WO2017126307A1 - Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material - Google Patents

Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material Download PDF

Info

Publication number
WO2017126307A1
WO2017126307A1 PCT/JP2016/088876 JP2016088876W WO2017126307A1 WO 2017126307 A1 WO2017126307 A1 WO 2017126307A1 JP 2016088876 W JP2016088876 W JP 2016088876W WO 2017126307 A1 WO2017126307 A1 WO 2017126307A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
component
fiber
composite material
Prior art date
Application number
PCT/JP2016/088876
Other languages
French (fr)
Japanese (ja)
Inventor
敦 野原
靖 鈴村
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201680078322.5A priority Critical patent/CN108473660B/en
Priority to JP2017501412A priority patent/JP6409951B2/en
Publication of WO2017126307A1 publication Critical patent/WO2017126307A1/en
Priority to US16/034,124 priority patent/US10577455B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/302Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3227Compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • C08G59/46Amides together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • C08G59/60Amines together with other curing agents with amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin composition used for a prepreg for a fiber reinforced composite material, a prepreg for a fiber reinforced composite material containing the epoxy resin composition, and a fiber reinforced composite material obtained by curing the prepreg for a fiber reinforced composite material.
  • Fiber reinforced composite materials consisting of reinforced fibers and matrix resins are lightweight and have excellent mechanical properties, so they are aerospace applications (aircraft members, etc.), automotive applications (automobile members), sports applications (bicycle members, etc.), general industries Widely used for applications.
  • the fiber reinforced composite material is obtained by molding a prepreg for a fiber reinforced composite material, which is an intermediate material.
  • the prepreg is obtained by impregnating a reinforcing fiber with a thermosetting resin or a thermoplastic resin.
  • a thermosetting resin is mainly used from the viewpoint of heat resistance of the fiber reinforced composite material.
  • epoxy resins are most often used because fiber-reinforced composite materials having excellent heat resistance, elastic modulus, low curing shrinkage, chemical resistance, and the like can be obtained.
  • 180 ° C. curable epoxy resin is often used in applications requiring heat resistance such as aerospace applications and industrial applications.
  • a general 180 ° C. curable epoxy resin requires heating at 180 ° C. for 2 hours or longer for curing. Therefore, (i) the heating furnace used for forming the prepreg needs a sufficient heating capacity, (ii) the molding time becomes long, (iii) the auxiliary material is required to have the same heat resistance, etc. There exists a problem that the manufacturing cost of a reinforced composite material becomes high.
  • Patent Document 1 As a method for solving this problem, for example, a method is known in which an epoxy resin composition is first cured at a low temperature of 80 to 140 ° C. and demolded, and then post-cured at a high temperature of 180 ° C. or higher (Patent Document 1). reference). An epoxy resin composition that can be cured at a high speed within 150 minutes at 150 ° C. has also been proposed (see Patent Document 2).
  • Patent Document 1 in the case of a method in which primary curing at a low temperature and post-curing at a high temperature are combined, two molding curing processes are required. There is a problem of high costs. Further, in the epoxy resin composition described in Patent Document 2, a cured product obtained by heating at 150 ° C. for 30 minutes can achieve heat resistance and mechanical properties required in the aerospace, automobile, bicycle field, and the like. Have difficulty. By the way, since a prepreg requires a long shelf life, the epoxy resin composition is also required to have a long pot life.
  • the present invention provides an epoxy resin composition having a long pot life despite having low temperature and high-speed curability, and excellent in heat resistance and mechanical properties of a cured product, and a prepreg for a fiber-reinforced composite material containing the epoxy resin composition. And a fiber reinforced composite material obtained from the prepreg for fiber reinforced composite material.
  • the present invention has the following aspects.
  • An epoxy resin composition comprising 4,5-dihydroxymethylimidazole and an imidazole compound (C) containing at least one of 2-phenyl-4-methyl-5-hydroxymethylimidazole represented by the following formula (2).
  • the content of the component (A) is 25 to 90% by mass with respect to the total mass of all epoxy resins contained in the epoxy resin composition, and the content of the component (B) is 10 to The epoxy resin composition according to [1] or [2], which is 75% by mass.
  • the epoxy resin composition described in 1. [6] The epoxy resin composition according to [5], wherein the glass transition point is 185 ° C. or higher. [7] The epoxy resin composition according to [5], wherein the glass transition point is 190 ° C. or higher. [8] The epoxy resin composition according to any one of [1] to [7], wherein the epoxy resin composition has a pot life of 4 weeks or more when stored at 21 ° C. [9] The epoxy resin composition according to any one of [1] to [8], wherein the epoxy resin composition has a half-value width of reaction exotherm by differential scanning calorimetry of 18 ° C. or less.
  • a cured product obtained by heating the epoxy resin composition at 150 ° C. for 30 minutes has a curing degree of 94% or more by differential scanning calorimetry.
  • the epoxy resin composition as described.
  • the epoxy resin composition according to any one of [1] to [10] which is used for a prepreg for a fiber-reinforced composite material.
  • an epoxy resin composition having a long pot life and excellent in heat resistance and mechanical properties of a cured product despite having low temperature and high-speed curability, and a fiber-reinforced composite material containing the epoxy resin composition And a fiber reinforced composite material obtained from the prepreg for fiber reinforced composite material.
  • the “pot life” means that the epoxy resin composition has a long period during which viscosity stability in a low temperature region can be maintained.
  • the glass transition point of the epoxy resin composition is measured using a differential scanning calorimeter (for example, “Q100” manufactured by TA Instruments Inc.), and this is set as the initial glass transition point.
  • the epoxy resin composition is stored in an environment of 21 ° C. and 50 RH%, and once a week using a differential scanning calorimeter (for example, “Q100” manufactured by TA Instruments Inc.). To measure the glass transition point of the epoxy resin composition.
  • a period during which the glass transition point is maintained within a range not exceeding the initial glass transition point + 10 ° C. is defined as “pot life”.
  • Shelf life means a characteristic that tack and drape in a low temperature region of a prepreg are stabilized.
  • “Viscosity of epoxy resin composition at 30 ° C.” was measured using a viscoelasticity measuring device, parallel plate diameter: 25 mm, plate gap: 0.5 mm, angular velocity: 10 radians / second, stress: 300 Pa, temperature: 30 ° C. Viscosity measured under conditions.
  • the “half-value width of reaction exotherm of epoxy resin composition” means the width (° C.) of the peak in the X-axis direction at a position that is half the height of the reaction exotherm peak measured using a differential scanning calorimeter.
  • the degree of cure of the cured product is obtained by collecting 1 to 10 mg of a resin piece from a cured product obtained by heating the epoxy resin composition at 150 ° C. for 30 minutes, and using a differential scanning calorimeter, It is the degree of cure determined by the following formula (I) from the measured calorific value by raising the temperature to 300 ° C. at a temperature rise rate of ° C / min and measuring the residual calorific value.
  • Curing degree [%] (Total calorific value of resin before curing [J / g] ⁇ Residual calorific value [J / g]) / Total calorific value of resin before curing [J / g] ⁇ 100
  • “Glass transition point of cured product” is a test piece of length: 55 mm, width: 12.7 mm, thickness: 2 mm cut out from the cured product, using a dynamic viscoelasticity measuring device, according to ASTM D7028, frequency: 1 Hz, Temperature rising rate: Measure storage elastic modulus E ′ in bending mode at 5 ° C./min, plot log E ′ against temperature, and tangent to flat region before log E ′ transition and log E ′ transition It is the temperature of the intersection with the tangent at the inflection point of the area to be.
  • the epoxy resin composition of the present invention includes an epoxy resin (A) having at least three glycidyl groups in the molecule (hereinafter also referred to as “component (A)”), and an epoxy resin having at least one sulfur atom in the molecule. (B) (hereinafter also referred to as “component (B)”) and imidazole compound (C) (hereinafter also referred to as “component (C)”).
  • component (A) having at least three glycidyl groups in the molecule
  • component (C) an epoxy resin having at least one sulfur atom in the molecule.
  • component (B) hereinafter also referred to as “component (B)”
  • component (C) imidazole compound
  • the epoxy resin composition of the present invention may contain components other than the component (A), the component (B), and the component (C) as necessary within the range not impairing the effects of the present invention.
  • epoxy resin (D) (hereinafter also referred to as “(D) component”) other than components (A) and (B), curing agent (E) (hereinafter referred to as “(E) component”) And optional component (F) (hereinafter also referred to as “component (F)”).
  • the component (A) is an epoxy resin having at least three glycidyl groups in the molecule.
  • a component is a component which provides the heat resistance required for the hardened
  • component (A) for example, tetraglycidylamine type epoxy resin, triglycidylaminophenol type epoxy resin, triglycidyl ether type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, polyfunctional novolak type epoxy resin, etc. Is mentioned. These may be used individually by 1 type and may use 2 or more types together.
  • component (A) examples include Tactix (registered trademark) 742 (tris (hydroxyphenyl) methane triglycidyl ether), Araldite (registered trademark) MY720, MY721, MY9663, manufactured by Huntsman Advanced Materials. MY9634, MY9655, MY0500, MY0510, MY0600; jER (registered trademark) 1032H60 (polyfunctional novolak type epoxy resin) manufactured by Mitsubishi Chemical Corporation jER (registered trademark) 604, 630; Sumiepoxy (registered trademark) ELM manufactured by Sumitomo Chemical Co., Ltd. -434, ELM-100, and the like.
  • Tactix registered trademark
  • 742 tris (hydroxyphenyl) methane triglycidyl ether
  • Araldite registered trademark
  • MY720, MY721, MY9663 manufactured by Huntsman Advanced Materials.
  • MY9634 MY9655, MY0500, MY05
  • the component (B) is an epoxy resin having at least one sulfur atom in the molecule.
  • the component (B) is a component that imparts excellent heat resistance to the cured product, and examples thereof include a bisphenol S-type epoxy resin and an epoxy resin having a thio skeleton. Examples of the thio skeleton include —S— and —SO 2 —.
  • an epoxy resin derivative having at least one sulfur atom in the molecule can be used as the component (B).
  • a reaction product of an epoxy resin and an amine compound having at least one sulfur atom in the molecule. Things can be used.
  • Examples of the epoxy resin that is a raw material for the reaction product include, for example, triglycidyl ether type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, polyfunctional novolac type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene.
  • Type epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol aralkyl type epoxy resin, naphthalene type epoxy resin and the like. These may be used individually by 1 type and may use 2 or more types together.
  • the amine compound that is a raw material of the reaction product is not particularly limited as long as it has at least one sulfur atom in the molecule.
  • Examples include sulfone and 3,4′-diaminodiphenyl sulfone. These may be used individually by 1 type and may use 2 or more types together.
  • the component (B) is preferably a reaction product of bisphenol A type epoxy resin and 4,4′-diaminodiphenyl sulfone from the viewpoint of excellent toughness, flexibility, and heat resistance, and among them, bisphenol A diglycidyl is particularly preferable. A reaction product of ether and 4,4′-diaminodiphenyl sulfone is more preferable.
