JP5229787B2 - Insulating polymer material composition - Google Patents

Insulating polymer material composition Download PDF

Info

Publication number
JP5229787B2
JP5229787B2 JP2008005150A JP2008005150A JP5229787B2 JP 5229787 B2 JP5229787 B2 JP 5229787B2 JP 2008005150 A JP2008005150 A JP 2008005150A JP 2008005150 A JP2008005150 A JP 2008005150A JP 5229787 B2 JP5229787 B2 JP 5229787B2
Authority
JP
Japan
Prior art keywords
insulating
phr
epoxy resin
coal ash
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008005150A
Other languages
Japanese (ja)
Other versions
JP2009167261A (en
Inventor
保幸 蔵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Chubu Electric Power Co Inc
Original Assignee
Meidensha Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Chubu Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP2008005150A priority Critical patent/JP5229787B2/en
Publication of JP2009167261A publication Critical patent/JP2009167261A/en
Application granted granted Critical
Publication of JP5229787B2 publication Critical patent/JP5229787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Description

本発明は、絶縁性高分子材料組成物に関するものであって、例えば筐体内に遮断器や断路器等の開閉機器を備えた電圧機器(例えば、重電機器等の高電圧機器)の絶縁構成に用いられるものである。   The present invention relates to an insulating polymer material composition, for example, an insulation configuration of a voltage device (for example, a high voltage device such as a heavy electrical device) provided with a switching device such as a circuit breaker or a disconnect device in a housing. It is used for.

例えば、筐体内に遮断器や断路器等の開閉機器を備えた電圧機器(重電機器等)の絶縁構成(例えば、絶縁性を要する部位)に適用(例えば、屋外に直接暴露して適用)されるものとしては、化石原料(石油等)由来のエポキシ樹脂等の熱硬化性樹脂(石油等を出発物質とした樹脂)をマトリックスとし硬化剤,充填剤(例えば、多量のエネルギーを消費して精錬されたシリカ,アルミナ等の無機充填剤)等の各種成分を適宜混合して得た絶縁材料を加熱硬化した高分子材料組成物(以下、絶縁性組成物と称する)、例えば該絶縁材料を注型して成る絶縁性組成物により構成された製品(モールド注型品;以下、絶縁性製品と称する)が、従来から広く知られている(例えば、特許文献1)。なお、絶縁材料の成分を混合工程の前に適宜予熱(例えば、充填剤を予熱)したり、分散剤(リン酸エステル等)を配合することにより(例えば、特許文献2)、該混合性を良好(例えば、混合物の粘度の低減)にしたり、その後段の硬化工程に係る硬化時間等の短縮化を図ることができ、製造効率が向上することが知られている。   For example, applied to insulation structures (eg, parts that require insulation) of voltage equipment (heavy electrical equipment, etc.) with switchgear such as circuit breakers and disconnectors in the housing (for example, directly exposed to the outdoors) As a material, a thermosetting resin such as an epoxy resin derived from a fossil raw material (petroleum, etc.) (a resin starting from petroleum, etc.) is used as a matrix, and a curing agent or filler (for example, consuming a large amount of energy) A polymer material composition (hereinafter referred to as an insulating composition) obtained by heat-curing an insulating material obtained by appropriately mixing various components such as refined silica and alumina (inorganic fillers such as alumina). A product (mold cast product; hereinafter referred to as an insulating product) made of an insulating composition formed by casting has been widely known (for example, Patent Document 1). In addition, by appropriately preheating the components of the insulating material before the mixing step (for example, preheating the filler) or blending a dispersant (such as phosphate ester) (for example, Patent Document 2), the mixing property can be improved. It is known that the production efficiency can be improved by improving the quality (for example, reducing the viscosity of the mixture) or shortening the curing time in the subsequent curing process.

また、社会の高度化・集中化に伴って、電圧機器等の大容量化,小型化や高い物性(例えば、電気的物性(絶縁破壊電界特性等),機械的物性(曲げ強度等))等が強く要求されると共に、前記の絶縁性製品に対しても種々の特性の向上が要求されてきた。例えば、絶縁性製品の物性を左右する熱硬化性樹脂として、化石原料由来物質(限りある資源)が多く利用されてきたことから、地球環境保全(省エネルギー化,CO2排出抑制による温暖化防止等)を考慮して、処分対象である絶縁性製品(例えば、寿命,故障等によって処分される製品)を回収し再利用(リサイクル)する試みが行われている。 In addition, with the sophistication and concentration of society, the capacity of voltage devices, etc. has increased in size, size, and high physical properties (for example, electrical properties (such as dielectric breakdown electric field properties), mechanical properties (such as bending strength)), etc. In addition, there has been a strong demand for improvement in various characteristics of the insulating product. For example, because fossil raw material-derived materials (limited resources) have been widely used as thermosetting resins that influence the physical properties of insulating products, global environmental conservation (energy saving, prevention of global warming by reducing CO 2 emissions, etc.) In view of the above, an attempt has been made to collect and reuse (recycle) an insulating product to be disposed of (for example, a product to be disposed of due to lifetime, failure, etc.).

しかしながら、その再利用方法は確立されておらず殆ど行われていない。例外的に、品質が比較的均一な部材(絶縁性製品に用いられているPEケーブル被覆部材)のみを回収しサーマルエネルギーとして利用されているが、このサーマルエネルギーは燃焼処理工程を要するため、地球環境を害する恐れがある。また、焼却処理する場合においても、種々の有害物質やCO2を大量に排出するため、前記同様に地球環境を害する恐れがある。 However, the reuse method has not been established and is hardly performed. Exceptionally, only members with relatively uniform quality (PE cable covering members used in insulating products) are recovered and used as thermal energy. However, since this thermal energy requires a combustion treatment process, May harm the environment. Also, in the case of incineration, since various toxic substances and CO 2 are discharged in large quantities, there is a risk of harming the global environment as described above.

