JP5359008B2 - Method for producing insulating polymer material composition - Google Patents

Method for producing insulating polymer material composition Download PDF

Info

Publication number
JP5359008B2
JP5359008B2 JP2008108711A JP2008108711A JP5359008B2 JP 5359008 B2 JP5359008 B2 JP 5359008B2 JP 2008108711 A JP2008108711 A JP 2008108711A JP 2008108711 A JP2008108711 A JP 2008108711A JP 5359008 B2 JP5359008 B2 JP 5359008B2
Authority
JP
Japan
Prior art keywords
insulating
fossil
epoxy resin
insulating material
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008108711A
Other languages
Japanese (ja)
Other versions
JP2009256499A (en
Inventor
保幸 蔵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2008108711A priority Critical patent/JP5359008B2/en
Publication of JP2009256499A publication Critical patent/JP2009256499A/en
Application granted granted Critical
Publication of JP5359008B2 publication Critical patent/JP5359008B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Organic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating composition, which uses an insulating material comprised of an epoxy resin derived from a non-fossil, a filler, etc., not only to contribute to the global environmental maintenance but also to improve furthermore the characteristics (electrical properties and mechanical properties). <P>SOLUTION: The insulating material (nanocomposite) is formed by mixing each components of at least an epoxy resin derived from a non-fossil (epoxy linseed oil and the like), a hardener, a nanofiller and a modifying agent, and a product obtained byheat-curing the above insulating material is applied to the insulating constituent of voltage equipment. The above insulating material is not such one that each component is mixed collectively, but such one that at first a mixture is obtained which contains at least an epoxy resin derived from a non-fossil, a nanofiller and a modifying agent, and then the mixture is mill-treated with a roll mill and preheated (aged) in a given condition and thereafter added with a hardener, and furthermore mixed. Then, the above insulating material is casted in a given shaped metal mold and heat-cured to obtain a desired insulating composition. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、絶縁性高分子材料組成物に関するものであって、例えば筐体内に遮断器や断路器等の開閉機器を備えた電圧機器(例えば、重電機器等の高電圧機器)の絶縁構成に用いられるものである。   The present invention relates to an insulating polymer material composition, for example, an insulation configuration of a voltage device (for example, a high voltage device such as a heavy electrical device) provided with a switching device such as a circuit breaker or a disconnect device in a housing. It is used for.

筐体内に遮断器や断路器等の開閉機器を備えた電圧機器(重電機器等)の絶縁構成(例えば、絶縁性を要する部位)に適用(例えば、屋外に直接暴露して適用)されるものとしては、化石原料(石油等)由来のエポキシ樹脂(以下、化石由来エポキシ樹脂と称する)等に対し硬化剤,充填剤(例えば、シリカ,アルミナ等の無機充填剤)等の各種成分を適宜混合して得た絶縁材料を加熱硬化した高分子材料組成物(以下、絶縁性組成物と称する)、例えば該絶縁材料を注型して成る絶縁性組成物により構成された製品(モールド注型品;以下、絶縁性製品と称する)が、従来から広く知られている。   Applicable to insulation configurations (for example, parts that require insulation) of voltage equipment (heavy electrical equipment, etc.) equipped with switching devices such as circuit breakers and disconnectors in the housing (for example, directly exposed to the outdoors) As a thing, various components, such as a hardening | curing agent and a filler (for example, inorganic fillers, such as a silica and an alumina), etc. with respect to the epoxy resin (henceforth a fossil origin epoxy resin) derived from a fossil raw material (petroleum etc.) suitably. Polymer material composition (hereinafter referred to as insulating composition) obtained by heat-curing an insulating material obtained by mixing, for example, a product (mold casting) constituted by an insulating composition formed by casting the insulating material Products; hereinafter referred to as insulating products) have been widely known.

また、社会の高度化・集中化に伴って、電圧機器等の大容量化,小型化や高い物性(例えば、電気的物性(絶縁破壊電界特性等),機械的物性(曲げ強度等))等が強く要求されると共に、前記の絶縁性製品に対しても種々の特性の向上が要求されてきた。   In addition, with the sophistication and concentration of society, the capacity of voltage devices, etc. has increased in size, size, and high physical properties (for example, electrical properties (such as dielectric breakdown electric field properties), mechanical properties (such as bending strength)), etc. In addition, there has been a strong demand for improvement in various characteristics of the insulating product.

例えば、従来、処分対象である絶縁性製品(例えば、寿命,故障等によって処分される製品)の多くは単に埋立て処理する方法により処分されていたが、その埋立て処理に係る最終処分場が年々減少していく傾向を懸念して、旧・厚生省により最終処分場の残余年数に関して平成20年頃と試算され、旧・経済企画庁により前記の試算に基づいて平成20年頃に廃棄物処理費用が高騰し経済成長率が押し下げられると予測されていたことから、地球環境保全(省エネルギー化,CO2排出抑制による温暖化防止等)や再利用(リサイクル)を考慮した絶縁性製品の開発が進められてきた。 For example, in the past, many of the insulating products (for example, products that are disposed of due to lifetime, failure, etc.) to be disposed of have been disposed of simply by landfilling, but there is a final disposal site related to landfilling. Concerned about the declining trend year by year, the former Ministry of Health and Welfare estimated the remaining years of the final disposal site as around 2008, and the former Economic Planning Agency raised the waste disposal cost around 2008 based on the above estimate. However, because it was predicted that the economic growth rate would be pushed down, the development of insulating products that consider global environment conservation (energy saving, prevention of global warming by suppressing CO 2 emissions, etc.) and reuse (recycling) has been promoted. It was.