  • the component (B) can be used by appropriately selecting one type or two or more types.
  • component is an imidazole compound.
  • An imidazole compound has an imidazole ring in its structure.
  • Component (C) is an epoxy resin curing agent and curing catalyst, and is a component that excels in pot life at room temperature and imparts high heat resistance to the cured product.
  • the component (C) is represented by 2-phenyl-4,5-dihydroxymethylimidazole (hereinafter also referred to as “compound (1)”) represented by the following formula (1), and the following formula (2). It contains at least one of 2-phenyl-4-methyl-5-hydroxymethylimidazole (hereinafter also referred to as “compound (2)”).
  • compound (1) 2-phenyl-4,5-dihydroxymethylimidazole
  • compound (2) 2-phenyl-4-methyl-5-hydroxymethylimidazole
  • component (C) in addition to the above-mentioned compound (1) and compound (2), 2,4-diamino-6- [2′-methylimidazole- (1 ′)]-ethyl-s-triazine, 2, 4-Diamino-6- [2′-methylimidazole- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct, microencapsulated imidazole and the like may be used in combination. These may be used individually by 1 type, and may use 2 or more types together, It is especially preferable to use a compound (1) independently.
  • Examples of the commercially available compound (1) include 2PHZ-PW manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • Examples of the commercially available compound (2) include 2P4MHZ-PW manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • Examples of commercially available products of component (C) other than compound (1) and compound (2) include 2MHZ-PW, 2MZA-PW, 2MA-OK-PW manufactured by Shikoku Kasei Kogyo Co., Ltd .; manufactured by Asahi Kasei E-Materials HX3742 etc. are mentioned.
  • the component (D) is an epoxy resin (other epoxy resin) other than the epoxy resin (A) and the component (B).
  • the component (D) is a component that adjusts the viscosity of the epoxy resin composition, tack when formed into a prepreg, drapeability, and the like.
  • (D) component what was illustrated previously as an epoxy resin which is a raw material of (B) component, etc. are mentioned, for example.
  • bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, monofunctional type epoxy resin, and the like are preferable. These may be used individually by 1 type and may use 2 or more types together.
  • ((E) component) (E)
  • a component is a hardening
  • the compound applicable to (C) component shall not be classified into (E) component.
  • dicyandiamide is preferably used because a cured product having storage stability, moderate reactivity, and high toughness can be obtained.
  • Examples of commercially available dicyandiamide include DICY15 and DICY7 manufactured by Mitsubishi Chemical Corporation; DYHARD100M and 100S manufactured by AlzChem.
  • component is an arbitrary component.
  • the component (F) include thermoplastic resins and known additives (fillers, diluents, solvents, pigments, plasticizers, antioxidants, stabilizers, and the like).
  • thermoplastic resin gives high toughness to the cured product of the epoxy resin composition, suppresses stickiness of the epoxy resin composition, adjusts the prepreg tack to an appropriate level, and suppresses resin flow at high temperatures.
  • thermoplastic resin include phenoxy resin, polyvinyl formal, and polyethersulfone.
  • Examples of the pigment include carbon black. Carbon black has an effect of coloring the epoxy resin black and concealing the color of the resin when a fiber-reinforced composite material described later is formed, thereby giving a good appearance.
  • Examples of imidazole stabilizers include epoxy-phenol-borate compounds.
  • component (A) The content of component (A) is based on the total mass of all epoxy resins contained in the epoxy resin composition (that is, in a total of 100% by mass of component (A), component (B), and component (D)). ), Preferably from 25 to 90 mass%, more preferably from 30 to 85 mass%. If content of (A) component is 25 mass% or more, the heat resistance of the hardened
  • the content of component (B) is based on the total mass of all epoxy resins contained in the epoxy resin composition (that is, in a total of 100% by mass of component (A), component (B), and component (D)). ) 10 to 75% by mass is preferable, and 15 to 70% by mass is more preferable. If content of (B) component is 10 mass% or more, the reactivity at 150 degreeC of an epoxy resin composition can fully be maintained. On the other hand, if content of (B) component is 75 mass% or less, the heat resistance of an epoxy resin composition can be maintained favorable.
  • the content of the component (C) is 3 to 100 parts by mass with respect to 100 parts by mass of all the epoxy resins contained in the epoxy resin composition (that is, the sum of the components (A), (B), and (D)). 10 parts by mass is preferable, and 3.5 to 7 parts by mass is more preferable. If content of (C) component is 3 mass parts or more, the reactivity of an epoxy resin composition and the heat resistance provision to hardened
  • the content of component (D) is based on the total mass of all epoxy resins contained in the epoxy resin composition (that is, in a total of 100% by mass of component (A), component (B), and component (D)). ), Preferably from 0 to 15 mass%, more preferably from 0 to 10 mass%. If content of (D) component is 15 mass% or less, sufficient heat resistance can be given to the hardened
  • the content of the component (E) is 4 to 4 parts by mass with respect to 100 parts by mass of all the epoxy resins contained in the epoxy resin composition (that is, the sum of the components (A), (B), and (D)). 9 parts by mass is preferable, and 5 to 7 parts by mass is more preferable. If content of (E) component is 4 mass parts or more, an epoxy resin can fully be hardened. On the other hand, if content of (E) component is 9 mass parts or less, the whitening phenomenon of the hardened
  • the viscosity at 30 ° C. of the epoxy resin composition is preferably 10,000 Pa ⁇ s or more, more preferably 15,000 to 100,000 Pa ⁇ s, and further preferably 20,000 to 70,000 Pa ⁇ s. If the viscosity at 30 ° C. of the epoxy resin composition is 10,000 Pa ⁇ s or more, sufficient tack as a prepreg can be provided. If the viscosity at 30 ° C. of the epoxy resin composition is 100,000 Pa ⁇ s or less, sufficient drapability as a prepreg can be provided.
  • the half width of the reaction exotherm (Heat Flow) by differential scanning calorimetry of the epoxy resin composition is preferably 18 ° C. or less, more preferably 3 to 12 ° C.
  • the epoxy resin composition is more excellent in rapid curability and cured product heat resistance.
  • the glass transition point by dynamic viscoelasticity measurement of a cured product obtained by heating the epoxy resin composition at 150 ° C. for 30 minutes is preferably 180 ° C. or higher, more preferably 185 ° C. or higher, and further preferably 190 ° C. or higher. Specifically, 180 to 240 ° C. is preferable, and 185 to 230 ° C. is more preferable. If the glass transition point of hardened
  • the degree of cure by differential scanning calorimetry of the cured product obtained by heating the epoxy resin composition at 150 ° C. for 30 minutes is preferably 94% or more, and more preferably 95 to 100%. If the degree of cure is 94% or more, the prepreg containing the epoxy resin composition is cured to a hardness that can be removed by heating at a relatively low temperature of 150 ° C. for a relatively short time (primary curability). ).
  • the epoxy resin composition of this invention since it contains the specific (A) component and (B) component mentioned above, and (C) component, it has low temperature and high-speed curability.
  • the prepreg containing the epoxy resin composition has a property (primary curability) that cures to a degree that can be removed by heating at 150 ° C. within 30 minutes.
  • the epoxy resin composition of this invention has a long pot life.
  • the epoxy resin composition has a pot life of 4 weeks or more at 21 ° C. More specifically, it preferably has a pot life of 4 to 24 weeks at 21 ° C.
  • the epoxy resin composition of this invention is excellent in the heat resistance and mechanical characteristic of hardened
  • the cured product can have a glass transition point of 180 ° C. or higher by post-curing at 150 ° C. for 30 minutes.
  • the prepreg for fiber-reinforced composite material of the present invention includes the epoxy resin composition of the present invention and reinforcing fibers.
  • the reinforcing fiber examples include carbon fiber, aramid fiber, nylon fiber, high-strength polyester fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber.
  • carbon fiber, aramid fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber are preferable from the viewpoint of excellent flame retardancy, and carbon fiber is particularly preferable from the viewpoint of excellent specific strength and specific elasticity.
  • Examples of the form of the reinforcing fiber include those that are aligned in one direction, woven fabric, non-crimp fabric, and the like.
  • the content of the epoxy resin composition is preferably 15 to 55% by mass and more preferably 20 to 50% by mass with respect to the total mass of the prepreg for fiber-reinforced composite material.
  • the prepreg for fiber-reinforced composite material of the present invention can be produced by a known method using the epoxy resin composition of the present invention and reinforcing fibers.
  • the curing temperature (primary curing temperature) of the prepreg for fiber reinforced composite material is 140 to 160 ° C.
  • the prepreg for fiber-reinforced composite material of the present invention described above contains the epoxy resin composition of the present invention, it is cured to a hardness that allows demolding even if cured at a relatively low temperature in a short time.
  • the shelf life is long, and the fiber-reinforced composite material obtained after molding is excellent in heat resistance and mechanical properties.
  • it has a property of curing to a degree that can be removed by heating at 150 ° C. for 30 minutes (primary curing property), has a shelf life of 4 weeks or more at 21 ° C., and has a shelf life of 150 ° C. for 30 minutes.
  • the cured product (matrix resin) can have a glass transition point of 180 ° C.
  • the prepreg for fiber-reinforced composite material of the present invention can be primarily cured in a lower temperature region than conventional prepregs, and can greatly reduce the energy cost, auxiliary material cost, and the like required for molding.
  • the fiber-reinforced composite material in the present invention is obtained by curing the prepreg for fiber-reinforced composite material of the present invention.
  • the fiber reinforced composite material in the present invention can be produced by a known method using the prepreg for fiber reinforced composite material of the present invention. For example, there is a method in which a prepreg is sandwiched between a lower mold and an upper mold having a predetermined surface shape, and a cured product having a predetermined shape is obtained by applying pressure and heating.
  • the heating temperature is preferably 140 to 160 ° C. Since the fiber reinforced composite material in the present invention is formed by curing the prepreg for fiber reinforced composite material of the present invention, it is excellent in heat resistance and mechanical properties.
  • the epoxy resin composition of the present invention has at least one epoxy resin in which the component (A) is selected from the group consisting of tris (hydroxyphenyl) methane triglycidyl ether, tetraglycidyldiaminodiphenylmethane, and triglycidyl-p-aminophenol.
  • the component (B) is at least one epoxy resin selected from the group consisting of a reaction product of bisphenol A diglycidyl ether and 4,4′-diaminodiphenyl sulfone, and bisphenol S diglycidyl ether
  • the component (C) is preferably at least one selected from the group consisting of 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
  • a component As the component (A), the following compounds were used.
  • A-1 Tris (hydroxyphenyl) methane triglycidyl ether (manufactured by Huntsman Advanced Materials, trade name: Tactix (registered trademark) 742).
  • A-2 Tetraglycidyldiaminodiphenylmethane (manufactured by Mitsubishi Chemical Co., Ltd., trade name: jER (registered trademark) 604).
  • A-3 Triglycidyl-p-aminophenol (manufactured by Huntsman Advanced Materials, trade name: Araldite (registered trademark) MY0510).
  • (B) component) As the component (B), the following compounds were used.