絶縁性組成物の各成分において少しでも非化石原料由来物質を適用(例えば、充填剤として、無機充填剤と木質資源等の有機充填剤とを併用)する試みが知られているが(例えば、特許文献3)、絶縁性組成物全体での適用割合としは僅かであり、大半は化石原料由来物質に依存した成分によって占められているものである。   Attempts to apply a non-fossil raw material-derived substance (for example, a combination of an inorganic filler and an organic filler such as a wood resource as a filler) in each component of the insulating composition are known (for example, Patent Document 3), the application ratio of the entire insulating composition is very small, and most of it is occupied by components depending on the fossil raw material-derived material.

また、絶縁性組成物の必須成分のうちの一つである熱硬化性樹脂として生分解性樹脂(例えば、ポリ乳酸系樹脂)を適用する試みが知られているが(例えば、特許文献4)、該生分解性樹脂は、比較的溶融(例えば、100℃程度の温度で溶融)し易い物質であるため、特に高電圧機器(使用中に100℃程度に温度上昇し得る高電圧機器)への適用は危険視されている。   In addition, an attempt to apply a biodegradable resin (for example, polylactic acid resin) as a thermosetting resin that is one of the essential components of the insulating composition is known (for example, Patent Document 4). Since the biodegradable resin is a substance that is relatively easily melted (for example, melted at a temperature of about 100 ° C.), particularly to a high-voltage device (a high-voltage device capable of increasing the temperature to about 100 ° C. during use). The application of is considered dangerous.

さらに、生物由来物質を用いた架橋組成物を適用する試みも知られているが(例えば、特許文献5)、硬化剤としてアルデヒド類を用いたものであり、常温程度の温度雰囲気下(例えば、印刷配線ボードにおける温度環境)では高い機械的物性を有するものの、高温雰囲気下(例えば、電圧機器等の使用環境)では十分な機械的物性が得られ難い。   Furthermore, although an attempt to apply a cross-linking composition using a biological material is also known (for example, Patent Document 5), an aldehyde is used as a curing agent, and a temperature atmosphere of about room temperature (for example, Although it has high mechanical properties in the temperature environment of a printed wiring board), it is difficult to obtain sufficient mechanical properties in a high-temperature atmosphere (for example, the usage environment of voltage devices or the like).

ここで、一般的にエポキシ樹脂と称される熱硬化性樹脂が適用された絶縁性組成物においては、体積比,重量比で最も多く配合されている成分は充填剤である。このことから、該エポキシ樹脂に対する充填剤として、火力発電所等の副産物として生成される石炭灰を適用(JIS A6201−1999のフライアッシュI種,II種,III種等の石炭灰を再利用;例えば、特許文献6,非特許文献1)する試みが行われ始めている。   Here, in an insulating composition to which a thermosetting resin generally referred to as an epoxy resin is applied, the most compounded component by volume ratio and weight ratio is a filler. From this, coal ash produced as a by-product of a thermal power plant or the like is applied as a filler for the epoxy resin (reuse of coal ash such as fly ash type I, type II, type III of JIS A6201-1999; For example, attempts to make patent documents 6 and non-patent documents 1) have begun.

このようにエポキシ樹脂に対する充填剤として石炭灰を適用することにより、該充填剤においては新たな製造エネルギーが消費されることはなく、二酸化炭素の発生も伴わないことから、十分な電気的物性,機械的物性を有する絶縁性組成物を安全に適用できると共に、地球環境保全に貢献できる可能性があるものとされていた。
特許第3359410号公報(例えば、表4〜表7に係る記載) 特開2004−75817号公報(例えば、[0008]〜[0011],[0018],[0024]) 特開2004−171799号公報(例えば、[0005]〜[0007]) 特開2002−358829号公報(例えば、[0007]〜[0012]) 特開2002−53699号公報(例えば、[0007]〜[0011]) 特開2007−211252号公報(例えば、[0010]〜[0017],[0038]) 「資源として広く活用されているCOAL ASH」,パンフレット,日本フライアッシュ協会,平成16年4月。
By applying coal ash as a filler for the epoxy resin in this way, no new production energy is consumed in the filler, and no carbon dioxide is generated. Insulating compositions having mechanical properties can be safely applied and have the potential to contribute to global environmental conservation.
Japanese Patent No. 3359410 (for example, descriptions according to Tables 4 to 7) JP 2004-75817 A (for example, [0008] to [0011], [0018], [0024]) JP 2004-171799 A (for example, [0005] to [0007]) JP 2002-358829 A (for example, [0007] to [0012]) JP 2002-53699 A (for example, [0007] to [0011]) JP 2007-211252 A (for example, [0010] to [0017], [0038]) “COAL ASH widely used as a resource”, pamphlet, Japan Fly Ash Association, April 2004.

エポキシ樹脂,硬化剤,充填剤等の各種成分において、製造効率の向上を考慮し混合工程の前に行われる予熱は、エポキシ樹脂の特性,加熱硬化条件等に応じて設定されるものであるが、該予熱温度が高温(例えば、約130℃超の温度)であると、各種成分のうちエポキシ樹脂や硬化剤等は粘度が低下し硬化時間の短縮化に少なからず寄与できるものの、充填剤として石炭灰を用いる場合には該石炭灰(少なくとも一部)においてポゾラン反応によるブロック状に固化(例えば、充填された石炭灰全体の一部が固化)し始めてしまう。これにより、エポキシ樹脂に対して石炭灰を均一分散できなくなり、目的とする絶縁性組成物の機械的物性が低くなってしまう。例えば、前記の予熱温度が150℃以上の場合には、その予熱工程の間に石炭灰が固化し、混合性が低下し成形自体ができなくなる恐れがある。   In various components such as epoxy resins, curing agents, fillers, etc., the preheating performed before the mixing step in consideration of the improvement of manufacturing efficiency is set according to the characteristics of the epoxy resin, the heat curing conditions, etc. When the preheating temperature is high (for example, a temperature exceeding about 130 ° C.), among the various components, the epoxy resin and the curing agent can reduce the viscosity and contribute to shortening the curing time. In the case of using coal ash, the coal ash (at least a part) starts to solidify in a block form by pozzolanic reaction (for example, a part of the filled coal ash is solidified). As a result, coal ash cannot be uniformly dispersed in the epoxy resin, and the mechanical properties of the intended insulating composition are reduced. For example, when the preheating temperature is 150 ° C. or higher, the coal ash is solidified during the preheating step, and the mixing property may be lowered, and the molding itself may not be performed.

