coil. In addition, in a power transmission and transformation device such as a sulfur hexafluoride gas insulated switchgear and an in-pipe power transmission device, a cast member made of an insulating resin is used as an insulating member that insulates and supports a high voltage conductor in a metal container, for example. . Insulating resin materials based on epoxy resins are generally used for the insulating structural members of such high voltage devices from the viewpoint of electrical insulation, chemical stability, mechanical strength, heat resistance, cost, etc. It has been.

上述したような用途において、エポキシ樹脂は硬質無焼成集成マイカや硬質焼成集成マイカ等からなるマイカ紙に塗布した含浸樹脂や、シリカ、アルミナ、窒化ホウ素等の無機質充填剤を配合した注型樹脂等として使用されている。このように、高電圧機器の絶縁構造部材においては、エポキシ樹脂をマイカ紙やシリカ粒子等の無機化合物と複合化することで必要な特性を得ている。   In applications such as those mentioned above, epoxy resins are impregnated resins applied to mica paper made of hard unfired laminated mica, hard fired laminated mica, etc., and casting resins containing inorganic fillers such as silica, alumina, boron nitride, etc. It is used as As described above, in the insulating structure member of the high voltage device, necessary properties are obtained by combining the epoxy resin with an inorganic compound such as mica paper or silica particles.

ところで、高分子化合物と無機化合物とを組合せることで、その使用目的に応じた特性を付与する有機/無機複合材料の開発において、近年、層状粘土鉱物をポリアミド樹脂等の熱可塑性樹脂に分散させることによって、機械強度や耐熱性等の特性を向上させた複合材料が提案されている(例えば特許文献1〜3参照)。このような層状粘土鉱物を用いた有機/無機複合材料を製造するにあたっては、層状粘土鉱物の凝集を抑制し、樹脂中に均一に分散させる技術が不可欠である。   By the way, in the development of organic / inorganic composite materials that combine a polymer compound and an inorganic compound to impart characteristics according to the purpose of use, in recent years, lamellar clay minerals are dispersed in a thermoplastic resin such as a polyamide resin. Therefore, composite materials with improved characteristics such as mechanical strength and heat resistance have been proposed (see, for example, Patent Documents 1 to 3). In manufacturing an organic / inorganic composite material using such a layered clay mineral, a technique for suppressing the aggregation of the layered clay mineral and uniformly dispersing it in the resin is indispensable.

上記した層状粘土鉱物の均一分散技術に関して、例えば特許文献1にはアイオノマー樹脂に有機化クレイを添加、混合し、これを加熱溶融すると共に、2軸型の押出し混合機等を使用してせん断力を加えることによって、層状粘土鉱物をアイオノマー樹脂中で均一分散させる技術が記載されている。また、特許文献2および特許文献3には、水、トリポリリン酸塩、ポリアクリル酸塩等の分散媒体に層状粘土鉱物を分散させた分散溶液を調製し、この分散溶液をポリアミド樹脂等の熱可塑性樹脂に混合することによって、層状粘土鉱物を樹脂中に均一分散させる技術が記載されている。   Regarding the above-mentioned uniform dispersion technology of layered clay minerals, for example, in Patent Document 1, organic clay is added to and mixed with an ionomer resin, and this is heated and melted, and a shearing force is obtained using a biaxial extrusion mixer or the like. Describes a technique for uniformly dispersing a lamellar clay mineral in an ionomer resin by adding. In Patent Document 2 and Patent Document 3, a dispersion solution in which a layered clay mineral is dispersed in a dispersion medium such as water, tripolyphosphate, and polyacrylate is prepared, and this dispersion solution is used as a thermoplastic resin such as a polyamide resin. A technique is described in which a layered clay mineral is uniformly dispersed in a resin by mixing with the resin.

しかしながら、特許文献1に記載の層状粘土鉱物の均一分散技術は、樹脂を加熱により溶融して混合する方法であるため、加熱温度で粘度を制御することが可能なアイオノマー樹脂やポリアミド樹脂等の熱可塑性樹脂には効果的であるものの、熱により硬化するエポキシ樹脂等の熱硬化性樹脂には適用することができない。   However, since the uniform dispersion technique of the layered clay mineral described in Patent Document 1 is a method in which a resin is melted and mixed by heating, heat such as an ionomer resin or a polyamide resin capable of controlling the viscosity at the heating temperature. Although effective for plastic resins, it is not applicable to thermosetting resins such as epoxy resins that are cured by heat.

また、特許文献2や特許文献3に記載の層状粘土鉱物の均一分散技術では、分散溶液の調製に使用した水、トリポリリン酸塩、ポリアクリル酸塩等の分散媒体を最終的に除去する必要があるため、工業的に適した方法であるとは言えない。加えて、層状粘土鉱物の分散溶液を樹脂と混合した後に分散媒体の除去を行っても、分散媒体を樹脂から完全に除去することは困難であるため、高分子量の樹脂中に低分子量の分散媒体が存在することになり、絶縁樹脂材料の機械強度や耐熱性の低下を引き起こすおそれがある。
特開平10-324810号公報 特開平10-158431号公報 特開平9-111116号公報
Moreover, in the uniform dispersion technique of the layered clay mineral described in Patent Document 2 and Patent Document 3, it is necessary to finally remove the dispersion medium such as water, tripolyphosphate, and polyacrylate used for preparing the dispersion solution. Therefore, it cannot be said that the method is industrially suitable. In addition, even if the dispersion medium is removed after mixing the dispersion solution of the layered clay mineral with the resin, it is difficult to completely remove the dispersion medium from the resin. Therefore, the low molecular weight dispersion in the high molecular weight resin is difficult. There is a medium, and there is a possibility that the mechanical strength and heat resistance of the insulating resin material are lowered.
Japanese Patent Laid-Open No. 10-324810 Japanese Patent Laid-Open No. 10-158431 Japanese Patent Laid-Open No. 9-111116

上述したように、高電圧機器用の絶縁構造部材(絶縁材料)において、層状粘土鉱物は絶縁樹脂材料の機械強度や耐熱性等の向上に有効であるものの、層状粘土鉱物を樹脂中に均一分散させることが不可欠である。このような点に対して、従来の層状粘土鉱物を用いた絶縁樹脂材料はアイオノマー樹脂やポリアミド樹脂等の熱可塑性樹脂をベース材料としているため、ここで適用している層状粘土鉱物の均一分散方法はエポキシ樹脂等の熱硬化性樹脂には適用することができないという問題や、硬化後の絶縁樹脂材料の機械強度や耐熱性等を低下させるというような問題があった。   As described above, layered clay minerals are effective in improving the mechanical strength and heat resistance of insulating resin materials in insulating structural members (insulating materials) for high-voltage equipment, but the layered clay minerals are uniformly dispersed in the resin. Is essential. In contrast, conventional insulating resin materials using layered clay minerals are based on thermoplastic resins such as ionomer resins and polyamide resins, so the method of uniformly dispersing layered clay minerals applied here Has a problem that it cannot be applied to a thermosetting resin such as an epoxy resin, and a problem that mechanical strength, heat resistance, and the like of an insulating resin material after curing are lowered.

本発明はこのような課題に対処するためになされたものであり、熱硬化性樹脂であるエポキシ樹脂中に層状粘土鉱物を分散させるにあたって、分散媒体による樹脂硬化物の機械強度や耐熱性等の低下を抑制した上で、エポキシ樹脂中に層状粘土鉱物を均一分散させることを可能にした高電圧機器用絶縁樹脂組成物、そのような絶縁樹脂組成物を用いることで絶縁特性や耐熱性等を再現性よく向上させることを可能にした高電圧機器用絶縁材料とその製造方法、さらにはそのような絶縁材料を用いた高電圧機器用絶縁構造体を提供することを目的としている。   The present invention has been made to cope with such problems, and in dispersing the layered clay mineral in the epoxy resin, which is a thermosetting resin, the mechanical strength, heat resistance, etc. of the cured resin by the dispersion medium. Insulating resin composition for high voltage equipment that enables uniform dispersion of layered clay minerals in epoxy resin while suppressing the deterioration, insulation characteristics and heat resistance etc. by using such insulating resin composition An object of the present invention is to provide an insulating material for high voltage equipment that can be improved with good reproducibility, a manufacturing method thereof, and an insulating structure for high voltage equipment using such an insulating material.

本発明の発電機器・送変電機器用絶縁樹脂組成物は、(A)1分子当たり2個以上のエポキシ基を有するエポキシ樹脂と、(B)エポキシ樹脂用硬化剤と、(C)層状粘土鉱物と、(D)前記(B)成分に対して反応性を有する反応性溶媒を50体積%以上含む分散媒体とを、必須成分として含有する組成物であって、前記(A)成分100質量部に対して前記(D)成分を1〜100質量部含有し、かつ前記反応性溶媒が1分子当たり1個のエポキシ基を有する有機化合物からなることを特徴としている。また、本発明の発電機器・送変電機器用絶縁材料は、上記した本発明の発電機器・送変電機器用絶縁樹脂組成物の硬化物からなることを特徴としている。 The insulating resin composition for power generation equipment / transmission / transformation equipment of the present invention comprises (A) an epoxy resin having two or more epoxy groups per molecule, (B) a curing agent for epoxy resin, and (C) a layered clay mineral. And (D) a dispersion medium containing 50% by volume or more of a reactive solvent having reactivity with the component (B) as an essential component, and 100 parts by mass of the component (A) The component (D) is contained in an amount of 1 to 100 parts by mass, and the reactive solvent is composed of an organic compound having one epoxy group per molecule . Further, the power generation equipment and transmission substation equipment dexterity insulating material of the present invention is characterized by comprising a cured product of the power generation equipment and transmission substation equipment insulating resin composition of the present invention described above.

本発明の発電機器・送変電機器用絶縁材料の製造方法は、(A)1分子当たり2個以上のエポキシ基を有するエポキシ樹脂と、(B)エポキシ樹脂用硬化剤と、(C)層状粘土鉱物と、(D)1分子当たり1個のエポキシ基を有する有機化合物からなる前記(B)成分に対して反応性を有する反応性溶媒を50体積%以上含む、前記(A)成分100質量部に対して1〜100質量部の分散媒体とを用いて、発電機器・送変電機器用絶縁材料を製造するにあたり、前記反応性溶媒を含む分散媒体中で前記層状粘土鉱物を膨潤させる工程と、前記分散媒体で膨潤させた層状粘土鉱物を前記エポキシ樹脂中に混合する工程と、前記混合物に前記エポキシ樹脂用硬化剤を添加して混合する工程と、前記硬化剤を含む混合物を所望の形状に成形する工程と、前記成形体を前記硬化剤により硬化させる工程とを具備することを特徴としている。 The method for producing an insulating material for power generation equipment / transmission / transformation equipment according to the present invention includes (A) an epoxy resin having two or more epoxy groups per molecule, (B) a curing agent for epoxy resin, and (C) layered clay. 100 parts by mass of the component (A) containing 50% by volume or more of a reactive solvent having reactivity with the component (B), which is composed of a mineral and an organic compound having (D) one epoxy group per molecule In producing an insulating material for power generation equipment and power transmission and transformation equipment using 1 to 100 parts by mass of the dispersion medium, a step of swelling the layered clay mineral in the dispersion medium containing the reactive solvent; The step of mixing the layered clay mineral swollen with the dispersion medium into the epoxy resin, the step of adding and mixing the curing agent for epoxy resin to the mixture, and the mixture containing the curing agent into a desired shape Molding step and the molded body It is characterized by comprising a step of curing by the curing agent.

本発明の発電機器・送変電機器用絶縁構造体は、上記した本発明の発電機器・送変電機器用絶縁材料からなる絶縁部材を具備することを特徴としている。 The insulating structure for power generation equipment / transmission / transformation equipment according to the present invention is characterized by comprising an insulating member made of the above-described insulating material for power generation equipment / transmission / transformation equipment .