  • B-1 After mixing bisphenol A diglycidyl ether and 4,4′-diaminodiphenyl sulfone (manufactured by Wakayama Seika Kogyo Co., Ltd., trade name: Seika Cure S) at a mass ratio of 100/9 at room temperature, A reaction product obtained by mixing and heating at 150 ° C. (epoxy equivalent: 266 g / eq).
  • B-2 Bisphenol S diglycidyl ether (manufactured by DIC, trade name: EXA-1514)
  • ((C) component) As the component (C), the following compounds were used.
  • C-1 2-phenyl-4,5-dihydroxymethylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2PHZ-PW).
  • C-2 2-phenyl-4-methyl-5-hydroxymethylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2P4MHZ-PW).
  • C-3 2,4-diamino-6- [2′-methylimidazole- (1 ′)]-ethyl-s-triazine (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2MZA-PW).
  • C-4 2,4-diamino-6- [2′-methylimidazole- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2MA-OK-PW) ).
  • C-5 Microencapsulated imidazole (manufactured by Asahi Kasei E-materials, trade name: HX3742).
  • D-1 bisphenol A type epoxy resin (trade name: jER (registered trademark) 828, manufactured by Mitsubishi Chemical Corporation).
  • E component ((E) component) As the component (E), the following compounds were used.
  • E-1 Dicyandiamide (manufactured by Mitsubishi Chemical Corporation, trade name: DICY15).
  • F-1 Polyethersulfone (manufactured by BASF, trade name: Ultrason E2020P-SR).
  • F-2 Carbon black (manufactured by Dainichi Seika Kogyo Co., Ltd., trade name: ET795)
  • F-3 Epoxy-phenol-borate ester compound (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: L-07N)
  • the calorific value is measured using a differential scanning calorimeter (Q100, Q100), and the width of the peak in the X-axis direction (° C.) at a position that is half the height of the reaction exothermic peak. The half-value width of the reaction exotherm was obtained.
  • the glass transition point of the epoxy resin composition was measured using a differential scanning calorimeter (manufactured by TA Instruments, "Q100"). This is the initial glass transition point.
  • the epoxy resin composition is stored in an environment of 21 ° C. and 50 RH%, and a sample of 1 to 10 mg is taken therefrom, and a differential scanning calorimeter (manufactured by TA Instruments, “Q100”) is used.
  • the glass transition point of the epoxy resin composition was measured once a week, and the week when the glass transition point exceeded the initial glass transition point + 10 ° C. was judged to be out of pot life.
  • Example 1 Component (A) and F-1 were weighed into a glass flask with the composition shown in Table 1, and dissolved and mixed at 140 ° C. to prepare a master batch.
  • the obtained master batch and the component (B) were stirred and mixed at 100 ° C. with the composition shown in Table 1. This is slowly cooled to 60 ° C., and the components (C), (D), (E) and the remaining (F) are added in the amounts shown in Table 1, mixed with stirring until uniform, and then vacuum-released. Foaming was performed to obtain an epoxy resin composition. Each measurement and evaluation was performed using the obtained epoxy resin composition. The results are shown in Table 1.
  • Examples 2 to 10 Except having changed the quantity of each component into the quantity shown in Table 1, the epoxy resin composition was prepared like Example 1, and each measurement and evaluation were performed. The results are shown in Table 1.
  • the epoxy resin compositions obtained in each example have a long pot life despite having low temperature and high speed curability, and also have good heat resistance and mechanical properties of the cured product. It was excellent.
  • Comparative Example 1 using only 2,4-diamino-6- [2′-methylimidazole- (1 ′)]-ethyl-s-triazine as the component (C)
  • the epoxy resin composition of No. 2 had a 21 ° C. pot life of less than 1 week. Moreover, the half value width of reaction exotherm was 22 degreeC or more.
  • the fiber reinforced composite material obtained by using the epoxy resin composition of the present invention is suitably used for aircraft members, automobile members, bicycle members, sports equipment members, railway vehicle members, ship members, building members, oil risers, etc.
  • it is suitably used for aircraft members, automobile members, and bicycle members that require high heat resistance and strength characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

This epoxy resin composition contains an epoxy resin (A) having at least three glycidyl groups in the molecule, an epoxy resin (B) having at least one sulfur atom in the molecule, and an imidazole compound (C) containing at least one of 2-phenyl-4,5-dihydroxymethyl imidazole and 2-phenyl-4-methyl-5-hydroxymethyl imidazole.

Description

エポキシ樹脂組成物、繊維強化複合材料用プリプレグおよび繊維強化複合材料Epoxy resin composition, prepreg for fiber reinforced composite material, and fiber reinforced composite material
 本発明は、繊維強化複合材料用プリプレグに用いられるエポキシ樹脂組成物、前記エポキシ樹脂組成物を含む繊維強化複合材料用プリプレグ、及び繊維強化複合材料用プリプレグを硬化して得られる繊維強化複合材料に関する。
 本願は、2016年1月19日に、日本に出願された特願2016-007708号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an epoxy resin composition used for a prepreg for a fiber reinforced composite material, a prepreg for a fiber reinforced composite material containing the epoxy resin composition, and a fiber reinforced composite material obtained by curing the prepreg for a fiber reinforced composite material. .
This application claims priority based on Japanese Patent Application No. 2016-007708 filed in Japan on January 19, 2016, the contents of which are incorporated herein by reference.
 強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、軽量で優れた機械特性を有するため、航空宇宙用途(航空機部材等)、自動車用途(自動車部材)、スポーツ用途(自転車部材等)、一般産業用途等に広く用いられている。繊維強化複合材料は、中間材料である繊維強化複合材料用プリプレグを成型することによって得られる。 Fiber reinforced composite materials consisting of reinforced fibers and matrix resins are lightweight and have excellent mechanical properties, so they are aerospace applications (aircraft members, etc.), automotive applications (automobile members), sports applications (bicycle members, etc.), general industries Widely used for applications. The fiber reinforced composite material is obtained by molding a prepreg for a fiber reinforced composite material, which is an intermediate material.
 プリプレグは、強化繊維に熱硬化性樹脂または熱可塑性樹脂を含浸させたものである。プリプレグ用の樹脂としては、繊維強化複合材料の耐熱性等の点から、主として熱硬化性樹脂が用いられる。なかでも、耐熱性、弾性率、低硬化収縮性、耐薬品性等に優れた繊維強化複合材料が得られる点から、エポキシ樹脂が最もよく用いられる。特に、航空宇宙用途や産業用途などの耐熱性が求められる用途においては、180℃硬化型エポキシ樹脂がよく用いられる。 The prepreg is obtained by impregnating a reinforcing fiber with a thermosetting resin or a thermoplastic resin. As the resin for the prepreg, a thermosetting resin is mainly used from the viewpoint of heat resistance of the fiber reinforced composite material. Among these, epoxy resins are most often used because fiber-reinforced composite materials having excellent heat resistance, elastic modulus, low curing shrinkage, chemical resistance, and the like can be obtained. In particular, 180 ° C. curable epoxy resin is often used in applications requiring heat resistance such as aerospace applications and industrial applications.
 しかしながら、一般的な180℃硬化型エポキシ樹脂は、硬化のために180℃で2時間以上の加熱が必要である。そのため、(i)プリプレグの成形に用いる加熱炉に十分な加熱能力が必要となる、(ii)成形時間が長くなる、(iii)副資材にも同程度の耐熱性が要求される、など繊維強化複合材料の製造コストが高くなるという問題がある。 However, a general 180 ° C. curable epoxy resin requires heating at 180 ° C. for 2 hours or longer for curing. Therefore, (i) the heating furnace used for forming the prepreg needs a sufficient heating capacity, (ii) the molding time becomes long, (iii) the auxiliary material is required to have the same heat resistance, etc. There exists a problem that the manufacturing cost of a reinforced composite material becomes high.
 この問題を解決する方法として、例えば、エポキシ樹脂組成物を80~140℃の低温で一次硬化させて脱型した後、180℃以上の高温でポストキュアする方法が知られている(特許文献1参照)。
 また、150℃、30分以内で高速硬化可能なエポキシ樹脂組成物も提案されている(特許文献2参照)。
As a method for solving this problem, for example, a method is known in which an epoxy resin composition is first cured at a low temperature of 80 to 140 ° C. and demolded, and then post-cured at a high temperature of 180 ° C. or higher (Patent Document 1). reference).
An epoxy resin composition that can be cured at a high speed within 150 minutes at 150 ° C. has also been proposed (see Patent Document 2).
日本国特許第4396274号公報Japanese Patent No. 4396274 日本国特許第5682838号公報Japanese Patent No. 5682838
 しかしながら、特許文献1に記載のように、低温での一次硬化と高温でのポストキュアを組み合わせる方法の場合、2度の成形硬化プロセスが必要なため、成形硬化時間やプロセス時間が長くなり、製造コストが高くなるという問題を抱えている。
 また、特許文献2に記載のエポキシ樹脂組成物では、150℃で30分間加熱して得られる硬化物が、航空宇宙、自動車、自転車分野等において要求される耐熱性および機械特性を達成することが困難である。
 ところで、プリプレグにはある程度長いシェルフライフが要求されるため、エポキシ樹脂組成物にもポットライフが長いことが求められる。
However, as described in Patent Document 1, in the case of a method in which primary curing at a low temperature and post-curing at a high temperature are combined, two molding curing processes are required. There is a problem of high costs.
Further, in the epoxy resin composition described in Patent Document 2, a cured product obtained by heating at 150 ° C. for 30 minutes can achieve heat resistance and mechanical properties required in the aerospace, automobile, bicycle field, and the like. Have difficulty.
By the way, since a prepreg requires a long shelf life, the epoxy resin composition is also required to have a long pot life.
 本発明は、低温・高速硬化性を有するにもかかわらずポットライフが長く、しかも硬化物の耐熱性および機械特性にも優れるエポキシ樹脂組成物、前記エポキシ樹脂組成物を含む繊維強化複合材料用プリプレグ、および前記繊維強化複合材料用プリプレグから得られる繊維強化複合材料を提供する。 The present invention provides an epoxy resin composition having a long pot life despite having low temperature and high-speed curability, and excellent in heat resistance and mechanical properties of a cured product, and a prepreg for a fiber-reinforced composite material containing the epoxy resin composition. And a fiber reinforced composite material obtained from the prepreg for fiber reinforced composite material.
 本発明は以下の態様を有する。
[1] 分子内に少なくとも3つのグリシジル基を有するエポキシ樹脂(A)と、分子内に少なくとも1つの硫黄原子を有するエポキシ樹脂(B)と、下記式(1)で表される2-フェニル-4,5-ジヒドロキシメチルイミダゾール、および下記式(2)で表される2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールの少なくとも一方を含むイミダゾール化合物(C)とを含む、エポキシ樹脂組成物。
The present invention has the following aspects.