前記の均一分散等を考慮して各種成分を比較的低温(例えば約130℃以下)で予熱した場合、その予熱工程を長時間費やさなければ石炭灰が固化し始めることはないものの、混合時の粘度が高過ぎたり、その後段の硬化工程に係る作業時間が長くなってしまい、製造効率が悪化してしまう。また、絶縁材料中の石炭灰の配合割合を少なくすると、絶縁性組成物自体の線膨張率が高くなってしまう。例えば、インサート(絶縁性製品中に内装される金属インサート等)を用いる場合には、十分な量の石炭灰を適用しインサートと絶縁性組成物とにおける各線膨張率の差を小さくすることが考えられるが、前記のように配合割合を少なくすると、該インサートと絶縁性組成物との線膨張率の差により熱応力が大きくなってしまうことから、機械的物性が低くなってしまう。   When various components are preheated at a relatively low temperature (for example, about 130 ° C. or less) in consideration of the uniform dispersion and the like, coal ash does not start to solidify unless the preheating process is spent for a long time. If the viscosity is too high, the working time for the subsequent curing process becomes long, and the production efficiency deteriorates. Moreover, if the blending ratio of coal ash in the insulating material is reduced, the linear expansion coefficient of the insulating composition itself is increased. For example, when using an insert (such as a metal insert embedded in an insulating product), a sufficient amount of coal ash may be applied to reduce the difference in coefficient of linear expansion between the insert and the insulating composition. However, if the blending ratio is reduced as described above, the thermal physical properties increase due to the difference in the coefficient of linear expansion between the insert and the insulating composition, resulting in a decrease in mechanical properties.

なお、特許文献2では、エポキシ樹脂,無機充填剤を用いた絶縁回路基板用組成物において、分散剤(リン酸エステル等)や改質剤(シランカップリング剤等)を用いることによりエポキシ樹脂と無機充填剤との密着性を向上し、無機充填剤を高充填することが開示されているが、該無機充填剤は窒化アルミニウムを含んだものに限定されている。また、特許文献6では、フライアッシュにおいて、前処理(精製工程等)によりイオン性不純物を除去したり、シランカップリング剤で表面処理することにより、エポキシ樹脂との親和性を高めることが開示されているが、製造工程数が増加してしまう。   In Patent Document 2, in an insulating circuit board composition using an epoxy resin and an inorganic filler, an epoxy resin and a modifier (such as a phosphate ester) and a modifier (such as a silane coupling agent) are used. Although it is disclosed that the adhesiveness with the inorganic filler is improved and the inorganic filler is highly filled, the inorganic filler is limited to those containing aluminum nitride. Patent Document 6 discloses that in fly ash, ionic impurities are removed by pretreatment (such as a purification step) or surface treatment with a silane coupling agent is performed to increase affinity with an epoxy resin. However, the number of manufacturing processes increases.

以上示したようなことから、エポキシ樹脂,硬化剤,石炭灰等から成る絶縁材料を用いた絶縁性組成物において、単に電気的物性を付与すると共に地球環境保全に貢献するだけでなく、絶縁性組成物として十分な機械的物性を付与すると共に、その絶縁性組成物の製造効率を高めることが求められている。   As described above, in an insulating composition using an insulating material composed of an epoxy resin, a curing agent, coal ash, etc., it not only contributes to the preservation of the global environment, but also provides an insulating property. There is a demand for imparting sufficient mechanical properties as a composition and enhancing the production efficiency of the insulating composition.

本発明は、前記の課題の解決を図るためのものであって、エポキシ樹脂,石炭灰,充填剤等から成る絶縁材料を用い、地球環境保全に貢献するだけでなく、絶縁性組成物として十分な機械的物性,電気的物性を付与すると共に、その絶縁性組成物の製造効率を良好にできる絶縁性高分子材料組成物を提供することにある。   The present invention is intended to solve the above-described problems, and uses an insulating material composed of epoxy resin, coal ash, filler, etc., and not only contributes to global environmental conservation, but is also sufficient as an insulating composition. An object of the present invention is to provide an insulating polymer material composition capable of imparting excellent mechanical properties and electrical properties and improving the production efficiency of the insulating composition.

具体的に、請求項1記載の発明は、少なくともエポキシ樹脂,石炭灰,硬化剤,ポリアルキルリン酸エステル(例えば、モノアルキルリン酸エステル,ジアルキルリン酸エステル,トリアルキルリン酸エステル)の各成分を混合して成る絶縁材料を加熱硬化して得られ、電圧機器の絶縁構成に用いられる組成物であって、前記の石炭灰は、エポキシ樹脂100phrに対し500phr〜600phr用いられ、130℃以下の予熱後に混合(他の成分と共に混合)されたことを特徴とする。 Specifically, the invention described in claim 1 includes at least each component of epoxy resin, coal ash, curing agent, polyalkyl phosphate ester (for example, monoalkyl phosphate ester, dialkyl phosphate ester, trialkyl phosphate ester). It is a composition obtained by heat-curing an insulating material formed by mixing and used for an insulating structure of a voltage device. The coal ash is used in an amount of 500 phr to 600 phr with respect to 100 phr of an epoxy resin, and is 130 ° C. or lower. It is characterized by being mixed (mixed with other components) after preheating.