しかしながら、その再利用方法は未だ確立されておらず殆ど行われていない。例外的に、品質が比較的均一な部材(絶縁性製品に用いられているPEケーブル被覆部材)については回収しサーマルエネルギーとして利用されているが、このサーマルエネルギーは燃焼処理工程を要するため、地球環境を害する恐れがある。また、焼却処理する場合においても、種々の有害物質やCO2を大量に排出するため、前記同様に地球環境を害する恐れがある。 However, the reuse method has not been established yet and is hardly performed. Exceptionally, members with relatively uniform quality (PE cable covering members used in insulating products) are recovered and used as thermal energy. However, since this thermal energy requires a combustion treatment process, May harm the environment. Also, in the case of incineration, since various toxic substances and CO 2 are discharged in large quantities, there is a risk of harming the global environment as described above.

絶縁性組成物の各成分において少しでも非化石原料由来物質を適用(例えば、充填剤として、無機充填剤と木質資源等の有機充填剤とを併用)する試みも行われているが、絶縁性組成物全体での適用割合としては僅かであり、大半は化石原料由来物質に依存した成分によって占められているものである。   Attempts have been made to apply non-fossil raw material-derived substances (for example, a combination of an inorganic filler and an organic filler such as a wood resource as a filler) to each component of the insulating composition. The application ratio of the composition as a whole is small, and most of the composition is occupied by components depending on the fossil raw material-derived substances.

また、絶縁性組成物の必須成分のうちの一つである樹脂として生分解性樹脂(例えば、ポリ乳酸系樹脂)を適用する試みが知られているが(例えば、特許文献1)、該生分解性樹脂は熱可塑性のものであり、比較的溶融(例えば、100℃程度の温度で溶融)し易い物質であるため、特に高電圧機器(使用中に100℃程度に温度上昇し得る高電圧機器)への適用は不向きとされている。   In addition, an attempt to apply a biodegradable resin (for example, polylactic acid-based resin) as a resin that is one of the essential components of the insulating composition is known (for example, Patent Document 1). The decomposable resin is thermoplastic and is a substance that is relatively easy to melt (for example, melt at a temperature of about 100 ° C.). Therefore, it is particularly a high voltage device (a high voltage that can rise to about 100 ° C. during use). Application to equipment) is not suitable.

なお、生物由来物質を用いた熱硬化性のある架橋組成物を適用する試みも知られているが(例えば、特許文献2)、硬化剤としてアルデヒド類を用いるものであり、常温程度の温度雰囲気下(例えば、印刷配線ボードにおける温度環境)では高い機械的物性を有するものの、高温雰囲気下(例えば、電圧機器等の使用環境)では十分な機械的物性が得られ難い。   In addition, although an attempt to apply a thermosetting cross-linking composition using a biological material is also known (for example, Patent Document 2), an aldehyde is used as a curing agent, and a temperature atmosphere of about room temperature. Although it has high mechanical properties under (for example, a temperature environment in a printed wiring board), it is difficult to obtain sufficient mechanical properties in a high-temperature atmosphere (for example, an environment in which a voltage device or the like is used).

一方、耐熱性を考慮し、例えばガラス転移点(以下、Tgと称する)100℃以上の耐熱性エポキシ樹脂を用いた絶縁性製品が知られているが、このような絶縁性製品は硬く脆弱であり、温度変化が激しい環境下で使用した場合にはクラック発生率が高くなる。例えば絶縁材料の主成分として固形エポキシ樹脂(例えば、金属導体を用いた耐クラック性試験の結果が−30℃以下のもの)を用いたり、多量の充填材を添加して耐クラック性等を向上させる試みも行われているが、その絶縁材料の粘度が著しく高くなってしまい、例えば注型作業等において十分な可使時間(ポットライフ;工業的な作業に必要な最低限の時間)を確保できず、作業性が悪化する恐れがあった。   On the other hand, in consideration of heat resistance, for example, an insulating product using a heat-resistant epoxy resin having a glass transition point (hereinafter referred to as Tg) of 100 ° C. or higher is known, but such an insulating product is hard and brittle. There is a high cracking rate when used in an environment where the temperature changes drastically. For example, a solid epoxy resin (for example, a crack resistance test using a metal conductor with a result of −30 ° C. or lower) is used as the main component of the insulating material, or a large amount of filler is added to improve crack resistance. Attempts have been made, however, the viscosity of the insulating material has increased remarkably, and for example, sufficient pot life (pot life; minimum time required for industrial work) is ensured in casting work, etc. There was a risk that workability would deteriorate.

工業材料の観点で要求される各種特性(電気的物性,機械的物性等)の多くを満たすものとしては、化石由来エポキシ樹脂が広く一般的に知られているが、近年、非化石原料由来であって三次元架橋するエポキシ樹脂(以下、非化石由来エポキシ樹脂と称する)を代用する試みが行われている。非化石由来エポキシ樹脂の一例として挙げられるエポキシ化亜麻仁油は、エポキシ化大豆油と同様に塩化ビニルの安定剤として適用されてきたものであるが、化石原料由来のエポキシ樹脂と比較して反応性が乏しいため硬化時間が長く、Tgが低く機械的物性も小さいことから、絶縁性製品には適用されていなかったものである。   Fossil-derived epoxy resins are widely known as materials that satisfy many of the various properties required from the viewpoint of industrial materials (electrical properties, mechanical properties, etc.). Attempts have been made to substitute three-dimensionally crosslinked epoxy resins (hereinafter referred to as non-fossil-derived epoxy resins). Epoxidized linseed oil, which is mentioned as an example of non-fossil-derived epoxy resin, has been applied as a stabilizer for vinyl chloride in the same way as epoxidized soybean oil, but is more reactive than epoxy resin derived from fossil raw materials. Therefore, the curing time is long, the Tg is low, and the mechanical properties are small, so that it has not been applied to insulating products.