[1] An epoxy resin (A) having at least three glycidyl groups in the molecule, an epoxy resin (B) having at least one sulfur atom in the molecule, and 2-phenyl- represented by the following formula (1) An epoxy resin composition comprising 4,5-dihydroxymethylimidazole and an imidazole compound (C) containing at least one of 2-phenyl-4-methyl-5-hydroxymethylimidazole represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[2] 前記(B) 成分として、エポキシ樹脂と分子内に少なくとも1つの硫黄原子を有するアミン化合物との反応生成物を含む、[1]に記載のエポキシ樹脂組成物。
[3] 前記エポキシ樹脂組成物に含まれる全てのエポキシ樹脂の総質量に対して、前記(A)成分の含有量が25~90質量%であり、前記(B)成分の含有量が10~75質量%である、[1]または[2]に記載のエポキシ樹脂組成物。
[4] 前記(C)成分として、2-フェニル-4,5-ジヒドロキシメチルイミダゾールを含む、[1]~[3]のいずれか1つに記載のエポキシ樹脂組成物。
[5] 前記エポキシ樹脂組成物を150℃で30分間加熱して得られる硬化物の、動的粘弾性測定によるガラス転移点が180℃以上である、[1]~[4]のいずれか1つに記載のエポキシ樹脂組成物。
[6] 前記ガラス転移点が185℃以上である、[5]に記載のエポキシ樹脂組成物。
[7] 前記ガラス転移点が190℃以上である、[5]に記載のエポキシ樹脂組成物。
[8] 前記エポキシ樹脂組成物の、21℃で保存した時のポットライフが4週間以上である、[1]~[7]のいずれか1つに記載のエポキシ樹脂組成物。
[9] 前記エポキシ樹脂組成物の、示差走査熱量測定による反応発熱の半値幅が18℃以下である、[1]~[8]のいずれか1つに記載のエポキシ樹脂組成物。
[10] 前記エポキシ樹脂組成物を150℃で30分間加熱して得られる硬化物の、示差走査熱量測定による硬化度が94%以上である、[1]~[9]のいずれか1つに記載のエポキシ樹脂組成物。
[11] 繊維強化複合材料用プリプレグに用いられる、[1]~[10]のいずれか1つに記載のエポキシ樹脂組成物。
[12] [1]~[11]のいずれか1つに記載のエポキシ樹脂組成物、および強化繊維を含む、繊維強化複合材料用プリプレグ。
[13] [12]に記載の繊維強化複合材料用プリプレグを硬化して得られる、繊維強化複合材料。
[2] The epoxy resin composition according to [1], including a reaction product of an epoxy resin and an amine compound having at least one sulfur atom in the molecule as the component (B).
[3] The content of the component (A) is 25 to 90% by mass with respect to the total mass of all epoxy resins contained in the epoxy resin composition, and the content of the component (B) is 10 to The epoxy resin composition according to [1] or [2], which is 75% by mass.
[4] The epoxy resin composition according to any one of [1] to [3], which contains 2-phenyl-4,5-dihydroxymethylimidazole as the component (C).
[5] Any one of [1] to [4], wherein a cured product obtained by heating the epoxy resin composition at 150 ° C. for 30 minutes has a glass transition point of 180 ° C. or higher by dynamic viscoelasticity measurement. The epoxy resin composition described in 1.
[6] The epoxy resin composition according to [5], wherein the glass transition point is 185 ° C. or higher.
[7] The epoxy resin composition according to [5], wherein the glass transition point is 190 ° C. or higher.
[8] The epoxy resin composition according to any one of [1] to [7], wherein the epoxy resin composition has a pot life of 4 weeks or more when stored at 21 ° C.
[9] The epoxy resin composition according to any one of [1] to [8], wherein the epoxy resin composition has a half-value width of reaction exotherm by differential scanning calorimetry of 18 ° C. or less.
[10] In any one of [1] to [9], a cured product obtained by heating the epoxy resin composition at 150 ° C. for 30 minutes has a curing degree of 94% or more by differential scanning calorimetry. The epoxy resin composition as described.
[11] The epoxy resin composition according to any one of [1] to [10], which is used for a prepreg for a fiber-reinforced composite material.
[12] A prepreg for a fiber-reinforced composite material, comprising the epoxy resin composition according to any one of [1] to [11] and a reinforcing fiber.
[13] A fiber-reinforced composite material obtained by curing the prepreg for fiber-reinforced composite material according to [12].
 本発明によれば、低温・高速硬化性を有するにもかかわらずポットライフが長く、しかも硬化物の耐熱性および機械特性にも優れるエポキシ樹脂組成物、前記エポキシ樹脂組成物を含む繊維強化複合材料用プリプレグ、および前記繊維強化複合材料用プリプレグから得られる繊維強化複合材料を提供できる。 According to the present invention, an epoxy resin composition having a long pot life and excellent in heat resistance and mechanical properties of a cured product despite having low temperature and high-speed curability, and a fiber-reinforced composite material containing the epoxy resin composition And a fiber reinforced composite material obtained from the prepreg for fiber reinforced composite material.
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「ポットライフ」とは、エポキシ樹脂組成物における低温領域における粘度安定性を維持できる期間が長いことを意味する。具体的には、示差走査熱量計(例えば、ティー・エイ・インスツルメント社製、「Q100」)を用いてエポキシ樹脂組成物のガラス転移点を測定し、これを初期ガラス転移点とする。次いで、エポキシ樹脂組成物を21℃、50RH%の環境下で保管し、示差走査熱量計(例えば、ティー・エイ・インスツルメント社製、「Q100」)を用いて1週間に1回の頻度でエポキシ樹脂組成物のガラス転移点を測定する。ガラス転移点が初期ガラス転移点+10℃を超えない範囲で維持される期間を「ポットライフ」とする。
 「シェルフライフ」とは、プリプレグにおける低温領域におけるタックやドレープが安定化する特性を意味する。
 「エポキシ樹脂組成物の30℃における粘度」は、粘弾性測定装置を用い、パラレルプレートの直径:25mm、プレートギャップ:0.5mm、角速度:10ラジアン/秒、ストレス:300Pa、温度:30℃の条件で測定した粘度である。
 「エポキシ樹脂組成物の反応発熱の半値幅」とは、示差走査熱量計を用いて測定された反応発熱ピークの高さの半分となる位置における、ピークのX軸方向の幅(℃)を意味する。
 「硬化物の硬化度」は、エポキシ樹脂組成物を150℃で30分間加熱して得られた硬化物から1~10mgの樹脂片を採取し、示差走査熱量計を用いて、樹脂片を10℃/分の昇温レートにて300℃まで昇温して残存発熱量を測定し、測定された発熱量から下記式(I)によって求めた硬化度である。
 硬化度[%]=(硬化前樹脂の総発熱量[J/g]-残存発熱量[J/g])/硬化前樹脂の総発熱量[J/g]×100 ・・・(I)
 「硬化物のガラス転移点」は、硬化物から長さ:55mm、幅:12.7mm、厚さ:2mmの試験片を切り出し、動的粘弾性測定装置を用い、ASTMD7028に従い、周波数:1Hz、昇温レート:5℃/分の条件で曲げモードでの貯蔵弾性率E’を測定し、logE’を温度に対してプロットし、logE’の転移する前の平坦領域の接線とlogE’が転移する領域の変曲点における接線との交点の温度である。
The following definitions of terms apply throughout this specification and the claims.
The “pot life” means that the epoxy resin composition has a long period during which viscosity stability in a low temperature region can be maintained. Specifically, the glass transition point of the epoxy resin composition is measured using a differential scanning calorimeter (for example, “Q100” manufactured by TA Instruments Inc.), and this is set as the initial glass transition point. Subsequently, the epoxy resin composition is stored in an environment of 21 ° C. and 50 RH%, and once a week using a differential scanning calorimeter (for example, “Q100” manufactured by TA Instruments Inc.). To measure the glass transition point of the epoxy resin composition. A period during which the glass transition point is maintained within a range not exceeding the initial glass transition point + 10 ° C. is defined as “pot life”.
“Shelf life” means a characteristic that tack and drape in a low temperature region of a prepreg are stabilized.
“Viscosity of epoxy resin composition at 30 ° C.” was measured using a viscoelasticity measuring device, parallel plate diameter: 25 mm, plate gap: 0.5 mm, angular velocity: 10 radians / second, stress: 300 Pa, temperature: 30 ° C. Viscosity measured under conditions.
The “half-value width of reaction exotherm of epoxy resin composition” means the width (° C.) of the peak in the X-axis direction at a position that is half the height of the reaction exotherm peak measured using a differential scanning calorimeter. To do.
“The degree of cure of the cured product” is obtained by collecting 1 to 10 mg of a resin piece from a cured product obtained by heating the epoxy resin composition at 150 ° C. for 30 minutes, and using a differential scanning calorimeter, It is the degree of cure determined by the following formula (I) from the measured calorific value by raising the temperature to 300 ° C. at a temperature rise rate of ° C / min and measuring the residual calorific value.
Curing degree [%] = (Total calorific value of resin before curing [J / g] −Residual calorific value [J / g]) / Total calorific value of resin before curing [J / g] × 100 (I)
“Glass transition point of cured product” is a test piece of length: 55 mm, width: 12.7 mm, thickness: 2 mm cut out from the cured product, using a dynamic viscoelasticity measuring device, according to ASTM D7028, frequency: 1 Hz, Temperature rising rate: Measure storage elastic modulus E ′ in bending mode at 5 ° C./min, plot log E ′ against temperature, and tangent to flat region before log E ′ transition and log E ′ transition It is the temperature of the intersection with the tangent at the inflection point of the area to be.
<エポキシ樹脂組成物>
 本発明のエポキシ樹脂組成物は、分子内に少なくとも3つのグリシジル基を有するエポキシ樹脂(A)(以下、「(A)成分」ともいう。)、分子内に少なくとも1つの硫黄原子を有するエポキシ樹脂(B)(以下、「(B)成分」ともいう。)、およびイミダゾール化合物(C)(以下、「(C)成分」ともいう。)を含む。
 本発明のエポキシ樹脂組成物は、本発明の効果を損なわない範囲内で必要に応じて、(A)成分、(B)成分、および(C)成分以外の他の成分を含んでもよい。他の成分としては、(A)成分および(B)成分以外のエポキシ樹脂(D)(以下、「(D)成分」ともいう。)、硬化剤(E)(以下、「(E)成分」ともいう。)、任意成分(F)(以下、「(F)成分」ともいう。)などが挙げられる。
<Epoxy resin composition>
The epoxy resin composition of the present invention includes an epoxy resin (A) having at least three glycidyl groups in the molecule (hereinafter also referred to as “component (A)”), and an epoxy resin having at least one sulfur atom in the molecule. (B) (hereinafter also referred to as “component (B)”) and imidazole compound (C) (hereinafter also referred to as “component (C)”).
The epoxy resin composition of the present invention may contain components other than the component (A), the component (B), and the component (C) as necessary within the range not impairing the effects of the present invention. As other components, epoxy resin (D) (hereinafter also referred to as “(D) component”) other than components (A) and (B), curing agent (E) (hereinafter referred to as “(E) component”) And optional component (F) (hereinafter also referred to as “component (F)”).