請求項記載の発明は、請求項記載の発明において、前記のエポキシ樹脂は、エポキシ化亜麻仁油であることを特徴とする。 The invention described in claim 2 is characterized in that, in the invention described in claim 1 , the epoxy resin is epoxidized linseed oil.

請求項記載の発明は、請求項1または2記載の発明において、前記の石炭灰は、フライアッシュであることを特徴とする。 The invention according to claim 3 is the invention according to claim 1 or 2 , characterized in that the coal ash is fly ash.

請求項記載の発明は、請求項1〜記載の発明において、前記のポリアルキルリン酸エステルは、エポキシ樹脂100phrに対し0.05phr〜2phr用いたことを特徴とする。 The invention according to claim 4 is the invention according to claims 1 to 3 , wherein the polyalkyl phosphate ester is used in an amount of 0.05 phr to 2 phr with respect to 100 phr of the epoxy resin.

請求項1〜記載の発明のようにポリアルキルリン酸エステルを用いることにより、エポキシ樹脂と石炭灰との相溶性が良好となる。このため、該石炭灰を前処理(精製工程等)したり配合割合を少なくする必要は無く、該石炭灰をエポキシ樹脂に対して均一分散し易くなる。また、インサート(絶縁性製品中に内装される金属インサート等)を用いた場合には、該インサートと絶縁性組成物との線膨張率の差が小さくなる。 By using a polyalkyl phosphate ester as in the first to fourth aspects of the invention, the compatibility between the epoxy resin and coal ash is improved. For this reason, it is not necessary to pre-process the coal ash (such as a refining process) or reduce the blending ratio, and the coal ash can be easily dispersed uniformly in the epoxy resin. In addition, when an insert (such as a metal insert incorporated in an insulating product) is used, the difference in linear expansion coefficient between the insert and the insulating composition is reduced.

また、請求項記載の発明においては非化石原料由来物質の配合割合が増加する。さらに、請求項記載の発明においては、絶縁性組成物の絶縁性が低過ぎないようにし、可塑剤同様の作用が大き過ぎとならないようにできる。 Moreover, in the invention of Claim 2, the mixture ratio of the non-fossil raw material origin substance increases. Furthermore, in the invention described in claim 4 , it is possible to prevent the insulating property of the insulating composition from being too low and to prevent the action similar to that of the plasticizer from being too great.

以上、請求項1〜記載の発明によれば、電気的物性を付与すると共に地球環境保全に貢献するだけでなく、絶縁性組成物として十分な機械的物性,電気的物性を付与すると共に、その絶縁性組成物の製造効率を高めることが可能となる。また、請求項2記載の発明においては、前記の地球環境保全に対しより貢献することが可能となる。さらに、請求項4記載の発明は、より良好な機械的物性,電気的物性を付与することができる。 As described above, according to the first to fourth aspects of the invention, not only contributes to the preservation of the global environment while imparting electrical properties, but also imparts sufficient mechanical properties and electrical properties as an insulating composition, It becomes possible to increase the production efficiency of the insulating composition. Moreover, in invention of Claim 2, it becomes possible to contribute more to the said global environment conservation. Furthermore, the invention according to claim 4 can impart better mechanical properties and electrical properties.

以下、本発明の実施の形態における絶縁性高分子材料組成物を詳細に説明する。   Hereinafter, the insulating polymer material composition in the embodiment of the present invention will be described in detail.

本実施の形態は、エポキシ樹脂,石炭灰,硬化剤の他に、少なくともリン酸エステルを含む成分を混合して成る絶縁材料を用いたものであって、その絶縁材料を加熱硬化して得られ電圧機器の絶縁構成に適用される絶縁性組成物である。例えば、特許文献2のように窒化アルミニウムを含んだ無機充填剤の場合に限り、リン酸エステルを用いることが知られていたが、本実施形態のようにフライアッシュ等の石炭灰に対してアニオン系界面活性剤を用いることは知られていなかった。   This embodiment uses an insulating material obtained by mixing an epoxy resin, coal ash, and a curing agent, and at least a component containing a phosphate ester, and is obtained by heating and curing the insulating material. It is an insulating composition applied to the insulation structure of a voltage apparatus. For example, it has been known to use a phosphate ester only in the case of an inorganic filler containing aluminum nitride as in Patent Document 2, but an anion against coal ash such as fly ash as in this embodiment. The use of system surfactants has not been known.

アニオン系界面活性剤としてリン酸エステルを用いると、石炭灰とエポキシ樹脂との相溶性が高められ、絶縁材料の粘度が低減する。なお、リン酸エステルの配合量が多過ぎると、イオン系の材料であるため絶縁性組成物の絶縁性が低くなったり、可塑剤同様の作用が大きくなって強度の低下や線膨張率が増大する可能性があるため、該配合量を調整することが好ましい。   When phosphate ester is used as an anionic surfactant, the compatibility between coal ash and epoxy resin is increased, and the viscosity of the insulating material is reduced. If the amount of phosphate ester is too large, it is an ionic material, so that the insulation of the insulating composition is lowered, or the action similar to that of a plasticizer is increased, resulting in a decrease in strength and an increase in linear expansion coefficient. Therefore, it is preferable to adjust the blending amount.

エポキシ樹脂としては、一般的な電圧機器に適用されているものが挙げられ、例えばエポキシ化亜麻仁油,エポキシ化大豆油等の植物由来(非化石原料由来)のものも挙げられる。また、不飽和脂肪酸である動植物油から成るエポキシ化物においても、非化石原料由来物質として適用することが可能である。   Examples of the epoxy resin include those applied to general voltage equipment, and examples include those derived from plants (derived from non-fossil raw materials) such as epoxidized linseed oil and epoxidized soybean oil. In addition, epoxidized products composed of animal and vegetable oils that are unsaturated fatty acids can also be applied as non-fossil raw material-derived substances.