本発明の高電圧機器用絶縁樹脂組成物によれば、反応性溶媒を層状粘土鉱物の分散媒体として用いているため、層状粘土鉱物をエポキシ樹脂中に均一に分散させることができる。さらに、分散媒体としての反応性溶媒は硬化処理時にエポキシ樹脂硬化物中に取り込まれるため、エポキシ樹脂硬化物の耐熱性等の低下を抑制することができる。これらによって、層状粘土鉱物に基づいて機械強度や耐熱性等の向上させた高電圧機器用絶縁材料を再現性よく提供することが可能となる。さらに、このような高電圧機器用絶縁材料を用いた絶縁構造体によれば、高電圧機器の特性や信頼性等を向上させることができる。   According to the insulating resin composition for high voltage equipment of the present invention, since the reactive solvent is used as a dispersion medium for the layered clay mineral, the layered clay mineral can be uniformly dispersed in the epoxy resin. Furthermore, since the reactive solvent as the dispersion medium is taken into the cured epoxy resin during the curing process, it is possible to suppress a decrease in heat resistance or the like of the cured epoxy resin. By these, it becomes possible to provide with high reproducibility an insulating material for high voltage equipment having improved mechanical strength and heat resistance based on the layered clay mineral. Furthermore, according to the insulating structure using such an insulating material for high-voltage equipment, the characteristics and reliability of the high-voltage equipment can be improved.

以下、本発明を実施するための形態について説明する。本発明の一実施形態による高電圧機器用絶縁樹脂組成物は、(A)1分子当たり2個以上のエポキシ基を有するエポキシ樹脂と、(B)エポキシ樹脂用硬化剤と、(C)層状粘土鉱物と、(D)反応性溶媒を含む分散媒体とを必須成分として含有している。   Hereinafter, modes for carrying out the present invention will be described. An insulating resin composition for high-voltage devices according to an embodiment of the present invention includes (A) an epoxy resin having two or more epoxy groups per molecule, (B) a curing agent for epoxy resin, and (C) layered clay. It contains mineral and (D) a dispersion medium containing a reactive solvent as essential components.

上記した高電圧機器用絶縁樹脂組成物の必須成分のうち、(A)成分のエポキシ樹脂は1分子当たり2個以上のエポキシ基を有するエポキシ化合物からなるものである。このようなエポキシ化合物としては、炭素原子2個と酸素原子1個とからなる三員環を1分子中に2個以上持ち、硬化し得る化合物であれば適宜に使用可能であり、その種類は特に限定されるものではない。   Among the essential components of the above-described insulating resin composition for high voltage equipment, the epoxy resin of component (A) is composed of an epoxy compound having two or more epoxy groups per molecule. As such an epoxy compound, two or more three-membered rings composed of two carbon atoms and one oxygen atom in one molecule can be used as appropriate as long as they are curable compounds. It is not particularly limited.

(A)成分のエポキシ樹脂の具体例としては、エピクロルヒドリンとビスフェノール類等の多価フェノール類や多価アルコールとの縮合によって得られる、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリス(ヒドロキシフェニル)メタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂や、エピクロルヒドリンとガルボン酸との縮合によって得られるグリジジルエステル型エポキシ樹脂、トリグリシジルイソシアネートやエピクロルヒドリンとヒダントイン類との反応によって得られるヒダントイン型エポキシ樹脂のような複素環式エポキシ樹脂等が挙げられ、これらは単独もしくは2種以上の混合物として使用される。   Specific examples of the component (A) epoxy resin include bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, hydrogenated product obtained by condensation of epichlorohydrin with polyhydric phenols such as bisphenols and polyhydric alcohols. Bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, novolac type epoxy resin, phenol novolac type epoxy resin, Glycidyl ether type epoxy resins such as orthocresol novolac type epoxy resin, tris (hydroxyphenyl) methane type epoxy resin, tetraphenylolethane type epoxy resin, and epichlorohi Examples include glycidyl ester type epoxy resins obtained by condensation of phosphorus and galbonic acid, heterocyclic epoxy resins such as triglycidyl isocyanate and epidanhydrin and hydantoin type epoxy resins obtained by reaction of hydantoins, etc. Used alone or as a mixture of two or more.

(B)成分のエポキシ樹脂用硬化剤としては、エポキシ樹脂と化学反応してエポキシ樹脂を硬化させ得るものであれば適宜に使用可能であり、その種類は特に限定されるものではない。このようなエポキシ樹脂用硬化剤としては、例えばアミン系硬化剤、酸無水物系硬化剤、イミダゾール系硬化剤、ポリメルカプタン系硬化剤、フェノール系硬化剤、ルイス酸系硬化剤、イソシアネート系硬化剤等が挙げられる。   The epoxy resin curing agent (B) can be used as appropriate as long as it can chemically react with the epoxy resin to cure the epoxy resin, and the type thereof is not particularly limited. Examples of such curing agents for epoxy resins include amine curing agents, acid anhydride curing agents, imidazole curing agents, polymercaptan curing agents, phenol curing agents, Lewis acid curing agents, and isocyanate curing agents. Etc.

上記したアミン系硬化剤の具体例としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、ヘキサメチレンジアミン、ジプロプレンジアミン、ポリエーテルジアミン、2,5-ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチル)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、アミノエチルエタノールアミン、トリ(メチルアミノ)へキサン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、メチルイミノビスプロピルアミン、メンセンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロへキサン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、m-キシレンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、ジアミノジエチルジフェニルメタン、ジシアンジアミド、有機酸ジヒドラジド等が挙げられる。   Specific examples of the above-described amine curing agents include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, dipropylenediamine, polyether diamine, 2,5-dimethylhexamethylenediamine, trimethyl Hexamethylenediamine, diethylenetriamine, iminobispropylamine, bis (hexamethyl) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, aminoethylethanolamine, tri (methylamino) hexane, dimethylaminopropylamine, diethylaminopropyl Amine, methyliminobispropylamine, mensendiamine, isophoronediamine, bis (4-amino-3-methyldicyclohexyl) methane, diaminodicyclohexylmethane, bis ( Minomethyl) cyclohexane, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) 2,4,8,10-tetraoxaspiro (5,5) undecane, m-xylenediamine, metaphenylenediamine, Examples include diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiethyldiphenylmethane, dicyandiamide, and organic acid dihydrazide.

酸無水物系硬化剤の具体例としては、ドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリ(エチルオクタデカン二酸)無水物、ポリ(フェニルヘキサデカン二酸)無水物、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルハイミック酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロへキセンジカルボン酸無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、無水ヘット酸、テトラブロモ無水フタル酸、無水ナジック酸、無水メチルナジック酸、無水ポリアゼライン酸等が挙げられる。   Specific examples of acid anhydride curing agents include dodecenyl succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydride, poly (ethyloctadecanedioic acid) anhydride, poly (phenylhexadecanedioic acid) Anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhymic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexenedicarboxylic anhydride, phthalic anhydride , Trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid, ethylene glycol bis trimellitate, glycerol tris trimellitate, het anhydride, tetrabromophthalic anhydride, nadic anhydride, methyl nadic anhydride, poly Etc. Zerain acid, and the like.

イミダゾール系硬化剤の具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール等が挙げられる。また、ポリメルカプタン系硬化剤の具体例としては、ポリサルファイド、チオエステル等が挙げられる。上述した硬化剤はいずれも単独もしくは2種類以上の混合物として使用することができる。   Specific examples of the imidazole curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-heptadecylimidazole and the like. Specific examples of the polymercaptan curing agent include polysulfide and thioester. Any of the above-mentioned curing agents can be used alone or as a mixture of two or more.

(B)成分のエポキシ樹脂用硬化剤の配合量は、使用した硬化剤の種類等に応じて有効量の範囲内で適宜に設定されるものであるが、一般的には(A)成分のエポキシ当量に対して1/2当量〜2当量の範囲とすることが好ましい。(B)成分の硬化剤の配合量が(A)成分のエポキシ当量に対して1/2当量未満であると、(A)成分のエポキシ樹脂の硬化反応を十分に生起することができないおそれがある。一方、(B)成分の硬化剤の配合量が(A)成分のエポキシ当量に対して2当量を超えると、絶縁樹脂組成物(エポキシ樹脂組成物)の硬化物の耐熱性等が低下するおそれがある。   (B) Although the compounding quantity of the hardening | curing agent for epoxy resins of a component is suitably set within the range of an effective amount according to the kind etc. of hardening | curing agent used, generally (A) component (A) It is preferable to be in the range of 1/2 equivalent to 2 equivalents relative to the epoxy equivalent. When the blending amount of the curing agent of the component (B) is less than 1/2 equivalent to the epoxy equivalent of the component (A), the curing reaction of the epoxy resin of the component (A) may not be sufficiently caused. is there. On the other hand, if the blending amount of the curing agent of component (B) exceeds 2 equivalents relative to the epoxy equivalent of component (A), the heat resistance of the cured product of the insulating resin composition (epoxy resin composition) may be reduced. There is.

さらに、(B)成分のエポキシ樹脂用硬化剤と併用して、エポキシ樹脂の硬化反応を促進あるいは制御するエポキシ樹脂用硬化促進剤を使用してもよい。特に、酸無水物系硬化剤を使用した場合、その硬化反応はアミン系硬化剤等の他の硬化剤と比較して遅いため、エポキシ樹脂用硬化促進剤を使用することが多い。酸無水物系硬化剤用の硬化促進剤としては、三級アミンまたはその塩、四級アンモニウム化合物、イミダゾール、アルカリ金属アルコキシド等を用いることが好ましい。   Furthermore, you may use the hardening accelerator for epoxy resins which accelerates | stimulates or controls the hardening reaction of an epoxy resin in combination with the hardening | curing agent for epoxy resins of (B) component. In particular, when an acid anhydride-based curing agent is used, the curing reaction is slower than other curing agents such as an amine-based curing agent, and thus an epoxy resin curing accelerator is often used. As a curing accelerator for an acid anhydride curing agent, it is preferable to use a tertiary amine or a salt thereof, a quaternary ammonium compound, imidazole, an alkali metal alkoxide, or the like.

(C)成分の層状粘土鉱物としては、例えばスメクタイト群、マイカ群、バーミキュライト群、雲母群からなる鉱物群から選ばれる少なくとも1種が挙げられる。スメクタイト群に属する層状粘土鉱物としては、モンモリロナイト、ヘクトライト、サポナイト、ソーコナイト、バイデライト、ステブンサイト、ノントロナイト等が例示される。マイカ群に属する層状粘土鉱物としては、クロライト、フロゴパイト、レピドライト、マスコバイト、バイオタイト、パラゴナイト、マーガライト、テニオライト、テトラシリシックマイカ等が例示される。バーミキュライト群に属する層状粘土鉱物としては、トリオクタヘドラルバーミキュライト、ジオクタヘドラルバーミキュライト等が例示される。雲母群に属する層状粘土鉱物としては、白雲母、黒雲母、パラゴナイト、レビトライト、マーガライト、クリントナイト、アナンダイト等が例示される。これらのうちでも、エポキシ樹脂への分散性等の点からスメクタイト群に属する層状粘土鉱物を用いることが望ましい。これらの層状粘土鉱物は単独あるいは2種類以上の混合物として使用することができる。   Examples of the layered clay mineral of component (C) include at least one selected from a mineral group consisting of a smectite group, a mica group, a vermiculite group, and a mica group. Examples of the layered clay mineral belonging to the smectite group include montmorillonite, hectorite, saponite, saconite, beidellite, stevensite, nontronite and the like. Examples of the layered clay mineral belonging to the mica group include chlorite, phlogopite, lepidrite, mascobite, biotite, paragonite, margarite, teniolite, tetrasilicic mica and the like. Examples of the layered clay mineral belonging to the vermiculite group include trioctahedral vermiculite and dioctahedral vermiculite. Examples of the layered clay mineral belonging to the mica group include muscovite, biotite, paragonite, levitrite, margarite, clintonite, and anandite. Among these, it is desirable to use a layered clay mineral belonging to the smectite group from the viewpoint of dispersibility in an epoxy resin. These layered clay minerals can be used alone or as a mixture of two or more.

(C)成分の層状粘土鉱物の配合量は、(A)成分のエポキシ樹脂100質量部に対して1〜30質量部の範囲とすることが好ましい。(C)成分の層状粘土鉱物の配合量が(A)成分100質量部に対して1質量部未満であると、エポキシ樹脂硬化物の機械強度や耐熱性等を十分に高めることができないおそれがある。一方、(C)成分の層状粘土鉱物の配合量が(A)成分100質量部に対して30質量部を超えるとエポキシ樹脂硬化物が脆くなり、高電圧機器用絶縁材料としての基本特性が低下する。(C)成分の層状粘土鉱物の配合量は(A)成分100質量部に対して5〜15質量部の範囲とすることがより好ましい。   (C) It is preferable to make the compounding quantity of the layered clay mineral of a component into the range of 1-30 mass parts with respect to 100 mass parts of epoxy resins of (A) component. When the blending amount of the layered clay mineral of component (C) is less than 1 part by mass with respect to 100 parts by mass of component (A), the mechanical strength or heat resistance of the cured epoxy resin may not be sufficiently increased. is there. On the other hand, if the amount of the layered clay mineral of component (C) exceeds 30 parts by mass with respect to 100 parts by mass of component (A), the cured epoxy resin becomes brittle and the basic characteristics as an insulating material for high voltage equipment are reduced. To do. The blending amount of the layered clay mineral of component (C) is more preferably in the range of 5 to 15 parts by mass with respect to 100 parts by mass of component (A).