本願発明者は、エポキシ化亜麻仁油においてTgの向上を図ることにより、そのエポキシ化亜麻仁油の硬化物が絶縁性に優れ、かつ高温雰囲気下での機械的物性が化石由来エポキシ樹脂よりも高くなることを既に見出している。このような非化石由来エポキシ樹脂を代用できれば、十分良好な電気的物性,機械的物性が得られ高電圧機器に適用できると共に、その非化石由来エポキシ樹脂自体は有害性が殆ど無く亜麻仁油はカーボンニュートラルであるため、その絶縁性製品を焼却処理しても、有害物質(例えば、環境ホルモン等)や二酸化炭素等の排出を防止または抑制できる。   The inventor of the present application improves the Tg in epoxidized linseed oil, so that the cured product of the epoxidized linseed oil is excellent in insulation and has higher mechanical properties in a high-temperature atmosphere than the fossil-derived epoxy resin. I have already found that. If such non-fossil-derived epoxy resin can be substituted, sufficiently good electrical and mechanical properties can be obtained and applied to high-voltage equipment, and the non-fossil-derived epoxy resin itself has almost no harm and flaxseed oil is carbon. Since it is neutral, even if the insulating product is incinerated, emission of harmful substances (for example, environmental hormones) and carbon dioxide can be prevented or suppressed.

近年の絶縁性製品に対する高効率化・小型化等の要求に応えるには、更なる特性の向上を図る必要がある。例えば、絶縁性組成物の原料コスト低減や、金属インサートとの熱応力を低減するために、粒径がマイクロメートルレベル(例えば、数μm〜数十μm程度)の無機充填剤(シリカ等)が利用されているが(例えば、特許文献3)、粒径が更に小さいナノメートルレベルの無機充填剤(以下、ナノ充填剤と称する)の検討例も知られている(例えば、特許文献4)。
特開2002−358829号公報(例えば、[0007]〜[0012]) 特開2002−53699号公報(例えば、[0007]〜[0011]) 特開2007−270137号公報(例えば、[0013]〜[0016],[0025],[0026])。 特開2000−44226号公報(例えば、[0004],[0016],[0017],[0043])
In order to meet the recent demand for higher efficiency and smaller size of insulating products, it is necessary to further improve the characteristics. For example, in order to reduce the raw material cost of the insulating composition and the thermal stress with the metal insert, an inorganic filler (silica or the like) having a particle size of micrometer level (for example, about several μm to several tens of μm) is used. Although utilized (for example, patent document 3), the examination example of the inorganic filler (henceforth a nano filler) of the nanometer level whose particle size is still smaller is also known (for example, patent document 4).
JP 2002-358829 A (for example, [0007] to [0012]) JP 2002-53699 A (for example, [0007] to [0011]) Japanese Unexamined Patent Application Publication No. 2007-270137 (for example, [0013] to [0016], [0025], [0026]). JP 2000-44226 A (for example, [0004], [0016], [0017], [0043])

しかしながら、ナノ充填剤は、化石由来エポキシ樹脂をマトリックスとする絶縁材料での検討例はあるが(例えば、特許文献4)、非化石由来エポキシ樹脂をマトリックスとする場合の検討例は無かった。   However, although nano fillers have been studied with insulating materials using a fossil-derived epoxy resin as a matrix (for example, Patent Document 4), there have been no studies with non-fossil-derived epoxy resins as a matrix.

また、ナノ充填剤のように粒径が小さくなるに連れて樹脂に対する分散性が低下するため、単に樹脂等と共に混合しただけでは例えば二次凝集が分散できず、機械的物性等が低下し得る。前記分散性を高める手法としては、予めナノ充填剤の粒子表面を改質剤により改質(例えば、シランカップリング剤等による化学修飾)する方法の他に、プリント,フィルム等の薄膜製品のように少量生産の分野で適用されている超音波分散法等を適用することにより、二次凝集を解き一次粒子においても分散性を高めることが考えられるが、絶縁性製品等の構造材・構造支持材のような生産分野においては、生産量の観点から不向きである。   In addition, since the dispersibility with respect to the resin decreases as the particle size becomes smaller as in the case of the nano-filler, for example, the secondary agglomeration cannot be dispersed simply by mixing with the resin or the like, and the mechanical properties and the like may be decreased. . As a method for improving the dispersibility, in addition to a method of modifying the particle surface of the nano filler in advance with a modifier (for example, chemical modification with a silane coupling agent or the like), a thin film product such as a print or a film is used. It is conceivable to improve the dispersibility of primary particles by removing secondary aggregation by applying the ultrasonic dispersion method applied in the field of small volume production. In the production field such as wood, it is unsuitable from the viewpoint of production volume.

以上示したようなことから、非化石由来エポキシ樹脂(エポキシ化亜麻仁油等),充填剤等から成る絶縁材料を用いた絶縁性組成物において、更なる特性の向上を図ることが求められている。   As described above, it is required to further improve the characteristics of the insulating composition using an insulating material composed of a non-fossil-derived epoxy resin (epoxidized linseed oil, etc.), a filler, and the like. .

本発明は、前記の課題の解決を図るためのものであって、請求項1記載の発明は、少なくとも非化石原料由来のエポキシ樹脂,平均粒径が1μm未満(ナノメートルレベル)の充填剤,改質剤,硬化剤の各成分から成る絶縁材料を加熱硬化する工程を有し、電圧機器の絶縁構成に用いられる組成物を製造する方法であって、前記の絶縁材料は、前記の各成分のうち硬化剤を除く少なくとも非化石由来エポキシ樹脂,充填剤,改質剤の混合物をロールミルによりミル処理して混合物を得た後、その混合物を予熱してから硬化剤を添加し混合して成ることを特徴とする。 The present invention is for solving the above-mentioned problems, and the invention according to claim 1 is an epoxy resin derived from at least a non-fossil raw material, a filler having an average particle size of less than 1 μm (nanometer level) , A method for producing a composition used for an insulation structure of a voltage device, comprising a step of heat-curing an insulating material composed of each component of a modifier and a curing agent, wherein the insulating material comprises the components described above A mixture of at least non-fossil-derived epoxy resin, filler, and modifier excluding a curing agent is milled by a roll mill to obtain a mixture, and then the mixture is preheated and a curing agent is added and mixed. It is characterized by that.