((A)成分)
 (A)成分は、分子内に少なくとも3つのグリシジル基を有するエポキシ樹脂である。
 (A)成分は、エポキシ樹脂組成物の硬化物に必要な耐熱性を付与する成分である。
((A) component)
The component (A) is an epoxy resin having at least three glycidyl groups in the molecule.
(A) A component is a component which provides the heat resistance required for the hardened | cured material of an epoxy resin composition.
 (A)成分としては、例えば、テトラグリシジルアミン型エポキシ樹脂、トリグリシジルアミノフェノール型エポキシ樹脂、トリグリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多官能ノボラック型エポキシ樹脂などが挙げられる。
 これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
As the component (A), for example, tetraglycidylamine type epoxy resin, triglycidylaminophenol type epoxy resin, triglycidyl ether type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, polyfunctional novolak type epoxy resin, etc. Is mentioned.
These may be used individually by 1 type and may use 2 or more types together.
 (A)成分の市販品としては、例えば、ハンツマン・アドバンスト・マテリアルズ社製のTactix(登録商標)742(トリス(ヒドロキシフェニル)メタントリグリシジルエーテル)、Araldite(登録商標)MY720、MY721、MY9663、MY9634、MY9655、MY0500、MY0510、MY0600;三菱化学社製のjER(登録商標)1032H60(多官能ノボラック型エポキシ樹脂)jER(登録商標)604、630;住友化学工業社製のスミエポキシ(登録商標)ELM-434、ELM-100などが挙げられる。 Examples of commercially available products of component (A) include Tactix (registered trademark) 742 (tris (hydroxyphenyl) methane triglycidyl ether), Araldite (registered trademark) MY720, MY721, MY9663, manufactured by Huntsman Advanced Materials. MY9634, MY9655, MY0500, MY0510, MY0600; jER (registered trademark) 1032H60 (polyfunctional novolak type epoxy resin) manufactured by Mitsubishi Chemical Corporation jER (registered trademark) 604, 630; Sumiepoxy (registered trademark) ELM manufactured by Sumitomo Chemical Co., Ltd. -434, ELM-100, and the like.
((B)成分)
 (B)成分は、分子内に少なくとも1つの硫黄原子を有するエポキシ樹脂である。なお、(A)成分に該当するエポキシ樹脂は、(B)成分には分類されないものとする。
 (B)成分は、硬化物に優れた耐熱性を付与する成分であり、例えば、ビスフェノールS型エポキシ樹脂や、チオ骨格を有するエポキシ樹脂を挙げることができる。チオ骨格としては、-S-、-SO-等が挙げられる。
 また、(B)成分としては、分子内に少なくとも1つの硫黄原子を有するエポキシ樹脂誘導体を使用することができ、例えば、エポキシ樹脂と分子内に少なくとも1つの硫黄原子を有するアミン化合物との反応生成物を使用することができる。(B)成分の使用によって、エポキシ樹脂組成物の150℃以下での硬化性を向上させることができるとともに、このエポキシ樹脂組成物にプリプレグ用として必要な粘度を付与させることができる。
((B) component)
The component (B) is an epoxy resin having at least one sulfur atom in the molecule. Note that the epoxy resin corresponding to the component (A) is not classified as the component (B).
The component (B) is a component that imparts excellent heat resistance to the cured product, and examples thereof include a bisphenol S-type epoxy resin and an epoxy resin having a thio skeleton. Examples of the thio skeleton include —S— and —SO 2 —.
In addition, as the component (B), an epoxy resin derivative having at least one sulfur atom in the molecule can be used. For example, a reaction product of an epoxy resin and an amine compound having at least one sulfur atom in the molecule. Things can be used. By using the component (B), it is possible to improve the curability of the epoxy resin composition at 150 ° C. or lower and to impart a viscosity necessary for prepreg to the epoxy resin composition.
 上記の反応生成物の原料であるエポキシ樹脂としては、例えば、トリグリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多官能ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙げられる。
 これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
Examples of the epoxy resin that is a raw material for the reaction product include, for example, triglycidyl ether type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, polyfunctional novolac type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene. Type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol aralkyl type epoxy resin, naphthalene type epoxy resin and the like.
These may be used individually by 1 type and may use 2 or more types together.
 上記の反応生成物の原料であるアミン化合物としては、分子内に少なくとも1つの硫黄原子を有していれば特に限定されないが、例えば4,4’-ジアミノジフェニルスルフォン、3,3’-ジアミノジフェニルスルフォン、3,4’-ジアミノジフェニルスルフォンなどが挙げられる。
 これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
The amine compound that is a raw material of the reaction product is not particularly limited as long as it has at least one sulfur atom in the molecule. For example, 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenyl, and the like. Examples include sulfone and 3,4′-diaminodiphenyl sulfone.
These may be used individually by 1 type and may use 2 or more types together.
 (B)成分としては、強靱性、可とう性、耐熱性に優れる観点から、ビスフェノールA型エポキシ樹脂と4,4’-ジアミノジフェニルスルフォンとの反応物が好ましく、その中でも特に、ビスフェノールAジグリシジルエーテルと4,4’-ジアミノジフェニルスルフォンとの反応物がより好ましい。
 上記の(B)成分は、1種または2種以上を適宜選択して使用することができる。
The component (B) is preferably a reaction product of bisphenol A type epoxy resin and 4,4′-diaminodiphenyl sulfone from the viewpoint of excellent toughness, flexibility, and heat resistance, and among them, bisphenol A diglycidyl is particularly preferable. A reaction product of ether and 4,4′-diaminodiphenyl sulfone is more preferable.
The component (B) can be used by appropriately selecting one type or two or more types.
((C)成分)
 (C)成分は、イミダゾール化合物である。イミダゾール化合物は、その構造の中にイミダゾール環を有するものである。
 (C)成分は、エポキシ樹脂の硬化剤、硬化触媒であり、室温でのポットライフに優れ、且つ硬化物に高耐熱性を与える成分である。
((C) component)
(C) A component is an imidazole compound. An imidazole compound has an imidazole ring in its structure.
Component (C) is an epoxy resin curing agent and curing catalyst, and is a component that excels in pot life at room temperature and imparts high heat resistance to the cured product.
 (C)成分は、下記式(1)で表される2-フェニル-4,5-ジヒドロキシメチルイミダゾール(以下、「化合物(1)」ともいう。)、および下記式(2)で表される2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(以下、「化合物(2)」ともいう。)の少なくとも一方を含む。(C)成分が化合物(1)および化合物(2)の少なくとも一方を含むことで、エポキシ樹脂組成物のポットライフが長くなり、硬化物の耐熱性が高まる。 The component (C) is represented by 2-phenyl-4,5-dihydroxymethylimidazole (hereinafter also referred to as “compound (1)”) represented by the following formula (1), and the following formula (2). It contains at least one of 2-phenyl-4-methyl-5-hydroxymethylimidazole (hereinafter also referred to as “compound (2)”). When the component (C) contains at least one of the compound (1) and the compound (2), the pot life of the epoxy resin composition is increased, and the heat resistance of the cured product is increased.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (C)成分として、上述した化合物(1)や化合物(2)に加えて、2,4-ジアミノ-6-[2’-メチルイミダゾール-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾール-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、マイクロカプセル化イミダゾールなどを併用してもよい。
 これらは1種を単独で用いてもよいし、2種以上を併用してもよいが、化合物(1)を単独で使用するのが特に好ましい。
As component (C), in addition to the above-mentioned compound (1) and compound (2), 2,4-diamino-6- [2′-methylimidazole- (1 ′)]-ethyl-s-triazine, 2, 4-Diamino-6- [2′-methylimidazole- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct, microencapsulated imidazole and the like may be used in combination.
These may be used individually by 1 type, and may use 2 or more types together, It is especially preferable to use a compound (1) independently.
 化合物(1)の市販品としては、例えば、四国化成工業社製の2PHZ-PWなどが挙げられる。
 化合物(2)の市販品としては、例えば、四国化成工業社製の2P4MHZ-PWなどが挙げられる。
 化合物(1)、化合物(2)以外の(C)成分の市販品としては、例えば、四国化成工業社製の2MHZ-PW、2MZA-PW、2MA-OK-PW;旭化成イーマテリアルズ社製のHX3742などが挙げられる。
Examples of the commercially available compound (1) include 2PHZ-PW manufactured by Shikoku Kasei Kogyo Co., Ltd.
Examples of the commercially available compound (2) include 2P4MHZ-PW manufactured by Shikoku Kasei Kogyo Co., Ltd.
Examples of commercially available products of component (C) other than compound (1) and compound (2) include 2MHZ-PW, 2MZA-PW, 2MA-OK-PW manufactured by Shikoku Kasei Kogyo Co., Ltd .; manufactured by Asahi Kasei E-Materials HX3742 etc. are mentioned.
((D)成分)
 (D)成分は、エポキシ樹脂(A)および(B)成分以外のエポキシ樹脂(他のエポキシ樹脂)である。
 (D)成分は、エポキシ樹脂組成物の粘度、プリプレグにした際のタック、ドレープ性等を調整する成分である。
((D) component)
The component (D) is an epoxy resin (other epoxy resin) other than the epoxy resin (A) and the component (B).
The component (D) is a component that adjusts the viscosity of the epoxy resin composition, tack when formed into a prepreg, drapeability, and the like.
 (D)成分としては、例えば、(B)成分の原料であるエポキシ樹脂として先に例示したものなどが挙げられる。特に、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、単官能タイプのエポキシ樹脂などが好ましい。
 これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
As (D) component, what was illustrated previously as an epoxy resin which is a raw material of (B) component, etc. are mentioned, for example. In particular, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, monofunctional type epoxy resin, and the like are preferable.
These may be used individually by 1 type and may use 2 or more types together.
((E)成分)
 (E)成分は、エポキシ樹脂の硬化剤である。なお、(C)成分に該当する化合物は(E)成分には分類されないものとする。
 (E)成分としては、保存安定性、適度な反応性、高い靭性を持つ硬化物を得られることなどから、ジシアンジアミドが好適に用いられる。
((E) component)
(E) A component is a hardening | curing agent of an epoxy resin. In addition, the compound applicable to (C) component shall not be classified into (E) component.
As the component (E), dicyandiamide is preferably used because a cured product having storage stability, moderate reactivity, and high toughness can be obtained.
 ジシアンジアミドの市販品としては、例えば、三菱化学社製のDICY15、DICY7;AlzChem社製DYHARD100M、100Sなどが挙げられる。 Examples of commercially available dicyandiamide include DICY15 and DICY7 manufactured by Mitsubishi Chemical Corporation; DYHARD100M and 100S manufactured by AlzChem.
((F)成分)
 (F)成分は、任意成分である。
 (F)成分としては、例えば、熱可塑性樹脂や公知の添加剤(充填材、希釈剤、溶剤、顔料、可塑剤、酸化防止剤、安定化剤等)などが挙げられる。
((F) component)
(F) A component is an arbitrary component.
Examples of the component (F) include thermoplastic resins and known additives (fillers, diluents, solvents, pigments, plasticizers, antioxidants, stabilizers, and the like).