また、(C)成分の層状粘土鉱物はシリケート層が積層した構造を有しており、シリケート層の層間にイオン交換反応(インターカレーション)によりイオン、分子、クラスタ等の種々の物質を保持することできる。例えば、層状粘土鉱物のシリケート層の層間には種々の有機化合物を挿入することができる。このような性質を利用することによって、エポキシ樹脂に対する親和性を付与する有機化合物を、シリケート層の層間に挿入した層状粘土鉱物を使用することが可能となる。シリケート層の層間に挿入する有機化合物は特に限定されるものではないが、イオン交換処理により層間に挿入される度合を考慮すると四級アンモニウムイオンを用いることが望ましい。   In addition, the layered clay mineral of component (C) has a structure in which silicate layers are laminated, and various substances such as ions, molecules, clusters, etc. are retained between the silicate layers by an ion exchange reaction (intercalation). I can. For example, various organic compounds can be inserted between the silicate layers of the layered clay mineral. By utilizing such a property, it becomes possible to use a layered clay mineral in which an organic compound imparting affinity for an epoxy resin is inserted between silicate layers. The organic compound inserted between the silicate layers is not particularly limited, but it is desirable to use quaternary ammonium ions in consideration of the degree of insertion between the layers by ion exchange treatment.

四級アンモニウムイオンとしては、テトラブチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、ジヘキシルジメチルアンモニウムイオン、ジオクチルジメチルアンモニウムイオン、ヘキサトリメチルアンモニウムイオン、オクタトリメチルアンモニウムイオン、ドデシルトリメチルアンモニウムイオン、ヘキサデシルトリメチルアンモニウムイオン、ステアリルトリメチルアンモニウムイオン、ドコセニルトリメチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、セチルトリエチルアンモニウムイオン、ヘキサデシルアンモニウムイオン、テトラデシルジメチルベンジルアンモニウムイオン、ステアリルジメチルベンジルアンモニウムイオン、ジオレイルジメチルアンモニウムイオン、N-メチルジエタノールラウリルアンモニウムイオン、ジプロパノールモノメチルラウリルアンモニウムイオン、ジメチルモノエタノールラウリルアンモニウムイオン、ポリオキシエチレンドデシルモノメチルアンモニウムイオン、ジメチルヘキサデシルオクタデシルアンモニウムイオン、トリオクチルメチルアンモニウムイオン、テトラメチルアンモニウムイオン、テトラプロピルアンモニウムイオン等が挙げられる。これらの四級アンモニウムイオンは単独もしくは2種類以上の混合物として使用することができる。   Quaternary ammonium ions include tetrabutylammonium ion, tetrahexylammonium ion, dihexyldimethylammonium ion, dioctyldimethylammonium ion, hexatrimethylammonium ion, octatrimethylammonium ion, dodecyltrimethylammonium ion, hexadecyltrimethylammonium ion, stearyltrimethyl Ammonium ion, dococenyltrimethylammonium ion, cetyltrimethylammonium ion, cetyltriethylammonium ion, hexadecylammonium ion, tetradecyldimethylbenzylammonium ion, stearyldimethylbenzylammonium ion, dioleyldimethylammonium ion, N-methyldiethanol laur Ryl ammonium ion, dipropanol monomethyl lauryl ammonium ion, dimethyl monoethanol lauryl ammonium ion, polyoxyethylene dodecyl monomethyl ammonium ion, dimethyl hexadecyl octadecyl ammonium ion, trioctyl methyl ammonium ion, tetramethyl ammonium ion, tetrapropyl ammonium ion, etc. Can be mentioned. These quaternary ammonium ions can be used alone or as a mixture of two or more.

さらに、(C)成分の層状粘土鉱物は、エポキシ樹脂との接着性を改善する、あるいは樹脂中での再凝集を抑制する等の目的で、その表面をカップリング剤で改質して使用してもよい。このような層状粘土鉱物の表面改質剤としてのカップリング剤には、例えばγ-グリシドオキシ-プロピルトリメトキシシラン、γ-アミノプロピル-トリメトキシシラン、ビニルトリエトキシシラン、3-メタクリルオキシプロピルトリメトキシシラン、3−グリシジルオキシプロピル-トリメトキシシラン等のシランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等が用いられる。これらのカップリング剤は単独もしくは2種類以上の混合物として使用することができる。   Furthermore, the layered clay mineral of component (C) is used by modifying its surface with a coupling agent for the purpose of improving the adhesion with the epoxy resin or suppressing reaggregation in the resin. May be. Examples of coupling agents as surface modifiers for such layered clay minerals include γ-glycidoxy-propyltrimethoxysilane, γ-aminopropyl-trimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxy. Silane coupling agents such as silane and 3-glycidyloxypropyl-trimethoxysilane, titanate coupling agents, aluminum coupling agents and the like are used. These coupling agents can be used alone or as a mixture of two or more.

(D)成分の分散媒体は少なくとも反応性溶媒を含むものである。ここで言う反応性溶媒とは、(B)成分のエポキシ樹脂用硬化剤に対して反応性を有する溶媒であり、具体的には1分子当たり1個以上のエポキシ基を有する有機化合物等が用いられる。このようなエポキシ基を有する有機化合物としては、例えばブチルグリシジルエーテル、アルキレンモノグリシジルエーテル、アルキルフェノールモノグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、アルキレンジグリシジルエーテル等が挙げられる。これらの有機化合物は単独もしくは2種以上の混合物として使用することができる。   The dispersion medium for component (D) contains at least a reactive solvent. The reactive solvent here is a solvent having reactivity with the epoxy resin curing agent (B), specifically, an organic compound having one or more epoxy groups per molecule is used. It is done. Examples of such an organic compound having an epoxy group include butyl glycidyl ether, alkylene monoglycidyl ether, alkylphenol monoglycidyl ether, polypropylene glycol diglycidyl ether, and alkylene diglycidyl ether. These organic compounds can be used alone or as a mixture of two or more.

上述した反応性溶媒は、(A)成分のエポキシ樹脂に対する(C)成分の層状粘土鉱物の分散性を高めると共に、硬化時に(B)成分のエポキシ樹脂用硬化剤と反応してエポキシ樹脂硬化物中に取り込まれ、これによりエポキシ樹脂硬化物の耐熱性等の低下を抑制するものである。(D)成分の分散媒体はこのような反応性溶媒を単独で使用することが好ましい。ただし、分散媒体の50体積%以下の範囲であれば、例えばトルエン、キシレン、ベンゼン、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、プロパノール、イソプロパノール、プロピルアルコール、イソプロピルアルコール、ヘキサン、シクロヘキサン、シクロペンタン、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、酢酸エチル、アセトニトリル、ジエチルエーテル、テトラヒドロフラン、四塩化炭素、ジクロロメタン、クロロホルム、クロロベンゼン等の非反応性溶媒を併用することができる。(D)成分の分散媒体は反応性溶媒を50体積%以上、さらには80体積%以上含むことが好ましい。反応性溶媒の量が分散媒体の50体積%未満であると、エポキシ樹脂硬化物の耐熱性等が低下しやすくなる。   The reactive solvent described above increases the dispersibility of the (C) component layered clay mineral with respect to the (A) component epoxy resin, and also reacts with the (B) component epoxy resin curing agent during curing to cure the epoxy resin. It is taken in, and this suppresses the fall of the heat resistance etc. of a cured epoxy resin. It is preferable to use such a reactive solvent alone as the dispersion medium for component (D). However, within the range of 50% by volume or less of the dispersion medium, for example, toluene, xylene, benzene, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, propanol, isopropanol, propyl alcohol, isopropyl alcohol, hexane, cyclohexane, cyclopentane , N-methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, carbon tetrachloride, dichloromethane, chloroform, chlorobenzene and the like can be used in combination. The dispersion medium of component (D) preferably contains 50% by volume or more, more preferably 80% by volume or more of the reactive solvent. When the amount of the reactive solvent is less than 50% by volume of the dispersion medium, the heat resistance and the like of the cured epoxy resin are likely to be lowered.

(D)成分の反応性溶媒を含む分散媒体の配合量は、(A)成分のエポキシ樹脂100質量部に対して1〜100質量部の範囲とすることが好ましい。(D)成分の分散媒体の配合量が(A)成分100質量部に対して1質量部未満であると、(A)成分のエポキシ樹脂に対する(C)成分の層状粘土鉱物の分散性を十分に高めることができないおそれがある。一方、(D)成分の分散媒体の配合量が(A)成分100質量部に対して100質量部を超えると、エポキシ樹脂硬化物の耐熱性等が低下するおそれがある。なお、上記した(D)成分の配合量は、絶縁樹脂組成物を調製する段階での配合量を示すものである。後述するように、(D)成分としての分散媒体の一部は硬化処理前(具体的には硬化剤の配合前)に除去してもよい。除去処理後の(D)成分の含有量は、例えば(A)成分100質量部に対して0〜10質量部の範囲であることが好ましい。   (D) It is preferable that the compounding quantity of the dispersion medium containing the reactive solvent of a component shall be 1-100 mass parts with respect to 100 mass parts of epoxy resins of (A) component. When the blending amount of the dispersion medium of component (D) is less than 1 part by mass with respect to 100 parts by mass of component (A), the dispersibility of the layered clay mineral of component (C) with respect to the epoxy resin of component (A) is sufficient. There is a risk that it cannot be increased. On the other hand, if the blending amount of the dispersion medium of component (D) exceeds 100 parts by mass with respect to 100 parts by mass of component (A), the heat resistance of the cured epoxy resin may be reduced. In addition, the compounding quantity of above-described (D) component shows the compounding quantity in the step which prepares an insulating resin composition. As will be described later, a part of the dispersion medium as the component (D) may be removed before the curing treatment (specifically, before blending the curing agent). The content of the component (D) after the removal treatment is preferably in the range of 0 to 10 parts by mass with respect to 100 parts by mass of the component (A), for example.

なお、高電圧機器用絶縁樹脂組成物は上述した必須成分としての(A)〜(D)成分に加えて、本発明の効果を阻害しない範囲で、前述した硬化促進剤や他の添加剤を必要に応じて配合してもよい。絶縁樹脂組成物に配合する他の添加剤には、通常エポキシ樹脂組成物に配合される各種公知の材料を適用することができ、例えばシリカ、アルミナ、炭酸カルシウム、水酸化アルミニウム、チタンホワイト等の無機質充填剤、レベリング剤、消泡剤、顔料等が挙げられる。   In addition, in addition to the components (A) to (D) as the essential components described above, the insulating resin composition for high-voltage devices includes the above-described curing accelerator and other additives within a range that does not impair the effects of the present invention. You may mix | blend as needed. For the other additives blended in the insulating resin composition, various known materials usually blended in the epoxy resin composition can be applied, such as silica, alumina, calcium carbonate, aluminum hydroxide, titanium white, etc. Inorganic fillers, leveling agents, antifoaming agents, pigments and the like can be mentioned.

上述した実施形態の高電圧機器用絶縁樹脂組成物は、例えば以下のようにして作製される。まず、(A)成分のエポキシ樹脂と(C)成分の層状粘土鉱物とを、(D)成分の反応性溶媒を含む分散媒体を用いて混合する。この際、反応性溶媒を含む分散媒体中で層状粘土鉱物を膨潤させた後、エポキシ樹脂中に混合することが好ましい。さらに、反応性溶媒を含む分散媒体による層状粘土鉱物の膨潤工程、および膨潤させた層状粘土鉱物のエポキシ樹脂中への混合工程は、せん断応力を加えて混練することが好ましい。   The insulating resin composition for high voltage devices of the above-described embodiment is produced, for example, as follows. First, the (A) component epoxy resin and the (C) component layered clay mineral are mixed using a dispersion medium containing the (D) component reactive solvent. At this time, it is preferable to swell the lamellar clay mineral in a dispersion medium containing a reactive solvent and then mix it in the epoxy resin. Furthermore, the step of swelling the layered clay mineral with the dispersion medium containing the reactive solvent and the step of mixing the swollen layered clay mineral into the epoxy resin are preferably kneaded by applying shear stress.