充填剤である石炭灰としては、例えば火力発電所等の副産物として生成される石炭灰を適用(石炭灰を再利用)でき、具体的には非特許文献1に示すようなフライアッシュ(例えば、I種,II種,III種)が挙げられる。フライアッシュの種類の違いによって、目的とする高分子組成物の物性において多少の差異はあるが、それぞれ環境性,経済性等が優れている点で共通している。なお、充填剤の配合割合は、目的とする高分子組成物に応じて適宜設定すれば良いが、多過ぎる場合には混合・注型性を損なう恐れがある。   As coal ash which is a filler, for example, coal ash produced as a by-product of a thermal power plant or the like can be applied (recycle coal ash). Specifically, fly ash as shown in Non-Patent Document 1 (for example, Type I, type II, type III). Although there are some differences in the physical properties of the target polymer composition depending on the type of fly ash, they are common in that they are excellent in environmental performance, economy and the like. The blending ratio of the filler may be appropriately set according to the target polymer composition, but if it is too large, the mixing / casting property may be impaired.

硬化剤としては、例えばエポキシ樹脂と反応し得るアミン類,酸無水物類,フェノール類,イミダゾール類等の種々のものが適用でき、ヒマシ油系ポリオール等の植物由来のものも適用できる。   As a hardening | curing agent, various things, such as amines, acid anhydrides, phenols, imidazoles, etc. which can react with an epoxy resin, for example, can apply the thing derived from plants, such as a castor oil-type polyol.

前記の硬化剤の配合量は、例えばエポキシ樹脂のエポキシ当量を算出し、そのエポキシ当量に基づいた化学量論量を配合(例えば、化学量論比に対し1.0として配合)する。このような硬化剤の配合割合は、例えば目的とする高分子製品に要求される物性の優先順位によって適宜設定され得るものである。   For example, an epoxy equivalent of the epoxy resin is calculated, and a stoichiometric amount based on the epoxy equivalent is added (for example, 1.0 as a stoichiometric ratio). The blending ratio of such a curing agent can be appropriately set depending on, for example, the priority order of physical properties required for the target polymer product.

前記のエポキシ樹脂,石炭灰,硬化剤の他に、例えば作業性の向上(例えば、作業時間の短縮等),成形性,Tg特性,機械的・物理的物性,電気的物性等の改善を図る目的で、種々の添加剤を適宜用いることができ、例えば硬化促進剤(硬化剤の硬化の起点;例えば有機過酸化物,アミン類,イミダゾール類等),反応抑制剤,反応助剤(反応(Tg特性)を制御する目的;パーオキサイド等)等を適宜併用することが可能である。   In addition to the epoxy resin, coal ash, and curing agent, for example, workability is improved (for example, shortening of work time, etc.), moldability, Tg characteristics, mechanical / physical properties, electrical properties, and the like are improved. For the purpose, various additives can be appropriately used. For example, curing accelerators (starting point of curing of the curing agent; for example, organic peroxides, amines, imidazoles, etc.), reaction inhibitors, reaction aids (reaction ( The purpose of controlling (Tg characteristics); peroxide, etc.) can be used in combination as appropriate.

なお、高分子成分等にパーオキサイドを配合して混合すると、その混合物は時間経過と共に粘度が上昇し、生産性が低下(例えば、混合性,成形性が低下)する恐れがあるものの、可使時間(ポットライフ)が例えば60分以上であれば良好な生産性を有するものとみなすことができる。   When peroxide is mixed with polymer components, etc., the mixture increases in viscosity over time, and the productivity may decrease (for example, the mixability and moldability may decrease). If the time (pot life) is, for example, 60 minutes or more, it can be regarded as having good productivity.

本実施形態の絶縁性組成物における架橋は、本質的に硬化剤によるものであって、硬化条件や前記の硬化促進剤,反応抑制剤,反応助剤等の有無によって架橋構造が影響を受けることはない。   Crosslinking in the insulating composition of the present embodiment is essentially due to the curing agent, and the crosslinking structure is affected by the curing conditions and the presence or absence of the curing accelerator, reaction inhibitor, reaction aid, etc. There is no.

例えば、硬化条件(温度,時間等)は、目的とする絶縁性組成物の物性を得るために適宜設定(例えば、硬化促進剤の種類や配合量等に応じて適宜設定)されるものであり、該硬化条件が異なっても該物性自体に大きな差が生じることはない。また、反応促進剤,反応抑制剤は、反応性を高めたり安全(抑制)にして作業性や生産性等を改善する目的で適宜適用されるものであり、該反応促進剤,反応抑制剤の種類や配合割合が異なっても該物性自体に大きな差が生じることはない。さらに、反応助剤は、前記の反応促進剤,反応抑制剤と同様に反応性を調整(例えば、パーオキサイドの場合は、Tg特性の調整)するために適宜適用(例えば、硬化条件や硬化促進剤等の種類,配合量に応じて適宜適用)されるものであり、該反応助剤の種類や配合量が異なっても該物性自体に大きな差が生じることはない。   For example, the curing conditions (temperature, time, etc.) are appropriately set (for example, appropriately set according to the type and blending amount of the curing accelerator) in order to obtain the desired physical properties of the insulating composition. Even if the curing conditions are different, there is no great difference in the physical properties themselves. Moreover, the reaction accelerator and reaction inhibitor are appropriately applied for the purpose of improving the workability and productivity by increasing the reactivity or making it safe (suppressed). Even if the kind and the blending ratio are different, there is no great difference in the physical properties themselves. Further, the reaction aid is appropriately applied to adjust the reactivity (for example, adjustment of Tg characteristics in the case of peroxide) in the same manner as the reaction accelerator and reaction inhibitor (for example, curing conditions and acceleration of curing). This is applied as appropriate according to the type and blending amount of the agent and the like, and even if the kind and blending amount of the reaction aid is different, there is no significant difference in the physical properties themselves.