請求項2記載の発明は、請求項1記載の発明において、前記のエポキシ樹脂は、エポキシ化亜麻仁油であることを特徴とする。   The invention described in claim 2 is characterized in that, in the invention described in claim 1, the epoxy resin is epoxidized linseed oil.

請求項3記載の発明は、請求項1または2記載の発明において、前記の充填剤は、シリカであることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the filler is silica.

請求項4記載の発明は、請求項1〜3記載の発明において、前記の硬化剤は、フェノール樹脂であることを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the present invention, the curing agent is a phenol resin.

請求項5記載の発明は、請求項1〜4記載の発明において、前記の改質剤は、シランカップリング剤であることを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, the modifying agent is a silane coupling agent.

請求項6記載の発明は、請求項1〜5記載の発明において、前記のロールミルは3本ロールミルであることを特徴とする。   The invention according to claim 6 is the invention according to claims 1 to 5, wherein the roll mill is a three-roll mill.

請求項1〜6記載の発明のように、硬化剤を除く各成分の混合物をミル処理することにより、二次凝集が防止され一次粒子においても分散性が高められ、その状態で加熱硬化される。これにより、曲げ強度,絶縁性が高められ、弾性率も抑えられる。また、インサート(絶縁性製品中に内装される金属インサート等)を適用した場合、該インサートと絶縁性組成物との線膨張率の差は、一般的な充填剤(例えば、マイクロメートルレベルの充填剤)を用いたものと比較して少なくとも同程度となり、熱歪による発生応力が小さく抑えられる。   As in the first to sixth aspects of the invention, by milling the mixture of each component excluding the curing agent, secondary aggregation is prevented and dispersibility is enhanced even in the primary particles, and heat curing is performed in that state. . Thereby, bending strength and insulation are improved, and an elastic modulus is also suppressed. In addition, when an insert (such as a metal insert embedded in an insulating product) is applied, the difference in linear expansion coefficient between the insert and the insulating composition is a general filler (for example, filling at a micrometer level). And at least the same level as that using the agent, and the generated stress due to thermal strain can be kept small.

以上、請求項1〜6記載の発明によれば、地球環境保全に貢献するだけでなく、絶縁性組成物としてより良好な機械的物性(小さい弾性率、高い曲げ強度等),電気的物性(高い絶縁性等)を付与することが可能となる。また、インサートを適用しても、熱歪による発生応力が小さく抑えられるため、絶縁性製品として十分な信頼性が得られる。   As described above, according to the first to sixth aspects of the invention, not only contributes to global environmental conservation, but also better mechanical properties (small elastic modulus, high bending strength, etc.), electrical properties ( High insulation properties). Moreover, even if an insert is applied, the generated stress due to thermal strain can be kept small, so that sufficient reliability as an insulating product can be obtained.

以下、本発明の実施の形態における絶縁性高分子材料組成物を詳細に説明する。   Hereinafter, the insulating polymer material composition in the embodiment of the present invention will be described in detail.

本実施の形態は、少なくとも非化石由来エポキシ樹脂,硬化剤,ナノ充填剤,改質剤の各成分を混合して成る絶縁材料(ナノコンポジット)を用いたものであって、その絶縁材料を加熱硬化して得られ電圧機器の絶縁構成に適用される絶縁性組成物である。前記の絶縁材料は、各成分を単に一括混合したものではなく、まず、少なくとも非化石由来エポキシ樹脂,ナノ充填剤,改質剤を含む混合物を得、その混合物に対し硬化剤等を加え混合して得たものである。   This embodiment uses an insulating material (nanocomposite) formed by mixing at least non-fossil-derived epoxy resin, curing agent, nanofiller, and modifier, and heating the insulating material. It is an insulating composition obtained by curing and applied to an insulating structure of a voltage device. The insulating material is not simply a mixture of components, but first, obtain a mixture containing at least a non-fossil-derived epoxy resin, a nano-filler, and a modifier, and add a curing agent to the mixture and mix. It was obtained.

非化石由来エポキシ樹脂としては、一般的な電圧機器に適用されているものが挙げられ、例えばエポキシ化亜麻仁油,エポキシ化大豆油等の植物由来のものも挙げられる。また、不飽和脂肪酸である動植物油から成るエポキシ化物においても、非化石由来エポキシ樹脂として適用することが可能である。   Non-fossil-derived epoxy resins include those applied to general voltage equipment, and examples include those derived from plants such as epoxidized linseed oil and epoxidized soybean oil. In addition, epoxidized products composed of animal and vegetable oils that are unsaturated fatty acids can also be applied as non-fossil-derived epoxy resins.

ナノ充填剤としては種々のもの(例えば、シリカ等)が知られているが、その平均粒径が1μm未満のものを適用する。また、改質剤としては、非化石由来エポキシ樹脂,ナノ充填剤等と共に混合した際の分散性を向上させ得るものであれば、種々のもの(例えば、シランカップリング剤)を適用することができる。ナノ充填剤や改質剤の配合割合は、目的とする絶縁性製品に応じて適宜設定すれば良いが、ナノ充填剤が多過ぎる場合には混合・注型性や分散性を損なう恐れがある。   Various nano fillers (such as silica) are known, and those having an average particle size of less than 1 μm are applied. Moreover, as a modifier, various things (for example, silane coupling agent) can be applied if it can improve the dispersibility when mixed with non-fossil-derived epoxy resin, nano-filler, and the like. it can. The blending ratio of nano fillers and modifiers may be set as appropriate according to the target insulating product. However, if there are too many nano fillers, the mixing / casting properties and dispersibility may be impaired. .

