JP5319206B2 - Insulating structural materials - Google Patents

Insulating structural materials Download PDF

Info

Publication number
JP5319206B2
JP5319206B2 JP2008218349A JP2008218349A JP5319206B2 JP 5319206 B2 JP5319206 B2 JP 5319206B2 JP 2008218349 A JP2008218349 A JP 2008218349A JP 2008218349 A JP2008218349 A JP 2008218349A JP 5319206 B2 JP5319206 B2 JP 5319206B2
Authority
JP
Japan
Prior art keywords
organic filler
resin
added
insulating
matrix resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008218349A
Other languages
Japanese (ja)
Other versions
JP2010053225A (en
Inventor
晋 木下
洋子 藤堂
玄 小宮
徳介 早見
聖子 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008218349A priority Critical patent/JP5319206B2/en
Publication of JP2010053225A publication Critical patent/JP2010053225A/en
Application granted granted Critical
Publication of JP5319206B2 publication Critical patent/JP5319206B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Description

本発明は、電力機器や受配電機器などに用いられるブッシング、絶縁スペーサなどのエポキシ樹脂注型物、不飽和ポリエステル樹脂成形物、封止絶縁物などを製造するときに用いられる絶縁構造材料に関する。 The present invention relates to an insulating structure material used when manufacturing epoxy resin castings such as bushings and insulating spacers, unsaturated polyester resin moldings, sealing insulators, and the like used for power devices and power distribution devices.

熱硬化性樹脂は、優れた絶縁性、機械性、耐熱性、耐薬品性、耐候性などを有し、電力分野や半導体分野の絶縁材料として広く用いられている。しかしながら、優れた耐久性を備えているので、長年の使用に耐えた後、かかる絶縁材料を処分する段階において、再利用や分解が難しく、廃棄物としての処理が困難であった。また、絶縁材料においては、石油に依存してきたものから脱却し、新しい機能を付加したものが求められている。   Thermosetting resins have excellent insulating properties, mechanical properties, heat resistance, chemical resistance, weather resistance, and the like, and are widely used as insulating materials in the power field and semiconductor field. However, since it has excellent durability, it has been difficult to reuse and disassemble and dispose of it as a waste at the stage of disposing of such insulating material after enduring use for many years. In addition, insulating materials that have been relied on oil and added new functions are required.

このような要求に対して、木質資源を出発原料としたセルロース誘導体若しくはヘミセルロース誘導体からなる有機フィラーをエポキシ樹脂などに添加した絶縁構造材料が提案されている(例えば、特許文献1参照)。また、有機フィラーを添加することによる電気的特性や機械的特性の低下を抑えるものが提案されている(例えば、特許文献2参照)。
特開2004−171799号公報 (第4〜6ページ、図1) 特開2008−53174号公報 (第3〜5ページ、図1)
In response to such a demand, an insulating structure material in which an organic filler made of a cellulose derivative or a hemicellulose derivative using a wood resource as a starting material is added to an epoxy resin or the like has been proposed (for example, see Patent Document 1). Moreover, what suppresses the fall of the electrical property and mechanical property by adding an organic filler is proposed (for example, refer patent document 2).
JP 2004-171799 A (pages 4-6, FIG. 1) JP 2008-53174 A (pages 3 to 5, FIG. 1)

上記の従来の絶縁構造材料においては、次のような問題がある。木質資源からなるバイオマス材料では、素材中にセルロース誘導体やヘミセルロース誘導体などの水酸基を多く持つ長い繊維状高分子が多量に存在している。このため、隣り合う分子鎖間で水酸基同士が引き合い、流動性が低下する。このような有機フィラーをエポキシ樹脂のような熱硬化性樹脂に添加すると、粘度が上昇し、注型作業を困難とさせる。例えば、エポキシ樹脂100重量部に対し有機フィラーを30重量部添加すると、餅状となり、注型金型に絶縁構造材料を流し込むことが困難となっていた。   The above conventional insulating structural materials have the following problems. Biomass materials made of wood resources contain a large amount of long fibrous polymers having many hydroxyl groups such as cellulose derivatives and hemicellulose derivatives. For this reason, hydroxyl groups attract each other between adjacent molecular chains, and fluidity decreases. When such an organic filler is added to a thermosetting resin such as an epoxy resin, the viscosity increases, making the casting operation difficult. For example, when 30 parts by weight of the organic filler is added to 100 parts by weight of the epoxy resin, it becomes a bowl shape, and it is difficult to pour the insulating structure material into the casting mold.