 熱可塑性樹脂は、エポキシ樹脂組成物の硬化物に高い靱性を付与する他、エポキシ樹脂組成物のべたつきを抑えて、プリプレグのタックを適正レベルに調整したり、高温時の樹脂フローを抑制したりする効果を有する。
 熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルホルマール、ポリエーテルスルホンなどが挙げられる。
The thermoplastic resin gives high toughness to the cured product of the epoxy resin composition, suppresses stickiness of the epoxy resin composition, adjusts the prepreg tack to an appropriate level, and suppresses resin flow at high temperatures. Has the effect of
Examples of the thermoplastic resin include phenoxy resin, polyvinyl formal, and polyethersulfone.
 顔料としては、例えば、カーボンブラックなどが挙げられる。
 カーボンブラックは、エポキシ樹脂を黒色に着色し、後述する繊維強化複合材料を成形した際の樹脂の色目を隠し良好な外観を付与する効果を有する。
 イミダゾールの安定化剤としては、例えば、エポキシ-フェノール-ホウ酸エステル化合物などが挙げられる。
Examples of the pigment include carbon black.
Carbon black has an effect of coloring the epoxy resin black and concealing the color of the resin when a fiber-reinforced composite material described later is formed, thereby giving a good appearance.
Examples of imidazole stabilizers include epoxy-phenol-borate compounds.
(組成)
 (A)成分の含有量は、エポキシ樹脂組成物に含まれる全てのエポキシ樹脂の総質量に対して(すなわち、(A)成分と(B)成分と(D)成分との合計100質量%中)、25~90質量%が好ましく、30~85質量%がより好ましい。(A)成分の含有量が25質量%以上であれば、エポキシ樹脂組成物の硬化物の耐熱性が高まる。一方、(A)成分の含有量が90質量%以下であれば、エポキシ樹脂組成物の150℃での反応性を良好に維持できる。
(composition)
The content of component (A) is based on the total mass of all epoxy resins contained in the epoxy resin composition (that is, in a total of 100% by mass of component (A), component (B), and component (D)). ), Preferably from 25 to 90 mass%, more preferably from 30 to 85 mass%. If content of (A) component is 25 mass% or more, the heat resistance of the hardened | cured material of an epoxy resin composition will increase. On the other hand, if the content of the component (A) is 90% by mass or less, the reactivity of the epoxy resin composition at 150 ° C. can be favorably maintained.
 (B)成分の含有量は、エポキシ樹脂組成物に含まれる全てのエポキシ樹脂の総質量に対して(すなわち、(A)成分と(B)成分と(D)成分との合計100質量%中)、10~75質量%が好ましく、15~70質量%がより好ましい。(B)成分の含有量が10質量%以上であれば、エポキシ樹脂組成物の150℃での反応性を十分に保つことができる。一方、(B)成分の含有量が75質量%以下であれば、エポキシ樹脂組成物の耐熱性を良好に維持できる。 The content of component (B) is based on the total mass of all epoxy resins contained in the epoxy resin composition (that is, in a total of 100% by mass of component (A), component (B), and component (D)). ) 10 to 75% by mass is preferable, and 15 to 70% by mass is more preferable. If content of (B) component is 10 mass% or more, the reactivity at 150 degreeC of an epoxy resin composition can fully be maintained. On the other hand, if content of (B) component is 75 mass% or less, the heat resistance of an epoxy resin composition can be maintained favorable.
 (C)成分の含有量は、エポキシ樹脂組成物に含まれる全てのエポキシ樹脂(すなわち、(A)成分と(B)成分と(D)成分との合計)100質量部に対して、3~10質量部が好ましく、3.5~7質量部がより好ましい。(C)成分の含有量が3質量部以上であれば、エポキシ樹脂組成物の反応性、硬化物への耐熱性付与が十分となる。一方、(C)成分の含有量が10質量部以下であれば、エポキシ樹脂組成物の硬化物の靱性をより良好に維持できる。 The content of the component (C) is 3 to 100 parts by mass with respect to 100 parts by mass of all the epoxy resins contained in the epoxy resin composition (that is, the sum of the components (A), (B), and (D)). 10 parts by mass is preferable, and 3.5 to 7 parts by mass is more preferable. If content of (C) component is 3 mass parts or more, the reactivity of an epoxy resin composition and the heat resistance provision to hardened | cured material will become enough. On the other hand, if content of (C) component is 10 mass parts or less, the toughness of the hardened | cured material of an epoxy resin composition can be maintained more favorably.
 (D)成分の含有量は、エポキシ樹脂組成物に含まれる全てのエポキシ樹脂の総質量に対して(すなわち、(A)成分と(B)成分と(D)成分との合計100質量%中)、0~15質量%が好ましく、0~10質量%がより好ましい。(D)成分の含有量が15質量%以下であれば、エポキシ樹脂組成物の硬化物に十分な耐熱性を与えることができる。 The content of component (D) is based on the total mass of all epoxy resins contained in the epoxy resin composition (that is, in a total of 100% by mass of component (A), component (B), and component (D)). ), Preferably from 0 to 15 mass%, more preferably from 0 to 10 mass%. If content of (D) component is 15 mass% or less, sufficient heat resistance can be given to the hardened | cured material of an epoxy resin composition.
 (E)成分の含有量は、エポキシ樹脂組成物に含まれる全てのエポキシ樹脂(すなわち、(A)成分と(B)成分と(D)成分との合計)100質量部に対して、4~9質量部が好ましく、5~7質量部がより好ましい。(E)成分の含有量が4質量部以上であれば、エポキシ樹脂を十分に硬化することができる。一方、(E)成分の含有量が9質量部以下であれば、未反応の硬化剤と水分の接触による硬化物の白化現象を抑制することができる。 The content of the component (E) is 4 to 4 parts by mass with respect to 100 parts by mass of all the epoxy resins contained in the epoxy resin composition (that is, the sum of the components (A), (B), and (D)). 9 parts by mass is preferable, and 5 to 7 parts by mass is more preferable. If content of (E) component is 4 mass parts or more, an epoxy resin can fully be hardened. On the other hand, if content of (E) component is 9 mass parts or less, the whitening phenomenon of the hardened | cured material by the contact of an unreacted hardening | curing agent and a water | moisture content can be suppressed.
(粘度)
 エポキシ樹脂組成物の30℃における粘度は、10,000Pa・s以上が好ましく、15,000~100,000Pa・sがより好ましく、20,000~70,000Pa・sがさらに好ましい。エポキシ樹脂組成物の30℃における粘度が10,000Pa・s以上であれば、プリプレグとして十分なタックを与えることができる。エポキシ樹脂組成物の30℃における粘度が100,000Pa・s以下であれば、プリプレグとして十分なドレープ性を与えることができる。
(viscosity)
The viscosity at 30 ° C. of the epoxy resin composition is preferably 10,000 Pa · s or more, more preferably 15,000 to 100,000 Pa · s, and further preferably 20,000 to 70,000 Pa · s. If the viscosity at 30 ° C. of the epoxy resin composition is 10,000 Pa · s or more, sufficient tack as a prepreg can be provided. If the viscosity at 30 ° C. of the epoxy resin composition is 100,000 Pa · s or less, sufficient drapability as a prepreg can be provided.
(反応発熱の半値幅)
 エポキシ樹脂組成物の、示差走査熱量測定による反応発熱(Heat Flow)の半値幅は18℃以下が好ましく、3~12℃がより好ましい。反応発熱の半値幅が18℃以下であれば、エポキシ樹脂組成物の速硬化性、硬化物の耐熱性により優れる。
(Half-value width of reaction exotherm)
The half width of the reaction exotherm (Heat Flow) by differential scanning calorimetry of the epoxy resin composition is preferably 18 ° C. or less, more preferably 3 to 12 ° C. When the half-value width of the reaction exotherm is 18 ° C. or lower, the epoxy resin composition is more excellent in rapid curability and cured product heat resistance.
(硬化物)
 エポキシ樹脂組成物を150℃で30分間加熱して得られる硬化物の、動的粘弾性測定によるガラス転移点は、180℃以上が好ましく、185℃以上がより好ましく、190℃以上がさらに好ましい。具体的には、180~240℃が好ましく、185~230℃がより好ましい。硬化物のガラス転移点が180℃以上であれば、航空機用途、自動車用途、自転車用途として十分な耐熱性を有する。
(Cured product)
The glass transition point by dynamic viscoelasticity measurement of a cured product obtained by heating the epoxy resin composition at 150 ° C. for 30 minutes is preferably 180 ° C. or higher, more preferably 185 ° C. or higher, and further preferably 190 ° C. or higher. Specifically, 180 to 240 ° C. is preferable, and 185 to 230 ° C. is more preferable. If the glass transition point of hardened | cured material is 180 degreeC or more, it has sufficient heat resistance for an aircraft use, a motor vehicle use, and a bicycle use.
 エポキシ樹脂組成物を150℃で30分間加熱して得られる硬化物の、示差走査熱量測定による硬化度は、94%以上が好ましく、95~100%がより好ましい。硬化度が94%以上であれば、エポキシ樹脂組成物を含むプリプレグが、150℃の比較的低温、かつ比較的短時間の加熱によって、脱型できる程度の硬さに硬化する性質(一次硬化性)を十分に有する。 The degree of cure by differential scanning calorimetry of the cured product obtained by heating the epoxy resin composition at 150 ° C. for 30 minutes is preferably 94% or more, and more preferably 95 to 100%. If the degree of cure is 94% or more, the prepreg containing the epoxy resin composition is cured to a hardness that can be removed by heating at a relatively low temperature of 150 ° C. for a relatively short time (primary curability). ).
(作用効果)
 以上説明した本発明のエポキシ樹脂組成物にあっては、上述した特定の(A)成分および(B)成分と、(C)成分とを含むので、低温・高速硬化性を有する。具体的には、エポキシ樹脂組成物を含むプリプレグが、150℃、30分以内での加熱によって、脱型できる程度の硬さに硬化する性質(一次硬化性)を有する。
 また、本発明のエポキシ樹脂組成物は、ポットライフが長い。具体的には、エポキシ樹脂組成物が、21℃で4週間以上のポットライフを有する。より具体的には、21℃で4~24週間のポットライフを有することが好ましい。
 また、本発明のエポキシ樹脂組成物は、硬化物の耐熱性および機械特性に優れる。耐熱性については例えば、150℃、30分間のポストキュアによって硬化物が180℃以上のガラス転移点を有することもできる。
(Function and effect)
In the epoxy resin composition of this invention demonstrated above, since it contains the specific (A) component and (B) component mentioned above, and (C) component, it has low temperature and high-speed curability. Specifically, the prepreg containing the epoxy resin composition has a property (primary curability) that cures to a degree that can be removed by heating at 150 ° C. within 30 minutes.
Moreover, the epoxy resin composition of this invention has a long pot life. Specifically, the epoxy resin composition has a pot life of 4 weeks or more at 21 ° C. More specifically, it preferably has a pot life of 4 to 24 weeks at 21 ° C.