このように、反応性溶媒を含む分散媒体で層状粘土鉱物を膨潤させることによって、層状粘土鉱物のエポキシ樹脂に対する親和性が向上する。さらに、せん断応力を加えて混練することによって、層状粘土鉱物をエポキシ樹脂中に均一分散させることが可能となる。層状粘土鉱物のエポキシ樹脂に対する親和性は、前述した層状粘土鉱物の層間に挿入した有機化合物(例えば四級アンモニウムイオン)や表面改質処理によっても向上する。   In this way, the affinity of the layered clay mineral to the epoxy resin is improved by swelling the layered clay mineral with the dispersion medium containing the reactive solvent. Furthermore, it is possible to uniformly disperse the layered clay mineral in the epoxy resin by applying shear stress and kneading. The affinity of the layered clay mineral for the epoxy resin can be improved also by the organic compound (for example, quaternary ammonium ion) inserted between the layers of the layered clay mineral described above or a surface modification treatment.

次に、上記したエポキシ樹脂と層状粘土鉱物と反応性溶媒を含む分散媒体との混合物に、(B)成分のエポキシ樹脂用硬化剤を添加して混合する。このエポキシ樹脂用硬化剤の混合に先立って、反応性溶媒を含む分散媒体の一部を減圧処理等で除去してもよい。これによって、エポキシ樹脂硬化物の耐熱性等をより一層向上させることができる。このように、エポキシ樹脂と層状粘土鉱物と分散媒体との混合物に、エポキシ樹脂用硬化剤を添加、混合することによって、目的とする高電圧機器用絶縁樹脂組成物が得られる。   Next, the epoxy resin curing agent as the component (B) is added to and mixed with the mixture of the epoxy resin, the layered clay mineral, and the dispersion medium containing the reactive solvent. Prior to the mixing of the epoxy resin curing agent, a part of the dispersion medium containing the reactive solvent may be removed by a reduced pressure treatment or the like. Thereby, the heat resistance of the cured epoxy resin can be further improved. Thus, the objective insulating resin composition for high voltage apparatuses is obtained by adding and mixing the epoxy resin curing agent to the mixture of the epoxy resin, the layered clay mineral, and the dispersion medium.

上記した高電圧機器用絶縁樹脂組成物は、絶縁材料の使用用途に応じて、例えば含浸、塗布、注型、シート成形等の各種成形工程により所望形状の成形体に成形される。この成形体に硬化剤の種類に応じた硬化処理を施して硬化させることによって、高電圧機器用絶縁材料が得られる。なお、上記した絶縁樹脂組成物の製造工程において、前述したような任意成分は必要に応じて適宜に添加、混合される。   The above-described insulating resin composition for high-voltage devices is molded into a molded body having a desired shape by various molding processes such as impregnation, coating, casting, and sheet molding, depending on the intended use of the insulating material. An insulating material for a high voltage device can be obtained by curing the molded body by applying a curing treatment according to the type of the curing agent. In addition, in the manufacturing process of the insulating resin composition described above, optional components as described above are appropriately added and mixed as necessary.

このようにして得られる高電圧機器用絶縁材料1は、例えば図1に示すように、(A)エポキシ樹脂成分と(B)硬化剤との反応により形成される三次元網状構造を有するエポキシ樹脂(硬化物)2中に、(C)層状粘土鉱物3が均一に分散されている。(D)成分の分散媒体中の反応性溶媒は、(B)硬化剤との反応により三次元網状構造(2)中に取り込まれる。従って、分散媒体によるエポキシ樹脂自体の特性低下を抑制した上で、(C)層状粘土鉱物3に基づいて機械強度や耐熱性等を向上させたエポキシ樹脂硬化物、すなわち高電圧機器用絶縁材料1を提供することができる。   The insulating material 1 for a high voltage device thus obtained is, for example, as shown in FIG. 1, an epoxy resin having a three-dimensional network structure formed by a reaction between (A) an epoxy resin component and (B) a curing agent. (C) Layered clay mineral 3 is uniformly dispersed in (hardened product) 2. The reactive solvent in the dispersion medium of component (D) is taken into the three-dimensional network structure (2) by reaction with (B) the curing agent. Therefore, after suppressing deterioration of the properties of the epoxy resin itself due to the dispersion medium, (C) the cured epoxy resin having improved mechanical strength, heat resistance, etc. based on the layered clay mineral 3, that is, the insulating material 1 for high voltage equipment. Can be provided.

この実施形態の高電圧機器用絶縁材料は、例えば発電機や回転電機等の高電圧機器に用いられる絶縁コイルの絶縁層や、ガス絶縁開閉装置や管路気中送電装置等の送変電機器(高電圧機器)に用いられる高圧導体の絶縁支持部材等に好適に使用されるものである。発電機や回転電機等に用いられる絶縁コイルは、高電圧電流を流すコイル導体と、これらコイル導体同士間およびコイル導体−対地間を遮断する絶縁層とを具備する。絶縁コイルの絶縁層は、例えばマイカ紙に絶縁樹脂組成物を含浸塗布し、これを硬化させることで得ることができる。また、送変電機器等の高電圧機器に用いられる高圧導体の絶縁支持部材は、金属容器内で高圧導体を絶縁支持するものであり、例えば絶縁樹脂組成物を注型、硬化させた注型絶縁物が用いられる。   Insulating materials for high-voltage devices of this embodiment include, for example, insulating layers of insulating coils used in high-voltage devices such as generators and rotating electrical machines, and power transmission / transformation devices such as gas-insulated switchgears and pipeline air transmission devices ( It is preferably used for an insulating support member of a high voltage conductor used in high voltage equipment. An insulating coil used for a generator, a rotating electrical machine, or the like includes a coil conductor that passes a high voltage current and an insulating layer that blocks between the coil conductors and between the coil conductor and the ground. The insulating layer of the insulating coil can be obtained, for example, by impregnating and applying an insulating resin composition to mica paper and curing it. Insulation support members for high-voltage conductors used in high-voltage equipment such as power transmission and transformation equipment are those that insulate and support high-voltage conductors in metal containers. For example, cast insulation obtained by casting and curing an insulating resin composition Things are used.

なお、高電圧機器用絶縁材料は上記した絶縁コイルの絶縁層や高圧導体の絶縁支持部材(注型絶縁物)等に限られるものではなく、発電機用タービンエンド部の仕上げワニス、遮断器用絶縁ロッド、絶縁塗料、成形絶縁部品、FRP用含浸樹脂、ケーブル被覆材料等の各種用途に使用することが可能である。また場合によっては、パワーユニット絶縁封止材用高熱伝導絶縁シート、IC基板、LSI素子用層間絶縁膜、積層基板、半導体用封止材等に適用することもできる。   The insulation material for high voltage equipment is not limited to the insulation layer of the insulation coil and the insulation support member (casting insulator) of the high voltage conductor, but the finish varnish of the generator turbine end and the insulation for the circuit breaker. It can be used for various applications such as rods, insulating paints, molded insulating parts, FRP impregnating resins, cable coating materials, and the like. In some cases, the present invention can also be applied to a high thermal conductive insulating sheet for power unit insulating encapsulant, IC substrate, interlayer insulating film for LSI element, laminated substrate, semiconductor encapsulant and the like.

このように、本発明の高電圧機器用絶縁材料は各種の用途に適用可能である。すなわち、近年、産業・重電機器および電気・電子機器の小型化、大容量化、高周波帯域化、大電圧化、使用環境の過酷化等に伴い、注型絶縁物や含浸絶縁物等の高性能化、高信頼性化、高品質化並びに品質の安定化等が求められている。本発明の高電圧機器用絶縁材料はこれらの要求に合致するものであり、上述したような構成材料を選択的に使用することによって、エポキシ注型絶縁物やエポキシ含浸絶縁物等として、種々の産業・重電機器および電気・電子機器に適用することが可能である。   Thus, the insulating material for high voltage equipment of the present invention can be applied to various uses. In other words, in recent years, with the downsizing of industrial / heavy electrical equipment and electrical / electronic equipment, higher capacity, higher frequency band, higher voltage, severe usage environment, etc. There is a demand for performance, high reliability, high quality, and stable quality. The insulating material for high-voltage equipment according to the present invention meets these requirements. By selectively using the constituent materials as described above, various types of insulating materials such as epoxy cast insulating materials and epoxy-impregnated insulating materials can be used. It can be applied to industrial / heavy electrical equipment and electrical / electronic equipment.

次に、本発明の具体的な実施例およびその評価結果について述べる。   Next, specific examples of the present invention and evaluation results thereof will be described.

実施例1
まず、反応性溶媒としてブチルグリシジルエーテル(ジャパンエポキシレジン社製、商品名:BGE)を用意し、このブチルグリシジルエーテル50質量部に四級アンモニウム塩が層間に挿入されている層状粘土鉱物(コープケミカル社製、商品名:STN)を10質量部添加し、超音波ホモジナイザー(BRANSON社製、商品名:MODEL450)を用いて膨潤させた後、3本ロールミル混合機(井上製作所社製、商品名:S−4 3/4×11)を10回以上通過させて混練した。
Example 1
First, butyl glycidyl ether (trade name: BGE, manufactured by Japan Epoxy Resin Co., Ltd.) is prepared as a reactive solvent, and a layered clay mineral (corp chemical) in which a quaternary ammonium salt is inserted between 50 parts by mass of this butyl glycidyl ether. After adding 10 parts by mass of the product, product name: STN, and swollen using an ultrasonic homogenizer (product name: MODEL450), a 3-roll mill mixer (product name: Inoue Seisakusho, product name: S-4 3/4 × 11) was passed 10 times or more and kneaded.

次いで、上記した層状粘土鉱物のブチルグリシジルエーテル膨潤溶液とシランカップリング剤・γ-グリシドドキシ-プロピルトリメトキシシラン(日本ユニカー社製、商品名:A187)1質量部を、100質量部のビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、商品名:エピコート828)に加え、3本ロールミル混合機(井上製作所社製、商品名:S−4 3/4×11)を10回以上通過させて混練した。混合終了後、ブチルグリシジルエーテルの一部を100℃で減圧除去した。なお、減圧処理後のブチルグリシジルエーテルの残留量は約5質量部であった。   Next, 100 parts by mass of bisphenol A type was obtained by adding 1 part by mass of the above-mentioned layered clay mineral butyl glycidyl ether swelling solution and silane coupling agent / γ-glycidoxy-propyltrimethoxysilane (product name: A187, manufactured by Nihon Unicar). In addition to the epoxy resin (Japan Epoxy Resin Co., Ltd., trade name: Epicoat 828), a three-roll mill mixer (Inoue Seisakusho, trade name: S-4 3/4 × 11) was passed 10 times or more and kneaded. . After completion of mixing, a part of butyl glycidyl ether was removed under reduced pressure at 100 ° C. The residual amount of butyl glycidyl ether after the vacuum treatment was about 5 parts by mass.

この後、上記した減圧処理後の混練物にエポキシ樹脂用酸無水物系硬化剤(新日本理化社製、商品名:リカシッド MH−700)を90質量部添加し、80℃で10分間の混合を行って高電圧機器用絶縁樹脂組成物を調製した。この絶縁樹脂組成物を予め100℃に加熱した金型に流し込み、真空脱泡後に115℃×3時間(一次硬化)+150℃×15時間(二次硬化)の条件で硬化処理を施すことによって、目的とする高電圧機器用絶縁材料を作製した。この高電圧機器用絶縁材料を後述する特性評価に供した。   Thereafter, 90 parts by mass of an acid anhydride curing agent for epoxy resin (manufactured by Shin Nippon Rika Co., Ltd., trade name: Ricacid MH-700) is added to the kneaded product after the above-described decompression treatment, and the mixture is mixed at 80 ° C. for 10 minutes. To prepare an insulating resin composition for high-voltage devices. By pouring this insulating resin composition into a mold heated to 100 ° C. in advance, and after vacuum degassing, performing a curing treatment under the conditions of 115 ° C. × 3 hours (primary curing) + 150 ° C. × 15 hours (secondary curing), The target insulating material for high voltage equipment was produced. This insulating material for high voltage devices was subjected to the characteristic evaluation described later.