硬化剤としては、例えば非化石由来エポキシ樹脂と反応し得るアミン類,酸無水物類,フェノール類,イミダゾール類等の種々のものが適用でき、ヒマシ油系ポリオール等の植物由来のものも適用できる。この硬化剤の配合量は、例えば非化石由来エポキシ樹脂のエポキシ当量を算出(エポキシ化亜麻仁油の場合、オキシラン濃度から算出)し、そのエポキシ当量に基づいた化学量論量を配合(例えば、化学量論比に対し1.0として配合)することができる。このような硬化剤の配合割合は、例えば目的とする絶縁性製品に要求される物性の優先順位によって適宜設定され得るものである。   For example, various curing agents such as amines, acid anhydrides, phenols and imidazoles that can react with non-fossil-derived epoxy resins can be applied, and plant-derived materials such as castor oil-based polyols can also be applied. . For example, the epoxy equivalent of the non-fossil-derived epoxy resin is calculated (calculated from the oxirane concentration in the case of epoxidized linseed oil), and the stoichiometric amount based on the epoxy equivalent is blended (for example, chemical (Mixed as 1.0 with respect to the stoichiometric ratio). The blending ratio of such a curing agent can be appropriately set depending on, for example, the priority order of physical properties required for the target insulating product.

前記の非化石由来エポキシ樹脂,ナノ充填剤,改質剤,硬化剤の他に、例えば作業性の向上(例えば、作業時間の短縮等),成形性,Tg特性,機械的・物理的物性,電気的物性等の改善を図る目的で、種々の添加剤を適宜用いることができ、例えば硬化促進剤(硬化剤の硬化の起点;例えば有機過酸化物,アミン類,イミダゾール類等),反応抑制剤,反応助剤(反応(Tg特性)を制御する目的;パーオキサイド等)等を適宜併用することが可能である。   In addition to the non-fossil-derived epoxy resin, nano-filler, modifier, and curing agent, for example, improvement of workability (for example, shortening of work time, etc.), moldability, Tg characteristics, mechanical / physical physical properties, Various additives can be used as appropriate for the purpose of improving electrical properties and the like. For example, curing accelerators (starting point of curing of curing agents; for example, organic peroxides, amines, imidazoles, etc.), reaction inhibition Agents, reaction aids (the purpose of controlling the reaction (Tg characteristics); peroxides, etc.) can be used in combination as appropriate.

なお、パーオキサイドを配合して混合すると、その混合物は時間経過と共に粘度が上昇し、生産性が低下(例えば、混合性,成形性が低下)する恐れがあるものの、可使時間(ポットライフ)が例えば60分以上であれば良好な生産性を有するものとみなすことができる。   When peroxide is mixed and mixed, the viscosity of the mixture increases with time, and the productivity may decrease (for example, the mixability and moldability may decrease). If it is 60 minutes or more, for example, it can be regarded as having good productivity.

本実施形態の絶縁性組成物における架橋は、本質的に硬化剤によるものであって、硬化条件や前記の硬化促進剤,反応抑制剤,反応助剤等の有無によって架橋構造が影響を受けることはない。   Crosslinking in the insulating composition of the present embodiment is essentially due to the curing agent, and the crosslinking structure is affected by the curing conditions and the presence or absence of the curing accelerator, reaction inhibitor, reaction aid, etc. There is no.

例えば、硬化条件(温度,時間等)は、目的とする絶縁性組成物の物性を得るために適宜設定(例えば、硬化促進剤の種類や配合量等に応じて適宜設定)されるものであり、該硬化条件が異なっても該物性自体に大きな差が生じることはない。また、反応促進剤,反応抑制剤は、反応性を高めたり安全(抑制)にして作業性や生産性等を改善する目的で適宜適用されるものであり、該反応促進剤,反応抑制剤の種類や配合割合が異なっても該物性自体に大きな差が生じることはない。さらに、反応助剤は、前記の反応促進剤,反応抑制剤と同様に反応性を調整(例えば、パーオキサイドの場合は、Tg特性の調整)するために適宜適用(例えば、硬化条件や硬化促進剤等の種類,配合量に応じて適宜適用)されるものであり、該反応助剤の種類や配合量が異なっても該物性自体に大きな差が生じることはない。   For example, the curing conditions (temperature, time, etc.) are appropriately set (for example, appropriately set according to the type and blending amount of the curing accelerator) in order to obtain the desired physical properties of the insulating composition. Even if the curing conditions are different, there is no great difference in the physical properties themselves. Moreover, the reaction accelerator and reaction inhibitor are appropriately applied for the purpose of improving the workability and productivity by increasing the reactivity or making it safe (suppressed). Even if the kind and the blending ratio are different, there is no great difference in the physical properties themselves. Further, the reaction aid is appropriately applied to adjust the reactivity (for example, adjustment of Tg characteristics in the case of peroxide) in the same manner as the reaction accelerator and reaction inhibitor (for example, curing conditions and acceleration of curing). This is applied as appropriate according to the type and blending amount of the agent and the like, and even if the kind and blending amount of the reaction aid is different, there is no significant difference in the physical properties themselves.

絶縁材料は、以上示した各成分のうち、まず硬化剤を除き少なくとも非化石由来エポキシ樹脂,ナノ充填剤,改質剤を混合(一括混合・プロペラ攪拌等)した後、さらにロールミル(3本ロールミル)によりミル処理し、そのミル処理された混合物を所定条件(例えば、後述の実施例では150℃,24時間)で予熱(熟成)してから、硬化剤等を添加して更に混合(プロペラ撹拌等)することにより得られる。そして、前記の絶縁材料を所定形状の金型に注型し加熱硬化することにより、目的とする絶縁性組成物が得られる。   The insulating material is a roll mill (3-roll mill) after mixing at least non-fossil-derived epoxy resin, nano-filler, and modifier (collective mixing, propeller stirring, etc.), except for the curing agent, among the components shown above. ), And the milled mixture is preheated (aged) at predetermined conditions (for example, 150 ° C. for 24 hours in the examples described later), and then added with a curing agent or the like (mixed with propeller). Etc.). And the target insulating composition is obtained by pouring the said insulating material into the metal mold | die of a predetermined shape, and heat-hardening.