本発明は上記問題を解決するためになされたもので、有機フィラーを添加しても粘度の上昇を抑制し、注型作業を容易にし得る絶縁構造材料を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an insulating structure material that can suppress an increase in viscosity even when an organic filler is added and can facilitate casting work.

上記目的を達成するために、本発明の絶縁構造材料は、木質資源を転換精製して得られ
たセルロース誘導体およびヘミセルロース誘導体からなる粒径0.1〜200μmの有機
フィラーと、前記有機フィラーが添加された熱硬化性のマトリックス樹脂とを備え、前記
有機フィラーにオリゴエステル化処理を施すとともに、前記マトリックス樹脂よりも多量
、且つ200質量%以下で添加したことを特徴とする。
In order to achieve the above object, the insulating structural material of the present invention is added with an organic filler having a particle size of 0.1 to 200 μm composed of a cellulose derivative and a hemicellulose derivative obtained by converting and purifying wood resources, and the organic filler. The organic filler is subjected to an oligoesterification treatment, and more than the matrix resin.
And 200% by mass or less .

本発明によれば、オリゴエステル化処理した有機フィラーをマトリックス樹脂に添加しているので、これらを混合したときの樹脂粘度の上昇が抑えられ、注型作業を容易にすることができる。   According to the present invention, since the oligoester-treated organic filler is added to the matrix resin, an increase in the resin viscosity when these are mixed can be suppressed, and the casting operation can be facilitated.

(絶縁構造材料の構成)
絶縁構造材料の構成を図1に示す。図1に示すように、絶縁構造材料1は、熱硬化性マトリックス樹脂2中に、木質資源を出発原料とする有機フィラー3を分散させたものである。
(Configuration of insulating structural materials)
The structure of the insulating structural material is shown in FIG. As shown in FIG. 1, the insulating structural material 1 is obtained by dispersing an organic filler 3 using a wood resource as a starting material in a thermosetting matrix resin 2.

熱硬化性マトリックス樹脂2としては、電気絶縁材料で用いられるエポキシ樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、フェノール樹脂などが挙げられる。また、ポリエチレン樹脂のような熱可塑性マトリックス樹脂も用いることができる。ここで、熱硬化樹脂と熱可塑性樹脂とを併せて、単にマトリックス樹脂と称す。   Examples of the thermosetting matrix resin 2 include an epoxy resin, a melamine resin, an unsaturated polyester resin, a polyimide resin, and a phenol resin that are used as an electrical insulating material. A thermoplastic matrix resin such as polyethylene resin can also be used. Here, the thermosetting resin and the thermoplastic resin are simply referred to as a matrix resin.

(有機フィラー3の製造方法)
有機フィラー3の製造方法を図2に示す。図2に示すように、先ず、木質原料を高圧水熱処理で転換精製してセルロース誘導体およびヘミセルロース誘導体を得る(st1)。高圧水熱処理の条件は、温度が170〜200℃、好ましくは190℃で、圧力が1.8〜2.2MPa、好ましくは2.0MPaであり、この条件下で木質系フィラー内のオリゴ糖分を分解する。木質原料としては、コーンコブ、米わら、麦わらなどの草木系植物を用いる。なお、セルロース誘導体を得る方法として、濃硫酸による分解があるが、セルロース誘導体の端末部に硫黄が付加され、諸特性への悪影響が懸念される。
(Method for producing organic filler 3)
The manufacturing method of the organic filler 3 is shown in FIG. As shown in FIG. 2, first, a wood raw material is converted and purified by high-pressure hydrothermal treatment to obtain a cellulose derivative and a hemicellulose derivative (st1). The conditions for the high-pressure hydrothermal treatment are a temperature of 170 to 200 ° C., preferably 190 ° C., and a pressure of 1.8 to 2.2 MPa, preferably 2.0 MPa. Under these conditions, the oligosaccharide content in the wooden filler is reduced. Decompose. As the woody material, vegetative plants such as corn cob, rice straw and wheat straw are used. In addition, although there exists decomposition | disassembly by concentrated sulfuric acid as a method of obtaining a cellulose derivative, sulfur is added to the terminal part of a cellulose derivative, and there exists a concern about the bad influence on various characteristics.