実施例2
上記した実施例1において、3本ロールミル混合機によるせん断応力を加えた混練と混練後の反応性溶媒の減圧除去を行わずに高電圧機器用絶縁材料を作製した。具体的には、まず反応性溶媒としてのブチルグリシジルエーテル(ジャパンエポキシレジン社製、商品名:BGE)10質量部に、四級アンモニウム塩が層間に挿入されている層状粘土鉱物(コープケミカル社製、商品名:STN)を2質量部添加し、超音波ホモジナイザー(BRANSON社製、商品名:MODEL450)を用いて膨潤させた。
Example 2
In Example 1 described above, an insulating material for a high-voltage device was produced without performing kneading by applying a shear stress using a three-roll mill mixer and removing the reactive solvent after kneading under reduced pressure. Specifically, first, a layered clay mineral (manufactured by Coop Chemical Co., Ltd.) in which quaternary ammonium salt is inserted between 10 parts by mass of butyl glycidyl ether (made by Japan Epoxy Resin Co., Ltd., trade name: BGE) as a reactive solvent. Then, 2 parts by mass of a product name: STN) was added and swollen using an ultrasonic homogenizer (BRANSON, product name: MODEL450).

次に、上記した層状粘土鉱物のブチルグリシジルエーテル膨潤溶液とシランカップリング剤・γ-グリシドドキシ-プロピルトリメトキシシラン(日本ユニカー社製、商品名:A187)1質量部を、100質量部のビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、商品名:エピコート828)に加え、万能混合撹拌機(ダルトン社製、商品名:5DMV−r型)を用いて70℃で12時間混合した。混合終了後、エポキシ樹脂用酸無水物系硬化剤(新日本理化社製、商品名:リカシッド MH−700)を90質量部添加し、80℃で10分間の混合を行った。この混合物を予め100℃に加熱した金型に流し込み、真空脱泡後に115℃×3時間(一次硬化)+150℃×15時間(二次硬化)の条件で硬化させることによって、目的とする高電圧機器用絶縁材料を作製した。この高電圧機器用絶縁材料を後述する特性評価に供した。   Next, 1 part by mass of the above butyl glycidyl ether swelling solution of layered clay mineral and silane coupling agent / γ-glycidoxy-propyltrimethoxysilane (manufactured by Nippon Unicar Co., Ltd., trade name: A187) was added to 100 parts by mass of bisphenol A. In addition to a type epoxy resin (trade name: Epicoat 828, manufactured by Japan Epoxy Resin Co., Ltd.), it was mixed at 70 ° C. for 12 hours using a universal mixing stirrer (trade name: 5DMV-r type manufactured by Dalton). After mixing, 90 parts by mass of an acid anhydride curing agent for epoxy resin (manufactured by Shin Nippon Rika Co., Ltd., trade name: Ricacid MH-700) was added, and mixing was performed at 80 ° C. for 10 minutes. This mixture is poured into a mold heated to 100 ° C in advance, and after vacuum degassing, it is cured under the conditions of 115 ° C x 3 hours (primary curing) + 150 ° C x 15 hours (secondary curing). An insulating material for equipment was produced. This insulating material for high voltage devices was subjected to the characteristic evaluation described later.

比較例1
上記した実施例1において、四級アンモニウム塩が層間に挿入された層状粘土鉱物に代えて、層間にナトリウムイオンが存在する層状粘土鉱物を用い、これを直接ビスフェノールA型エポキシ樹脂に添加・混合すると共に、シランカップリング剤・γ-グリシドドキシ-プロピルトリメトキシシランを添加せずに絶縁材料を作製した。
Comparative Example 1
In Example 1 described above, instead of the layered clay mineral in which the quaternary ammonium salt is inserted between layers, a layered clay mineral having sodium ions between layers is used, and this is directly added to and mixed with the bisphenol A type epoxy resin. In addition, an insulating material was prepared without adding a silane coupling agent, γ-glycidoxy-propyltrimethoxysilane.

具体的には、まずナトリウムイオンが層間に存在する層状粘土鉱物(コープケミカル社製、商品名:SWN)10質量部を、100質量部のビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、商品名:エピコート828)に加え、万能混合攪拌機(ダルトン社製、商品名:5DMV−r型)を用いて70℃で12時間混合した。混合終了後、エポキシ樹脂用酸無水物系硬化剤(新日本理化社製、商品名:リカシッド MH−700)を86質量部添加し、80℃で10分間の真空混合を行った。この混合物を予め100℃に加熱した金型に流し込み、真空脱泡後に115℃×3時間(一次硬化)+150℃×15時間(二次硬化)の条件で硬化させて絶縁材料を作製した。この絶縁材料を後述する特性評価に供した。   Specifically, first, 10 parts by mass of a layered clay mineral (trade name: SWN, manufactured by Corp Chemical Co.) in which sodium ions are present between the layers, 100 parts by mass of a bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., product name). In addition to Epicoat 828), the mixture was mixed at 70 ° C. for 12 hours using a universal mixing stirrer (trade name: 5DMV-r type, manufactured by Dalton). After completion of mixing, 86 parts by mass of an acid anhydride curing agent for epoxy resin (manufactured by Shin Nippon Rika Co., Ltd., trade name: Ricacid MH-700) was added, and vacuum mixing was performed at 80 ° C. for 10 minutes. This mixture was poured into a mold heated to 100 ° C. in advance, and after vacuum degassing, it was cured under conditions of 115 ° C. × 3 hours (primary curing) + 150 ° C. × 15 hours (secondary curing) to produce an insulating material. This insulating material was subjected to the characteristic evaluation described later.

比較例2
上記した実施例1において、反応性溶媒であるブチルグリシジルエーテルに代えてトルエンを用いて層状粘土鉱物を膨潤させると共に、3本ロールミル混合機によるせん断応力を加えた混練およびトルエンの減圧除去を行わずに絶縁材料を作製した。
Comparative Example 2
In Example 1 described above, the layered clay mineral was swollen using toluene instead of butyl glycidyl ether, which is a reactive solvent, and kneading with a three-roll mill mixer and no removal of toluene under reduced pressure were performed. An insulating material was prepared.

具体的には、まずトルエン(和光純薬製)10質量部に、四級アンモニウム塩が層間に挿入されている層状粘土鉱物(コープケミカル社製、商品名:STN)を2質量部添加し、超音波ホモジナイザー(BRANSON社製、商品名:MODEL450)を用いて膨潤させた後、3本ロールミル混合機(井上製作所社製、商品名:S−4 3/4×11)を10回以上通過させて混練した。次いで、この層状粘土鉱物のトルエン膨潤溶液とシランカップリング剤・γ-グリシドドキシ-プロピルトリメトキシシラン(日本ユニカー社製、商品名:A187)1質量部を、100質量部のビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、商品名:エピコート828)に加え、3本ロールミル混合機(井上製作所社製,商品名:S−4 3/4×11)を10回以上通過させて混練した。   Specifically, first, to 10 parts by mass of toluene (manufactured by Wako Pure Chemical Industries, Ltd.), 2 parts by mass of a layered clay mineral in which a quaternary ammonium salt is inserted between the layers (trade name: STN) is added, After swelling using an ultrasonic homogenizer (BRANSON, trade name: MODEL450), a 3-roll mill mixer (Inoue Seisakusho, trade name: S-4 3/4 × 11) is passed 10 times or more. And kneaded. Subsequently, 100 parts by mass of a bisphenol A type epoxy resin (100 parts by mass) of 1 part by mass of the toluene swelling solution of this layered clay mineral and 1 part by mass of a silane coupling agent / γ-glycidoxy-propyltrimethoxysilane (made by Nihon Unicar Co., Ltd., trade name: A187) In addition to Japan Epoxy Resin Co., Ltd., trade name: Epicoat 828), a three-roll mill mixer (Inoue Seisakusho, trade name: S-4 3/4 × 11) was passed 10 times or more and kneaded.

次に、上記した混練物にエポキシ樹脂用酸無水物系硬化剤(新日本理化社製、商品名:リカシッド MH−700)を80質量部添加し、80℃で10分間の混合を行った。この混合物を予め100℃に加熱した金型に流し込み、真空脱泡後に115℃×3時間(一次硬化)+150℃×15時間(二次硬化)の条件で硬化させて絶縁材料を作製した。この絶縁材料を後述する特性評価に供した。   Next, 80 parts by mass of an acid anhydride curing agent for epoxy resin (manufactured by Shin Nippon Rika Co., Ltd., trade name: Ricacid MH-700) was added to the above kneaded product, and mixed at 80 ° C. for 10 minutes. This mixture was poured into a mold heated to 100 ° C. in advance, and after vacuum degassing, it was cured under conditions of 115 ° C. × 3 hours (primary curing) + 150 ° C. × 15 hours (secondary curing) to produce an insulating material. This insulating material was subjected to the characteristic evaluation described later.

上述した実施例1〜2および比較例1〜2で使用した各材料と製法の違いを表1にまとめて示す。

Figure 0004476646
Table 1 summarizes the differences between the materials used in Examples 1 and 2 and Comparative Examples 1 and 2 and the manufacturing method.
Figure 0004476646

次に、実施例1〜2および比較例1〜2による高電圧機器用絶縁材料について、(1)X線回折測定(XRD)、(2)動的粘弾性測定(DMA)、(3)絶縁破壊強さの測定を、それぞれ以下のようにして実施した。なお、(1)X線回折測定(XRD)は、絶縁材料中における層状粘土鉱物の分散状態を調べるために実施したものである。(2)動的粘弾性測定(DMA)は、絶縁材料の耐熱特性を調べるために実施したものである。(3)絶縁破壊強さの測定は、絶縁材料の絶縁特性を調べるために実施したものである。   Next, with respect to insulating materials for high voltage devices according to Examples 1 and 2 and Comparative Examples 1 and 2, (1) X-ray diffraction measurement (XRD), (2) Dynamic viscoelasticity measurement (DMA), (3) Insulation The breaking strength was measured as follows. In addition, (1) X-ray diffraction measurement (XRD) was performed in order to investigate the dispersion state of the layered clay mineral in the insulating material. (2) Dynamic viscoelasticity measurement (DMA) is carried out to investigate the heat resistance characteristics of insulating materials. (3) The measurement of dielectric breakdown strength was carried out in order to investigate the insulation characteristics of the insulating material.

(1)X線回折(XRD)は、絶縁材料の表面を紙やすり(#240)で削った後、測定用フォルダに絶縁材料を固定し、X線回折装置(理学社製、型式:XRD−B,CuKα線)により2θ=0〜10度の範囲で測定した。その測定結果を図2に示す。   (1) For X-ray diffraction (XRD), the surface of the insulating material is shaved with a sandpaper (# 240), and then the insulating material is fixed to a measuring folder, and an X-ray diffraction apparatus (manufactured by Rigaku Corporation, model: XRD-) B, CuKα ray), and measured in the range of 2θ = 0 to 10 degrees. The measurement results are shown in FIG.

(2)動的粘弾性(DMA)は、絶縁材料から短冊形試験片(幅10mm×厚さ3mm×長さ80mm)を切り出し、セイコーインスツルメンツ社製の動的粘弾性測定装置(商品名:DMS−110)を使用して実施した。昇温速度2℃/分で加熱しながら、支点間距離を20mmで固定した試験片の中央に1Hzの正弦波的な荷重を加え、その荷重と歪の関係から貯蔵弾性率の温度依存性を求めた。その測定結果を図3に示す。   (2) For dynamic viscoelasticity (DMA), a strip-shaped test piece (width 10 mm x thickness 3 mm x length 80 mm) is cut out from an insulating material, and a dynamic viscoelasticity measuring device (trade name: DMS) manufactured by Seiko Instruments Inc. -110). While heating at a heating rate of 2 ° C / min, a 1Hz sinusoidal load was applied to the center of the test piece fixed at a distance between fulcrums of 20mm, and the temperature dependence of the storage modulus was determined from the relationship between the load and strain. Asked. The measurement results are shown in FIG.