前記予熱の温度,時間や、ロールミルのロール間隔,ロール速度,ミル処理回数等の条件は、絶縁材料の各成分の配合量,種類等に応じて適宜設定されるものである。また、硬化促進剤の添加は、例えば硬化剤添加前後の何れでも良く、共に同様の特性の絶縁性組成物が得られる。なお、絶縁材料中に気泡等が残存している場合には、例えば減圧雰囲気下にて脱泡処理(例えば、注型前後に処理)することが好ましい。   Conditions such as the preheating temperature and time, the roll interval of the roll mill, the roll speed, and the number of mill treatments are appropriately set according to the blending amount and type of each component of the insulating material. Moreover, the addition of the curing accelerator may be performed before or after the addition of the curing agent, for example, and an insulating composition having the same characteristics can be obtained. In addition, when bubbles or the like remain in the insulating material, it is preferable to perform a defoaming process (for example, before and after casting) in a reduced-pressure atmosphere, for example.

[実施例]
次に、本実施の形態における絶縁性組成物の実施例を説明する。
[Example]
Next, examples of the insulating composition in the present embodiment will be described.

まず、下記表1に示すように、非化石由来エポキシ樹脂としてエポキシ化植物油であるエポキシ化亜麻仁油(ダイセル化学工業社製のダイマックL−500)100g(phr)、硬化剤としてフェノール樹脂(住友ベークライト社製のフェノールホルムアルデヒド型ノボラック(PR−HF−3))化学量論量(本実施例ではエポキシ樹脂100phrに対し61g(phr))、一般的な充填剤として平均粒径15μmのシリカ(龍森社製)550g(phr)、ナノ充填剤として平均粒径(一次粒径平均径)12nmのシリカ(日本アエロジル社製のヒュームドシリカ(アエロジル♯200))6g(phr)、硬化促進剤としてイミダゾール(四国化成工業社製の2‐エチル‐4‐メチルイミダゾール(2E4MZ))1g(phr)、改質剤としてシランカップリング剤(信越化学社製のKBM−573)0.6g(phr;充填剤に対して10wt%)をそれぞれ用い、以下に示す条件1〜3により各成分を混合して得た絶縁材料を加熱硬化することにより、絶縁性組成物の試料(10mm×5mm×200mmの試料)S1〜S3を得た。なお、平均粒径は体積基準での累積分布の50%に相当する粒子径であり、本実施例では湿式粒度分布測定法により測定したものとする。   First, as shown in Table 1 below, 100 g (phr) of an epoxidized linseed oil (Daicel Chemical Industries, Ltd., Daimac L-500) as a non-fossil-derived epoxy resin, and a phenol resin (Sumitomo Bakelite as a curing agent) Phenolformaldehyde type novolak (PR-HF-3) manufactured by the company (in this example, 61 g (phr) with respect to 100 phr of epoxy resin), silica having an average particle size of 15 μm as a general filler (Tatsumori) 550 g (phr), average particle diameter (primary particle diameter average diameter) 12 nm of silica (fumed silica (Aerosil # 200) manufactured by Nippon Aerosil Co., Ltd.) 6 g (phr) as nano filler, imidazole as curing accelerator 1 g (phr of 2-ethyl-4-methylimidazole (2E4MZ) manufactured by Shikoku Chemicals) , 0.6 g of silane coupling agent (KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.) (phr; 10 wt% with respect to the filler) was used as a modifier, and the components were mixed according to the following conditions 1 to 3. The insulating material obtained in this manner was heat-cured to obtain samples (10 mm × 5 mm × 200 mm) S1 to S3 of the insulating composition. The average particle diameter is a particle diameter corresponding to 50% of the cumulative distribution on a volume basis, and is measured by a wet particle size distribution measurement method in this example.

<条件1;実施例>
まず、非化石由来エポキシ樹脂,ナノ充填剤,改質剤,硬化促進剤を一括混合,プロペラ撹拌して混合物を得て、三本ロールミル(金田理科工業社製のDR−35型;ロール寸法63.5Φ×150Lmm)によるミル処理(ロール間隔0.2mm,低速側ロール速度80rpm,高速側ロール速度200rpm)を3回行った。この混合物において、予熱してから更に硬化剤を加えプロペラ撹拌し、約0.01MPaの減圧雰囲気下で脱泡処理した。そして、金型に注型し、約0.001MPaの減圧雰囲気下で再び脱泡処理してから加熱硬化することにより、絶縁性組成物の試料S1を得た。
<Condition 1; Example>
First, a non-fossil-derived epoxy resin, a nano filler, a modifier, and a curing accelerator are mixed at once, and a mixture is obtained by stirring with a propeller to obtain a three-roll mill (DR-35 type manufactured by Kanada Rika Kogyo Co., Ltd .; roll size 63 .5Φ × 150 Lmm) milling (roll interval 0.2 mm, low speed side roll speed 80 rpm, high speed side roll speed 200 rpm) was performed three times. This mixture was preheated, further added with a curing agent, stirred with a propeller, and defoamed in a reduced pressure atmosphere of about 0.01 MPa. Then, the sample was poured into a mold, defoamed again in a reduced pressure atmosphere of about 0.001 MPa, and then heat-cured to obtain a sample S1 of an insulating composition.