次に、得られたセルロース誘導体を乾燥後、粉砕し、分級を行う(st2)。大きさ(粒径)を0.1〜200μm、好ましくは1〜100μm、更に好ましくは5〜70μmにすると、分散が均一となり、機械的特性を向上させることができる。200μm超過では、熱硬化性マトリックス樹脂2内で異物のような作用をして、応力集中の起点となり機械的特性を低下させる。0.1μm未満では、熱硬化性マトリックス樹脂2への混合時に粘度が上昇し、作業性が悪くなる。   Next, the obtained cellulose derivative is dried and then pulverized and classified (st2). When the size (particle diameter) is 0.1 to 200 μm, preferably 1 to 100 μm, more preferably 5 to 70 μm, the dispersion becomes uniform and the mechanical properties can be improved. If it exceeds 200 μm, it acts like a foreign substance in the thermosetting matrix resin 2 and becomes a starting point of stress concentration, thereby reducing the mechanical properties. If it is less than 0.1 μm, the viscosity increases when mixed with the thermosetting matrix resin 2 and the workability deteriorates.

次に、分級したセルロース誘導体を溶媒である酸無水物中でオリゴエステル化処理する(st3)。オリゴエステル化処理の化学反応プロセスは、有機フィラー3と、無水マレイン酸、無水フタル酸、無水コハク酸などの酸無水物とを反応させることにより、セルロース誘導体およびヘミセルロース誘導体の末端部にカルボキシル基(COOH)を付加し、更にエポキシド化合物と反応させることにより、側鎖に水酸基(OH)を有する構造とすることである。   Next, the classified cellulose derivative is subjected to oligoesterification in an acid anhydride as a solvent (st3). The chemical reaction process of the oligoesterification treatment is carried out by reacting the organic filler 3 with an acid anhydride such as maleic anhydride, phthalic anhydride, succinic anhydride, etc., so that a carboxyl group ( COOH) is added and further reacted with an epoxide compound to form a structure having a hydroxyl group (OH) in the side chain.

(絶縁構造材料の製造例)
木質資源を出発原料として分解精製したセルロースの構造式を式(1)に示す。式(1)において、セルロースはブドウ糖をユニットとして(1→4)−β−グルコシド結合したものである。セルロース直鎖中にはブドウ糖骨格由来の水酸基が多量にあり、隣接するセルロース鎖間で水素結合を発生し、結晶状態で存在する。nは、正の整数である。
(Production example of insulating structural material)
The structural formula of cellulose obtained by decomposing and purifying woody resources as a starting material is shown in Formula (1). In the formula (1), cellulose is obtained by binding (1 → 4) -β-glucoside with glucose as a unit. The cellulose straight chain contains a large amount of hydroxyl groups derived from the glucose skeleton, generates hydrogen bonds between adjacent cellulose chains, and exists in a crystalline state. n is a positive integer.

次に、この水素結合を一度切断するため、式(2)に示す左側のセルロースとその右側の酸無水物とを反応させ、エステル化させる。

Figure 0005319206
Figure 0005319206
Next, in order to break this hydrogen bond once, the cellulose on the left side shown in Formula (2) is reacted with the acid anhydride on the right side to be esterified.
Figure 0005319206
Figure 0005319206

更に、式(3)に示すように、エポキシドと反応させると、酸無水物にエポキシドが交互に付加し、重合性二重結合を有するオリゴエステル鎖が生成される。nは、正の整数である。ここでは、このような反応を、中間体を単離せずに行って、一段でオリゴエステル化している。オリゴエステル化の反応単位は、1または2となる。

Figure 0005319206
Furthermore, as shown in the formula (3), when reacted with an epoxide, the epoxide is alternately added to the acid anhydride to generate an oligoester chain having a polymerizable double bond. n is a positive integer. Here, such a reaction is carried out without isolating the intermediate and is oligoesterified in one step. The reaction unit for oligoesterification is 1 or 2.
Figure 0005319206