(3)絶縁破壊強さは、針を樹脂でモールドした試験片(CIGRE共同試験手法に準じる)を作製し、針−平板電極により測定した。試料の底部に導電性ペイントを塗布し、平板電極上にセットして固定した後、フロリナート中、昇圧速度0.6kV/secにて、短時間昇圧法により破壊電圧を測定した(N=5)。なお、針電極先端と試料底部までの長さは3mmとし、針電極は先端角度30度、曲率半径5μmの直径1mm、長さ60mmの鋼線を使用した。図4に絶縁破壊強さの測定結果(平均電界)を示す。   (3) Dielectric breakdown strength was measured with a needle-plate electrode by preparing a test piece in which a needle was molded with a resin (according to the CIGRE joint test method). After applying conductive paint to the bottom of the sample and setting and fixing it on the flat plate electrode, the breakdown voltage was measured by a short-time pressure increase method at a pressure increase rate of 0.6 kV / sec in Fluorinert (N = 5). The length from the tip of the needle electrode to the bottom of the sample was 3 mm, and the needle electrode was a steel wire having a tip angle of 30 degrees, a radius of curvature of 5 μm, a diameter of 1 mm, and a length of 60 mm. FIG. 4 shows the measurement result (average electric field) of the dielectric breakdown strength.

図3の動的粘弾性の測定結果および図4の絶縁破壊強さの測定結果に示されるように、実施例1〜2による絶縁材料は比較例1〜2に比べて、優れた絶縁特性と耐熱特性を有していることが分かる。以下に、具体的な作用・効果を示す。まず、実施例1と比較例1とを比較する。実施例1による絶縁材料では、層間に四級アンモニウムイオンが存在する層状粘土鉱物を反応性溶媒に膨潤させた後、エポキシ樹脂と混合している。一方、比較例1では、層間にナトリウムイオンが存在する層状粘土鉱物をエポキシ樹脂に直接混合している。また、実施例1ではシランカップリング剤により層状粘土鉱物の表面を改質しているが、比較例1では改質していない。これらの材料および製造方法の違いは、層状粘土鉱物の絶縁材料中での分散状態に大きな影響を与える。   As shown in the measurement result of dynamic viscoelasticity in FIG. 3 and the measurement result of dielectric breakdown strength in FIG. 4, the insulating materials according to Examples 1 and 2 have superior insulating characteristics as compared with Comparative Examples 1 and 2. It can be seen that it has heat resistance characteristics. Specific actions and effects are shown below. First, Example 1 and Comparative Example 1 are compared. In the insulating material according to Example 1, a layered clay mineral having quaternary ammonium ions between layers is swollen in a reactive solvent and then mixed with an epoxy resin. On the other hand, in Comparative Example 1, a layered clay mineral having sodium ions between layers is directly mixed with an epoxy resin. In Example 1, the surface of the layered clay mineral is modified with a silane coupling agent, but in Comparative Example 1, it is not modified. The difference in these materials and manufacturing methods has a great influence on the dispersion state of the layered clay mineral in the insulating material.

図2に示したX線回折の測定結果は、絶縁材料中における層状粘土鉱物の分散状態を示している。層状粘土鉱物はSiO4四面体が二次元状に配列したシート(シリケート層)からできており、このシートが積層した構造を有する微細な粒子である。X線回折測定において、2θ=2〜20度の範囲にある反射ピークは、層状粘土鉱物の層間で起こる回折に由来するピークであり、層状粘土鉱物が層構造を維持したまま樹脂中に存在することを意味する。また、2θ=2〜10度の範囲に明瞭な反射ピークが存在しない場合、層状粘土鉱物はその層間で剥離し、剥離した各層が均一に分散していることを示している。 The measurement result of the X-ray diffraction shown in FIG. 2 shows the dispersion state of the layered clay mineral in the insulating material. The layered clay mineral is made of a sheet (silicate layer) in which SiO 4 tetrahedrons are arranged two-dimensionally, and is a fine particle having a structure in which the sheets are laminated. In X-ray diffraction measurement, the reflection peak in the range of 2θ = 2 to 20 degrees is a peak derived from diffraction occurring between layers of the layered clay mineral, and the layered clay mineral exists in the resin while maintaining the layer structure. Means that. Further, when there is no clear reflection peak in the range of 2θ = 2 to 10 degrees, it indicates that the layered clay mineral is peeled between the layers, and the peeled layers are uniformly dispersed.

実施例1のXRD測定結果では2θ=2〜10度の範囲に反射ピークが存在しない。つまり、実施例1による絶縁材料中では層状粘土鉱物がその層間で剥離し、均一に分散している。一方、比較例1では2θ=7度に強い反射ピークが確認できる。これはエポキシ樹脂中に混合した層状粘土鉱物が層構造を維持したままエポキシ樹脂中に存在していることを示している。層間に四級アンモニウムイオンが存在する層状粘土鉱物は、図5の模式図に示すように、四級アンモニウムイオンによりシリケート層11の表面エネルギーが低減されて層間距離が長くなり(図5(a))、層間が親油性雰囲気となっている。また、層状粘土鉱物は層間の四級アンモニウムイオンと反応性溶媒との溶媒和による膨潤する。このため、反応性溶媒12で膨潤させることによって、シリケート層11の表面エネルギーはさらに低減され、層間距離がさらに長くなる(図5(b))。   In the XRD measurement result of Example 1, there is no reflection peak in the range of 2θ = 2 to 10 degrees. That is, in the insulating material according to Example 1, the layered clay mineral peels between the layers and is uniformly dispersed. On the other hand, in Comparative Example 1, a strong reflection peak can be confirmed at 2θ = 7 degrees. This indicates that the layered clay mineral mixed in the epoxy resin is present in the epoxy resin while maintaining the layer structure. As shown in the schematic diagram of FIG. 5, in the layered clay mineral in which quaternary ammonium ions exist between layers, the surface energy of the silicate layer 11 is reduced by the quaternary ammonium ions and the interlayer distance becomes long (FIG. 5A). ), The interlayer has an oleophilic atmosphere. In addition, the layered clay mineral swells due to the solvation between the quaternary ammonium ions and the reactive solvent between the layers. Therefore, by swelling with the reactive solvent 12, the surface energy of the silicate layer 11 is further reduced and the interlayer distance is further increased (FIG. 5B).

このような四級アンモニウムイオンと反応性溶媒による膨潤の効果によって、層状粘土鉱物のエポキシ樹脂に対する親和性が高くなり、さらに3本ロールミル混合機を用いてせん断応力を加えて混合することで、層状粘土鉱物は層間で剥離して、各層が絶縁材料中で均一に分散する。一方、比較例1では図6の模式図に示すように、層状粘土鉱物の層間にナトリウムイオンが存在しているため、層間の距離は短く、エポキシ樹脂に対する親和性が低い。このため、3本ロールミル混合機を用いてせん断応力を加えて混合しても、層状粘土鉱物を絶縁材料中に均一に分散させることができない。   Due to the swelling effect of such quaternary ammonium ions and reactive solvents, the affinity of the layered clay mineral to the epoxy resin is increased, and by adding shear stress using a three-roll mill mixer, the layered clay mineral is mixed. The clay mineral peels between the layers, and each layer is uniformly dispersed in the insulating material. On the other hand, as shown in the schematic diagram of FIG. 6 in Comparative Example 1, since sodium ions are present between the layers of the layered clay mineral, the distance between the layers is short and the affinity for the epoxy resin is low. For this reason, even if a shear stress is applied and mixed using a three-roll mill mixer, the layered clay mineral cannot be uniformly dispersed in the insulating material.

さらに、実施例1の絶縁材料では層状粘土鉱物の表面がシランカップリング剤により改質されているが、比較例1の絶縁材料ではシランカップリング剤は添加されておらず、層状粘土好物の表面は改質されていない。シランカップリング剤は、その分子内にエポキシ樹脂に対して親和性が高い、あるいは反応する部位と層状粘土鉱物との親和性が高い、あるいは反応する部位が共存するため、層状粘土鉱物のエポキシ樹脂に対する濡れ性を向上させ、エポキシ樹脂との接着を強くすると共に、分散した層状粘土鉱物の再凝集を抑制することができる。このため、実施例1では、前述した四級アンモニウムイオン、せん断応力による混練、反応性溶媒による膨潤の効果によって、エポキシ樹脂中で均一分散した層状粘土鉱物が再凝集することなく、その均一な分散状態を維持し、エポキシ樹脂と層状粘土鉱物を強く接着することができる。一方、比較例2ではシランカップリング剤を添加していないため、エポキシ樹脂と層状粘土鉱物の接着力は弱く、層状粘土鉱物は凝集体の状態でエポキシ樹脂中に存在している。   Further, in the insulating material of Example 1, the surface of the layered clay mineral is modified with a silane coupling agent, but in the insulating material of Comparative Example 1, no silane coupling agent is added, and the surface of the layered clay favorite Is not modified. The silane coupling agent has high affinity for the epoxy resin in the molecule, or the affinity between the reacting site and the layered clay mineral is high, or the reacting site coexists. It is possible to improve the wettability with respect to, strengthen the adhesion with the epoxy resin, and suppress reaggregation of the dispersed layered clay mineral. For this reason, in Example 1, the layered clay mineral uniformly dispersed in the epoxy resin can be dispersed uniformly without reaggregation due to the effects of kneading by quaternary ammonium ions, shear stress, and swelling by a reactive solvent. The state can be maintained and the epoxy resin and the layered clay mineral can be strongly bonded. On the other hand, in Comparative Example 2, since the silane coupling agent was not added, the adhesive force between the epoxy resin and the layered clay mineral was weak, and the layered clay mineral was present in the epoxy resin in an aggregated state.

上述した絶縁材料中で均一に分散した層状粘土鉱物は、絶縁材料に優れた絶縁特性と耐熱性を付与する。絶縁物の絶縁破壊では、絶縁物中に樹枝状の劣化(電気トリー)が発生、進展して最終的に破壊する、いわゆるトリーイング破壊の形態をとる。図7の模式図に示すように、実施例1の絶縁材料21は電圧の印加により電気トリーが発生しても、絶縁材料21中に均一に分散した層状粘土化合物22がその進展を抑制するため、高い破壊電圧を示す。なお、図中23は針電極の先端を示している。一方、図8の模式図に示すように、比較例1の絶縁材料24は層状粘土鉱物25が均一に分散していないため、電気トリーの進展を効率よく抑制することができず、高い破壊電圧を示すことができない。   The layered clay mineral uniformly dispersed in the insulating material described above imparts excellent insulating properties and heat resistance to the insulating material. Insulation breakdown of an insulator takes the form of so-called treeing breakdown, in which dendritic deterioration (electric tree) occurs and progresses in the insulator and eventually breaks. As shown in the schematic diagram of FIG. 7, the insulating material 21 of Example 1 suppresses the progress of the layered clay compound 22 evenly dispersed in the insulating material 21 even when an electrical tree is generated by application of voltage. Shows a high breakdown voltage. In the figure, reference numeral 23 denotes the tip of the needle electrode. On the other hand, as shown in the schematic diagram of FIG. 8, in the insulating material 24 of Comparative Example 1, since the layered clay mineral 25 is not uniformly dispersed, the progress of the electric tree cannot be efficiently suppressed, and a high breakdown voltage is obtained. Can not show.

また、耐熱特性に関しては図3の動的粘弾性測定の結果が示すように、実施例1の絶縁材料が165℃付近まで貯蔵弾性率E′の低下が起きないのに対し、比較例1の絶縁材料は140℃付近から貯蔵弾性率E′が急減に低下している。実施例1の絶縁材料は図1に示したように、エポキシ樹脂の三次元網状構造をなす鎖状高分子の各部分の熱運動が激しくなってゴム状弾性を示すガラス転移温度以上の温度においても、均一に分散した層状粘土鉱物がエポキシ樹脂の分子鎖の間に入り込み、三次元網目構造を拘束する補強材として働くため、165℃付近まで分子鎖の運動を抑制し、室温の貯蔵弾性率を維持することができる。これによって優れた耐熱性を発現している。一方、比較例1による絶縁材料においては層状粘土鉱物が均一に分散していないため、エポキシ樹脂の三次元網目構造を拘束することができず、エポキシ樹脂のガラス転移温度である140℃付近から、貯蔵弾性率が急激に低下してしまい、耐熱性を発現することができない。   As for the heat resistance characteristics, as shown in the results of the dynamic viscoelasticity measurement in FIG. 3, the insulating material of Example 1 does not decrease in storage elastic modulus E ′ until around 165 ° C. In the insulating material, the storage elastic modulus E ′ is rapidly decreased from around 140 ° C. As shown in FIG. 1, the insulating material of Example 1 has a temperature higher than the glass transition temperature at which the thermal motion of each portion of the chain polymer forming the three-dimensional network structure of the epoxy resin becomes intense and exhibits rubber-like elasticity. However, since the uniformly dispersed layered clay mineral penetrates between the molecular chains of the epoxy resin and acts as a reinforcing material that constrains the three-dimensional network structure, the movement of the molecular chains is suppressed to around 165 ° C, and the storage modulus at room temperature Can be maintained. As a result, excellent heat resistance is exhibited. On the other hand, in the insulating material according to Comparative Example 1, since the layered clay mineral is not uniformly dispersed, the three-dimensional network structure of the epoxy resin cannot be constrained, and from around 140 ° C. which is the glass transition temperature of the epoxy resin, Storage elastic modulus falls rapidly and heat resistance cannot be expressed.