Moreover, the epoxy resin composition of this invention is excellent in the heat resistance and mechanical characteristic of hardened | cured material. As for heat resistance, for example, the cured product can have a glass transition point of 180 ° C. or higher by post-curing at 150 ° C. for 30 minutes.
<繊維強化複合材料用プリプレグ>
 本発明の繊維強化複合材料用プリプレグは、本発明のエポキシ樹脂組成物と、強化繊維とを含む。
<Prepreg for fiber reinforced composite material>
The prepreg for fiber-reinforced composite material of the present invention includes the epoxy resin composition of the present invention and reinforcing fibers.
 強化繊維としては、例えば、炭素繊維、アラミド繊維、ナイロン繊維、高強度ポリエステル繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維などが挙げられる。これらの中でも、難燃性に優れる点から、炭素繊維、アラミド繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維が好ましく、比強度および比弾性に優れる点から、炭素繊維が特に好ましい。
 強化繊維の形態としては、一方向に引き揃えられたもの、織物、ノンクリンプファブリック等が挙げられる。
Examples of the reinforcing fiber include carbon fiber, aramid fiber, nylon fiber, high-strength polyester fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber. Among these, carbon fiber, aramid fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber are preferable from the viewpoint of excellent flame retardancy, and carbon fiber is particularly preferable from the viewpoint of excellent specific strength and specific elasticity.
Examples of the form of the reinforcing fiber include those that are aligned in one direction, woven fabric, non-crimp fabric, and the like.
 エポキシ樹脂組成物の含有率は、繊維強化複合材料用プリプレグの総質量に対し、15~55質量%が好ましく、20~50質量%がより好ましい。
 本発明の繊維強化複合材料用プリプレグは、本発明のエポキシ樹脂組成物と強化繊維とを用いて、公知の方法等で製造することができる。なお、繊維強化複合材料用プリプレグの硬化温度(一次硬化温度)は140~160℃である。
The content of the epoxy resin composition is preferably 15 to 55% by mass and more preferably 20 to 50% by mass with respect to the total mass of the prepreg for fiber-reinforced composite material.
The prepreg for fiber-reinforced composite material of the present invention can be produced by a known method using the epoxy resin composition of the present invention and reinforcing fibers. The curing temperature (primary curing temperature) of the prepreg for fiber reinforced composite material is 140 to 160 ° C.
 以上説明した本発明の繊維強化複合材料用プリプレグにあっては、本発明のエポキシ樹脂組成物を含んでいるので、比較的低温かつ短時間で硬化させても脱型できる程度の硬さに硬化する一次硬化性を有するにもかかわらずシェルフライフが長く、しかも成形後に得られる繊維強化複合材料の耐熱性および機械特性にも優れる。例えば、150℃、30分間の加熱によって、脱型できる程度の硬さに硬化する性質(一次硬化性)を有し、21℃で4週間以上のシェルフライフを有し、150℃、30分間のポストキュアによって硬化物(マトリックス樹脂)が180℃以上のガラス転移点を有することもできる。
 本発明の繊維強化複合材料用プリプレグは、従来のプリプレグに比べ、より低温領域で一次硬化でき、成形に要するエネルギーコスト、副資材コスト等を大幅に削減することができる。
Since the prepreg for fiber-reinforced composite material of the present invention described above contains the epoxy resin composition of the present invention, it is cured to a hardness that allows demolding even if cured at a relatively low temperature in a short time. In spite of having the primary curability, the shelf life is long, and the fiber-reinforced composite material obtained after molding is excellent in heat resistance and mechanical properties. For example, it has a property of curing to a degree that can be removed by heating at 150 ° C. for 30 minutes (primary curing property), has a shelf life of 4 weeks or more at 21 ° C., and has a shelf life of 150 ° C. for 30 minutes. The cured product (matrix resin) can have a glass transition point of 180 ° C. or higher by post-cure.
The prepreg for fiber-reinforced composite material of the present invention can be primarily cured in a lower temperature region than conventional prepregs, and can greatly reduce the energy cost, auxiliary material cost, and the like required for molding.
<繊維強化複合材料>
 本発明における繊維強化複合材料は、本発明の繊維強化複合材料用プリプレグを硬化して得られる。
 本発明における繊維強化複合材料は、本発明の繊維強化複合材料用プリプレグを用いて、公知の方法で製造することができる。例えば、所定の表面形状を有する下型と上型との間にプリプレグを挟み、加圧および加熱して所定の形状の硬化物を得る方法が挙げられる。加熱する温度としては、140~160℃が好ましい。
 本発明における繊維強化複合材料は、本発明の繊維強化複合材料用プリプレグを硬化してなるものであるため、耐熱性および機械特性に優れる。
<Fiber reinforced composite material>
The fiber-reinforced composite material in the present invention is obtained by curing the prepreg for fiber-reinforced composite material of the present invention.
The fiber reinforced composite material in the present invention can be produced by a known method using the prepreg for fiber reinforced composite material of the present invention. For example, there is a method in which a prepreg is sandwiched between a lower mold and an upper mold having a predetermined surface shape, and a cured product having a predetermined shape is obtained by applying pressure and heating. The heating temperature is preferably 140 to 160 ° C.
Since the fiber reinforced composite material in the present invention is formed by curing the prepreg for fiber reinforced composite material of the present invention, it is excellent in heat resistance and mechanical properties.
 本発明のエポキシ樹脂組成物は、(A)成分がトリス(ヒドロキシフェニル)メタントリグリシジルエーテル、テトラグリシジルジアミノジフェニルメタン、及びトリグリシジル-p-アミノフェノールからなる群から選択される少なくとも1種のエポキシ樹脂であり、(B)成分がビスフェノールAジグリシジルエーテルと4,4’-ジアミノジフェニルスルフォンとの反応生成物、及びビスフェノールSジグリシジルエーテルからなる群から選択される少なくとも1種のエポキシ樹脂であり、(C)成分が2-フェニル-4,5-ジヒドロキシメチルイミダゾール、及び2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールからなる群から選択される少なくとも1種であることが好ましい。 The epoxy resin composition of the present invention has at least one epoxy resin in which the component (A) is selected from the group consisting of tris (hydroxyphenyl) methane triglycidyl ether, tetraglycidyldiaminodiphenylmethane, and triglycidyl-p-aminophenol. And the component (B) is at least one epoxy resin selected from the group consisting of a reaction product of bisphenol A diglycidyl ether and 4,4′-diaminodiphenyl sulfone, and bisphenol S diglycidyl ether, The component (C) is preferably at least one selected from the group consisting of 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
<各成分>
((A)成分)
 (A)成分として、以下に示す化合物を用いた。
・A-1:トリス(ヒドロキシフェニル)メタントリグリシジルエーテル(ハンツマン・アドバンスト・マテリアルズ社製、商品名:Tactix(登録商標)742)。
・A-2:テトラグリシジルジアミノジフェニルメタン(三菱化学社製、商品名:jER(登録商標)604)。
・A-3:トリグリシジル-p-アミノフェノール(ハンツマン・アドバンスト・マテリアルズ社製、商品名:Araldite(登録商標)MY0510)。
<Each component>
((A) component)
As the component (A), the following compounds were used.
A-1: Tris (hydroxyphenyl) methane triglycidyl ether (manufactured by Huntsman Advanced Materials, trade name: Tactix (registered trademark) 742).
A-2: Tetraglycidyldiaminodiphenylmethane (manufactured by Mitsubishi Chemical Co., Ltd., trade name: jER (registered trademark) 604).
A-3: Triglycidyl-p-aminophenol (manufactured by Huntsman Advanced Materials, trade name: Araldite (registered trademark) MY0510).
((B)成分)
 (B)成分として、以下に示す化合物を用いた。
・B-1:ビスフェノールAジグリシジルエーテルと4,4’-ジアミノジフェニルスルフォン(和歌山精化工業社製、商品名:セイカキュアーS)とを100/9の質量比で室温にて混合した後に、150℃にて混合加熱して得た反応物(エポキシ当量266g/eq)。
・B-2:ビスフェノールSジグリシジルエーテル(DIC社製、商品名:EXA-1514)
((B) component)
As the component (B), the following compounds were used.
B-1: After mixing bisphenol A diglycidyl ether and 4,4′-diaminodiphenyl sulfone (manufactured by Wakayama Seika Kogyo Co., Ltd., trade name: Seika Cure S) at a mass ratio of 100/9 at room temperature, A reaction product obtained by mixing and heating at 150 ° C. (epoxy equivalent: 266 g / eq).
B-2: Bisphenol S diglycidyl ether (manufactured by DIC, trade name: EXA-1514)
((C)成分)
 (C)成分として、以下に示す化合物を用いた。
・C-1:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製、商品名:2PHZ―PW)。
・C-2:2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(四国化成工業社製、商品名:2P4MHZ-PW)。
・C-3:2,4-ジアミノ-6-[2’-メチルイミダゾール-(1’)]-エチル-s-トリアジン(四国化成工業社製、商品名:2MZA―PW)。
・C-4:2,4-ジアミノ-6-[2’-メチルイミダゾール-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物(四国化成工業社製、商品名:2MA-OK-PW)。
・C-5:マイクロカプセル化イミダゾール(旭化成イーマテリアルズ社製、商品名:HX3742)。
((C) component)
As the component (C), the following compounds were used.
C-1: 2-phenyl-4,5-dihydroxymethylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2PHZ-PW).
C-2: 2-phenyl-4-methyl-5-hydroxymethylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2P4MHZ-PW).
C-3: 2,4-diamino-6- [2′-methylimidazole- (1 ′)]-ethyl-s-triazine (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2MZA-PW).
C-4: 2,4-diamino-6- [2′-methylimidazole- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2MA-OK-PW) ).
C-5: Microencapsulated imidazole (manufactured by Asahi Kasei E-materials, trade name: HX3742).
((D)成分)
 (D)成分として、以下に示す化合物を用いた。
・D-1:ビスフェノールA型エポキシ樹脂(三菱化学社製、商品名:jER(登録商標)828)。
((D) component)
As the component (D), the following compounds were used.
D-1: bisphenol A type epoxy resin (trade name: jER (registered trademark) 828, manufactured by Mitsubishi Chemical Corporation).
((E)成分)
 (E)成分として、以下に示す化合物を用いた。
・E-1:ジシアンジアミド(三菱化学社製、商品名:DICY15)。
((E) component)
As the component (E), the following compounds were used.
E-1: Dicyandiamide (manufactured by Mitsubishi Chemical Corporation, trade name: DICY15).
((F)成分)
 (F)成分として、以下に示す化合物を用いた。
・F-1:ポリエーテルスルホン(BASF社製、商品名:UltrasonE2020P-SR)。
・F-2:カーボンブラック(大日精化工業社製、商品名:ET795)。
・F-3:エポキシ-フェノール-ホウ酸エステル化合物(四国化成工業社製、商品名:L-07N)。
((F) component)
As the component (F), the following compounds were used.
F-1: Polyethersulfone (manufactured by BASF, trade name: Ultrason E2020P-SR).