[実施例]
次に、本実施の形態における絶縁性組成物の実施例を説明する。
[Example]
Next, examples of the insulating composition in the present embodiment will be described.

まず、下記表1に示すように、エポキシ樹脂として非化石原料由来物質であるエポキシ化亜麻仁油(ダイセル化学社製のダイマックL−500)を100phr、硬化剤としてフェノール樹脂(住友ベークライト社製のPR−HF−3)を化学量論量(本実施例ではエポキシ樹脂100phrに対し61phr)、無機充填剤である石炭灰としてフライアッシュ(東電環境エンジニアリング社製のフライアッシュII種(JIS A6201−1999))を500phr〜600phr、硬化促進剤としてイミダゾール(四国化成社製の2E4MZ)を1phr、界面活性剤としてポリアルキルリン酸(ADEKA社製のアデカコールCS−1361E)を0.05phr〜5.0phr用い、それら各種成分を温度130℃で予熱してから混合し、種々の絶縁材料S1〜S9を得た。   First, as shown in Table 1 below, 100 phr of epoxidized linseed oil (Daimac Chemicals Daimac L-500), which is a non-fossil raw material-derived material, is used as an epoxy resin, and phenol resin (PR, manufactured by Sumitomo Bakelite Co., Ltd.) as a curing agent. -HF-3) in a stoichiometric amount (61 phr with respect to 100 phr of epoxy resin in this example), fly ash as a coal ash that is an inorganic filler (Fly ash type II manufactured by TEPCO Environmental Engineering Co., Ltd. (JIS A6201-1999)) ), 500 phr to 600 phr, 1 phr of imidazole (2E4MZ manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator, and 0.05 phr to 5.0 phr of polyalkyl phosphoric acid (ADEKA COL CS-1361E manufactured by ADEKA) as a surfactant, Preheat these various components at 130 ℃ Mixture to obtain a variety of insulating materials S1-S9.

また、絶縁材料S1〜S9と同じエポキシ化亜麻仁油,フェノール樹脂,フライアッシュ,イミダゾールをそれぞれ100phr,化学量論量(本実施例ではエポキシ樹脂100phrに対し61phr),300phr〜450phr,1phr用い、それら各種成分を温度100℃〜130℃で予熱してから混合し、種々の絶縁材料P1〜P7を得た。なお、試料P1〜P7の場合、インテグラルブレンド法によりシランカップリング剤(信越化学社製のKBM−403)1wt%(フライアッシュに対して1wt%)でフライアッシュを表面処理した後に予熱した。   Also, the same epoxidized linseed oil, phenolic resin, fly ash, and imidazole as the insulating materials S1 to S9 are used in 100 phr, stoichiometric amount (61 phr with respect to 100 phr of epoxy resin in this embodiment), 300 phr to 450 phr, and 1 phr, respectively. Various components were preheated at a temperature of 100 ° C. to 130 ° C. and then mixed to obtain various insulating materials P1 to P7. In the case of samples P1 to P7, fly ash was preheated after surface treatment with 1 wt% of silane coupling agent (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) (1 wt% with respect to fly ash) by an integral blend method.

Figure 0005229787
Figure 0005229787

そして、前記のように作製した各絶縁材料S1〜S9,P1〜P7の混合・注型性(相対評価),粘度(P・s)をそれぞれ測定し、その結果を下記表2に示した。また、前記の絶縁材料S1〜S9,P1〜P7をそれぞれ金型注型し温度150℃,20時間の熱処理(三次元架橋)を行うことにより、種々の絶縁性組成物の試料(10mm×5mm×200mmの試料)を作製し、三点曲げ法による室温雰囲気下の曲げ強度(MPa),TMAによる線膨張率(10-6)をそれぞれ測定し、その結果を下記表2に示した。なお、下記表2の混合・注型性の欄において、記号「○」は優れた結果の場合、記号「×」は所望の成型ができなかった場合、記号「△」は「×」の場合よりも良いが不十分な結果の場合、を示すものとする。 Then, the mixing / casting properties (relative evaluation) and the viscosity (P · s) of each of the insulating materials S1 to S9 and P1 to P7 produced as described above were measured, and the results are shown in Table 2 below. Moreover, samples of various insulating compositions (10 mm × 5 mm) were obtained by casting the insulating materials S1 to S9 and P1 to P7, respectively, and performing heat treatment (three-dimensional crosslinking) at a temperature of 150 ° C. for 20 hours. × 200 mm sample) was prepared, the bending strength (MPa) in a room temperature atmosphere by a three-point bending method, and the linear expansion coefficient (10 −6 ) by TMA were measured, and the results are shown in Table 2 below. In addition, in the mixing / castability column of Table 2 below, the symbol “○” indicates excellent results, the symbol “×” indicates that the desired molding was not possible, and the symbol “Δ” indicates “x”. If the result is better but insufficient, it shall be indicated.

Figure 0005229787
Figure 0005229787

<絶縁材料P1〜P7の場合>
表2に示す結果から、インテグラルブレンド法により表面処理した絶縁材料の場合、絶縁材料P7のようにフライアッシュの予熱温度が比較的高温であると、その予熱によって混合中にフライアッシュが固化してしまい、注型ができなくなったことを読み取れる。
<Insulating materials P1 to P7>
From the results shown in Table 2, in the case of an insulating material surface-treated by the integral blend method, if the preheating temperature of the fly ash is relatively high like the insulating material P7, the fly ash is solidified during mixing by the preheating. It can be read that casting is no longer possible.