次に、実施例2と比較例2とを比較する。実施例2の絶縁材料では、層状粘土鉱物を反応性溶媒として1分子当たり1個以上のエポキシ基を有する有機化合物(ブチルグリシジルエーテル)に膨潤させている。一方、比較例2の絶縁材料では非反応性溶媒であるトルエンに分散させている。層状粘土鉱物は反応性溶媒であるグリシジルエーテルにも非反応性溶媒であるトルエンにも膨潤し、これらの膨潤溶液をエポキシ樹脂と混合することで、層状粘土鉱物を絶縁材料中にほぼ均一に分散させることができる(図2のX線回折結果を参照/2θ=3度付近のピークは層剥離に至らず、層間距離が長くなったのみで、層剥離に至らなかった一部の層状粘土鉱物が絶縁材料中に残っていることを示している)。しかしながら、この膨潤溶媒の違いは絶縁材料の耐熱性に大きな影響を与える。   Next, Example 2 and Comparative Example 2 are compared. In the insulating material of Example 2, the layered clay mineral is swollen with an organic compound (butyl glycidyl ether) having one or more epoxy groups per molecule using a reactive solvent. On the other hand, the insulating material of Comparative Example 2 is dispersed in toluene which is a non-reactive solvent. The layered clay mineral swells both in the reactive solvent glycidyl ether and in the non-reactive solvent toluene. By mixing these swelling solutions with epoxy resin, the layered clay mineral is dispersed almost uniformly in the insulating material. (See the X-ray diffraction results in Fig. 2 / 2θ = 3 degrees peak does not lead to delamination, only the distance between layers is increased, and some layered clay minerals that did not result in delamination) Indicates that it remains in the insulating material). However, the difference in the swelling solvent greatly affects the heat resistance of the insulating material.

図3の動的粘弾性測定の結果が示すように、実施例2による絶縁材料は155℃付近まで室温での貯蔵弾性率を維持しているが、比較例2による絶縁材料は135℃付近から貯蔵弾性率が低下している。実施例2で用いた反応性溶媒のブチルグリシジルエーテルは、その分子内にエポキシ樹脂用硬化剤と反応するエポキシ基を持っている。このため、エポキシ樹脂とエポキシ樹脂用硬化剤の硬化反応により形成される三次元網状構造に取り込まれる。一方、比較例2で用いた非反応性溶媒のトルエンはエポキシ樹脂用硬化剤と反応することはないため、三次元網状構造に取り込まれることはない。つまり、高分子量のエポキシ樹脂の三次元網状構造内に低分子量のトルエンが存在することとなり、絶縁材料の耐熱特性は著しく低下する。   As shown in the results of the dynamic viscoelasticity measurement in FIG. 3, the insulating material according to Example 2 maintains the storage elastic modulus at room temperature up to around 155 ° C., but the insulating material according to Comparative Example 2 starts from around 135 ° C. Storage elastic modulus is decreasing. The reactive solvent butyl glycidyl ether used in Example 2 has an epoxy group that reacts with the epoxy resin curing agent in its molecule. For this reason, it is taken in the three-dimensional network structure formed by the curing reaction of the epoxy resin and the epoxy resin curing agent. On the other hand, since the non-reactive solvent toluene used in Comparative Example 2 does not react with the epoxy resin curing agent, it is not incorporated into the three-dimensional network structure. That is, low molecular weight toluene exists in the three-dimensional network structure of the high molecular weight epoxy resin, and the heat resistance characteristics of the insulating material are remarkably deteriorated.

上述したように、実施例2による絶縁材料では、層状粘土鉱物の膨潤溶媒(反応性溶媒)自身もエポキシ樹脂とエポキシ樹脂用硬化剤の硬化反応により形成される三次元網状構造に取り込まれるため、層状粘土鉱物の均一分散性を維持した上で優れた耐熱特性が付与されている。すなわち、高い破壊電圧と優れた耐熱特性とを有する高電圧機器用絶縁材料を提供することが可能となる。   As described above, in the insulating material according to Example 2, the swelling solvent (reactive solvent) of the layered clay mineral itself is also taken into the three-dimensional network structure formed by the curing reaction of the epoxy resin and the epoxy resin curing agent. Excellent heat resistance is imparted while maintaining the uniform dispersibility of the layered clay mineral. That is, it is possible to provide an insulating material for high voltage equipment having high breakdown voltage and excellent heat resistance.

次に、実施例1と実施例2とを比較する。実施例1および実施例2による絶縁材料はいずれも優れた絶縁特性と耐熱性能を示すが、両者を比較した場合、実施例1による絶縁材料の方がより優れた絶縁特性と耐熱性能を示す。この差は実施例1と実施例2による絶縁材料の製造方法に起因している。実施例1による絶縁材料は、反応性溶媒に膨潤させた層状粘土鉱物をエポキシ樹脂に添加した後、3本ロールミル混合機を用いて剪断応力を加えて混練している。さらに、混練後に反応性溶媒を減圧除去している。一方、実施例2による絶縁材料は、反応性溶媒に膨潤させた層状粘土鉱物をエポキシ樹脂に添加した後、万能混合機で混合していると共に、混練後に反応性溶媒の減圧除去操作を実施していない。   Next, Example 1 and Example 2 are compared. The insulating materials according to Example 1 and Example 2 both exhibit excellent insulating characteristics and heat resistance, but when both are compared, the insulating material according to Example 1 exhibits better insulating characteristics and heat resistance. This difference is due to the manufacturing method of the insulating material according to the first and second embodiments. The insulating material according to Example 1 is kneaded by adding a layered clay mineral swollen in a reactive solvent to an epoxy resin and then applying shear stress using a three-roll mill mixer. Furthermore, the reactive solvent is removed under reduced pressure after kneading. On the other hand, in the insulating material according to Example 2, the layered clay mineral swollen in the reactive solvent was added to the epoxy resin and then mixed with a universal mixer, and after the kneading, the reactive solvent was removed under reduced pressure. Not.

層状粘土鉱物は反応性溶媒で膨潤させた後にエポキシ樹脂と混合することで、均一に分散させることができるが、実施例1の絶縁材料のように3本ロールミル混合機等を用いてせん断応力を加えて混練することで、積層した層状粘土鉱物の各層(シリケート層)をその層間で引き剥がそうとする力が働き、層剥離したシリケート層をエポキシ樹脂中により均一にかつ微細に分散させることができる。これによって、実施例1と実施例2の絶縁材料を比較した場合、図4に示したように、実施例1による絶縁材料の方がより高い絶縁破壊強さを示す。   The layered clay mineral can be uniformly dispersed by swelling with a reactive solvent and then mixing with an epoxy resin. However, as in the insulating material of Example 1, a shear stress is applied using a three-roll mill mixer. In addition, by kneading, a force to peel off each layer (silicate layer) of the layered layered clay minerals works, and the layered silicate layer can be dispersed more uniformly and finely in the epoxy resin. it can. Accordingly, when the insulating materials of Example 1 and Example 2 are compared, as shown in FIG. 4, the insulating material according to Example 1 shows a higher dielectric breakdown strength.

また、層状粘土鉱物を膨潤させる反応性溶媒は、前述したようにエポキシ樹脂用硬化剤と反応するため、エポキシ樹脂の三次元網状構造に取り込まれ、絶縁材料の耐熱特性を著しく低下させることはない。しかしながら、低分子量の反応性溶媒の分子が高分子量のエポキシ樹脂の三次元網状構造に取り込まれることで、エポキシ樹脂の架橋密度が低下する。実施例1の絶縁材料は、減圧操作により最終的には反応性溶媒を除去しているため、エポキシ樹脂とエポキシ樹脂用硬化剤は高い架橋密度で三次元網状構造を形成する。これによって、実施例1と実施例2の絶縁材料を比較した場合、図3の動的粘弾性の測定結果が示すように、実施例1による絶縁材料の方がより高い耐熱特性を示す。   In addition, the reactive solvent that swells the layered clay mineral reacts with the curing agent for the epoxy resin as described above, and therefore is incorporated into the three-dimensional network structure of the epoxy resin and does not significantly reduce the heat resistance characteristics of the insulating material. . However, the crosslinking density of the epoxy resin is lowered by incorporating the molecules of the low molecular weight reactive solvent into the three-dimensional network structure of the high molecular weight epoxy resin. In the insulating material of Example 1, since the reactive solvent is finally removed by the decompression operation, the epoxy resin and the epoxy resin curing agent form a three-dimensional network structure with high crosslink density. Accordingly, when the insulating materials of Example 1 and Example 2 are compared, the insulating material according to Example 1 exhibits higher heat resistance characteristics as shown by the measurement result of dynamic viscoelasticity in FIG.

本発明の一実施形態による高電圧機器用絶縁材料の微細構造を模式的に示す図である。It is a figure which shows typically the fine structure of the insulating material for high voltage apparatuses by one Embodiment of this invention. 実施例1〜2および比較例1〜2により作製した絶縁材料における層状粘土鉱物の分散状態を表すX線回折の測定結果を示す図である。It is a figure which shows the measurement result of the X-ray diffraction showing the dispersion state of the layered clay mineral in the insulating material produced by Examples 1-2 and Comparative Examples 1-2. 実施例1〜2および比較例1〜2により作製した絶縁材料の耐熱特性を表す動的粘弾性の測定結果を示す図である。It is a figure which shows the measurement result of the dynamic viscoelasticity showing the heat resistance characteristic of the insulating material produced by Examples 1-2 and Comparative Examples 1-2. 実施例1〜2および比較例1〜2により作製した絶縁材料の絶縁特性を表す絶縁破壊強さの測定結果を示す図である。It is a figure which shows the measurement result of the dielectric breakdown strength showing the insulation characteristic of the insulating material produced by Examples 1-2 and Comparative Examples 1-2. 本発明の実施例による層状粘土鉱物の層間距離を示す模式図である。It is a schematic diagram which shows the interlayer distance of the layered clay mineral by the Example of this invention. 比較例による層状粘土鉱物の層間距離を示す模式図である。It is a schematic diagram which shows the interlayer distance of the layered clay mineral by a comparative example. 本発明の実施例による絶縁材料中の層状粘土鉱物が電気トリーの進展を抑制する状態を模式的に示す図である。It is a figure which shows typically the state in which the layered clay mineral in the insulating material by the Example of this invention suppresses progress of an electric tree. 比較例の絶縁材料中を電気トリーが進展する状態を模式的に示す図である。It is a figure which shows typically the state which an electric tree advances in the insulating material of a comparative example.

符号の説明Explanation of symbols

1…高電圧機器用絶縁材料、2,21…エポキシ樹脂硬化物、3,22…層状粘土鉱物、11…シリケート層、12…反応性溶媒。     DESCRIPTION OF SYMBOLS 1 ... Insulating material for high voltage apparatuses, 2,21 ... Epoxy resin hardened | cured material, 3,22 ... Layered clay mineral, 11 ... Silicate layer, 12 ... Reactive solvent.