オリゴエステル化した有機フィラー3は、絶縁構造材料1の樹脂成分に対して5〜200質量%を含有させるものである。熱硬化性マトリックス樹脂2の構造式を式(4)に示す。ビスフェノールA型エポキシ樹脂とメチルテトラヒドロ無水フタル酸とを使用する。nは、0または正の整数である。エポキシ樹脂の構造端末にはエポキシ基があり、アミンなどの適切な触媒存在下で加熱すると、メチルテトラヒドロ無水フタル酸との間で開環重合を開始する。エポキシ樹脂中に存在する水酸基は、樹脂の架橋構造に影響を与える。同様にオリゴエステル化したセルロースの水酸基も樹脂の硬化反応に介在することになる。

Figure 0005319206
The oligoesterified organic filler 3 contains 5 to 200 mass% with respect to the resin component of the insulating structural material 1. The structural formula of the thermosetting matrix resin 2 is shown in Formula (4). Bisphenol A type epoxy resin and methyltetrahydrophthalic anhydride are used. n is 0 or a positive integer. The structural terminal of the epoxy resin has an epoxy group, and when heated in the presence of a suitable catalyst such as an amine, ring-opening polymerization is initiated with methyltetrahydrophthalic anhydride. The hydroxyl group present in the epoxy resin affects the crosslinked structure of the resin. Similarly, the hydroxyl group of the cellulose esterified is also present in the resin curing reaction.
Figure 0005319206

このように所定の大きさに分級し、オリゴエステル化処理した有機フィラー3を用いて製造した絶縁構造材料1は、粘度の上昇が起き難く、注型金型への充填時などの注型作業を容易とすることができる。また、加熱硬化させた注型品においては、土壌埋設時に、長期的に微生物分解させることができる。   The insulating structural material 1 manufactured using the organic filler 3 that has been classified into a predetermined size and subjected to the oligoesterification in this way is unlikely to increase in viscosity, and casting work such as when filling a casting mold. Can be made easy. In addition, cast products that have been heat-cured can be microbially decomposed for a long time when soil is buried.

(絶縁構造材料の他の製造例)
絶縁構造材料1の簡素化のために、熱硬化性マトリックス樹脂2に有機フィラー3のみ充填する系を説明したが、これに加えて、無機充填材やゴム粒子を添加することができる。無機充填材としては、シリカ、アルミナ、マイカ、酸化チタンなど電気絶縁材料として用いられるものが挙げられる。また、界面活性剤、消泡剤、硬化促進剤などの添加剤を添加することができる。これにより、諸特性が優れ、注型作業を容易とする絶縁構造材料1を得ることができる。
(Other production examples of insulating structural materials)
In order to simplify the insulating structural material 1, the system in which only the organic filler 3 is filled in the thermosetting matrix resin 2 has been described, but in addition to this, an inorganic filler or rubber particles can be added. Examples of the inorganic filler include those used as an electrical insulating material such as silica, alumina, mica, and titanium oxide. Moreover, additives, such as surfactant, an antifoamer, and a hardening accelerator, can be added. Thereby, the insulating structure material 1 which is excellent in various characteristics and facilitates the casting operation can be obtained.

熱硬化性マトリックス樹脂2がエポキシ樹脂の場合では、添加剤が添加されるか添加されないエポキシ樹脂配合主剤、および添加剤が添加されるか添加されない硬化剤配合剤をそれぞれ別に分けて調製し、絶縁部品を製造する注型工程時に両配合物を混ぜ合わせて使用することができる。このように本発明はここには記載していない様々な実施を含むことは勿論である。   In the case where the thermosetting matrix resin 2 is an epoxy resin, an epoxy resin compounding main agent with or without an additive and a curing agent compounding agent with or without an additive are separately prepared and insulated. Both compounds can be mixed and used during the casting process to produce the part. As described above, the present invention naturally includes various implementations not described herein.