また、絶縁材料P1〜P6のようにフライアッシュの予熱温度が比較的低温であると、前記のようなフライアッシュの固化は起こらず、該フライアッシュの配合割合を比較的少量にした場合には、該絶縁材料自体の粘度が抑えられ混合・注型性が良好となるものの、線膨張率が比較的高く(一般的な絶縁性製品中に内装されるインサート(鉄:銅:アルミニウム=12×10-6:17×10-6:22×10-6の割合のインサート)の線膨張率と比較して高く)なってしまうことを読み取れる(例えば、線膨張率33×10-6では大き過ぎる)。 Further, when the fly ash preheating temperature is relatively low as in the insulating materials P1 to P6, the fly ash is not solidified as described above, and the fly ash is mixed in a relatively small amount. Although the viscosity of the insulating material itself is suppressed and mixing / casting properties are improved, the coefficient of linear expansion is relatively high (an insert (iron: copper: aluminum = 12 × incorporated in a general insulating product). 10 −6 : 17 × 10 −6 : 22 × 10 −6 ratio insert) is higher than the linear expansion coefficient (for example, the linear expansion coefficient of 33 × 10 −6 is too large). ).

さらに、絶縁材料P1〜P6のようにフライアッシュの予熱温度が比較的低温の場合、該フライアッシュの配合割合の増加に伴って、絶縁性組成物の曲げ強度が上昇し線膨張率が低減する傾向が観られるものの、該絶縁材料自体の粘度が上昇する傾向も観られた。すなわち、絶縁材料P1〜P6のような場合には、フライアッシュを高充填(例えば、後述の絶縁材料S1〜S9のように高充填)すると、粘度が高くなり過ぎてしまい、所望の成型ができなくなることを読み取れる。   Further, when the preheat temperature of fly ash is relatively low as in the insulating materials P1 to P6, the bending strength of the insulating composition increases and the linear expansion coefficient decreases as the blending ratio of the fly ash increases. Although the tendency was observed, the tendency for the viscosity of the insulating material itself to increase was also observed. That is, in the case of the insulating materials P1 to P6, when the fly ash is highly filled (for example, highly filled like the insulating materials S1 to S9 described later), the viscosity becomes too high, and the desired molding can be performed. I can read that it disappears.

したがって、単に表面処理されたフライアッシュを適用した場合には、フライアッシュの予熱温度を比較的低温に設定したり該フライアッシュの配合割合を減らさなければ、絶縁性組成物の作製が困難(成形困難)あるいは製造効率が低下し、たとえ該絶縁性組成物を作製できたとしても機械的物性等が低いものとなることを判明した。   Therefore, in the case of applying fly ash that is simply surface-treated, it is difficult to produce an insulating composition unless the fly ash preheating temperature is set to a relatively low temperature or the blending ratio of the fly ash is reduced. It has been found that the mechanical properties and the like are low even if the insulating composition can be produced.

<絶縁材料S1〜S9を用いた場合>
一方、ポリアルキルリン酸を用いた絶縁材料の場合、絶縁材料S1〜S9のように予熱温度を比較的低温に設定し、フライアッシュを高充填しても、該絶縁材料自体の粘度が抑えられ混合・注型性が良好となることを読み取れる。また、絶縁性組成物の曲げ強度が十分であり、線膨張率も比較的低いことが読み取れる。特に、ポリアルキルリン酸を2.0phr以下(例えば、本実施例では0.05phr〜2phr)に設定した場合には、より良好な曲げ強度が得られ、線膨張率もより低くなることが読み取れる。絶縁材料S1〜S9を用いた場合のように線膨張率が小さい場合には、インサートと絶縁性組成物との線膨張率の差も小さくなり熱応力が抑えられ、例えば低温雰囲気下での応力破壊を防止できることが読み取れる。なお、絶縁材料S1〜S9を用いた試料の絶縁性を調べたところ、それぞれ1.0×1015Ω・cm以上であったことを確認した。
<When insulating materials S1 to S9 are used>
On the other hand, in the case of an insulating material using polyalkyl phosphoric acid, even if the preheating temperature is set to a relatively low temperature as in the insulating materials S1 to S9 and the fly ash is highly filled, the viscosity of the insulating material itself can be suppressed. It can be seen that mixing and casting properties are good. Further, it can be seen that the bending strength of the insulating composition is sufficient and the linear expansion coefficient is relatively low. In particular, it can be read that when the polyalkyl phosphoric acid is set to 2.0 phr or less (for example, 0.05 phr to 2 phr in this embodiment), a better bending strength can be obtained and the linear expansion coefficient becomes lower. . When the linear expansion coefficient is small as in the case of using the insulating materials S1 to S9, the difference in the linear expansion coefficient between the insert and the insulating composition is also reduced, so that the thermal stress can be suppressed, for example, stress in a low temperature atmosphere. It can be seen that destruction can be prevented. In addition, when the insulating properties of the samples using the insulating materials S1 to S9 were examined, it was confirmed that they were 1.0 × 10 15 Ω · cm or more, respectively.

ゆえに、絶縁材料S1〜S9のようにリン酸エステルを用いた場合には、例えば石炭灰において精製工程等の前処理を行わなくとも、エポキシ樹脂に対して、比較的低温で予熱(例えば、本実施例のように130℃以下で予熱)された石炭灰を均一分散させながら高充填(例えば、本実施例のようにエポキシ樹脂100phrに対し500phr〜600phr充填)することができ、良好な製造効率で十分な機械的物性,電気的物性を付与できることを判明した。また、リン酸エステルの配合量を制限することにより、機械的物性,電気的物性がより良好になることを判明した。   Therefore, when the phosphate ester is used as in the insulating materials S1 to S9, the epoxy resin is preheated at a relatively low temperature (for example, the main material, for example, without performing a pretreatment such as a purification process in coal ash). Highly filled (for example, 500 phr to 600 phr filling with respect to 100 phr epoxy resin as in this embodiment) while uniformly dispersing coal ash preheated at 130 ° C. or less as in the embodiment, and good production efficiency It was found that sufficient mechanical and electrical properties can be imparted. It was also found that mechanical properties and electrical properties were improved by restricting the amount of phosphate ester.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、絶縁材料の混合条件や硬化条件は、エポキシ樹脂,硬化剤,石炭灰やその他の各種添加剤等の種類や配合量に応じて適宜設定されるものであり、本実施例で示した内容に限定されるものではない。また、前記のエポキシ樹脂,硬化剤,石炭灰等の他に、目的とする絶縁性組成物の特性を損わない程度の範囲で種々の添加剤(例えば、実施例以外の添加剤)を適宜配合した場合においても、本実施例に示したものと同様の作用効果が得られることは明らかである。   For example, the mixing conditions and curing conditions of the insulating material are appropriately set according to the type and blending amount of epoxy resin, curing agent, coal ash, and other various additives, and the contents shown in this example It is not limited to. In addition to the epoxy resin, curing agent, coal ash, etc., various additives (for example, additives other than Examples) are appropriately used within a range that does not impair the properties of the target insulating composition. Even when blended, it is clear that the same effects as those shown in this example can be obtained.