Claims (10)

(A)1分子当たり2個以上のエポキシ基を有するエポキシ樹脂と、(B)エポキシ樹脂用硬化剤と、(C)層状粘土鉱物と、(D)前記(B)成分に対して反応性を有する反応性溶媒を50体積%以上含む分散媒体とを、必須成分として含有する組成物であって、
前記(A)成分100質量部に対して前記(D)成分を1〜100質量部含有し、かつ前記反応性溶媒が1分子当たり1個のエポキシ基を有する有機化合物からなることを特徴とする発電機器・送変電機器用絶縁樹脂組成物。
(A) An epoxy resin having two or more epoxy groups per molecule, (B) a curing agent for an epoxy resin, (C) a layered clay mineral, and (D) reactive to the component (B). A composition containing, as an essential component, a dispersion medium containing 50% by volume or more of a reactive solvent having ,
The component (D) is contained in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the component (A), and the reactive solvent is composed of an organic compound having one epoxy group per molecule. Insulating resin composition for power generation equipment and transmission / transformation equipment .
請求項1記載の発電機器・送変電機器用絶縁樹脂組成物において、
前記層状粘土鉱物はスメクタイト群、マイカ群、バーミキュライト群および雲母群からなる鉱物群から選ばれる少なくとも1種からなることを特徴とする発電機器・送変電機器用絶縁樹脂組成物。
In the insulating resin composition for power generation equipment / transmission / transformation equipment according to claim 1,
The layered clay mineral smectite group, mica group, vermiculite group and an insulating resin composition for electricity generation equipment and transmission substation equipment, characterized in that it consists of at least one selected from mineral group consisting of micas.
請求項1または請求項2記載の発電機器・送変電機器用絶縁樹脂組成物において、
前記層状粘土鉱物の層間に四級アンモニウムイオンが存在することを特徴とする発電機器・送変電機器用絶縁樹脂組成物。
In the insulating resin composition for power generation equipment / transmission and transformation equipment according to claim 1 or claim 2,
A quaternary ammonium ion is present between layers of the layered clay mineral. An insulating resin composition for power generation equipment / transmission / transformation equipment .
請求項1ないし請求項3のいずれか1項記載の発電機器・送変電機器用絶縁樹脂組成物において、
前記層状粘土鉱物の表面はカップリング剤により改質されていることを特徴とする発電機器・送変電機器用絶縁樹脂組成物。
In the insulating resin composition for power generation equipment / transmission / transformation equipment according to any one of claims 1 to 3,
An insulating resin composition for power generation equipment / transmission / transformation equipment , wherein the surface of the layered clay mineral is modified with a coupling agent.
請求項1ないし請求項4のいずれか1項記載の発電機器・送変電機器用絶縁樹脂組成物において、
前記反応性溶媒はブチルグリシジルエーテル、アルキレンモノグリシジルエーテルおよびアルキルフェノールモノグリシジルエーテルからなる群から選ばれる少なくとも1種からなることを特徴とする発電機器・送変電機器用絶縁樹脂組成物。
In the insulating resin composition for power generation equipment / transmission / transformation equipment according to any one of claims 1 to 4,
The said reactive solvent consists of at least 1 sort (s) chosen from the group which consists of a butyl glycidyl ether, an alkylene monoglycidyl ether, and an alkylphenol monoglycidyl ether , The insulating resin composition for power generation equipment / transmission / transformation equipment characterized by the above-mentioned.
請求項1ないし請求項5のいずれか1項記載の発電機器・送変電機器用絶縁樹脂組成物の硬化物からなることを特徴とする発電機器・送変電機器用絶縁材料。 Power equipment and transmission substation equipment dexterity insulating material comprising the cured product of the power generation equipment and transmission substation equipment insulating resin composition according to any one of claims 1 to 5. (A)1分子当たり2個以上のエポキシ基を有するエポキシ樹脂と、(B)エポキシ樹脂用硬化剤と、(C)層状粘土鉱物と、(D)1分子当たり1個のエポキシ基を有する有機化合物からなる前記(B)成分に対して反応性を有する反応性溶媒を50体積%以上含む、前記(A)成分100質量部に対して1〜100質量部の分散媒体とを用いて、発電機器・送変電機器用絶縁材料を製造するにあたり、
前記反応性溶媒を含む分散媒体中で前記層状粘土鉱物を膨潤させる工程と、
前記分散媒体で膨潤させた層状粘土鉱物を前記エポキシ樹脂中に混合する工程と、
前記混合物に前記エポキシ樹脂用硬化剤を添加して混合する工程と、
前記硬化剤を含む混合物を所望の形状に成形する工程と、
前記成形体を前記硬化剤により硬化させる工程と
を具備することを特徴とする発電機器・送変電機器用絶縁材料の製造方法。
(A) an epoxy resin having two or more epoxy groups per molecule, (B) a curing agent for epoxy resins, (C) a layered clay mineral, and (D) an organic having one epoxy group per molecule. Power generation using 1 to 100 parts by mass of a dispersion medium with respect to 100 parts by mass of the component (A), which contains 50% by volume or more of a reactive solvent having reactivity with the component (B) made of a compound In manufacturing insulation materials for equipment and power transmission / transformation equipment ,
Swelling the lamellar clay mineral in a dispersion medium containing the reactive solvent;
Mixing the layered clay mineral swollen with the dispersion medium into the epoxy resin;
Adding and mixing the curing agent for epoxy resin to the mixture; and
Forming a mixture containing the curing agent into a desired shape;
And a step of curing the molded body with the curing agent. A method for producing an insulating material for power generation equipment / transmission / transformation equipment .
請求項7記載の発電機器・送変電機器用絶縁材料の製造方法において、
さらに、前記膨潤させた層状粘土鉱物を前記エポキシ樹脂中に混合した後、前記反応性溶媒を含む分散媒体の少なくとも一部を除去する工程を具備することを特徴とする発電機器・送変電機器用絶縁材料の製造方法。
In the manufacturing method of the insulating material for power generation equipment / transmission / transformation equipment according to claim 7,
Furthermore, after mixing the layered clay mineral obtained by the swelling in the epoxy resin, power generation equipment and transmission substation equipment, characterized by comprising the step of removing at least a portion of the dispersion medium containing said reactive solvent Insulating material manufacturing method.
請求項7または請求項8記載の発電機器・送変電機器用絶縁材料の製造方法において、
前記層状粘土鉱物の膨潤工程および前記層状粘土鉱物の前記エポキシ樹脂中への混合工程で、せん断応力を加えて混練することを特徴とする発電機器・送変電機器用絶縁材料の製造方法。
In the manufacturing method of the insulating material for power generation equipment / transmission / transformation equipment according to claim 7 or claim 8,
A method for producing an insulating material for power generation equipment and power transmission / transformation equipment , wherein shearing stress is applied and kneaded in the step of swelling the layered clay mineral and the step of mixing the layered clay mineral into the epoxy resin.
請求項6記載の絶縁材料からなる絶縁部材を具備することを特徴とする発電機器・送変電機器用絶縁構造体。 An insulating structure for a power generation device / transmission / transformation device comprising an insulating member made of the insulating material according to claim 6 .
JP2004059854A 2004-03-03 2004-03-03 Insulating resin composition for high voltage equipment, insulating material and method for producing the same, and insulating structure Expired - Lifetime JP4476646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059854A JP4476646B2 (en) 2004-03-03 2004-03-03 Insulating resin composition for high voltage equipment, insulating material and method for producing the same, and insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059854A JP4476646B2 (en) 2004-03-03 2004-03-03 Insulating resin composition for high voltage equipment, insulating material and method for producing the same, and insulating structure

Publications (2)

Publication Number Publication Date
JP2005251543A JP2005251543A (en) 2005-09-15
JP4476646B2 true JP4476646B2 (en) 2010-06-09

Family

ID=35031810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059854A Expired - Lifetime JP4476646B2 (en) 2004-03-03 2004-03-03 Insulating resin composition for high voltage equipment, insulating material and method for producing the same, and insulating structure

Country Status (1)

Country Link
JP (1) JP4476646B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146077A (en) * 2005-11-30 2007-06-14 Denso Corp Insulating material
JP2009191239A (en) * 2008-02-18 2009-08-27 Univ Kansai Process of manufacturing partial discharge-resistant resin composition, partial discharge-resistant resin composition, partial discharge-resistant insulation material, and partial discharge-resistant insulator structure
KR100979541B1 (en) * 2008-07-16 2010-09-02 삼성전기주식회사 Prepreg, Method for MANUFACURING prepreg and copper clad laminate using the same
JP5659030B2 (en) * 2011-01-28 2015-01-28 株式会社東芝 Method for producing insulating resin composition for high voltage device
JP5892871B2 (en) 2011-11-22 2016-03-23 株式会社日立製作所 Organic-inorganic composite containing triazine ring and electrical device using the same
CN103642176B (en) * 2013-12-02 2015-10-14 北京化工大学 A kind of preparation method of high-barrier composite material
CN107922743B (en) 2015-08-26 2019-03-08 电化株式会社 Heat conductive resin composition
CN117476270B (en) * 2023-12-28 2024-02-27 四川大学 Epoxy composite material capable of accurately regulating nonlinear conductivity and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213700A (en) * 1975-07-22 1977-02-02 Shinko Electric Co Ltd Insulating resin for electric device
JPH11147997A (en) * 1997-11-14 1999-06-02 Asahi Chem Ind Co Ltd Molding material for electrical insulation
JP2001254000A (en) * 2000-03-09 2001-09-18 Sumitomo Bakelite Co Ltd Flame retardant resin composition and sealing material for semiconductor using the same
FR2809737B1 (en) * 2000-05-31 2002-07-19 Cit Alcatel NANOCOMPOSITE BASED ON BRIDGE CLAY AND ORGANIC BRIDGE AND CABLE COMPRISING SUCH A NANOCOMPOSITE
JP3962271B2 (en) * 2001-05-11 2007-08-22 積水化学工業株式会社 Flame retardant thermosetting resin composition
JP2003022710A (en) * 2001-07-06 2003-01-24 Toshiba Corp Low dielectric type insulating material and its manufacturing method
JP3854931B2 (en) * 2002-02-06 2006-12-06 積水化学工業株式会社 Resin composition
JP2003313435A (en) * 2002-02-19 2003-11-06 Sekisui Chem Co Ltd Material for insulating substrate, laminate, printed substrate, copper foil with resin, copper-clad laminate, polyimide film, film for tab, and prepreg
JP2003238771A (en) * 2002-02-21 2003-08-27 Toshiba Corp Resin composition for casting
JP2004051977A (en) * 2002-05-30 2004-02-19 Sekisui Chem Co Ltd Epoxy resin sheet
JP2004307681A (en) * 2003-04-08 2004-11-04 Yokohama Rubber Co Ltd:The Epoxy resin composition containing layered clay mineral subjected to organizing treatment and method for makking the same
JP2005171207A (en) * 2003-12-15 2005-06-30 Sekisui Chem Co Ltd Resin sheet
JP4387786B2 (en) * 2003-12-22 2009-12-24 株式会社東芝 Epoxy resin composition and cast insulator
JP4314112B2 (en) * 2003-12-22 2009-08-12 株式会社東芝 Fiber reinforced composite material for sulfur hexafluoride gas insulation equipment and method for producing the same

Also Published As

Publication number Publication date
JP2005251543A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
KR101119945B1 (en) Cast resin composition, insulator material and insulating structure therewith
JP4653443B2 (en) Resin composition for high voltage equipment, insulating material and insulating structure
JP5185890B2 (en) Insulating casting resin for high-voltage electrical equipment and high-voltage electrical equipment using the same
JP4969816B2 (en) RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME AND ELECTRIC DEVICE USING THE SAME
CN101821817B (en) Polymer concrete electrical insulation system
JP5587248B2 (en) Electrical insulating material and high voltage equipment using the same
WO2009104292A1 (en) Process for producing resin composition with partial-discharge resistance, resin composition with partial-discharge resistance, and insulating material with partial-discharge resistance
JP5250003B2 (en) Resin material and high voltage equipment using the same
RU2609914C2 (en) Insulating composite materials for electric power transmission and distribution systems
JP4476646B2 (en) Insulating resin composition for high voltage equipment, insulating material and method for producing the same, and insulating structure
WO2013123648A1 (en) Curable epoxy composition with milled glass fiber
WO2017168880A1 (en) Curable composition, cured object obtained therefrom, and rotary device
EP3765567B1 (en) Storage stable and curable resin compositions
JP4387786B2 (en) Epoxy resin composition and cast insulator
JP4314112B2 (en) Fiber reinforced composite material for sulfur hexafluoride gas insulation equipment and method for producing the same
CN111002656B (en) High heat-resistant insulating film for oil-immersed transformer
JP2005259928A (en) Insulating coil for high tension equipment and high tension equipment using the coil
EP3070115A1 (en) Epoxy resin composition with improved dielectric breakdown strength
JP6275056B2 (en) Insulating resin composition, insulating member, rotating electric machine and generator
JP5659030B2 (en) Method for producing insulating resin composition for high voltage device
RU2826835C1 (en) Powder coating composition for electrical machine insulation system, electrical machine with such insulation system and method of producing such insulation system
JP2018193517A (en) Composite insulating resin composition, and high-voltage apparatus and circuit breaker using the same
JP2014031391A (en) Epoxy resin and electrical apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

R151 Written notification of patent or utility model registration

Ref document number: 4476646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

EXPY Cancellation because of completion of term