図2に示す手順でオリゴエステル化処理した有機フィラー3を150重量部と、ビスフェノール型エポキシ樹脂を100重量部と、無水酸化物硬化剤(商品名:カヤハード(MCD)日本化薬社製)を86重量部と、アミン系硬化促進剤0.8重量部とをそれぞれ添加し、自公転式混合攪拌機で混合した。次いで、得られた混合樹脂を加熱脱泡した後、温度80℃に予熱した注型金型内に流し込み、温度80℃で15時間かけて一次硬化させた。離型後、温度150℃の加熱炉に15時間入炉し、二次硬化させて注型品を得た。   150 parts by weight of the organic filler 3 that has been oligoesterified by the procedure shown in FIG. 2, 100 parts by weight of a bisphenol-type epoxy resin, and an anhydrous oxide curing agent (trade name: Kayahard (MCD) manufactured by Nippon Kayaku Co., Ltd.) 86 parts by weight and 0.8 parts by weight of an amine-based curing accelerator were added and mixed with a self-revolving mixing stirrer. Next, the obtained mixed resin was heated and defoamed, then poured into a casting mold preheated to a temperature of 80 ° C., and was primarily cured at a temperature of 80 ° C. for 15 hours. After releasing from the mold, it was placed in a heating furnace having a temperature of 150 ° C. for 15 hours and secondarily cured to obtain a cast product.

このようにオリゴエステル化処理の有機フィラー3は、エポキシ樹脂との相溶性が向上し、多量の添加を可能とする。即ち、熱硬化性マトリックス樹脂2よりも有機フィラー3を多量とすることができる。そして、加熱硬化した注型品は外観形状がよく、電気的特性や機械的特性などは有機フィラー3を添加していないものと同等以上であった。また、有機フィラー3を多量に添加することができるので、微生物分解を確実に促進することができる。   Thus, the oligoester-treated organic filler 3 is improved in compatibility with the epoxy resin and can be added in a large amount. That is, the amount of the organic filler 3 can be larger than that of the thermosetting matrix resin 2. The cast product that had been heat-cured had a good external shape, and the electrical characteristics and mechanical characteristics were equivalent to or higher than those without the addition of the organic filler 3. Moreover, since the organic filler 3 can be added in a large amount, microbial degradation can be surely promoted.

(比較例)
オリゴエステル化処理を施していない有機フィラー3を用い、実施例と同様の混合樹脂の製造を試みた。しかしながら、有機フィラー3を90重量部添加したところで粘度が上昇し、注型に適する混合樹脂を製造することが困難となった。
(Comparative example)
Using the organic filler 3 not subjected to the oligoesterification treatment, an attempt was made to produce a mixed resin similar to the example. However, when 90 parts by weight of the organic filler 3 was added, the viscosity increased, making it difficult to produce a mixed resin suitable for casting.

上記実施例の絶縁構造材料によれば、オリゴエステル化処理したセルロース誘導体およびヘミセルロース誘導体からなる有機フィラー3を添加した混合樹脂は、粘度の上昇を抑えることができ、注型作業を容易にすることができる。   According to the insulating structure material of the above example, the mixed resin to which the organic filler 3 made of the oligoesterified cellulose derivative and hemicellulose derivative is added can suppress an increase in viscosity and facilitate the casting operation. Can do.

本発明の実施例に係る絶縁構造材料の構成を示す断面模式図。The cross-sectional schematic diagram which shows the structure of the insulation structural material which concerns on the Example of this invention. 本発明の実施例に係る有機フィラーの製造工程を示すフローチャート図。The flowchart figure which shows the manufacturing process of the organic filler which concerns on the Example of this invention.

符号の説明Explanation of symbols

1 絶縁構造材料
2 熱硬化性マトリックス樹脂
3 有機フィラー
1 Insulating structural material 2 Thermosetting matrix resin 3 Organic filler

Claims (1)

木質資源を転換精製して得られたセルロース誘導体およびヘミセルロース誘導体からな
る粒径0.1〜200μmの有機フィラーと、
前記有機フィラーが添加された熱硬化性のマトリックス樹脂とを備え、
前記有機フィラーにオリゴエステル化処理を施すとともに、
前記マトリックス樹脂よりも多量、且つ200質量%以下で添加したことを特徴とする絶
縁構造材料。
An organic filler having a particle size of 0.1 to 200 μm comprising a cellulose derivative and a hemicellulose derivative obtained by converting and purifying wood resources;
A thermosetting matrix resin to which the organic filler is added,
While performing an oligoesterification treatment on the organic filler,
An insulating structure material added in a larger amount than the matrix resin and not more than 200% by mass .
JP2008218349A 2008-08-27 2008-08-27 Insulating structural materials Expired - Fee Related JP5319206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218349A JP5319206B2 (en) 2008-08-27 2008-08-27 Insulating structural materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218349A JP5319206B2 (en) 2008-08-27 2008-08-27 Insulating structural materials

Publications (2)

Publication Number Publication Date
JP2010053225A JP2010053225A (en) 2010-03-11
JP5319206B2 true JP5319206B2 (en) 2013-10-16

Family

ID=42069471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218349A Expired - Fee Related JP5319206B2 (en) 2008-08-27 2008-08-27 Insulating structural materials

Country Status (1)

Country Link
JP (1) JP5319206B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5981216B2 (en) * 2012-05-11 2016-08-31 株式会社日進製作所 Cellulose compound-containing fiber reinforced resin composition, fiber reinforced resin molded article, and method for producing the same
JP6263392B2 (en) * 2014-01-20 2018-01-17 京セラ株式会社 Liquid resin composition, electrical component and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142814A (en) * 1988-11-24 1990-05-31 Hitachi Chem Co Ltd Reinforced resin composition
JPH0680832A (en) * 1992-09-03 1994-03-22 Nobuo Shiraishi Polyolefin composition and its production
JPH10219089A (en) * 1997-02-06 1998-08-18 Okura Ind Co Ltd Curing composition and surface-cured wooden decorative panel
JP2007302744A (en) * 2006-05-09 2007-11-22 Agri Future Joetsu Co Ltd Polyamide resin composition and polyamide resin molded product
JP2008053174A (en) * 2006-08-28 2008-03-06 Toshiba Corp Insulating structure material

Also Published As

Publication number Publication date
JP2010053225A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
Li et al. Bio-based epoxy vitrimer for recyclable and carbon fiber reinforced materials: Synthesis and structure-property relationship
CN103965590B (en) Epoxy resin composite material of a kind of coordination plasticizing and preparation method thereof
JP5315606B2 (en) Insulating polymer material composition
CN102791721A (en) Cardanol-modified silane coupling agent, cardanol-modified filler, and cellulose resin composition
CN104945752B (en) Buried high voltage power cable PVC C sleeve pipes
CN104892858B (en) A kind of high Bio-based content composition epoxy resin and its curing and application
JP2017526794A (en) Reinforcement of anhydride-cured thermosetting epoxy polymers using grafted triglycerides
CN102796387A (en) Epoxy glue powder asphalt material and preparation method thereof
Fu et al. Synthesis and curing properties of castor oil‐based triglycidyl ether epoxy resin
CN105131614A (en) Heat resistant, wear-resistant and tear-resistant cable sheath
JP5319206B2 (en) Insulating structural materials
JP5585982B2 (en) Insulating polymer material composition
CN1478127A (en) Filled epoxy resin system having high mechanical strength values
Kocaman Chemical modification of apricot kernel shell waste and its effect on phenolic novolac epoxy composites
CN104945802B (en) A kind of buried high voltage power cable high temperature resistant PVC C sleeve pipes
JP2010163497A (en) Polymer composition material and method for producing the same
JP4561242B2 (en) Insulating polymer material composition
CN112961463B (en) Super-tough self-repairing epoxy resin glass polymer material and preparation method thereof
JP4998018B2 (en) Manufacturing method of fiber molded body
JPH054429B2 (en)
JP2008053174A (en) Insulating structure material
JP5981216B2 (en) Cellulose compound-containing fiber reinforced resin composition, fiber reinforced resin molded article, and method for producing the same
US7884151B2 (en) Material of nanocomposites of the resin and its manufacturing process
JP5359008B2 (en) Method for producing insulating polymer material composition
JP2012167192A (en) Method of manufacturing heat plasticization lignocellulose composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

LAPS Cancellation because of no payment of annual fees