<条件2;比較例>
まず、インテグラルブレンド法に基づいて、非化石由来エポキシ樹脂,一般的な充填剤,改質剤,硬化剤,硬化促進剤を一括混合,プロペラ撹拌して混合物を得て、約0.01MPaの減圧雰囲気下で脱泡処理した。この混合物を金型に注型し、約0.001MPaの減圧雰囲気下で再び脱泡処理してから加熱硬化することにより、絶縁性組成物の試料S2を得た。
<Condition 2; Comparative Example>
First, based on the integral blend method, a non-fossil-derived epoxy resin, a general filler, a modifier, a curing agent, and a curing accelerator are mixed together and a propeller is stirred to obtain a mixture. Defoaming was performed under a reduced-pressure atmosphere. This mixture was poured into a mold, defoamed again in a reduced pressure atmosphere of about 0.001 MPa, and then heat-cured to obtain a sample S2 of an insulating composition.

<条件3;比較例>
まず、インテグラルブレンド法に基づいて、非化石由来エポキシ樹脂,ナノ充填剤,改質剤,硬化剤,硬化促進剤を一括混合,プロペラ撹拌して混合物を得て、約0.01MPaの減圧雰囲気下で脱泡処理した。この混合物を金型に注型し、約0.001MPaの減圧雰囲気下で再び脱泡処理してから加熱硬化することにより、絶縁性組成物の試料S3を得た。
<Condition 3; Comparative Example>
First, based on the integral blend method, non-fossil-derived epoxy resin, nano-filler, modifier, curing agent, curing accelerator are mixed at once, and a mixture is obtained by stirring with a propeller to obtain a reduced pressure atmosphere of about 0.01 MPa. The defoaming treatment was performed below. This mixture was poured into a mold, defoamed again under a reduced pressure atmosphere of about 0.001 MPa, and then heat-cured to obtain a sample S3 of an insulating composition.

Figure 0005359008
Figure 0005359008

前記の各試料S1〜S3において、三点曲げ法による室温雰囲気下の曲げ強度(MPa),曲げ弾性率、体積抵抗率(Ω・cm)、TMAによる線膨張率(10-6/℃)をそれぞれ測定し、その結果を下記表2に示した。 In each of the above samples S1 to S3, the bending strength (MPa), bending elastic modulus, volume resistivity (Ω · cm), and linear expansion coefficient (10 −6 / ° C.) by TMA in a room temperature atmosphere by a three-point bending method are obtained. Each was measured and the results are shown in Table 2 below.

Figure 0005359008
Figure 0005359008

表2に示すように、試料S2は、十分大きい曲げ強度,体積抵抗率を示すと共に線膨張率が十分小さく抑えられたものの、弾性率が大き過ぎることを確認できた。また、試料S3は、十分大きい体積抵抗率を示すと共に弾性率が小さく抑えられたものの、曲げ強度が小さ過ぎると共に線膨張率が大き過ぎることを確認できた。一方、試料S1は、十分大きい曲げ強度,体積抵抗率を示すと共に、弾性率,線膨張率が十分小さく抑えられたことを確認できた。   As shown in Table 2, it was confirmed that the sample S2 exhibited a sufficiently large bending strength and volume resistivity, and the linear expansion coefficient was sufficiently small, but the elastic modulus was too large. Moreover, although the sample S3 showed the sufficiently large volume resistivity and the elasticity modulus was suppressed small, it was confirmed that the bending strength was too small and the linear expansion coefficient was too large. On the other hand, it was confirmed that Sample S1 exhibited sufficiently large bending strength and volume resistivity, and that the elastic modulus and linear expansion coefficient were sufficiently small.

ゆえに、試料S1のように、少なくとも非化石由来エポキシ樹脂,ナノ充填剤,改質剤を含む混合物を得、その混合物を予熱し硬化剤等を加え混合して得た絶縁性組成物によれば、試料2,3のような絶縁性組成物と比較して、曲げ強度,曲げ弾性率,体積抵抗率,線膨張率の全てにおいて十分良好な値を示し、更なる特性の向上が可能であることを読み取れる。   Therefore, according to the insulating composition obtained by obtaining a mixture containing at least a non-fossil-derived epoxy resin, a nanofiller, and a modifier, preheating the mixture, adding a curing agent, and the like, as in sample S1. Compared with insulating compositions such as Samples 2 and 3, they exhibit sufficiently good values in all of bending strength, flexural modulus, volume resistivity, and linear expansion coefficient, and can further improve characteristics. I can read that.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、絶縁材料の混合条件や硬化条件は、非化石由来エポキシ樹脂,ナノ充填剤,改質剤,硬化剤やその他の各種添加剤等の種類や配合量に応じて適宜設定されるものであり、本実施例で示した内容に限定されるものではない。また、前記の非化石由来エポキシ樹脂,ナノ充填剤,改質剤,硬化剤等の他に、目的とする絶縁性組成物の特性を損わない程度の範囲で種々の添加剤(例えば、実施例以外の添加剤)を適宜配合した場合においても、本実施例に示したものと同様の作用効果が得られることは明らかである。   For example, the mixing conditions and curing conditions of the insulating material are appropriately set according to the types and blending amounts of non-fossil-derived epoxy resins, nanofillers, modifiers, curing agents and other various additives. However, the present invention is not limited to the contents shown in this embodiment. In addition to the non-fossil-derived epoxy resin, nano-filler, modifier, curing agent, etc., various additives (for example, implementations) within a range that does not impair the properties of the target insulating composition. It is apparent that the same effects as those shown in this example can be obtained even when additives other than the examples are appropriately blended.