Claims (4)

少なくともエポキシ樹脂,石炭灰,硬化剤,ポリアルキルリン酸エステルの各成分を混合して成る絶縁材料を加熱硬化して得られ、電圧機器の絶縁構成に用いられる組成物であって、
前記の石炭灰は、エポキシ樹脂100phrに対し500phr〜600phr用いられ、130℃以下の予熱後に混合されたことを特徴とする絶縁性高分子材料組成物。
A composition obtained by heat-curing an insulating material formed by mixing at least components of epoxy resin, coal ash, curing agent, and polyalkyl phosphate ester, and used for an insulation structure of a voltage device,
An insulating polymer material composition, wherein the coal ash is used in an amount of 500 phr to 600 phr with respect to 100 phr of an epoxy resin and mixed after preheating at 130 ° C. or less .
前記のエポキシ樹脂は、エポキシ化亜麻仁油であることを特徴とする請求項1記載の絶縁性高分子材料組成物。   The insulating polymer material composition according to claim 1, wherein the epoxy resin is epoxidized linseed oil. 前記の石炭灰は、フライアッシュであることを特徴とする請求項1または2記載の絶縁性高分子材料組成物。   The insulating polymer material composition according to claim 1, wherein the coal ash is fly ash. 前記のポリアルキルリン酸エステルは、エポキシ樹脂100phrに対し0.05phr〜2phr用いたことを特徴とする請求項1〜3の何れかに記載の絶縁性高分子材料組成物。   The insulating polymer material composition according to any one of claims 1 to 3, wherein 0.05 to 2 phr of the polyalkyl phosphate ester is used with respect to 100 phr of the epoxy resin.
JP2008005150A 2008-01-15 2008-01-15 Insulating polymer material composition Active JP5229787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008005150A JP5229787B2 (en) 2008-01-15 2008-01-15 Insulating polymer material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008005150A JP5229787B2 (en) 2008-01-15 2008-01-15 Insulating polymer material composition

Publications (2)

Publication Number Publication Date
JP2009167261A JP2009167261A (en) 2009-07-30
JP5229787B2 true JP5229787B2 (en) 2013-07-03

Family

ID=40968831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008005150A Active JP5229787B2 (en) 2008-01-15 2008-01-15 Insulating polymer material composition

Country Status (1)

Country Link
JP (1) JP5229787B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585982B2 (en) * 2010-03-11 2014-09-10 中部電力株式会社 Insulating polymer material composition
KR20140148372A (en) * 2012-03-30 2014-12-31 가부시끼가이샤 도꾸야마 Curable resin composition, method for producing same, highly thermally conductive resin composition, and highly thermally conductive multilayer substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2538055Y2 (en) * 1988-06-17 1997-06-04 前田製管株式会社 Concrete insulator
JP4034945B2 (en) * 2001-05-11 2008-01-16 電源開発株式会社 Multifunctional fly ash and manufacturing method thereof
JP3751271B2 (en) * 2002-08-15 2006-03-01 電気化学工業株式会社 Resin composition for circuit board and metal base circuit board using the same
JP4342968B2 (en) * 2004-01-29 2009-10-14 花王株式会社 Additive for preventing darkening of cured hydraulic composition
JP4961692B2 (en) * 2005-07-25 2012-06-27 株式会社明電舎 insulator

Also Published As

Publication number Publication date
JP2009167261A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP4961692B2 (en) insulator
JP4002831B2 (en) Filled epoxy resin system with high mechanical strength
JP5585982B2 (en) Insulating polymer material composition
JP2009013213A (en) Epoxy resin molding material for sealing motor and molded article
JP5229787B2 (en) Insulating polymer material composition
JP5110689B2 (en) Insulating composition for high voltage equipment
JP5359008B2 (en) Method for producing insulating polymer material composition
JP6624713B2 (en) Resin composition for coil impregnation and coil parts
JP2008037921A (en) Insulating polymeric material composition
JP5532562B2 (en) Insulating polymer material composition
JP2008257978A (en) Insulating composition for high voltage equipment
JP5322220B2 (en) Insulating polymer material composition
JP5499863B2 (en) Insulating polymer material composition and method for producing the same
JP5366208B2 (en) Insulating polymer material composition and method for producing the same
JP4540997B2 (en) Two-component casting epoxy resin composition and electrical / electronic component equipment
JP5303840B2 (en) Insulating polymer material composition
JP2008257977A (en) Insulating composition for voltage equipment
WO2024101192A1 (en) Composite resin composition, method for producing same, insulating resin complex and power apparatus using same
JP2010100727A (en) Non-conductive polymer material composition
JP2008222824A (en) Motor sealing epoxy resin molding material and molded article
JP2008037923A (en) Insulative high polymer material composition
JP2010209232A (en) Insulating polymer composition
WO2017104727A1 (en) Electrical insulation resin composition
JP2024074518A (en) Epoxy resin composition
JP2005290131A (en) Method for manufacturing thermosetting resin composition for casting, thermosetting resin composition for casting and electorical/electronic component device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150