JP2010163497A - Polymer composition material and method for producing the same - Google Patents

Polymer composition material and method for producing the same Download PDF

Info

Publication number
JP2010163497A
JP2010163497A JP2009005139A JP2009005139A JP2010163497A JP 2010163497 A JP2010163497 A JP 2010163497A JP 2009005139 A JP2009005139 A JP 2009005139A JP 2009005139 A JP2009005139 A JP 2009005139A JP 2010163497 A JP2010163497 A JP 2010163497A
Authority
JP
Japan
Prior art keywords
polymer composition
lignin
composition material
molecular weight
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009005139A
Other languages
Japanese (ja)
Inventor
Gen Komiya
玄 小宮
Tokusuke Hayami
徳介 早見
Kiyoko Murayama
聖子 村山
Junichi Sato
純一 佐藤
Susumu Kinoshita
晋 木下
Yoko Todo
洋子 藤堂
Miyoshi Matsuoka
美佳 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009005139A priority Critical patent/JP2010163497A/en
Publication of JP2010163497A publication Critical patent/JP2010163497A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a polymer composition material with improved recovery efficiency by reducing the molecular weight of natural lignin extracted from a wood-derived material. <P>SOLUTION: Natural lignin extracted from a pulverized wood-derived material is hydrolyzed by critical water treatment in a methyl ethyl ketone solvent at high temperature and pressure, the resulting product is purified to obtain a lignin derivative with reduced molecular weight, and a reaction active acid anhydride type functional group is introduced into the lignin derivative by chemical modification. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気、電子部品を構成する熱硬化性樹脂に添加される高分子組成材料およびその製造方法に関する。   The present invention relates to a polymer composition material added to a thermosetting resin constituting electric and electronic parts and a method for producing the same.

従来、エポキシ樹脂、ポリエステル樹脂などの熱硬化性樹脂は、優れた機械的、電気的、熱的などの諸特性を有し、電気、電子部品を構成する絶縁構造材料として広く用いられてきた。しかしながら、優れた耐久性を備えているので、長年の使用後の廃棄物の処分において、再利用や分解が困難であった。また、地球環境との調和から、石油に依存してものから脱却し、新しい機能を付加した材料が求められている。   Conventionally, thermosetting resins such as epoxy resins and polyester resins have excellent mechanical, electrical, and thermal properties, and have been widely used as insulating structural materials constituting electrical and electronic components. However, since it has excellent durability, it has been difficult to reuse or disassemble the waste after disposal for many years. In addition, because of the harmony with the global environment, there is a need for materials that have relied on oil and added new functions.

このような要求に対して、植物系バイオマスから抽出したリグニンにエピクロルヒドリンとグリシジルエーテルを作用させ、エポキシ化する方法が知られている。このような方法により、二酸化炭素の排出を抑制した絶縁構造材料を得ることができる(例えば、特許文献1参照。)。   In response to such demands, a method is known in which epichlorohydrin and glycidyl ether are allowed to act on lignin extracted from plant biomass and epoxidized. By such a method, an insulating structure material in which carbon dioxide emission is suppressed can be obtained (for example, see Patent Document 1).

特開2006−66237号公報 (第4〜5ページ)JP 2006-66237 A (pages 4-5)

上記の従来の絶縁構造材料においては、次のような問題がある。植物系バイオマスに含まれるリグニンは、高分子量のものが多く、回収率が極めて低いものであった。また、抽出されたリグニンが高分子量体であり、その分子量や構造が原料である木質の種類により変動する。このため、エポキシ化して利用するとき、化学的付加反応が行われ難く、リグニン誘導体が均一に分散した絶縁構造材料になり難かった。また、高分子量体は融点が高く、ハンドリングが低下する恐れがあった。   The above conventional insulating structural materials have the following problems. The lignin contained in plant-based biomass has many high molecular weights and has a very low recovery rate. In addition, the extracted lignin is a high molecular weight substance, and its molecular weight and structure vary depending on the type of wood that is the raw material. For this reason, when used after being epoxidized, it is difficult to perform a chemical addition reaction, and it is difficult to obtain an insulating structure material in which the lignin derivative is uniformly dispersed. In addition, the high molecular weight body has a high melting point, and there is a fear that handling may be reduced.

このため、リグニン誘導体を低分子化して回収率を向上させ、熱硬化性樹脂に添加したとき、均一に分散して結合し、絶縁構造材料として優れた諸特性を発揮するとともに、廃棄処理を容易とするものが望まれていた。   For this reason, the lignin derivative is reduced in molecular weight to improve the recovery rate, and when added to the thermosetting resin, it uniformly disperses and binds, exhibits excellent properties as an insulating structure material, and is easy to dispose of. What was said to have been desired.

本発明は上記問題を解決するためになされたもので、木質から抽出した高分子量体のリグニン誘導体を低分子化した高分子組成材料およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a polymer composition material obtained by reducing the molecular weight of a high molecular weight lignin derivative extracted from wood and a method for producing the same.

上記目的を達成するために、本発明の高分子組成材料は、天然リグニンを臨界水処理により加水分解したリグニン誘導体と、前記リグニン誘導体に化学修飾で導入した反応活性官能基とを備えたことを特徴とする。   In order to achieve the above object, the polymer composition material of the present invention comprises a lignin derivative obtained by hydrolyzing natural lignin by a critical water treatment, and a reactive functional group introduced into the lignin derivative by chemical modification. Features.

本発明によれば、天然リグニンを高温高圧下で臨界水処理して低分子化し、反応活性官能基を化学修飾で導入しているので、リグニン誘導体の回収効率を向上させることができ、絶縁構造材料としての諸特性を向上させ、廃棄処分においても、再利用や分解を容易なものにすることができる。   According to the present invention, natural lignin is treated with critical water under high temperature and high pressure to reduce the molecular weight, and the reactive functional group is introduced by chemical modification. Therefore, the recovery efficiency of the lignin derivative can be improved, and the insulating structure Various characteristics as a material can be improved, and reuse and decomposition can be facilitated even in disposal.

本発明に係る高分子組成材料の製造方法を説明する概念図。The conceptual diagram explaining the manufacturing method of the polymeric composition material which concerns on this invention. 本発明の実施例に係る高分子組成材料の製造方法を説明する工程図。Process drawing explaining the manufacturing method of the polymeric composition material which concerns on the Example of this invention. 本発明の実施例に係る高分子組成材料のリグニンの分子量を説明する図。The figure explaining the molecular weight of the lignin of the polymer composition material which concerns on the Example of this invention.

高分子組成材料の製造方法を図1を参照して説明する。図1に示すように、先ず、木質由来材料を乾燥させ、粉砕する(st1)。次に、超臨界水もしくは亜臨界水で加水分解させ、リグニン誘導体を低分子化する(st2)。混濁液中から沈殿物を除去し、溶液中から低分子化したリグニン誘導体を分離、精製する(st3)。次に、リグニン誘導体に反応活性官能基を導入して反応させる(st4)。これを精製すると、低分子化されたリグニン誘導体を有する高分子組成材料を得ることができる。以下、本発明の実施例を説明する。   A method for producing the polymer composition material will be described with reference to FIG. As shown in FIG. 1, first, the wood-derived material is dried and pulverized (st1). Next, it is hydrolyzed with supercritical water or subcritical water to lower the molecular weight of the lignin derivative (st2). The precipitate is removed from the turbid solution, and the lignin derivative having a reduced molecular weight is separated and purified from the solution (st3). Next, a reactive functional group is introduced into the lignin derivative and reacted (st4). When this is purified, a polymer composition material having a lignin derivative reduced in molecular weight can be obtained. Examples of the present invention will be described below.

本発明の実施例に係る高分子組成材料を図2、図3を参照して説明する。図2は、本発明の実施例に係る高分子組成材料の製造方法を説明する工程図、図3は、本発明の実施例に係る高分子組成材料のリグニンの分子量を説明する図である。   A polymer composition material according to an embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a process diagram illustrating a method for producing a polymer composition material according to an embodiment of the present invention, and FIG. 3 is a diagram illustrating a molecular weight of lignin of the polymer composition material according to an embodiment of the present invention.

図2に示すように、木質由来材料としてコーンコブを用い、先ず、乾燥させ、粒径数十μmに粉砕する(st11)。これにより、高分子量の天然リグニンが得られる。天然リグニングを金属触媒の存在下、水−メチルエチルケトンの混合溶媒中において、温度180℃、圧力1.8MPaの臨界水処理を行う(st12)。これにより、リグニンは加水分解され、これを乾燥させ分離、精製すると、低分子化されたリグニンを得ることができる(st13)。   As shown in FIG. 2, corn cob is used as the wood-derived material, and is first dried and pulverized to a particle size of several tens of μm (st11). Thereby, a high molecular weight natural lignin is obtained. Natural ligging is subjected to critical water treatment at a temperature of 180 ° C. and a pressure of 1.8 MPa in a water-methyl ethyl ketone mixed solvent in the presence of a metal catalyst (st12). Thereby, lignin is hydrolyzed, and when this is dried, separated, and purified, lignin reduced in molecular weight can be obtained (st13).

溶媒は、メチルエチルケトンのほかに、メタノール、エタノール、プロパノール、アセトン、ジエチルエーテル、ジオキサン、テトラヒドロフラン、ジメチルスルフォキシド、ジメチルホルムアミド、ジメチルアセトアミド、酢酸、酪酸のうち、少なくとも1種類以上を用いることができる。   As the solvent, in addition to methyl ethyl ketone, at least one of methanol, ethanol, propanol, acetone, diethyl ether, dioxane, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetic acid, and butyric acid can be used.

ここで、低分子化とは、図3に示すように、分子量分布を、点線で示す天然リグニンに対し、実線で示すように、低分子側に移動させることである。低分子化することにより、リグニン誘導体を効率よく回収することができる。また、後述するエポキシ樹脂などの熱硬化性樹脂の分子量と比べ、同等以下の分子量とするものである。同等とは、材料製造時や材料調合時などのバラツキを考慮したものである。   Here, the reduction in molecular weight is to move the molecular weight distribution toward the low molecular weight side as shown by the solid line with respect to the natural lignin shown by the dotted line as shown in FIG. By reducing the molecular weight, the lignin derivative can be efficiently recovered. In addition, the molecular weight is equal to or less than that of a thermosetting resin such as an epoxy resin described later. Equivalent means taking into account variations such as when manufacturing materials or mixing materials.

また、臨界水処理とは、混濁液を加圧し、高温状態の液と対象物(リグニン)と反応させることであり、温度100℃以上、圧力0.1MPa以上の高温高圧の条件下で得ることができる。混濁液を温度180℃以上、圧力1.8MPa以上の臨界水とすると、リグニンを分解する容器内では混濁液が蒸発しようとするものの加圧されて、高温の液とリグニンが混在し、リグニンを効率よく低分子化することができる。更に、混濁液をpH6以下の酸性にすると、リグニンの分解を加速させることができる。   The critical water treatment is to pressurize the turbid liquid and cause it to react with the liquid in a high temperature state and the object (lignin). Can do. If the turbid liquid is a critical water having a temperature of 180 ° C. or higher and a pressure of 1.8 MPa or higher, the turbid liquid will evaporate in the vessel that decomposes lignin, but is pressurized and mixed with high-temperature liquid and lignin. Low molecular weight can be efficiently achieved. Furthermore, when the turbid liquid is acidified to pH 6 or less, the decomposition of lignin can be accelerated.

次に、無水トリメリット酸などの酸無水物を化学修飾させると、低分子化されたリグニンのヒドロキシル基端末に官能基(酸無水物からなる5員環)を脱水反応により導入することができる(st14)。[化1]参照。これにより、低分子化されたリグニン誘導体を有する高分子組成材料を粉末や液体の状態で得ることができる。

Figure 2010163497
Next, when an acid anhydride such as trimellitic anhydride is chemically modified, a functional group (a 5-membered ring made of an acid anhydride) can be introduced into the hydroxyl group terminal of the low molecular weight lignin by a dehydration reaction. (St14). See [Chemical Formula 1]. Thereby, a polymer composition material having a lignin derivative having a reduced molecular weight can be obtained in a powder or liquid state.
Figure 2010163497

低分子化したリグニン誘導体には、酸無水物系の官能基のほかに、エポキシ基、アミド基、アミン基、イミダゾール基、カルボキシル基、ビニル基、アルコキシド基などの官能基群のうち、少なくとも1種類以上を分子構造中に導入することができる。これらの官能基は、熱硬化性樹脂との結合を活性化させるもので、反応活性官能基と定義する。   The lignin derivative having a reduced molecular weight includes at least one of functional groups such as an epoxy group, an amide group, an amine group, an imidazole group, a carboxyl group, a vinyl group, and an alkoxide group in addition to an acid anhydride functional group. More than one type can be introduced into the molecular structure. These functional groups activate bonds with the thermosetting resin and are defined as reactive functional groups.

そして、熱硬化性樹脂に代表されるエポキシ樹脂に高分子組成材料を混合し、硬化すれば(st15)、リグニン誘導体がエポキシ樹脂に均一に分散して結合し、優れた機械的、電気的、熱的などの諸特性を有するバイオマス系の絶縁構造材料を得ることができる。リグニン誘導体は、カーボンニュートラル素材であり、絶縁構造材料の廃棄物の処分において、再利用や分解を容易なものにすることができる。   When a polymer composition material is mixed with an epoxy resin typified by a thermosetting resin and cured (st15), the lignin derivative is uniformly dispersed and bonded to the epoxy resin, and has excellent mechanical, electrical, A biomass-based insulating structural material having various thermal characteristics can be obtained. The lignin derivative is a carbon neutral material, and can be easily reused and decomposed in the disposal of the waste of the insulating structure material.

また、従来の天然リグニンに比べて低分子化されているので、融点が低く、熱硬化性樹脂への添加時に、粘度の上昇を抑えることができ、絶縁構造材料の製造時のハンドリングを向上させることができる。   In addition, since it has a lower molecular weight than conventional natural lignin, it has a low melting point, can suppress an increase in viscosity when added to a thermosetting resin, and improves handling during the production of insulating structural materials. be able to.

上記実施例の高分子組成材料によれば、天然リグニンを水−メチルエチルケトンの混合溶媒中で高温高圧の臨界水処理をして低分子化し、酸無水物系の官能基を化学修飾で導入しているので、リグニン誘導体の回収効率を向上させることができる。また、熱硬化性樹脂との結合時に、リグニン誘導体が均一に分散し、優れた機械的、電気的、熱的などの諸特性を有する絶縁構造材料とすることができ、絶縁構造材料の廃棄物の処分においても、再利用や分解を容易なものにすることができる。   According to the polymer composition material of the above example, natural lignin was subjected to high-temperature and high-pressure critical water treatment in a mixed solvent of water and methyl ethyl ketone to reduce the molecular weight, and an acid anhydride functional group was introduced by chemical modification. Therefore, the recovery efficiency of the lignin derivative can be improved. In addition, the lignin derivative is uniformly dispersed when bonded to the thermosetting resin, and can be an insulating structural material having excellent mechanical, electrical, and thermal properties. Also in the disposal of these, reuse and decomposition can be facilitated.

Claims (6)

天然リグニンを臨界水処理により加水分解したリグニン誘導体と、
前記リグニン誘導体に化学修飾で導入した反応活性官能基と
を備えたことを特徴とする高分子組成材料。
A lignin derivative obtained by hydrolyzing natural lignin by critical water treatment;
A polymer composition material comprising a reactive functional group introduced into the lignin derivative by chemical modification.
前記リグニン誘導体は、熱硬化性樹脂の分子量と同等以下の分子量であることを特徴とする請求項1に記載の高分子組成材料。   The polymer composition material according to claim 1, wherein the lignin derivative has a molecular weight equal to or less than a molecular weight of a thermosetting resin. 木質由来材料から天然リグニンを抽出し、
この天然リグニンを、メチルエチルケトン、メタノール、エタノール、プロパノール、アセトン、ジエチルエーテル、ジオキサン、テトラヒドロフラン、ジメチルスルフォキシド、ジメチルホルムアミド、ジメチルアセトアミド、酢酸、酪酸のうち、少なくとも1種類以上の溶媒中で臨界水処理を施し、
次いで、混濁液を精製して低分子化されたリグニン誘導体とし、
このリグニン誘導体に反応活性官能基を化学修飾で導入し
たことを特徴とする高分子組成材料の製造方法。
Extract natural lignin from wood-derived materials,
This natural lignin is treated with critical water in at least one solvent of methyl ethyl ketone, methanol, ethanol, propanol, acetone, diethyl ether, dioxane, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetic acid and butyric acid. And
Next, the turbid solution is purified to obtain a low molecular weight lignin derivative,
A method for producing a polymer composition material, wherein a reactive functional group is introduced into this lignin derivative by chemical modification.
前記反応活性官能基は、酸無水物系の官能基、エポキシ基、アミド基、アミン基、イミダゾール基、カルボキシル基、ビニル基、アルコキシド基の官能基群のうち、少なくとも1種類以上であることを特徴とする請求項3に記載の高分子組成材料の製造方法。   The reactive functional group is at least one or more of functional groups of acid anhydride functional groups, epoxy groups, amide groups, amine groups, imidazole groups, carboxyl groups, vinyl groups, and alkoxide groups. The method for producing a polymer composition material according to claim 3. 前記混濁液を沸騰させるとともに、加圧することを特徴とする請求項3または請求項4に記載の高分子組成材料の製造方法。   The method for producing a polymer composition material according to claim 3 or 4, wherein the turbid liquid is boiled and pressurized. 前記混濁液を酸性にすることを特徴とする請求項3乃至請求項5のいずれか1項に記載の高分子組成材料の製造方法。   The method for producing a polymer composition material according to any one of claims 3 to 5, wherein the turbid liquid is made acidic.
JP2009005139A 2009-01-13 2009-01-13 Polymer composition material and method for producing the same Pending JP2010163497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005139A JP2010163497A (en) 2009-01-13 2009-01-13 Polymer composition material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005139A JP2010163497A (en) 2009-01-13 2009-01-13 Polymer composition material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010163497A true JP2010163497A (en) 2010-07-29

Family

ID=42579923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005139A Pending JP2010163497A (en) 2009-01-13 2009-01-13 Polymer composition material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010163497A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026483A (en) * 2009-07-28 2011-02-10 Hitachi Ltd Biomass-derived epoxy resin composition
JP2013035969A (en) * 2011-08-09 2013-02-21 Kyoto Univ Method for producing lignin derivative, method for producing lignin second derivative, and method for producing natural organic compound
WO2015178103A1 (en) * 2014-05-23 2015-11-26 ハリマ化成株式会社 Resin composition and method for producing same
WO2016098666A1 (en) * 2014-12-16 2016-06-23 ハリマ化成株式会社 Impregnated sheet, laminated sheet, and resin composition
WO2016098667A1 (en) * 2014-12-16 2016-06-23 ハリマ化成株式会社 Impregnated sheet, laminated sheet, and resin composition
US10538012B2 (en) 2015-12-07 2020-01-21 Timothee Boitouzet Process for partial delignification and filling of a lignocellulosic material, and composite material structure able to be obtained by this process
US11656756B2 (en) 2018-02-09 2023-05-23 Sas Woodoo Touch detection device with touch interface made of composite material
US11820041B2 (en) 2017-06-07 2023-11-21 Sas Woodoo Process for supercritical or subcritical partial delignification and filling of a lignocellulosic material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026483A (en) * 2009-07-28 2011-02-10 Hitachi Ltd Biomass-derived epoxy resin composition
US8420766B2 (en) 2009-07-28 2013-04-16 Hitachi, Ltd. Biomass-derived epoxy resin composition
JP2013035969A (en) * 2011-08-09 2013-02-21 Kyoto Univ Method for producing lignin derivative, method for producing lignin second derivative, and method for producing natural organic compound
WO2015178103A1 (en) * 2014-05-23 2015-11-26 ハリマ化成株式会社 Resin composition and method for producing same
WO2016098666A1 (en) * 2014-12-16 2016-06-23 ハリマ化成株式会社 Impregnated sheet, laminated sheet, and resin composition
WO2016098667A1 (en) * 2014-12-16 2016-06-23 ハリマ化成株式会社 Impregnated sheet, laminated sheet, and resin composition
US10538012B2 (en) 2015-12-07 2020-01-21 Timothee Boitouzet Process for partial delignification and filling of a lignocellulosic material, and composite material structure able to be obtained by this process
US11254026B2 (en) 2015-12-07 2022-02-22 Timothée BOITOUZET Process for partial delignification and filling of a lignocellulosic material, and composite material structure able to be obtained by this process
US11820041B2 (en) 2017-06-07 2023-11-21 Sas Woodoo Process for supercritical or subcritical partial delignification and filling of a lignocellulosic material
US11656756B2 (en) 2018-02-09 2023-05-23 Sas Woodoo Touch detection device with touch interface made of composite material
US11662899B2 (en) 2018-02-09 2023-05-30 Sas Woodoo Touch detection device with touch interface made of composite material

Similar Documents

Publication Publication Date Title
JP2010163497A (en) Polymer composition material and method for producing the same
Ramon et al. A review of recent research on bio-based epoxy systems for engineering applications and potentialities in the aviation sector
Shibata et al. Preparation and properties of biocomposites composed of epoxidized soybean oil, tannic acid, and microfibrillated cellulose
Lancefield et al. Isolation of Functionalized Phenolic Monomers through Selective Oxidation and C O Bond Cleavage of the β‐O‐4 Linkages in Lignin
CN111718515B (en) Method for degrading epoxy resin cured by catalytic anhydride
Li et al. Preparation of concrete water reducer via fractionation and modification of lignin extracted from pine wood by formic acid
Shi et al. Influence of ultrasonic pretreatment on the yield of bio-oil prepared by thermo-chemical conversion of rice husk in hot-compressed water
JPWO2014142289A1 (en) Method for producing lignin degradation product
Anggoro Use of epoxidized waste cooking oil as bioplasticizer of sago starch-based biocomposite reinforced microfibrillated cellulose of bamboo
Beims et al. Reengineering wood into a high-strength, and lightweight bio-composite material for structural applications
KR20140076026A (en) Manufacturing method of bioepoxy nanocomposite compound with enhanced mechanical properties and environmental resistance
Yang et al. From biomass to vitrimers: Latest developments in the research of lignocellulose, vegetable oil, and naturally-occurring carboxylic acids
Gao et al. Nitrogen doped carbon solid acid for improving its catalytic transformation of xylose and agricultural biomass residues to furfural
CN105542762A (en) Preparation method of nitrogen-doped fluorescence carbon dots
US11702505B2 (en) Process for the production of epoxy resins
CN105597757B (en) Magnetic oxygenated graphen catalyst and preparation method thereof and its application
CN110283426B (en) Bio-based degradable starch filled epoxy resin composite material and preparation method thereof
Derflinger et al. Sustainable aerogels derived from bio-based 2, 5-diformylfuran and depolymerization products of lignin
Miao et al. Study on extraction of lignin and synthesis of lignin-based epoxy resins using ionic liquid
JP7214091B2 (en) Heat-curable composition and method for producing thermosetting plastic
Xu et al. Catalytic hydrolysis of cellulose to levulinic acid by partly replacing sulfuric acid with Nafion® NR50 catalyst
CN105542760A (en) Preparation method of nitrogen- and sulfur-doped fluorescence carbon dots
Hong et al. Unlocking lignin’s potential with innovative DES technology
CN110407989B (en) Method for preparing self-polymerization biological material by taking lignocellulose furfural residues as raw materials
JP2011144340A (en) Epoxy resin

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Effective date: 20111205

Free format text: JAPANESE INTERMEDIATE CODE: A7424