Claims (6)

少なくとも非化石原料由来のエポキシ樹脂,平均粒径が1μm未満の充填剤,改質剤,硬化剤の各成分から成る絶縁材料を加熱硬化する工程を有し、電圧機器の絶縁構成に用いられる組成物を製造する方法であって、
前記の絶縁材料は、前記の各成分のうち硬化剤を除く少なくとも非化石由来エポキシ樹脂,充填剤,改質剤の混合物をロールミルによりミル処理して混合物を得た後、その混合物を予熱してから硬化剤を添加し混合して成ることを特徴とする絶縁性高分子材料組成物の製造方法。
A composition used for the insulation structure of a voltage device, including a step of heat-curing an insulating material composed of at least an epoxy resin derived from a non-fossil raw material, a filler having an average particle size of less than 1 μm , a modifier, and a curing agent. A method of manufacturing a product,
The insulating material is obtained by milling a mixture of at least a non-fossil-derived epoxy resin, a filler, and a modifier, excluding the curing agent, by a roll mill, and then preheating the mixture. A method for producing an insulating polymer material composition, comprising adding a curing agent and mixing.
前記のエポキシ樹脂は、エポキシ化亜麻仁油であることを特徴とする請求項1記載の絶縁性高分子材料組成物の製造方法。   The method for producing an insulating polymer material composition according to claim 1, wherein the epoxy resin is epoxidized linseed oil. 前記の充填剤は、シリカであることを特徴とする請求項1または2記載の絶縁性高分子材料組成物の製造方法。   The method for producing an insulating polymer material composition according to claim 1, wherein the filler is silica. 前記の硬化剤は、フェノール樹脂であることを特徴とする請求項1〜3の何れかに記載の絶縁性高分子材料組成物の製造方法。   The method for producing an insulating polymer material composition according to claim 1, wherein the curing agent is a phenol resin. 前記の改質剤は、シランカップリング剤であることを特徴とする請求項1〜4の何れかに記載の絶縁性高分子材料組成物の製造方法。   The method for producing an insulating polymer material composition according to claim 1, wherein the modifier is a silane coupling agent. 前記のロールミルは3本ロールミルであることを特徴とする請求項1〜5の何れかに記載の絶縁性高分子材料組成物の製造方法。   The method for producing an insulating polymer material composition according to any one of claims 1 to 5, wherein the roll mill is a three-roll mill.
JP2008108711A 2008-04-18 2008-04-18 Method for producing insulating polymer material composition Expired - Fee Related JP5359008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008108711A JP5359008B2 (en) 2008-04-18 2008-04-18 Method for producing insulating polymer material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108711A JP5359008B2 (en) 2008-04-18 2008-04-18 Method for producing insulating polymer material composition

Publications (2)

Publication Number Publication Date
JP2009256499A JP2009256499A (en) 2009-11-05
JP5359008B2 true JP5359008B2 (en) 2013-12-04

Family

ID=41384343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108711A Expired - Fee Related JP5359008B2 (en) 2008-04-18 2008-04-18 Method for producing insulating polymer material composition

Country Status (1)

Country Link
JP (1) JP5359008B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011188A (en) * 2020-08-04 2020-12-01 华南农业大学 Inorganic modified toughened light-cured plant oil-based polymer and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385970B2 (en) * 2015-03-04 2018-09-05 株式会社東光高岳 Epoxy resin composition and insulating molded body
US10246623B2 (en) * 2016-09-21 2019-04-02 NAiEEL Technology Resin composition, article prepared by using the same, and method of preparing the same
CN112341759A (en) * 2020-11-18 2021-02-09 重庆大学 Modified nano-alumina composite epoxy resin insulating material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961692B2 (en) * 2005-07-25 2012-06-27 株式会社明電舎 insulator
JP2008075069A (en) * 2006-08-23 2008-04-03 Toshiba Corp Casting resin composition and insulating material and insulating structure using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011188A (en) * 2020-08-04 2020-12-01 华南农业大学 Inorganic modified toughened light-cured plant oil-based polymer and preparation method and application thereof
CN112011188B (en) * 2020-08-04 2021-07-09 华南农业大学 Inorganic modified toughened light-cured plant oil-based polymer and preparation method and application thereof

Also Published As

Publication number Publication date
JP2009256499A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP4961692B2 (en) insulator
EP2532010B1 (en) Electrical insulation system
JP5185890B2 (en) Insulating casting resin for high-voltage electrical equipment and high-voltage electrical equipment using the same
JP4890063B2 (en) Resin composition, varnish obtained using this resin composition, film adhesive and copper foil with film adhesive
JP5250003B2 (en) Resin material and high voltage equipment using the same
JP2009073933A (en) Epoxy resin composition having thermal degradation resistance
EP2195813A1 (en) Electrical insulation system with improved electrical breakdown strength
JP5359008B2 (en) Method for producing insulating polymer material composition
JP2008195782A (en) Epoxy resin composition for impregnating molded coil, and molded coil device
JP2009013213A (en) Epoxy resin molding material for sealing motor and molded article
JP5622267B2 (en) Adhesive resin composition, cured product thereof, and adhesive film
JP2008037921A (en) Insulating polymeric material composition
KR101209308B1 (en) Epoxy-microsilica-organically modified nano layered silicate mixed composite for insulation using electric field and product thereby
JP5532562B2 (en) Insulating polymer material composition
JP5110689B2 (en) Insulating composition for high voltage equipment
JP5229787B2 (en) Insulating polymer material composition
JP4540997B2 (en) Two-component casting epoxy resin composition and electrical / electronic component equipment
JP2008257978A (en) Insulating composition for high voltage equipment
JP2007002064A (en) Molding
JP5303840B2 (en) Insulating polymer material composition
JP5366208B2 (en) Insulating polymer material composition and method for producing the same
JP2010209231A (en) Insulating polymer composition
WO2024101192A1 (en) Composite resin composition, method for producing same, insulating resin complex and power apparatus using same
JP3872038B2 (en) Casting epoxy resin composition, curing method thereof, and electric / electronic component device
JP2013194094A (en) Resin composition, resin film and cured material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5359008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees