JP2013221113A - Lignin-derived epoxy resin composition and application thereof - Google Patents

Lignin-derived epoxy resin composition and application thereof Download PDF

Info

Publication number
JP2013221113A
JP2013221113A JP2012094602A JP2012094602A JP2013221113A JP 2013221113 A JP2013221113 A JP 2013221113A JP 2012094602 A JP2012094602 A JP 2012094602A JP 2012094602 A JP2012094602 A JP 2012094602A JP 2013221113 A JP2013221113 A JP 2013221113A
Authority
JP
Japan
Prior art keywords
lignin
epoxy resin
resin composition
derived
cured product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012094602A
Other languages
Japanese (ja)
Inventor
Yoshiaki Okabe
義昭 岡部
Hiroyuki Kagawa
博之 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012094602A priority Critical patent/JP2013221113A/en
Priority to PCT/JP2013/060578 priority patent/WO2013157424A1/en
Publication of JP2013221113A publication Critical patent/JP2013221113A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/17Post-manufacturing processes
    • H05K2203/178Demolishing, e.g. recycling, reverse engineering, destroying for security purposes; Using biodegradable materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lignin-derived epoxy resin capable of forming a cured product having a high glass transition point and a high thermal decomposition temperature without raising the cost of lignin raw material.SOLUTION: A lignin-derived epoxy resin composition contains unmodified lignin by steam blasting, a bi- or higher functional epoxy resin, and a catalyst for self-polymerization of the epoxy resin, wherein the compounding ratio of the lignin to the epoxy resin is 0.5 to <1.4 in terms of the ratio of the number of hydroxyl groups in the lignin to the number of epoxy groups in the epoxy resin. The present invention discloses a cured product of the composition, a prepreg, a varnish, electronic equipment and electrical equipment.

Description

本発明はガラス転移点と熱分解温度がともに高い硬化物を与えるリグニン由来エポキシ樹脂組成物及びその用途に関する。   The present invention relates to a lignin-derived epoxy resin composition that gives a cured product having both a glass transition point and a high thermal decomposition temperature, and uses thereof.

近年、電子・電気部品の高性能化に伴い、部品の発熱量が増える傾向にある。そのため、電子・電気部品に使用されることの多い樹脂は出来るだけ高温に耐え、且つ、その性質が変わらない、耐熱性に優れたものが望まれる。一般に、高分子材料を加熱すると軟化、熔融、流動などの可逆的な物理変化と熱による分子鎖の切断の非可逆的な化学変化が起こる。特に、エポキシ樹脂硬化物は物理的に化学的な変化の意味を持つガラス転移温度(以下、Tgと略称する。)Tg(Glass−transition Temperature)が高く、又、不可逆的な化学変化を伴う熱分解温度(Decomposition Temperature)が高いことが要求されている。本発明では、熱分解温度として、樹脂硬化物を加熱したときに熱により分解しその5重量%が減少したときの温度(5重量%熱減量温度:Td5)を耐熱性の指標の1つとして用いる。   In recent years, with the improvement in performance of electronic and electrical components, the amount of heat generated by the components tends to increase. Therefore, a resin that is often used for electronic / electrical parts is desired to have a heat resistance that is as high as possible and that does not change its properties and has excellent heat resistance. In general, when a polymer material is heated, reversible physical changes such as softening, melting, and flow, and irreversible chemical changes of molecular chain breakage due to heat occur. In particular, a cured epoxy resin has a high glass transition temperature (hereinafter abbreviated as Tg) having a meaning of a physical chemical change, and has a high Tg (Glass-transition Temperature) and heat accompanied by an irreversible chemical change. It is required that the decomposition temperature (Decomposition Temperature) is high. In the present invention, as the thermal decomposition temperature, the temperature when 5% by weight of the resin cured product is decomposed by heat when it is heated (5% by weight thermal loss temperature: Td5) is taken as one of the heat resistance indicators. Use.

Tgは、エポキシ樹脂硬化物の架橋密度や分子構造に依存し、一般に架橋密度が高く、ビフェニルやナフタレン等の剛直構造を用いた硬化物ほど高いTgを示すことが知られている。これはTgが高分子セグメントのミクロブラウン運動に起因するため、架橋密度が高く、また、分子構造が剛直であるほど、各セグメントがミクロブラウン運動を起こしにくいためである。   It is known that Tg depends on the crosslink density and molecular structure of the cured epoxy resin, generally has a high crosslink density, and a cured product using a rigid structure such as biphenyl or naphthalene exhibits a high Tg. This is because Tg is caused by the micro-Brownian motion of the polymer segment, and therefore, the higher the crosslink density and the more rigid the molecular structure, the more difficult each segment causes the micro-Brownian motion.

Td5は、主として高分子主鎖の分解(ラジカル解重合)によって決まり、熱分解による高分子の所定の重量減少が起こる温度である。熱分解の起こりやすさは、分子構成単位の結合解離エネルギにより決まる。そのため、熱分解開始温度の高いエポキシ樹脂硬化物を得るには、高分子の主鎖を構成する化学結合の結合解離エネルギの大きい高分子を用いればよい。具体的には脂肪族系より芳香族系、更に多環芳香族系の原料が好ましい。   Td5 is determined mainly by the decomposition of the polymer main chain (radical depolymerization), and is a temperature at which a predetermined weight loss of the polymer occurs due to thermal decomposition. The likelihood of thermal decomposition is determined by the bond dissociation energy of the molecular structural unit. Therefore, in order to obtain a cured epoxy resin having a high thermal decomposition starting temperature, a polymer having a large bond dissociation energy of a chemical bond constituting the polymer main chain may be used. Specifically, an aromatic material and a polycyclic aromatic material are preferable to an aliphatic material.

特に電気機器の絶縁材料などの場合は、樹脂を用いた絶縁材料などは、ガラス転移点よりもむしろ熱分解温度が有る程度高いことが絶縁材料等の耐熱寿命を確保する上で重要である。   In particular, in the case of an insulating material for an electrical device, it is important for an insulating material using a resin that the heat decomposition temperature is higher than the glass transition point to ensure the heat resistant life of the insulating material.

一方、化学製品は石油などの化石資源を原料としていたが、近年、化石資源を焼却するのに伴い発生するCO量の増加に伴い、地球温暖化防止策が関心を集めるようになった。そのため地球温暖化防止の観点から、カーボンニュートラルの概念導入により、バイオマス由来プラスチックの需要が高まっている。 On the other hand, chemical products have been made from fossil resources such as petroleum. In recent years, with the increase in the amount of CO 2 generated by incineration of fossil resources, measures to prevent global warming have attracted attention. Therefore, from the viewpoint of preventing global warming, the demand for biomass-derived plastics is increasing by introducing the concept of carbon neutral.

これまでは化石資源を原料とするプラスチックのみであったが、OA関連部材、家電品部材や自動車部材など、高信頼性を要求される分野へもバイオマス由来プラスチックの適用が活発化している。   Until now, only plastics made from fossil resources have been used, but the application of biomass-derived plastics has become active in fields that require high reliability, such as OA-related members, household appliances members, and automobile members.

具体例としては、PLA(ポリ乳酸)、エステル化澱粉、PTT(Poly−Trimethylene Telephtalate)、PHA(PolyHydroxy Alkanoate)などの熱可塑性樹脂が挙げられる。これらは、サトウキビなどの食料が原料で、発酵させたモノマを原料とする樹脂等や、微生物生産樹脂等である。   Specific examples include thermoplastic resins such as PLA (polylactic acid), esterified starch, PTT (Poly-Trimethylene Telephthalate), and PHA (PolyHydroxy Alkanoate). These are, for example, resins made from food such as sugar cane and fermented monomers as raw materials, microbial production resins, and the like.

一方、熱硬化性樹脂の分野では、リグニンが注目されてきた。現在、市販されている、入手可能なリグニンは、製紙の過程で副産物として得られるリグニンスルホン酸である。しかし、このリグニンスルホン酸は、有機溶媒に殆ど不溶で、ほとんど軟化温度も有しないため、熱硬化性樹脂に適用するのは難しかった。このように、リグニン由来エポキシ樹脂組成物の高Tgと高Td5の両立は難しかった。   On the other hand, lignin has attracted attention in the field of thermosetting resins. Currently available lignin, which is commercially available, is lignin sulfonic acid obtained as a by-product in the papermaking process. However, since this lignin sulfonic acid is almost insoluble in an organic solvent and has almost no softening temperature, it was difficult to apply it to a thermosetting resin. Thus, coexistence of high Tg and high Td5 of the lignin-derived epoxy resin composition was difficult.

なお、リグニンを植物資源から製造する方法としてアルカリ蒸解法が知られているが、得られるリグニンは有機溶剤にほとんど溶解せず、現在の技術では実用が困難である。   An alkaline cooking method is known as a method for producing lignin from plant resources, but the obtained lignin is hardly dissolved in an organic solvent and is difficult to be practically used with the current technology.

特開2011−184645号公報JP2011-184645A 特開2010−254820号公報JP 2010-254820 A 特開2012−07143号公報JP 2012-07143 A

電子・電気機器にエポキシ樹脂を用いるには、熱的、電気的、機械的強度の信頼性が必要である。そこで、本発明者らは、天然リグニンに比べ、軟化温度を有し、且つ、有機溶媒に可溶な低分子リグニンを水蒸気爆砕法で得、これを用いて、Td5及びTgに優れたリグニン由来エポキシ樹脂硬化物を鋭意検討した。その結果、水蒸気爆砕法で得た低分子リグニンとエポキシ樹脂を反応させたリグニン由来エポキシ樹脂組成物の硬化物は、リグニンとエポキシ樹脂の配合比によって、Td5が大きく異なることを見出した。その理由を鋭意検討し、硬化物のTd5が低い原因はリグニン自体のTd5が低いことであった。その結果、リグニンを用いたエポキシ樹脂組成物の硬化物もTd5が低くならざるを得なかった。   In order to use epoxy resin for electronic and electrical equipment, reliability of thermal, electrical and mechanical strength is required. Therefore, the present inventors obtained a low molecular weight lignin having a softening temperature and soluble in an organic solvent by a steam explosion method as compared with natural lignin, and using this, the lignin derived from lignin excellent in Td5 and Tg. The epoxy resin hardened material was examined earnestly. As a result, it was found that the cured product of the lignin-derived epoxy resin composition obtained by reacting the low molecular weight lignin obtained by the steam explosion method with the epoxy resin has a significantly different Td5 depending on the blending ratio of the lignin and the epoxy resin. The reason was intensively studied, and the cause of the low Td5 of the cured product was the low Td5 of the lignin itself. As a result, the cured product of the epoxy resin composition using lignin also had to have a low Td5.

リグニンを用いた熱硬化性樹脂に関する公知例として、特許文献1〜3がある。特許文献1においては、バイオマスを分解して得られる植物由来ポリフェノール誘導体例えば、リグニン、エポキシ化植物油例えばエポキシ化亜麻仁油、石炭灰及びシランカップリング剤からなる絶縁性高分子材料組成物が開示されている。この組成物は、石油由来の原料に代えて、植物由来のエポキシ樹脂と、植物由来のポリフェノール誘導体を用い、且つ本来廃棄物である石炭灰を添加して環境負荷の低減を図るものである。なお、硬化促進剤として、イミダゾール、三級アミンなどが用いられている。硬化物のTgはシランカップリング剤無添加の時は55℃で、シランカップリング剤を0.4%添加したときでも78℃が最高である。また、Tdについては記載されていない。   As publicly known examples of thermosetting resins using lignin, there are Patent Documents 1 to 3. Patent Document 1 discloses an insulating polymer material composition comprising a plant-derived polyphenol derivative obtained by decomposing biomass, such as lignin, epoxidized vegetable oil such as epoxidized linseed oil, coal ash, and a silane coupling agent. Yes. This composition uses a plant-derived epoxy resin and a plant-derived polyphenol derivative in place of petroleum-derived raw materials, and adds coal ash, which is essentially waste, to reduce the environmental burden. In addition, imidazole, a tertiary amine, etc. are used as a hardening accelerator. The Tg of the cured product is 55 ° C. when no silane coupling agent is added, and 78 ° C. is the highest even when 0.4% of the silane coupling agent is added. Further, Td is not described.

特許文献2においては、植物由来ポリフェノール(リグニン)1〜75重量%と、エポキシ樹脂との半硬化状態の植物由来樹脂を開示する。硬化促進剤として、イミダゾール系、三級アミン、芳香族アミン0.01乃至5重量%添加している。この文献には硬化物のTgについては記載がある(実施例では130℃以下)が、Tdについては記載されていない。又、エポキシ基と反応するのはフェノール性水酸基であり、アルコール性水酸基とエポキシ基の反応は考慮されていない。   In patent document 2, 1-75 weight% of plant origin polyphenols (lignin) and the plant origin resin of the semi-hardened state of an epoxy resin are disclosed. As a curing accelerator, 0.01 to 5% by weight of an imidazole, a tertiary amine or an aromatic amine is added. This document describes the Tg of the cured product (in the examples, 130 ° C. or lower), but does not describe Td. Moreover, it is a phenolic hydroxyl group that reacts with the epoxy group, and the reaction between the alcoholic hydroxyl group and the epoxy group is not considered.

特許文献3においては、全アシル化リグニンを用いたエポキシ樹脂組成物が開示され、この組成物の特徴は、リグニンをアシル化して溶媒溶解性を付与することであるが、安価であることを期待されるリグニン由来材料が、化学処理によってコストが上昇するのは好ましくない。特許文献3には、硬化物のガラス転移点が60〜130℃で、1%重量減少の熱分解温度が約280℃であることが記載されている。   In Patent Document 3, an epoxy resin composition using fully acylated lignin is disclosed, and the feature of this composition is that lignin is acylated to impart solvent solubility, but is expected to be inexpensive. It is not preferable that the cost of the lignin-derived material is increased by chemical treatment. Patent Document 3 describes that the glass transition point of the cured product is 60 to 130 ° C, and the thermal decomposition temperature of 1% weight reduction is about 280 ° C.

従来、リグニン由来のエポキシ樹脂組成物のガラス転移点Tgは高いが、熱分解温度Td5が比較的低いと言う問題があった。その理由は、リグニンとエポキシ樹脂の架橋反応が不十分で、エポキシ樹脂による高い熱分解温度Td5を保持することが困難であったからである。   Conventionally, although the glass transition point Tg of the lignin-derived epoxy resin composition is high, there is a problem that the thermal decomposition temperature Td5 is relatively low. The reason is that the crosslinking reaction between lignin and the epoxy resin is insufficient, and it is difficult to maintain a high thermal decomposition temperature Td5 by the epoxy resin.

本発明の目的は、リグニン原料のコストを上昇させることなく、ガラス転移点Tgが高く、熱分解温度Td5が高い硬化物を与えるリグニン由来エポキシ樹脂組成物を提供することを目的とする。   An object of the present invention is to provide a lignin-derived epoxy resin composition that gives a cured product having a high glass transition point Tg and a high thermal decomposition temperature Td5 without increasing the cost of the lignin raw material.

本発明は、水蒸気爆砕による非修飾リグニンと、2官能以上のエポキシ樹脂と、該エポキシ樹脂の自己重合性触媒を含む組成物であって、前記リグニンとエポキシ樹脂の配合比が、前記リグニンの水酸基数/エポキシ樹脂のエポキシ基数が0.5から1.4未満であることを特徴とするリグニン由来エポキシ樹脂組成物に関する。   The present invention is a composition comprising an unmodified lignin by steam explosion, a bifunctional or higher functional epoxy resin, and a self-polymerizable catalyst of the epoxy resin, wherein the blending ratio of the lignin and the epoxy resin is a hydroxyl group of the lignin. The number / epoxy group number of the epoxy resin is from 0.5 to less than 1.4.

本発明は、水蒸気爆砕によって得たリグニン原料を溶剤で抽出して目的の分子量のリグニンを選別し、これを二官能以上のエポキシ樹脂及びエポキシ樹脂の自己重合性触媒と混合したもので、上記リグニンとエポキシ樹脂を任意の配合比で配合し、これを加熱・硬化または光硬化することにより、ガラス転移点Tg及び熱分解温度Td5がともに高い硬化物を得ることができる。   The present invention is to extract a lignin raw material obtained by steam explosion with a solvent to select a lignin having a desired molecular weight, and mix this with a bifunctional or higher epoxy resin and an epoxy resin self-polymerizable catalyst. And an epoxy resin are blended at an arbitrary blending ratio, and this is heated / cured or photocured to obtain a cured product having a high glass transition point Tg and a thermal decomposition temperature Td5.

本発明のリグニン由来エポキシ樹脂組成物が高いガラス転移点Tgと熱分解温度
Td5を示す理由は、上記組成物を加熱または光照射の初期の段階ではリグニン分子よりも動きやすいエポキシ樹脂の一部が上記自己重合性触媒の存在下において自己重合を開始し、その後リグニンの水酸基とエポキシ樹脂のエポキシ基の重合反応(架橋反応)が進行し、完全に硬化した後は、自己重合によるエポキシ樹脂部分とリグニンとエポキシ樹脂が反応した架橋部分が共存する硬化物が形成されると考えられる。その結果、自己重合エポキシ樹脂の部分が高い熱分解温度Td5に寄与し、リグニンとエポキシ樹脂の架橋構造が高いガラス転移点Tgに寄与すると考えられる。
The reason why the lignin-derived epoxy resin composition of the present invention exhibits a high glass transition point Tg and a thermal decomposition temperature Td5 is that a part of the epoxy resin that is more mobile than the lignin molecule is heated at the initial stage of heating or light irradiation of the composition. Self-polymerization is initiated in the presence of the self-polymerizable catalyst, and then the polymerization reaction (cross-linking reaction) of the lignin hydroxyl group and the epoxy group of the epoxy resin proceeds and is completely cured. It is thought that the hardened | cured material in which the crosslinked part which the lignin and the epoxy resin reacted coexist is formed. As a result, it is considered that the self-polymerized epoxy resin portion contributes to a high thermal decomposition temperature Td5, and the crosslinked structure of lignin and epoxy resin contributes to a high glass transition point Tg.

本発明によれば、化石資源使用量の削減など、環境負荷低減化に有効であり、Tg及びTd5の高い硬化物を与えるリグニン由来エポキシ樹脂組成物を得ることができる。そのため、それを用いた耐熱性の各種製品を提供することができる。   According to the present invention, it is possible to obtain a lignin-derived epoxy resin composition that is effective in reducing the environmental load, such as reducing the amount of fossil resources used, and gives a cured product having a high Tg and Td5. Therefore, various heat-resistant products using the same can be provided.

天燃リグニンから水蒸気爆砕によって得られる低分子リグニンの代表的推定構造を示す模式図。The schematic diagram which shows the typical presumed structure of the low molecular weight lignin obtained from natural lignin by steam explosion. 本発明によるリグニン由来エポキシ樹脂の硬化物の熱重量減少率曲線。The thermogravimetry decreasing rate curve of the hardened | cured material of the lignin origin epoxy resin by this invention. 本発明が適用されるプリント板の構成を示す断面図。Sectional drawing which shows the structure of the printed board to which this invention is applied. 本発明が適用されるモータの構成を示す斜視図。The perspective view which shows the structure of the motor to which this invention is applied.

以下、本発明を詳細に説明する前に、本明細書で使用する主要な技術用語の定義を示す。
[1]水蒸気爆砕リグニン:木質バイオマスに水蒸気を圧入した後、瞬時に圧力を開放して木質バイオマスを水蒸気爆砕したものであり、更に、セルロース成分、ヘミセルロース成分を除去した後、アセトン、アルコールなどの有機溶媒で抽出したものである。本発明で用いる水蒸気爆砕リグニンは化学修飾していないもので、水酸基当量の測定から末端は水酸基が多いと考える。その理由は、水蒸気爆砕によるリグニンは、高圧の加水分解処理のため、セルロース成分、ヘミセルロース成分を除いた後の分子量が20000以下で、末端が水酸基であり、通常の溶媒に溶解する。従って、リグニンのコスト上昇を招く処理、例えば化学修飾処理が不要で、原料のコスト上昇要因を避けることができる。
Before describing the present invention in detail, definitions of main technical terms used in the present specification will be given below.
[1] Steam-explosive lignin: Water pressure is injected into woody biomass, then the pressure is released instantly and the woody biomass is steam-exploded, and after removing cellulose and hemicellulose components, acetone, alcohol, etc. Extracted with an organic solvent. The steam-explosive lignin used in the present invention is not chemically modified, and the terminal is considered to have many hydroxyl groups from the measurement of hydroxyl equivalent. The reason for this is that lignin by steam explosion has a molecular weight of 20000 or less after removal of the cellulose component and hemicellulose component due to high-pressure hydrolysis, and has a hydroxyl group at the end and dissolves in an ordinary solvent. Therefore, a process that increases the cost of lignin, for example, a chemical modification process is not required, and the cost increase factor of the raw material can be avoided.

なお、以下において、本明細書で単に「リグニン」と表記することが有るが、これは水蒸気爆砕により得られた非化学修飾のリグニンを意味する。   In the following description, the term “lignin” may be used in the present specification, which means non-chemically modified lignin obtained by steam explosion.

[2]Td5:窒素中、昇温速度が10℃/分での熱重量測定で、重量減少率5%のときの温度である。図2に示す熱重量減少率曲線から求められる。Seiko Instruments(株)、TG/DTA6200型を用い、エポキシ樹脂硬化物の熱重量減少率を測定した。窒素雰囲気(200ml/分)下で測定した。測定温度は室温〜700℃である。本明細書では熱分解開始温度をTd5で評価した。   [2] Td5: Temperature at a weight loss rate of 5% as measured by thermogravimetry at a heating rate of 10 ° C./min in nitrogen. It is calculated | required from the thermogravimetry decreasing rate curve shown in FIG. Seiko Instruments Co., Ltd., TG / DTA6200 type was used to measure the thermal weight loss rate of the cured epoxy resin. The measurement was performed under a nitrogen atmosphere (200 ml / min). The measurement temperature is room temperature to 700 ° C. In this specification, the thermal decomposition start temperature was evaluated by Td5.

[3]Tg:アイティー計測制御(株)、DVA−200を用い、5℃/分の昇温速度で引張モードによりエポキシ樹脂硬化物フィルムのガラス転移点(Tg)を求めた。貯蔵弾性率(Er)、損失弾性率(Ei)を測定し、その比(Er/Ei=tanδ)を求め、tanδのピーク温度をTgとした。測定温度は空気雰囲気下の室温〜300℃である。   [3] Tg: Using IT Measurement Control Co., Ltd., DVA-200, the glass transition point (Tg) of the cured epoxy resin film was determined by a tensile mode at a heating rate of 5 ° C./min. The storage elastic modulus (Er) and the loss elastic modulus (Ei) were measured to determine the ratio (Er / Ei = tan δ), and the peak temperature of tan δ was defined as Tg. The measurement temperature is room temperature to 300 ° C. in an air atmosphere.

[4]自己重合:エポキシ樹脂が重合触媒の作用で、エポキシ樹脂同士が重合すること。この場合、触媒はエポキシ樹脂の硬化剤としても機能する。リグニンのような多価フェノールなどの重合成分が存在しても、低温では特定の重合触媒の存在下では、リグニン分子よりも動きやすいエポキシ樹脂分子は、まずエポキシ樹脂同士の重合反応が進み、その後リグニンとエポキシ樹脂の反応が進む。この場合、重合触媒は、リグニンによるエポキシ樹脂の架橋反応の促進剤としても機能する。   [4] Self-polymerization: The epoxy resins are polymerized by the action of the polymerization catalyst. In this case, the catalyst also functions as a curing agent for the epoxy resin. Even in the presence of polymerization components such as polyphenols such as lignin, epoxy resin molecules that move more easily than lignin molecules in the presence of a specific polymerization catalyst at low temperatures, the polymerization reaction between the epoxy resins proceeds first. Reaction of lignin and epoxy resin proceeds. In this case, the polymerization catalyst also functions as an accelerator for the crosslinking reaction of the epoxy resin by lignin.

[5]自己重合触媒:エポキシ樹脂とリグニンとの架橋反応の重合触媒であると同時にエポキシ樹脂の自己重合のための触媒であり、具体的には、イミダゾール、第3級アミンなどのルイス塩基、ルイス酸などが有る。   [5] Self-polymerization catalyst: a catalyst for the crosslinking reaction between epoxy resin and lignin and at the same time a catalyst for self-polymerization of epoxy resin, specifically, Lewis bases such as imidazole and tertiary amine, There are Lewis acids.

本発明のリグニン由来エポキシ樹脂組成物の硬化反応初期においては前記触媒がリグニンとエポキシ樹脂との反応よりも前記エポキシ樹脂自身の反応が起こりやすい状態にある。これはエポキシ樹脂と重合触媒との反応であるが、エポキシ樹脂の自己重合反応と定義する。リグニン由来エポキシ樹脂組成物の硬化反応初期において前記触媒は、リグニン成分とエポキシ樹脂の架橋反応の触媒作用を示さない。リグニン由来エポキシ樹脂組成物の硬化反応初期においては、例えば低い温度ではエポキシ樹脂分子がリグニン分子よりも運動しやすく、前記触媒と反応することができる。エポキシ樹脂の自己重合反応に続いて、温度が上昇して分子が動きやすくなったリグニンがエポキシ樹脂と架橋反応する。なお、エポキシ樹脂の自己重合反応が多すぎると、硬化物のTgが低くなる。触媒量はリグニン由来エポキシ樹脂組成物重量の0.01〜5重量%、特に好ましくは0.1〜2.5重量%に調整する。   In the initial stage of the curing reaction of the lignin-derived epoxy resin composition of the present invention, the catalyst is in a state where the reaction of the epoxy resin is more likely to occur than the reaction of lignin and the epoxy resin. This is a reaction between an epoxy resin and a polymerization catalyst, but is defined as a self-polymerization reaction of the epoxy resin. In the initial stage of the curing reaction of the lignin-derived epoxy resin composition, the catalyst does not exhibit a catalytic action for the crosslinking reaction between the lignin component and the epoxy resin. In the initial stage of the curing reaction of the lignin-derived epoxy resin composition, for example, at a low temperature, the epoxy resin molecules move more easily than the lignin molecules, and can react with the catalyst. Following the self-polymerization reaction of the epoxy resin, the lignin, whose temperature has risen and the molecules have moved easily, undergoes a crosslinking reaction with the epoxy resin. In addition, when there are too many self-polymerization reactions of an epoxy resin, Tg of hardened | cured material will become low. The catalyst amount is adjusted to 0.01 to 5% by weight, particularly preferably 0.1 to 2.5% by weight, based on the weight of the lignin-derived epoxy resin composition.

一方、エポキシ樹脂の自己重合反応に続いて、リグニンとエポキシ樹脂の架橋反応が起こる。ここにおいて前記触媒は、リグニンとエポキシ樹脂の架橋反応の触媒として機能し、結果として硬化物は高いガラス転移点と高いTd5を持つものとなる。本発明による硬化物のガラス転移点Tgは、160℃以上で、Td5は330℃以上である。   On the other hand, following the self-polymerization reaction of the epoxy resin, a crosslinking reaction between lignin and the epoxy resin occurs. Here, the catalyst functions as a catalyst for a crosslinking reaction between lignin and an epoxy resin, and as a result, the cured product has a high glass transition point and a high Td5. The glass transition point Tg of the hardened | cured material by this invention is 160 degreeC or more, and Td5 is 330 degreeC or more.

以下、本発明の実施の形態を以下に説明する。   Embodiments of the present invention will be described below.

(1)リグニン由来エポキシ樹脂組成物を熱、又は、光によって硬化反応させる。   (1) A lignin-derived epoxy resin composition is cured by heat or light.

(2)リグニンが、フェノール性水酸基とアルコー性水酸基を含む物である。これにより、リグニンがエポキシ樹脂と容易に反応する。   (2) The lignin contains a phenolic hydroxyl group and an alcoholic hydroxyl group. Thereby, lignin reacts easily with an epoxy resin.

(3)前記リグニンが、木質バイオマスに水蒸気を圧入した後、瞬時に圧力を開放して木質バイオマスを水蒸気爆砕し、セルロース成分、ヘミセルロース成分を除去した後、有機溶媒で抽出したものが好ましい。   (3) It is preferable that the lignin is extracted with an organic solvent after water pressure is injected into the woody biomass, and then the pressure is instantaneously released to steam-crack the woody biomass to remove the cellulose component and hemicellulose component.

(4)前記リグニンの重量平均分子量は300〜20000で、末端は水酸基であることが好ましい。このリグニンは一般の有機溶剤によく溶解する。   (4) The lignin preferably has a weight average molecular weight of 300 to 20000 and a terminal hydroxyl group. This lignin dissolves well in common organic solvents.

(5)前記リグニンの水酸基当量が80〜600g/eqであることが好ましい。   (5) It is preferable that the hydroxyl equivalent of the said lignin is 80-600 g / eq.

(6)上記のリグニン由来エポキシ樹脂組成物と、この組成物を溶解するための有機溶媒を含むワニスであって、そのリグニン由来エポキシ樹脂組成物の濃度がワニスの10〜90重量%である。   (6) A varnish containing the above lignin-derived epoxy resin composition and an organic solvent for dissolving the composition, wherein the concentration of the lignin-derived epoxy resin composition is 10 to 90% by weight of the varnish.

(7)前記溶媒が、アルコール類、ケトン類、エーテル類、芳香族類、脂肪族類から選択される一種類を含む。   (7) The solvent includes one selected from alcohols, ketones, ethers, aromatics, and aliphatics.

(8)上記ワニスをガラス織布または不織布等の繊維状基材に含浸・乾燥してプリプレグを作製することができる。また、このプリプレグを用いてプリント基板、電子機器、等を作成することができる。   (8) A prepreg can be produced by impregnating and drying the varnish into a fibrous base material such as a glass woven fabric or a non-woven fabric. Moreover, a printed circuit board, an electronic device, etc. can be created using this prepreg.

(9)上記リグニン由来エポキシ樹脂組成物に各種フィラーを配合して成形材料を製造することができ、この成形材料を用いて電子機器、モータの固定子、回転子を製作することができる。   (9) Various fillers can be blended with the lignin-derived epoxy resin composition to produce a molding material, and electronic devices, motor stators and rotors can be produced using the molding material.

本発明のリグニン由来エポキシ樹脂組成物は、エポキシ樹脂と、該エポキシ樹脂の架橋剤としてのリグニン及び重合触媒を基本成分とする。その配合成分はリグニンの水酸基数(B)/エポキシ基数(A)で表現すれば、B/Aが0.5≦B/A<1.4となるように配合する。この配合比のときはリグニン由来エポキシ樹脂組成物の硬化物はTd5が高く、且つガラス転移点Tgが比較的高い。   The lignin-derived epoxy resin composition of the present invention comprises an epoxy resin, lignin as a crosslinking agent for the epoxy resin, and a polymerization catalyst as basic components. The blending component is blended so that B / A is 0.5 ≦ B / A <1.4 when expressed by the number of hydroxyl groups (B) of lignin / the number of epoxy groups (A). At this blending ratio, the cured product of the lignin-derived epoxy resin composition has a high Td5 and a relatively high glass transition point Tg.

0.5>B/Aではエポキシ樹脂成分が多いため、エポキシ樹脂の自己重合の割合が多く、エポキシ樹脂硬化物の特徴である基材との接着性が低下する。また、ガラス転移点Tgが比較的低くなる傾向がある。   When 0.5> B / A, since the epoxy resin component is large, the proportion of self-polymerization of the epoxy resin is large, and the adhesiveness with the base material, which is a characteristic of the cured epoxy resin, is lowered. Further, the glass transition point Tg tends to be relatively low.

B/A≧1.0ではリグニン由来エポキシ樹脂組成物の硬化物のTgは高いがTd5が低下する傾向にあるが、用途によっては実用化できる。しかし、B/A>1.4では硬化物のTd5が大きく低下する傾向が有る。触媒量はリグニン由来エポキシ樹脂組成物重量の0.01〜5重量%、特に0.1〜2.5重量%が好ましい。   When B / A ≧ 1.0, the Tg of the cured product of the lignin-derived epoxy resin composition is high but Td5 tends to decrease, but it can be put to practical use depending on the application. However, when B / A> 1.4, Td5 of the cured product tends to be greatly reduced. The catalyst amount is preferably 0.01 to 5% by weight, particularly preferably 0.1 to 2.5% by weight, based on the weight of the lignin-derived epoxy resin composition.

本発明のリグニン由来エポキシ樹脂組成物の硬化物のガラス転移点は160℃以上であって、加熱分解温度Td5が330℃以上である。   The glass transition point of the cured product of the lignin-derived epoxy resin composition of the present invention is 160 ° C. or higher, and the thermal decomposition temperature Td5 is 330 ° C. or higher.

水蒸気爆砕リグニンは、木質バイオマスを水蒸気爆砕したものが好ましく、セルロース成分、ヘミセルロース成分を除去した後、有機溶媒で抽出したものであり、フェノール性水酸基とアルコー性水酸基等など硬化剤と重合可能な基を含み、重量平均分子量300〜20000の範囲で、一種類以上の有機溶媒に可溶なものである。   The steam-explosive lignin is preferably one obtained by steam-exploding woody biomass, which is extracted with an organic solvent after removing the cellulose component and hemicellulose component, and is a group polymerizable with a curing agent such as a phenolic hydroxyl group and an alcoholic hydroxyl group. And is soluble in one or more organic solvents in a weight average molecular weight range of 300-20000.

リグニンの重量平均分子量は、ポリスチレン換算値において,300〜20000が好ましく、より好ましくは400〜16000、特に好ましくは500〜10000である。リグニンの重量平均分子量が20000を超えると、有機溶媒への溶解性が急激に低下する。重量平均分子量300未満では、リグニンの構造を生かした樹脂硬化物のTgやTd5が低下する。   The weight average molecular weight of lignin is preferably 300 to 20000, more preferably 400 to 16000, and particularly preferably 500 to 10,000 in terms of polystyrene. When the weight average molecular weight of lignin exceeds 20000, the solubility in an organic solvent is rapidly lowered. If the weight average molecular weight is less than 300, Tg and Td5 of the cured resin utilizing the structure of lignin is lowered.

また、前記リグニン由来エポキシ樹脂組成物を硬化させて得られる硬化物を得るため、前記エポキシ樹脂が二官能エポキシ樹脂であり、Tgが170℃以上、好ましくは、190℃以上であって、Td5が340℃以上、好ましくは、350℃以上であることを特徴とするリグニン由来エポキシ樹脂組成物の硬化物が好ましい。   In order to obtain a cured product obtained by curing the lignin-derived epoxy resin composition, the epoxy resin is a bifunctional epoxy resin, Tg is 170 ° C. or higher, preferably 190 ° C. or higher, and Td5 is A cured product of the lignin-derived epoxy resin composition characterized by being 340 ° C. or higher, preferably 350 ° C. or higher is preferable.

前記リグニン由来エポキシ樹脂組成物を硬化させて得られる硬化物の前記エポキシ樹脂が三官能以上のエポキシ樹脂であり、ガラス転移点が200℃以上であって、
Td5が340℃以上であることが好ましい。
The epoxy resin of the cured product obtained by curing the lignin-derived epoxy resin composition is a trifunctional or higher functional epoxy resin, and has a glass transition point of 200 ° C. or higher,
Td5 is preferably 340 ° C. or higher.

リグニンの重量平均分子量はゲル浸透クロマトグラフィー(GPC: Gel Permeation Chromatography)により測定し、ポリスチレン換算値で示した。   The weight average molecular weight of lignin was measured by gel permeation chromatography (GPC: Gel Permeation Chromatography) and expressed as a polystyrene conversion value.

リグニンの基本骨格は、一般にヒドロキシフェニルプロパン単位を基本単位とする架橋構造の高分子である。リグニンの原料に制限はなく、スギ、マツ、ヒノキ、ブナ、タケ、バガスなどが使用できる。   The basic skeleton of lignin is generally a crosslinked polymer having a hydroxyphenylpropane unit as a basic unit. There is no restriction | limiting in the raw material of lignin, A cedar, a pine, a cypress, a beech, a bamboo, bagasse etc. can be used.

水蒸気爆砕法は一般に、木質バイオマスを圧力容器に入れ、圧力2〜5.5MPaの水蒸気を用い、蒸煮時間は1〜25分が好ましい。爆砕に用いる水蒸気源として、水が好ましい。又、フェノール類等やアルコール類、グリコール類など水酸基を持つ化合物も水と混合して用いることができる。しかし、水以外を用いた場合、得られるリグニンの末端の水酸基がマスクされる可能性が高いと考える。これはエポキシ樹脂との反応性が損なわれるので好ましくない。よって、リグニンの末端水酸基がマスクされないリグニンの製造方法を選択するのが好ましい。   In the steam explosion method, generally, woody biomass is put in a pressure vessel, steam having a pressure of 2 to 5.5 MPa is used, and the cooking time is preferably 1 to 25 minutes. Water is preferable as the water vapor source used for the explosion. In addition, compounds having a hydroxyl group such as phenols, alcohols, glycols and the like can also be used by mixing with water. However, when other than water is used, it is considered that the terminal hydroxyl group of the obtained lignin is likely to be masked. This is not preferable because reactivity with the epoxy resin is impaired. Therefore, it is preferable to select a method for producing lignin in which the terminal hydroxyl group of lignin is not masked.

この水蒸気破砕物から低分子リグニンを取得するには、水洗処理によりセルロース成分やヘミセルロース成分を除去した後、有機溶媒に溶解させることにより低分子リグニンを抽出する。溶媒を除いて、乾燥した低分子リグニンを得る。   In order to obtain low molecular weight lignin from the crushed water vapor, the low molecular weight lignin is extracted by removing the cellulose component and hemicellulose component by washing with water and then dissolving in an organic solvent. Removal of the solvent gives a dry low molecular weight lignin.

リグニンの抽出に用いる有機溶媒は、トルエン、ヘキサン、シクロヘキサノン、ジエチルエーテル、エチルメチルエーテル、メチル−iso−ブチルケトン、テトラヒドロフラン、テトラヒドロピラン、2−メトキシエタノール、2−ブタノン、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、ter−ブタノール、酢酸エチル等である。又、これらの中で水に可溶な溶媒は水との混合溶媒も用いることができる。   Organic solvents used for extraction of lignin are toluene, hexane, cyclohexanone, diethyl ether, ethyl methyl ether, methyl-iso-butyl ketone, tetrahydrofuran, tetrahydropyran, 2-methoxyethanol, 2-butanone, methanol, ethanol, n-propanol, iso-propanol, n-butanol, ter-butanol, ethyl acetate and the like. Of these, a water-soluble solvent may be a mixed solvent with water.

本発明で用いるエポキシ樹脂としては、ビスフェノールA型エポキシ、ビスフェノールS型エポキシ、ビスフェノールF型エポキシ、ビスフェノールAD型エポキシ、フェノールノボラック型エポキシ、ビフェニル型エポキシ、クレゾールノボラック型エポキシ、ジシクロペンタジエン型エポキシ、ナフタレン型エポキシ等がある。又、エポキシ化ひまし油やエポキシ化大豆油なども用いることができる。   The epoxy resin used in the present invention includes bisphenol A type epoxy, bisphenol S type epoxy, bisphenol F type epoxy, bisphenol AD type epoxy, phenol novolac type epoxy, biphenyl type epoxy, cresol novolac type epoxy, dicyclopentadiene type epoxy, naphthalene. There are mold epoxies. Epoxidized castor oil and epoxidized soybean oil can also be used.

二官能のエポキシ樹脂分子と三官能以上のエポキシ樹脂分子とでは、リグニン―エポキシ樹脂―自己重合性触媒を含む組成物の中で異なった挙動を示す。三官能以上のエポキシ樹脂分子は組成物中で二官能エポキシ樹脂分子より立体障害等により反応しにくく、そのため、三官能以上のエポキシ樹脂が自己重合する割合が若干低くなり、Td5が二官能エポキシ樹脂を用いた時よりもやや低くなる傾向がある。   Bifunctional epoxy resin molecules and trifunctional or higher functional epoxy resin molecules behave differently in compositions containing lignin-epoxy resin-self-polymerizable catalysts. Trifunctional and higher functional epoxy resin molecules are less reactive in the composition than bifunctional epoxy resin molecules due to steric hindrance, etc., so the proportion of trifunctional and higher functional epoxy resins is slightly lower, and Td5 is a bifunctional epoxy resin. There is a tendency to be slightly lower than when using.

又、各種リグニンの水酸基をエピクロルヒドリンでエポキシ化したエポキシ化リグニン等も用いることができる(特開2008−326634号公報)。   In addition, epoxidized lignin obtained by epoxidizing hydroxyl groups of various lignins with epichlorohydrin can be used (Japanese Patent Laid-Open No. 2008-326634).

本発明のエポキシ樹脂の自己重合性触媒として、アニオン重合触媒とカチオン重合触媒がある。前者は3級アミンやイミダゾール類などのルイス塩基、後者はルイス酸、光開始触媒がある。   Examples of the self-polymerizable catalyst for the epoxy resin of the present invention include an anionic polymerization catalyst and a cationic polymerization catalyst. The former includes Lewis bases such as tertiary amines and imidazoles, and the latter includes Lewis acids and photoinitiating catalysts.

具体的には3級アミンとして、トリス(ジメチルアミノメチル)フェノール、ベンジルメチルアミン、1,8−アザビシクロ[5.4.0]−ウンデセン−7等がある。   Specific examples of the tertiary amine include tris (dimethylaminomethyl) phenol, benzylmethylamine, and 1,8-azabicyclo [5.4.0] -undecene-7.

イミダゾール類としては、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−フェニルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,3−ジヒドロ−1H−ピロロ[1,2−a]ベンズイミダゾール、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライド、2−フェニルイミダゾリン、2−メチルイミダゾリン、2?4−ジアミノ−6−ビニル−s−トリアジン、2?4−ジアミノ−6−メタクリロイルオキシエチル−s−トリアジンがある。   Examples of imidazoles include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 2 -Phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6- [2'-methylimidazolyl] -(1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [ 2'-ethyl-4'-methylimidazolyl- (1 ')]-ethyl-s-triazine, , 4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4-methyl-5-hydroxy Methylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2-phenylimidazoline, 2-methylimidazoline, 2-4 -Diamino-6-vinyl-s-triazine, 2,4-diamino-6-methacryloyloxyethyl-s-triazine.

またエポキシ−イミダゾールアダクト、エポキシ−フェノール−ホウ酸エステル配合物等がある。   There are also epoxy-imidazole adducts, epoxy-phenol-borate ester blends, and the like.

ルイス酸としては三フッ化ホウ素モノエチル錯塩、三フッ化ホウ素モノメチルアミン等がある。   Examples of Lewis acids include boron trifluoride monoethyl complex salt and boron trifluoride monomethylamine.

光開始剤としてはトリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムホスフェート、p−(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、p−(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロホスフェート、4−クロロフェニルジフェニルスルホニウムヘキサフルオロホスフェート、4−クロロフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、ビス[4−(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロフォスフェート、ビス[4−(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−Fe−ヘキサフルオロホスフェート、ジアリルヨードニウムヘキサフルオロアンチモネート等がある。   Photoinitiators include triphenylsulfonium hexafluoroantimonate, triphenylsulfonium phosphate, p- (phenylthio) phenyldiphenylsulfonium hexafluoroantimonate, p- (phenylthio) phenyldiphenylsulfonium hexafluorophosphate, 4-chlorophenyldiphenylsulfonium hexafluoro. Phosphate, 4-chlorophenyldiphenylsulfonium hexafluoroantimonate, bis [4- (diphenylsulfonio) phenyl] sulfide bishexafluorophosphate, bis [4- (diphenylsulfonio) phenyl] sulfide bishexafluoroantimonate, (2,4-Cyclopentadien-1-yl) [(1-methylethyl) benzene] -Fe-he Fluoro-phosphate, there is a diallyl iodonium hexafluoroantimonate and the like.

本発明のリグニン由来エポキシ樹脂組成物は、成形材用としても用いることができる。そのために、目的に応じて各種有機・無機フィラー,難燃剤,カップリング剤,イオントラッパー,熱安定剤などを配合できる。無機フィラーとしては、熱膨張係数低減のためには溶融シリカなどの低熱膨張性フィラーを用いることが好ましい。また、高熱伝導性の達成のためには窒化ホウ素、窒化アルミニウムまたはアルミナが好ましい。フィラーの粒子形状は、微細間隙への流動性や浸透性の制御性の観点から球状または略球状である物が好ましい。また、その平均粒径は0.1から25μmが好ましい。0.1μm未満では樹脂組成物にチクソトロピック性が付与され流動性が劣る。   The lignin-derived epoxy resin composition of the present invention can also be used for molding materials. Therefore, various organic / inorganic fillers, flame retardants, coupling agents, ion trappers, heat stabilizers and the like can be blended according to the purpose. As the inorganic filler, it is preferable to use a low thermal expansion filler such as fused silica in order to reduce the thermal expansion coefficient. In order to achieve high thermal conductivity, boron nitride, aluminum nitride or alumina is preferred. The filler particle shape is preferably spherical or substantially spherical from the viewpoint of flowability into fine gaps and controllability of permeability. The average particle size is preferably 0.1 to 25 μm. If it is less than 0.1 μm, thixotropic property is imparted to the resin composition and the fluidity is inferior.

一方、平均粒径25μm以上を超えるとフィラーの沈降が起きやすい。無機充填材の配合割合はエポキシ樹脂組成物に対して0〜95重量%の範囲で調整可能である。特に30〜85重量%の範囲が好ましく、35〜80重量%が更に好ましい。30重量%未満では、フィラーの添加による熱膨張係数の低減効果などが小さい傾向にあるが、0重量%の場合でも、半導体の素子形状や大きさによって実用上十分な信頼性を確保できる場合もある。一方、フィラーの配合量が95重量%を超えると、エポキシ樹脂組成物が高粘度化して、封入時の流動性が低下する傾向にある。   On the other hand, if the average particle diameter exceeds 25 μm, the filler tends to settle. The blending ratio of the inorganic filler can be adjusted in the range of 0 to 95% by weight with respect to the epoxy resin composition. The range of 30 to 85% by weight is particularly preferable, and 35 to 80% by weight is more preferable. If it is less than 30% by weight, the effect of reducing the coefficient of thermal expansion due to the addition of filler tends to be small, but even in the case of 0% by weight, there may be cases where sufficient practical reliability can be secured depending on the shape and size of the semiconductor element. is there. On the other hand, when the blending amount of the filler exceeds 95% by weight, the epoxy resin composition has a high viscosity, and the fluidity at the time of encapsulation tends to decrease.

本発明のリグニン由来エポキシ樹脂組成物は溶媒に溶解させることができる。そこで、本発明のリグニン由来エポキシ樹脂組成物を溶媒に溶解させ、ワニスとして使用してもよい。本発明のリグニン由来のエポキシ樹脂組成物ワニスをガラスクロスに含浸・乾燥させて、プリプレグを作成し、これを複数枚銅箔とともに積層・加圧・加熱接着し、銅張積層板の作製をすることができる。ワニスを作製するための溶媒として、トルエン,キシレン,ベンゼン,メタノール,メチルエチルケトン,フェノール,メチルイソブチルケトン,N−メチルピロリドン,ジメチルホルムアミド,シクロヘキサノン、メチルセロソルブ(エチレングリコールモノメチルエーテル),酢酸エチル,酢酸メチル,テトラヒドロフラン、イソプロパノール,n−ブタノール,tert−ブタノールなどがある。   The lignin-derived epoxy resin composition of the present invention can be dissolved in a solvent. Therefore, the lignin-derived epoxy resin composition of the present invention may be dissolved in a solvent and used as a varnish. The lignin-derived epoxy resin composition varnish of the present invention is impregnated and dried in a glass cloth to prepare a prepreg, which is laminated, pressed and heated together with a plurality of copper foils to produce a copper-clad laminate. be able to. Solvents for producing varnish include toluene, xylene, benzene, methanol, methyl ethyl ketone, phenol, methyl isobutyl ketone, N-methylpyrrolidone, dimethylformamide, cyclohexanone, methyl cellosolve (ethylene glycol monomethyl ether), ethyl acetate, methyl acetate, There are tetrahydrofuran, isopropanol, n-butanol, tert-butanol and the like.

ワニスは20〜80重量%の溶媒と、80〜20重量%のリグニン由来エポキシ樹脂組成物(エポキシ樹脂の自己重合性触媒を含む)を必須成分とし、その他硬化剤、カップリング剤などの混合物よりなる。   The varnish contains 20 to 80% by weight of a solvent and 80 to 20% by weight of a lignin-derived epoxy resin composition (including a self-polymerizable catalyst for epoxy resin) as essential components, and other mixtures such as curing agents and coupling agents. Become.

本発明のリグニン由来エポキシ樹脂組成物に目的に応じて難燃剤を混合してもよい。難燃剤としては、赤燐,燐酸エステル,メラミン,メラミン誘導体,トリアジン環を有する化合物,シアヌル酸誘導体,酸化亜鉛,酸化鉄,酸化モリブデン、水酸化マグネシウム、水酸化アルミニウムなどが挙げられ、これらを単独または二種類以上組み合わせて配合することができる。   A flame retardant may be mixed in the lignin-derived epoxy resin composition of the present invention according to the purpose. Examples of flame retardants include red phosphorus, phosphate esters, melamine, melamine derivatives, compounds having a triazine ring, cyanuric acid derivatives, zinc oxide, iron oxide, molybdenum oxide, magnesium hydroxide, and aluminum hydroxide. Or it can mix | blend in combination of 2 or more types.

本発明エポキシ樹脂組成物の他の用途としては、前記プリプレグを用いて、プリント配線板,回転電機などの各種コイル,静止誘導電器,塗料や、絶縁材・封止材として用いた電子機器などがある。本発明によれば、各種電気機器の絶縁材、半導体のモールド材、絶縁被覆などに用いるには樹脂組成物が高いガラス転移点Tgと高い熱分解温度
Td5を有する硬化物を生成することが可能である。
Other uses of the epoxy resin composition of the present invention include the aforementioned prepreg, various coils such as printed wiring boards and rotating electric machines, static induction electric appliances, paints, and electronic devices used as insulating materials and sealing materials. is there. According to the present invention, it is possible to produce a cured product having a high glass transition point Tg and a high thermal decomposition temperature Td5 in which the resin composition is used for insulating materials for various electric devices, semiconductor molding materials, insulating coatings, and the like. It is.

(1)供試材料
以下に、本発明で用いた樹脂、その他を示す。以後、材料は商品名又は略号で示す。
(1) Test materials The resins used in the present invention and others are shown below. Hereinafter, materials are indicated by trade names or abbreviations.

1−1;低分子リグニン
水蒸気爆砕装置の圧力容器(容量:2L)に原料に杉材を入れ、圧力2.5MPa、蒸煮時間10分後に水蒸気爆砕を行った。爆砕物の100倍量の水で爆砕物を12時間洗浄した。爆砕物を減圧乾燥後、10倍量のメタノールを用いて低分子リグニンを抽出した。抽出液からメタノールを減圧蒸留で除き、乾燥した低分子杉リグニンを得た。得られたリグニンの重量平均分子量は1200、水酸基当量は105g/eqである。
1-1: Low molecular weight lignin The cedar material was put into a raw material in a pressure vessel (capacity: 2 L) of a steam explosion apparatus, and steam explosion was performed after a pressure of 2.5 MPa and a steaming time of 10 minutes. The explosion was washed with 100 times the amount of the explosion for 12 hours. The low-molecular-weight lignin was extracted using 10 times the amount of methanol after drying the crushed material under reduced pressure. Methanol was removed from the extract by vacuum distillation to obtain a dried low molecular weight cedar lignin. The obtained lignin has a weight average molecular weight of 1200 and a hydroxyl group equivalent of 105 g / eq.

同様に、原料に竹材を用いて圧力3.6MPa、蒸煮時間5分の条件で水蒸気爆砕を行い、爆砕物を水洗後、アセトンで抽出した低分子リグニンは、重量平均分子量が2600、水酸基当量は130g/eqである。   Similarly, low molecular weight lignin obtained by performing steam explosion using bamboo as a raw material under conditions of a pressure of 3.6 MPa and a steaming time of 5 minutes, washing the explosion with water and then extracting with acetone, has a weight average molecular weight of 2600 and a hydroxyl group equivalent is 130 g / eq.

これらはいずれも、メタノール、エタノール、n−プロパノール、2−ブタノン、2−メトキシプロパノール、テトラヒドロフラン、シクロヘキサノン、ジエチルエーテル、エチルメチルエーテル、メチル−iso−ブチルケトンに溶解した。   All of these were dissolved in methanol, ethanol, n-propanol, 2-butanone, 2-methoxypropanol, tetrahydrofuran, cyclohexanone, diethyl ether, ethyl methyl ether, and methyl-iso-butyl ketone.

1−2;エポキシ樹脂
エポキシ樹脂は、市販材で二官能のエポキシ樹脂であるビスフェノール型のjER828(三菱化学製、エポキシ当量195e/eq、液状)、及び三官能以上のクレゾールノボラック型のエポキシ樹脂ESCN190(住友化学製、ESCN190、エポキシ当量195e/eq、mp=65℃)とを用いた。エポキシ樹脂の硬化剤として、杉材と竹材を原料とするリグニンを用いた。
1-2; Epoxy Resin The epoxy resin is a commercially available bifunctional epoxy resin, bisphenol type jER828 (manufactured by Mitsubishi Chemical, epoxy equivalent 195 e / eq, liquid), and a tri- or higher functional cresol novolac type epoxy resin ESCN190. (Manufactured by Sumitomo Chemical Co., Ltd., ESCN190, epoxy equivalent 195 e / eq, mp = 65 ° C.). As an epoxy resin curing agent, lignin made from cedar and bamboo was used.

1−3;重合触媒
重合触媒として、アダクト型イミダゾール系のP200(商品名;三菱化学製)を、用いた。成形材の場合にはイミダゾール系触媒である2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール[(商品名:2P4MHZ(四国化成工業製)]を用いた。
1-3: Polymerization catalyst Adduct type imidazole P200 (trade name; manufactured by Mitsubishi Chemical Corporation) was used as a polymerization catalyst. In the case of the molding material, 2-phenyl-4-methyl-5-hydroxymethylimidazole [(trade name: 2P4MHZ (manufactured by Shikoku Kasei Kogyo))] which is an imidazole catalyst was used.

ルイス酸には三フッ化ホウ素のモノエチルアミン錯体(以下、FBEAと略称、橋本化成製)を、三級アミンにはジアザビシクロウンデセン (1,8−diazabicyclo[5.4.0]undec−7−ene)、以下、DBUと略称、和光純薬社製)用いた。   Boron trifluoride monoethylamine complex (hereinafter abbreviated as FBEA, manufactured by Hashimoto Kasei) is used for Lewis acids, and diazabicycloundecene (1,8-diazabiccyclo [5.4.0] undec- is used for tertiary amines. 7-ene), hereinafter abbreviated as DBU, manufactured by Wako Pure Chemical Industries, Ltd.).

光開始剤として、カチオン重合開始剤のPF6−系スルホニウム塩である サイエンドSI−180L(以下、180Lと略称、三新化学社製)を用いた。FBEA、DBU、180Lはワニス用の混合溶媒として用いた。   As a photoinitiator, Cyend SI-180L (hereinafter abbreviated as 180L, manufactured by Sanshin Chemical Co., Ltd.), which is a PF6-sulfonium salt of a cationic polymerization initiator, was used. FBEA, DBU, and 180L were used as a mixed solvent for varnish.

1−4;ワニス溶媒
ワニス溶媒として、2−ブタノン(和光純薬社製、特級)と2−メトキシエタノール(和光純薬社製、特級)の混合溶媒を用いた。
1-4; Varnish solvent A mixed solvent of 2-butanone (manufactured by Wako Pure Chemical Industries, special grade) and 2-methoxyethanol (manufactured by Wako Pure Chemical Industries, special grade) was used as the varnish solvent.

1−5;三成分フィラー
シリカフィラーとして、平均粒径22μmのBF100(日本アエロジル製)と平均粒径8.7μmのFB30X(電気化学製)と平均粒径0.7μmのSO25R(龍森社製)を含む三成分フィラーを用いた。
1-5; three-component filler As silica filler, BF100 (manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 22 μm, FB30X (manufactured by Electrochemical) having an average particle diameter of 8.7 μm, and SO25R (manufactured by Tatsumori Co., Ltd.) having an average particle diameter of 0.7 μm ) Was used.

1−6;カップリング剤
カップリング剤として3−グリシドキシプロピルトリメトキシシランKBM−403(信越化学社製)を用いた。
1-6; Coupling agent 3-glycidoxypropyltrimethoxysilane KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.) was used as a coupling agent.

1−7;離型剤
離型剤としてモンタン酸エステル(クラリアントジャパン製、Licowax E)を用いた。
1-7; Release agent Montanic acid ester (manufactured by Clariant Japan, Licowax E) was used as the release agent.

(1)ワニスの作製と硬化法
硬化剤に用いたリグニンの水酸基当量とエポキシ樹脂のエポキシ基当量を任意量計
算し、重合触媒P200を樹脂分の2.0重量%加え、2−ブタノン/2−メトキシエ
タノールの等重量混合溶媒を樹脂分と等重量追加して、ビックロータ(アズワン社製;
BR−2型)で一晩攪拌し、ワニスを作製した。
(1) Preparation of varnish and curing method Arbitrary amount of hydroxyl group equivalent of lignin and epoxy group equivalent of epoxy resin used for the curing agent was calculated, and 2.0% by weight of polymerization catalyst P200 was added to the resin, and 2-butanone / 2 -An equivalent weight mixed solvent of methoxyethanol was added to the resin and the same weight, and a big rotor (manufactured by ASONE;
BR-2 type) was stirred overnight to prepare a varnish.

ワニスをポリイミドフィルムのユーピレックス50−S(登録商標;宇部興産製)上に、硬化後の樹脂厚さが50〜100μmになるように調整したバーコータで上記ワニスを塗布した。これを温風乾燥機に入れ、50℃/1時間+75℃/1時間+100℃/1時間+150/1時間+180/2時間(ESCN190を用いたワニスは更に200℃/2時間追加した)の条件で段階的に加熱して、気泡のないエポキシ樹脂硬化物フィルムを得た。   The varnish was applied onto a polyimide film Iupilex 50-S (registered trademark; manufactured by Ube Industries) with a bar coater adjusted so that the resin thickness after curing was 50 to 100 μm. This was put into a hot air dryer, and conditions of 50 ° C./1 hour + 75 ° C./1 hour + 100 ° C./1 hour + 150/1 hour + 180/2 hours (the varnish using ESCN190 was further added at 200 ° C./2 hours) Was heated stepwise to obtain a cured epoxy resin film free of bubbles.

(2)成形材料の作製と硬化法
成形材料の組成は硬化剤に用いたリグニンの水酸基当量とエポキシ樹脂のエポキシ当量を任意量配合し、重合触媒2P4MHZは樹脂分の2.0重量%、シランカップリング剤(KBM403、信越化学製)は樹脂分の4.0重量%、離形剤(Licowax E)は樹脂分の2.5重量%配合した。充填材は配合量を成形材料の約75重量%として、三成分フィラを配合した。
(2) Production of molding material and curing method The composition of the molding material is an arbitrary amount of the hydroxyl equivalent of lignin used in the curing agent and the epoxy equivalent of the epoxy resin. The polymerization catalyst 2P4MHZ is 2.0% by weight of the resin, silane The coupling agent (KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed with 4.0% by weight of resin, and the release agent (Licowax E) was mixed with 2.5% by weight of resin. The filler was blended with a three-component filler with a blending amount of about 75% by weight of the molding material.

これらをポリ袋中で混合した後、ミキシングロール(関西ロール株式会社製、、ロールサイズ:200mmφ×長さ500mm)を用いて混錬して成形材料を作製した。ロール温度は低温ロールを100℃、高温ロールを110℃とした。ロールの混錬時間はロールに成形材料が巻付いた後の10分とした。混錬品を粉砕して成形材料とした。   These were mixed in a plastic bag and then kneaded using a mixing roll (manufactured by Kansai Roll Co., Ltd., roll size: 200 mmφ × length 500 mm) to produce a molding material. The roll temperature was 100 ° C for the low temperature roll and 110 ° C for the high temperature roll. The kneading time of the roll was 10 minutes after the molding material was wound around the roll. The kneaded product was pulverized into a molding material.

成形材料を任意量取り、トランスファ成形機TPE50−30型(藤和精機製)に投入して加圧、加熱し、各種の形状に成形した。成形温度は190℃、成形圧力は3.8MPaである。成形時間は3.0分とし、成形後、更に200℃/6時間後硬化した。   An arbitrary amount of the molding material was taken, put into a transfer molding machine TPE50-30 (manufactured by Towa Seiki Co., Ltd.), pressurized and heated, and molded into various shapes. The molding temperature is 190 ° C. and the molding pressure is 3.8 MPa. The molding time was 3.0 minutes, and after the molding, the resin was further cured after 200 ° C / 6 hours.

(3)測定法
4−1;水酸基当量
水酸基当量は水酸基1g当量を含む樹脂の重量(g)を表す。単位はg/eqである。リグニンの水酸基当量はフェノール性水酸基とアルコール性水酸基の和である。測定はJIS K 0070に準拠した無水酢酸―ピリジン法で行った。
(3) Measurement method 4-1: Hydroxyl equivalent The hydroxyl equivalent represents the weight (g) of the resin containing 1 g equivalent of the hydroxyl group. The unit is g / eq. The hydroxyl equivalent of lignin is the sum of phenolic hydroxyl groups and alcoholic hydroxyl groups. The measurement was performed by an acetic anhydride-pyridine method in accordance with JIS K 0070.

4−2;TG/DTA(示差熱‐熱重量同時測定)
Seiko Instruments製TG/DTA6200を用い、エポキシ樹脂硬化物の熱重量減少率と温度の関係を測定した。窒素雰囲気(200ml/分)下、昇温速度10℃/分で測定した。
4-2; TG / DTA (differential thermal-thermogravimetric simultaneous measurement)
Using TG / DTA6200 manufactured by Seiko Instruments, the relationship between the thermal weight reduction rate of the cured epoxy resin and the temperature was measured. The measurement was performed under a nitrogen atmosphere (200 ml / min) at a heating rate of 10 ° C./min.

以下、実施例により本発明をより詳細に説明するが、本発明の範囲はこれら実施例に限定されるものではない。尚、表1に記載したリグニンの配合量は、水酸基数、実施例1ではエポキシ樹脂100g 当たりの配合量33gで、リグニン配合比はリグニンの水酸基数(B)/エポキシ樹脂のエポキシ基数(A)を示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the scope of the present invention is not limited to these Examples. The blending amount of lignin described in Table 1 is the number of hydroxyl groups, in Example 1, the blending amount is 33 g per 100 g of epoxy resin, and the blending ratio of lignin is the number of hydroxyl groups of lignin (B) / the number of epoxy groups of epoxy resin (A). Indicates.

(実施例1)
第1表に示すように、竹リグニン33gとjER828を100g、硬化触媒にP200を樹脂成分の2.0重量%である2.7g、及び、2−ブタノと2−メトキシエタノールの等重量混合溶媒を133gを広口プラスチック瓶に加えて攪拌し、ワニスを作製した。そして、常法に従いリグニン由来エポキシ樹脂硬化物のフィルムを得た。Td5は402℃を示し、Tgは165℃を示した。
Example 1
As shown in Table 1, 33 g of bamboo lignin and 100 g of jER828, 2.7 g of P200 as a curing catalyst, which is 2.0% by weight of the resin component, and an equal weight mixed solvent of 2-butano and 2-methoxyethanol Was added to a wide-mouth plastic bottle and stirred to prepare a varnish. And the film of the lignin origin epoxy resin hardened | cured material was obtained according to the conventional method. Td5 showed 402 degreeC and Tg showed 165 degreeC.

(実施例2)
第1表に示す組成で、実施例1に準拠してワニスを作製し、リグニン由来エポキシ樹脂組成物の硬化物であるフィルムを得た。Td5は396℃を示し、Tgは172℃を示した。
(Example 2)
With the composition shown in Table 1, a varnish was prepared according to Example 1, and a film that was a cured product of the lignin-derived epoxy resin composition was obtained. Td5 showed 396 degreeC and Tg showed 172 degreeC.

(実施例3)
表1に示す組成で、実施例1に準拠してワニスを作製し、リグニン由来エポキシ樹脂組成物の硬化物のフィルムを得た。Td5は399℃で、Tgは175℃を示した。
(Example 3)
With the composition shown in Table 1, a varnish was prepared according to Example 1, and a cured film of the lignin-derived epoxy resin composition was obtained. Td5 was 399 ° C. and Tg was 175 ° C.

(実施例4)
表1に示す組成で、実施例1に準拠してワニスを作製し、リグニン由来エポキシ樹脂組成物の硬化物のフィルムを得た。Td5は346℃で、Tgは173℃を示した。
Example 4
With the composition shown in Table 1, a varnish was prepared according to Example 1, and a cured film of the lignin-derived epoxy resin composition was obtained. Td5 was 346 ° C. and Tg was 173 ° C.

(実施例5〜実施例8)
表1に示す組成で、実施例1に準拠してワニスを作製し、リグニン由来エポキシ樹脂組成物の硬化物のフィルムを得た。Td5は360〜340℃を示しし、Tgは218〜205℃を示した。
(Examples 5 to 8)
With the composition shown in Table 1, a varnish was prepared according to Example 1, and a cured film of the lignin-derived epoxy resin composition was obtained. Td5 showed 360-340 degreeC, and Tg showed 218-205 degreeC.

(実施例9〜実施例11)
重合触媒の種類を変えて、表1に示す配合組成で、実施例1〜8に準拠してワニスを作成し、リグニン由来エポキシ樹脂組成物の硬化物フィルムを得た。Td5は398〜401℃、Tgは172〜166℃であった。
(Example 9 to Example 11)
By changing the kind of the polymerization catalyst, a varnish was prepared according to the blending composition shown in Table 1 according to Examples 1 to 8, and a cured film of a lignin-derived epoxy resin composition was obtained. Td5 was 398-401 degreeC, and Tg was 172-166 degreeC.

(実施例12)
実施例11は成形材料に関し、表1に示すように、杉リグニン、エポキシ樹脂ESCN、フィラー及び重合触媒2P4MHZを樹脂分の2重量%加えて成形材料を作製した。トランスファーモールドで試験片を作製し、Td5とTgを求めた。その結果は表1に示すように、実施例11のTd5は386℃、Tgは212℃であった。
(Example 12)
Example 11 relates to the molding material, and as shown in Table 1, a molding material was prepared by adding 2% by weight of the resin content of cedar lignin, epoxy resin ESCN, filler and polymerization catalyst 2P4MHZ. Test pieces were prepared by transfer molding, and Td5 and Tg were determined. As a result, as shown in Table 1, Td5 of Example 11 was 386 ° C., and Tg was 212 ° C.

(実施例13)
実施例11に準拠して、表1に示す組成で、成形材料を作製した、Td5とTgを求めた。その結果は表1に併記したように、Td5は375℃、Tgは216℃であった。
(Example 13)
Based on Example 11, Td5 and Tg which produced the molding material with the composition shown in Table 1 were calculated | required. As shown in Table 1, the results were Td5 of 375 ° C. and Tg of 216 ° C.

以下に示す参考例は、公知技術を示しているのではなく、樹脂成分及び硬化触媒は本発明の条件を満たすが、リグニンの水酸基数(B)/エポキシ樹脂のエポキシ基数(A)が本発明で規定した範囲外のものであり、本発明のリグニンの水酸基数(B)/エポキシ樹脂のエポキシ基数(A)の規定の有効性を示すために記載したものである。   The following reference examples do not show known techniques, and the resin component and the curing catalyst satisfy the conditions of the present invention, but the number of hydroxyl groups of lignin (B) / number of epoxy groups of epoxy resin (A) is the present invention. It is described in order to show the effectiveness of the definition of the number of hydroxyl groups (B) of the lignin of the present invention / the number of epoxy groups (A) of the epoxy resin.

(参考例1)
本発明の配合比外の組成として、硬化剤を配合しない、エポキシ樹脂と重合触媒P200と混合溶媒からエポキシ樹脂組成物ワニスを作製し、硬化物を得た。そのTd5は386℃、Tgは116℃を示した。
(Reference Example 1)
As a composition outside the blending ratio of the present invention, an epoxy resin composition varnish was prepared from an epoxy resin, a polymerization catalyst P200, and a mixed solvent that did not contain a curing agent, and a cured product was obtained. The Td5 showed 386 degreeC and Tg showed 116 degreeC.

(参考例2)
本発明の配合比外の組成として、リグニンの水酸基数(B)/エポキシ樹脂のエポキシ基数(A)が1.60のリグニン由来エポキシ樹脂組成物ワニスを作製し、硬化物を得た。そのTd5は320℃、Tgは180℃を示した。
(Reference Example 2)
As a composition outside the blending ratio of the present invention, a lignin-derived epoxy resin composition varnish having a lignin hydroxyl group number (B) / epoxy resin epoxy group number (A) of 1.60 was prepared to obtain a cured product. The Td5 was 320 ° C. and the Tg was 180 ° C.

(参考例3)
本発明の配合比外の組成として、表1に示す組成で、成形材料を作製した。Td5は290℃で、Tgは190℃であった。
(Reference Example 3)
As a composition outside the blending ratio of the present invention, a molding material was produced with the composition shown in Table 1. Td5 was 290 ° C. and Tg was 190 ° C.

以上の結果、水蒸気爆砕による非修飾リグニンと、二官能以上のエポキシ樹脂と、該エポキシ樹脂の重合性触媒を含む組成物において、前記リグニンとエポキシ樹脂の配合比が、前記リグニンの水酸基数/エポキシ樹脂のエポキシ基数において、前記リグニンの水酸基数の配合比が0.5から1.4であるリグニン由来エポキシ樹脂組成物は、
比較例に比べ、Td5やTgが高いことが明らかである。従って、本発明のリグニン由来エポキシ樹脂組成物は、プリント配線板やモータ等に使用可能であること。
As a result, in the composition containing unmodified lignin by steam explosion, a bifunctional or higher functional epoxy resin, and a polymerizable catalyst for the epoxy resin, the blending ratio of the lignin and the epoxy resin is the number of hydroxyl groups of the lignin / epoxy. In the number of epoxy groups of the resin, the lignin-derived epoxy resin composition in which the mixing ratio of the number of hydroxyl groups of the lignin is 0.5 to 1.4,
It is clear that Td5 and Tg are higher than those of the comparative examples. Therefore, the lignin-derived epoxy resin composition of the present invention can be used for printed wiring boards, motors and the like.

Figure 2013221113
Figure 2013221113

(実施例13)
実施例1のリグニン由来エポキシ樹脂組成物ワニスをガラスクロスに含浸し、乾燥してプリプレグを得た。このプリプレグを10枚積層し、両側に銅箔を重ね、これを加圧・加熱硬化して積層板を得た。この積層板2の銅箔にホトリソ法によりパターンを形成し、図3に示すように本発明によるリグニン由来エポキシ樹脂組成物をガラス繊維クロスに含侵して製造したプリプレグを積層・硬化した基板2にプリント配線4、5を形成し、さらにスルーホール3に両面を貫通する導体メッキ6を形成してプリント配線板を形成した。上記積層板のTg及びTd5がともに高く、良好な配線板を得ることができた。
(Example 13)
A glass cloth was impregnated with the lignin-derived epoxy resin composition varnish of Example 1 and dried to obtain a prepreg. Ten prepregs were laminated, copper foils were laminated on both sides, and this was pressurized and heat cured to obtain a laminate. A pattern is formed on the copper foil of the laminate 2 by a photolithography method, and a prepreg produced by impregnating a glass fiber cloth with the lignin-derived epoxy resin composition according to the present invention as shown in FIG. Printed wirings 4 and 5 were formed, and conductor plating 6 penetrating both sides was formed in the through hole 3 to form a printed wiring board. Both the Tg and Td5 of the laminate were high, and a good wiring board could be obtained.

(実施例14)
実施例12に記載の成形材料を用いて、図4に示す回転機を製作した。図において、16は回転機の回転子のシャフトであり、14は回転子軸受け、12は回転子マグネット、8は固定子コイル、10は固定子枠であり、この固定子枠を実施例11の成形材料を用いて成形し、加熱硬化させた。固定子枠のTg及びTd5がともに高く、良好な回転機を得ることができた。
(Example 14)
Using the molding material described in Example 12, a rotating machine shown in FIG. 4 was produced. In the figure, 16 is a rotor shaft of a rotating machine, 14 is a rotor bearing, 12 is a rotor magnet, 8 is a stator coil, and 10 is a stator frame. Molding was performed using a molding material, followed by heat curing. Both Tg and Td5 of the stator frame were high, and a good rotating machine could be obtained.

本発明は、リグニン原料のコストを上昇させることなく、ガラス転移点及び熱分解温度がともに高い硬化物を形成することができるリグニン由来のエポキシ樹脂組成物に関し、電気絶縁性及び耐熱性に優れているため各種電子機器及び電気機器の絶縁材料として利用できるほか、プリプレグ、塗料、成形体など幅広く利用可能である。   The present invention relates to a lignin-derived epoxy resin composition capable of forming a cured product having a high glass transition point and a high thermal decomposition temperature without increasing the cost of a lignin raw material, and is excellent in electrical insulation and heat resistance. Therefore, it can be used as an insulating material for various electronic devices and electrical devices, and can be widely used for prepregs, paints, molded products, and the like.

Claims (19)

水蒸気爆砕による非修飾リグニンと、二官能以上のエポキシ樹脂と、該エポキシ樹脂の自己重合性触媒を含む組成物であって、前記リグニンとエポキシ樹脂の配合比が、前記リグニンの水酸基数(B)/エポキシ樹脂のエポキシ基数(A)が0.5から1.4未満であることを特徴とするリグニン由来エポキシ樹脂組成物。   A composition containing unmodified lignin by steam explosion, a bifunctional or higher functional epoxy resin, and a self-polymerizable catalyst of the epoxy resin, wherein the blending ratio of the lignin and the epoxy resin is the number of hydroxyl groups of the lignin (B) / Lepnin-derived epoxy resin composition, wherein the epoxy group number (A) of the epoxy resin is from 0.5 to less than 1.4. 前記リグニンとエポキシ樹脂の配合比が、前記リグニンの水酸基数(B)/エポキシ樹脂のエポキシ基数(A)が0.5から1.2であることを特徴とする請求項1に記載のリグニン由来エポキシ樹脂組成物。   2. The lignin-derived composition according to claim 1, wherein the blending ratio of the lignin and the epoxy resin is such that the number of hydroxyl groups of the lignin (B) / number of epoxy groups of the epoxy resin (A) is 0.5 to 1.2. Epoxy resin composition. 前記リグニンとエポキシ樹脂の配合比が、前記リグニンの水酸基数/エポキシ樹脂のエポキシ基数が0.6から1未満であることを特徴とする請求項1に記載のリグニン由来エポキシ樹脂組成物。   2. The lignin-derived epoxy resin composition according to claim 1, wherein the blending ratio of the lignin and the epoxy resin is such that the number of hydroxyl groups of the lignin / number of epoxy groups of the epoxy resin is 0.6 to less than 1. 3. 前記リグニンが、フェノール性水酸基とアルコー性水酸基等を含むことを特徴とする請求項1〜3にいずれかに記載のリグニン由来エポキシ樹脂組成物。   The said lignin contains a phenolic hydroxyl group, an alcoholic hydroxyl group, etc., The lignin origin epoxy resin composition in any one of Claims 1-3 characterized by the above-mentioned. 前記リグニンが、重量平均分子量300〜20000であることを特徴とする請求項1〜3のいずれかに記載のリグニン由来エポキシ樹脂組成物。   The lignin-derived epoxy resin composition according to any one of claims 1 to 3, wherein the lignin has a weight average molecular weight of 300 to 20,000. 前記リグニンが、一種類以上の有機溶媒に可溶であることを特徴とする請求項1〜3のいずれかに記載のリグニン由来エポキシ樹脂組成物。   The lignin-derived epoxy resin composition according to any one of claims 1 to 3, wherein the lignin is soluble in one or more organic solvents. 前記リグニンが、水酸基当量80〜600g/eqであることを特徴とする請求項1〜3のいずれかに記載のリグニン由来エポキシ樹脂組成物。   The lignin-derived epoxy resin composition according to claim 1, wherein the lignin has a hydroxyl group equivalent of 80 to 600 g / eq. 請求項1〜7のいずれかに記載のリグニンリグニン由来エポキシ樹脂組成物を硬化させて得られる硬化物であって、ガラス転移点が160℃以上であって、5重量%熱重量減少温度が330℃以上であることを特徴とするリグニン由来エポキシ樹脂組成物の硬化物。   A cured product obtained by curing the lignin lignin-derived epoxy resin composition according to any one of claims 1 to 7, wherein the glass transition point is 160 ° C or higher, and the 5% by weight thermal weight reduction temperature is 330 ° C. Hardened | cured material of the epoxy resin composition derived from a lignin characterized by being more than degreeC. 請求項2記載のリグニンリグニン由来エポキシ樹脂組成物を硬化させて得られる硬化物であって、前記エポキシ樹脂が二官能エポキシ樹脂であり、ガラス転移点が170℃以上であって、5重量%熱重量減少温度が340℃以上であることを特徴とするリグニン由来エポキシ樹脂組成物の硬化物。   A cured product obtained by curing the lignin lignin-derived epoxy resin composition according to claim 2, wherein the epoxy resin is a bifunctional epoxy resin, has a glass transition point of 170 ° C. or higher, and 5 wt% heat. Hardened | cured material of the lignin origin epoxy resin composition characterized by the weight reduction temperature being 340 degreeC or more. 請求項3記載のリグニンリグニン由来エポキシ樹脂組成物を硬化させて得られる硬化物であって、前記エポキシ樹脂が二官能であり、ガラス転移点が190℃以上であって、5重量%熱重量減少温度が350℃以上であることを特徴とするリグニン由来エポキシ樹脂組成物の硬化物。   A cured product obtained by curing the lignin lignin-derived epoxy resin composition according to claim 3, wherein the epoxy resin is bifunctional, has a glass transition point of 190 ° C or higher, and is reduced by 5% by weight. A cured product of a lignin-derived epoxy resin composition having a temperature of 350 ° C or higher. 請求項1記載のリグニンリグニン由来エポキシ樹脂組成物を硬化させて得られる硬化物であって、前記エポキシ樹脂が三官能以上のエポキシ樹脂であり、ガラス転移点が200℃以上であって、5重量%熱重量減少温度が340℃以上であることを特徴とするリグニン由来エポキシ樹脂組成物の硬化物。   A cured product obtained by curing the lignin lignin-derived epoxy resin composition according to claim 1, wherein the epoxy resin is a trifunctional or higher functional epoxy resin, and has a glass transition point of 200 ° C. or higher and 5 wt. A cured product of a lignin-derived epoxy resin composition having a% thermogravimetric decrease temperature of 340 ° C. or higher. 請求項1〜7のいずれかに記載のリグニン由来エポキシ樹脂組成物と、この組成物を溶解するための有機溶媒を含み、前記リグニン由来エポキシ樹脂組成物の濃度が10〜90重量%であることを特徴とするワニス。   The lignin-derived epoxy resin composition according to any one of claims 1 to 7 and an organic solvent for dissolving the composition, wherein the concentration of the lignin-derived epoxy resin composition is 10 to 90% by weight. Varnish characterized by. 前記溶媒が、アルコール類、ケトン類、エーテル類、芳香族類及び脂肪族類から選択される一種類を含むことを特徴とする請求項12に記載のワニス。   The varnish according to claim 12, wherein the solvent contains one kind selected from alcohols, ketones, ethers, aromatics and aliphatics. 請求項12又は13に記載のワニスを繊維質基材に含浸・乾燥して作製したプリプレグ。   A prepreg produced by impregnating and drying a varnish according to claim 12 or 13 in a fibrous base material. 請求項14に記載の前記プリプレグを導体回路とともに積層・一体化したことを特徴とするプリント配線板。   A printed wiring board, wherein the prepreg according to claim 14 is laminated and integrated together with a conductor circuit. 請求項15に記載のプリプレグの硬化物を絶縁材料として用いたことを特徴とする電子機器。   An electronic apparatus comprising the cured prepreg according to claim 15 as an insulating material. 請求項1〜7のいずれかに記載のリグニン由来エポキシ樹脂組成物に一種以上のフィラーを配合したことを特徴とする成形材料。   A molding material comprising one or more fillers blended in the lignin-derived epoxy resin composition according to claim 1. 請求項17に記載の前記成形材料の硬化物を用いたことを特徴とする電子機器。   An electronic apparatus using the cured product of the molding material according to claim 17. 請求項18に記載の成形材料の硬化物を用いたことを特徴とするモータの固定子または回転子。   A stator or rotor for a motor, wherein the cured product of the molding material according to claim 18 is used.
JP2012094602A 2012-04-18 2012-04-18 Lignin-derived epoxy resin composition and application thereof Pending JP2013221113A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012094602A JP2013221113A (en) 2012-04-18 2012-04-18 Lignin-derived epoxy resin composition and application thereof
PCT/JP2013/060578 WO2013157424A1 (en) 2012-04-18 2013-04-08 Lignin-derived epoxy resin composition and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012094602A JP2013221113A (en) 2012-04-18 2012-04-18 Lignin-derived epoxy resin composition and application thereof

Publications (1)

Publication Number Publication Date
JP2013221113A true JP2013221113A (en) 2013-10-28

Family

ID=49383388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094602A Pending JP2013221113A (en) 2012-04-18 2012-04-18 Lignin-derived epoxy resin composition and application thereof

Country Status (2)

Country Link
JP (1) JP2013221113A (en)
WO (1) WO2013157424A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023017308A (en) * 2021-07-26 2023-02-07 東洋インキScホールディングス株式会社 Adhesive resin sheet, printed wiring board, and electronic apparatus
KR20230071643A (en) * 2021-11-16 2023-05-23 국도화학 주식회사 Higher Arc resistance bio-based Epoxy resin material composition for heavy electric and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126307A1 (en) * 2016-01-19 2017-07-27 三菱ケミカル株式会社 Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material
CN106750179B (en) * 2017-03-21 2019-02-19 南京林业大学 A kind of preparation method of enzymolysis xylogen base epoxy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349192A3 (en) * 1988-06-24 1990-09-12 Somar Corporation Liquid, epoxy resin composition
JP5315606B2 (en) * 2006-12-01 2013-10-16 株式会社明電舎 Insulating polymer material composition
JP2011219715A (en) * 2010-02-10 2011-11-04 Hitachi Chem Co Ltd Resin compound material for molding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023017308A (en) * 2021-07-26 2023-02-07 東洋インキScホールディングス株式会社 Adhesive resin sheet, printed wiring board, and electronic apparatus
JP7342917B2 (en) 2021-07-26 2023-09-12 東洋インキScホールディングス株式会社 Adhesive resin sheets, printed wiring boards, and electronic equipment.
TWI819715B (en) * 2021-07-26 2023-10-21 日商東洋油墨Sc控股股份有限公司 Adhesive resin sheet, printed wiring board, and electronic equipment
KR20230071643A (en) * 2021-11-16 2023-05-23 국도화학 주식회사 Higher Arc resistance bio-based Epoxy resin material composition for heavy electric and method of manufacturing the same
KR102702453B1 (en) 2021-11-16 2024-09-04 국도화학 주식회사 Higher Arc resistance bio-based Epoxy resin material composition for heavy electric and method of manufacturing the same

Also Published As

Publication number Publication date
WO2013157424A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
EP2933293B1 (en) Halogen-free flame-retardant resin composition and use thereof
KR20160140586A (en) Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof
JP2011068713A (en) Coverlay film
WO2008065866A1 (en) Insulating polymeric-material composition
JP2009263549A (en) Epoxy resin composition of vegetable origin, and various instruments using the same
CN1788053A (en) Flame-retarded epoxy resin composition, prepregs containing the same, laminated sheets and printed wiring boards
Zhang et al. Multifunctional tannin extract-based epoxy derived from waste bark as a highly toughening and strengthening agent for epoxy resin
JP2013221113A (en) Lignin-derived epoxy resin composition and application thereof
Karami et al. An efficient fully bio‐based reactive diluent for epoxy thermosets: 2‐[(Oxiran‐2‐ylmethoxy) methyl] furan versus a petroleum‐based counterpart
JP2010241855A (en) Epoxy resin composition
CN112694599A (en) Phenoxy resin, method for producing same, resin composition thereof, and cured product
JP2009292884A (en) Lignophenol-based epoxy resin composition
JP5462559B2 (en) Polyvalent hydroxy compounds, production method thereof, epoxy resin composition and cured product thereof
JP2012224787A (en) Epoxy resin composition and epoxy resin curing agent, and respective products using them
KR101641824B1 (en) Halogen-free thermosetting resin composition, and prepreg and laminate for printed circuits using the same
US11702505B2 (en) Process for the production of epoxy resins
TW593527B (en) Halogen-free, phosphorus-free flame-retardant advanced epoxy resin and an epoxy composition containing the same
JP2012201828A (en) Method for producing lignin derivative, method for producing lignin secondary derivative, lignin derivative, and lignin secondary derivative
KR20140001322A (en) Non halogen flame retardant polymer and composition containing the same
JP5920069B2 (en) Lignin resin composition and lignin resin molding material
JP6217064B2 (en) Resin composition and resin molded body
JP2006066237A (en) Insulating polymeric material composition
JP5019091B2 (en) Epoxy resin curing agent and cured epoxy resin
JP6181347B2 (en) Method for producing lignin derivative and method for producing lignin secondary derivative
JP2015048361A (en) Lignin resin composition, resin molded article, prepreg, and molding material