F-2: Carbon black (manufactured by Dainichi Seika Kogyo Co., Ltd., trade name: ET795)
F-3: Epoxy-phenol-borate ester compound (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: L-07N)
<測定・評価>
(樹脂板の作製)
 エポキシ樹脂組成物を、離型処理された2枚の4mm厚のガラス板の間に2mm厚のポリテトラフルオロエチレン(PTFE)製スペーサを介して注入し、150℃で30分間加熱して硬化樹脂板を得た。これを硬化度、曲げ特性およびガラス転移点の評価用の樹脂板とした。
<Measurement / Evaluation>
(Production of resin plate)
The epoxy resin composition is injected between two 4 mm-thick glass plates that have been subjected to mold release treatment through a 2 mm-thick polytetrafluoroethylene (PTFE) spacer and heated at 150 ° C. for 30 minutes to form a cured resin plate. Obtained. This was made into the resin board for evaluation of a hardening degree, a bending characteristic, and a glass transition point.
(硬化度の測定)
 硬化樹脂板から1~10mgの樹脂片を採取し、示差走査熱量計(ティー・エイ・インスツルメント社製、Q100)を用いて、樹脂片を10℃/分の昇温レートにて300℃まで昇温して残存発熱量を測定した。測定された発熱量から下記式(I)によって硬化度を求めた。
 硬化度[%]=(硬化前樹脂の総発熱量[J/g]-残存発熱量[J/g])/硬化前樹脂の総発熱量[J/g]×100 ・・・(I)
(Measurement of degree of cure)
A 1 to 10 mg piece of resin is collected from the cured resin plate, and the resin piece is 300 ° C. at a temperature rising rate of 10 ° C./min using a differential scanning calorimeter (Q100, Q100). The residual heating value was measured by raising the temperature to 1. The degree of cure was determined from the measured calorific value according to the following formula (I).
Curing degree [%] = (Total calorific value of resin before curing [J / g] −Residual calorific value [J / g]) / Total calorific value of resin before curing [J / g] × 100 (I)
(硬化発熱量の測定)
 直径50mmのアルミニウム製のカップにエポキシ樹脂組成物を10g秤量し、以下の条件にて熱風炉(楠本化成社製、「ETAC HT-310S」)で加熱して昇温DSCを測定し、総発熱量を求めた。
・昇温条件:室温から2℃/分で硬化温度(100℃)まで昇温
・硬化条件:100℃で2時間保持
・降温条件:硬化温度から50℃以下まで自然放冷
・DSC測定装置:Q-1000(TAインスツルメント社製)
・昇温速度:10℃/分
(Measurement of curing heat value)
10 g of epoxy resin composition was weighed in an aluminum cup with a diameter of 50 mm, heated in a hot stove (“ETAC HT-310S” manufactured by Enomoto Kasei Co., Ltd.) under the following conditions, and the temperature rise DSC was measured. The amount was determined.
・ Temperature rising condition: Temperature rising from room temperature to 2 ° C./min to curing temperature (100 ° C.) ・ Curing condition: Holding at 100 ° C. for 2 hours ・ Temperature lowering condition: Natural cooling from curing temperature to 50 ° C. or less Q-1000 (TA Instruments)
・ Temperature increase rate: 10 ° C / min
(反応発熱の半値幅の測定)
 示差走査熱量計(ティー・エイ・インスツルメント社製、Q100)を用いて発熱量を測定し、反応発熱ピークの高さの半分となる位置における、ピークのX軸方向の幅(℃)を反応発熱の半値幅として求めた。
(Measurement of half-value width of reaction exotherm)
The calorific value is measured using a differential scanning calorimeter (Q100, Q100), and the width of the peak in the X-axis direction (° C.) at a position that is half the height of the reaction exothermic peak. The half-value width of the reaction exotherm was obtained.
(曲げ特性の評価)
 硬化樹脂板から長さ:60mm、幅:8mm、厚さ:2mmの試験片を切り出した。3点曲げ治具(圧子、サポートとも3.2mmR、サポート間距離:試験片の厚さの16倍、クロスヘッドスピード:2mm/分)を設置した万能試験機(インストロン社製)を用い、曲げ特性(曲げ強度、曲げ弾性率および曲げ伸度)を測定した。
(Evaluation of bending properties)
A test piece having a length of 60 mm, a width of 8 mm, and a thickness of 2 mm was cut out from the cured resin plate. Using a universal testing machine (manufactured by Instron) equipped with a three-point bending jig (3.2 mmR for both indenter and support, distance between supports: 16 times the thickness of the test piece, crosshead speed: 2 mm / min) The bending properties (bending strength, bending elastic modulus and bending elongation) were measured.
(ガラス転移点の測定)
 硬化樹脂板から長さ:55mm、幅:12.7mm、厚さ:2mmの試験片を切り出した。動的粘弾性測定装置(ティー・エイ・インスツルメント社製、「DMA-Q800」)を用いて、ASTMD7028に従い、周波数:1Hz、昇温レート:5℃/分の条件で曲げモードでの貯蔵弾性率E’を測定した。logE’を温度に対してプロットし、logE’の転移する前の平坦領域の接線とlogE’が転移する領域の変曲点における接線との交点の温度をガラス転移点とした。
(Measurement of glass transition point)
A test piece having a length of 55 mm, a width of 12.7 mm, and a thickness of 2 mm was cut out from the cured resin plate. Using a dynamic viscoelasticity measuring device (manufactured by TA Instruments, "DMA-Q800"), according to ASTM D7028, storage in a bending mode at a frequency of 1 Hz and a heating rate of 5 ° C / min. The elastic modulus E ′ was measured. Log E ′ was plotted against temperature, and the temperature at the intersection of the tangent of the flat region before the transition of log E ′ and the tangent at the inflection point of the region of transition of log E ′ was taken as the glass transition point.
(ポットライフの評価)
 示差走査熱量計(ティー・エイ・インスツルメント社製、「Q100」)を用いてエポキシ樹脂組成物のガラス転移点を測定した。これを初期ガラス転移点とする。
 ついで、エポキシ樹脂組成物を21℃、50RH%の環境下で保管し、そこから1~10mgのサンプルを採取し、示差走査熱量計(ティー・エイ・インスツルメント社製、「Q100」)を用いて1週間に1回の頻度でエポキシ樹脂組成物のガラス転移点を測定し、ガラス転移点が初期ガラス転移点+10℃を超えた週をポットライフ切れと判断した。
(Evaluation of pot life)
The glass transition point of the epoxy resin composition was measured using a differential scanning calorimeter (manufactured by TA Instruments, "Q100"). This is the initial glass transition point.
Next, the epoxy resin composition is stored in an environment of 21 ° C. and 50 RH%, and a sample of 1 to 10 mg is taken therefrom, and a differential scanning calorimeter (manufactured by TA Instruments, “Q100”) is used. The glass transition point of the epoxy resin composition was measured once a week, and the week when the glass transition point exceeded the initial glass transition point + 10 ° C. was judged to be out of pot life.
<実施例1>
 (A)成分とF-1とを、表1の組成でガラスフラスコに計量し、140℃で溶解混合させ、マスターバッチを調製した。
 得られたマスターバッチと、(B)成分を表1の組成にて100℃で撹拌混合した。これを60℃に徐冷し、(C)成分と(D)成分と(E)成分と残りの(F)成分とを表1に示す量添加し、均一になるまで撹拌混合、その後真空脱泡し、エポキシ樹脂組成物を得た。
 得られたエポキシ樹脂組成物を用いて各測定・評価を行った。結果を表1に示す。
<Example 1>
Component (A) and F-1 were weighed into a glass flask with the composition shown in Table 1, and dissolved and mixed at 140 ° C. to prepare a master batch.
The obtained master batch and the component (B) were stirred and mixed at 100 ° C. with the composition shown in Table 1. This is slowly cooled to 60 ° C., and the components (C), (D), (E) and the remaining (F) are added in the amounts shown in Table 1, mixed with stirring until uniform, and then vacuum-released. Foaming was performed to obtain an epoxy resin composition.
Each measurement and evaluation was performed using the obtained epoxy resin composition. The results are shown in Table 1.
<実施例2~10>
 各成分の量を表1に示す量に変更した以外は、実施例1と同様にしてエポキシ樹脂組成物を調製し、各測定・評価を行った。結果を表1に示す。
<Examples 2 to 10>
Except having changed the quantity of each component into the quantity shown in Table 1, the epoxy resin composition was prepared like Example 1, and each measurement and evaluation were performed. The results are shown in Table 1.
<比較例1~3>
 各成分の量を表2に示す量に変更した以外は、実施例1と同様にしてエポキシ樹脂組成物を調製し、各測定・評価を行った。結果を表2に示す。
<Comparative Examples 1 to 3>
Except having changed the quantity of each component into the quantity shown in Table 2, the epoxy resin composition was prepared like Example 1, and each measurement and evaluation were performed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1の結果から明らかなように、各実施例で得られたエポキシ樹脂組成物は、低温・高速硬化性を有するにもかかわらずポットライフが長く、しかも硬化物の耐熱性および機械特性にも優れていた。 As is clear from the results in Table 1, the epoxy resin compositions obtained in each example have a long pot life despite having low temperature and high speed curability, and also have good heat resistance and mechanical properties of the cured product. It was excellent.
 一方、表2の結果から明らかなように、(C)成分として2,4-ジアミノ-6-[2’-メチルイミダゾール-(1’)]-エチル-s-トリアジンのみを用いた比較例1、2のエポキシ樹脂組成物は、21℃ポットライフが1週間未満であった。また、反応発熱の半値幅が22℃以上であった。
 (C)成分として2,4-ジアミノ-6-[2’-メチルイミダゾール-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物のみを用いた比較例3のエポキシ樹脂組成物は、ガラス転移点が176℃で低位であった。
On the other hand, as is clear from the results in Table 2, Comparative Example 1 using only 2,4-diamino-6- [2′-methylimidazole- (1 ′)]-ethyl-s-triazine as the component (C) The epoxy resin composition of No. 2 had a 21 ° C. pot life of less than 1 week. Moreover, the half value width of reaction exotherm was 22 degreeC or more.
The epoxy resin composition of Comparative Example 3 using only 2,4-diamino-6- [2′-methylimidazole- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct as the component (C) The transition point was low at 176 ° C.
 本発明のエポキシ樹脂組成物を用いて得られる繊維強化複合材料は、航空機部材、自動車部材、自転車部材、スポーツ用品部材、鉄道車両部材、船舶部材、建築部材、オイルライザ等に好適に用いられ、特に高度の耐熱性や強度特性が要求される航空機部材、自動車部材、自転車部材に好適に用いられる。 The fiber reinforced composite material obtained by using the epoxy resin composition of the present invention is suitably used for aircraft members, automobile members, bicycle members, sports equipment members, railway vehicle members, ship members, building members, oil risers, etc. In particular, it is suitably used for aircraft members, automobile members, and bicycle members that require high heat resistance and strength characteristics.

Claims (13)

  1.  分子内に少なくとも3つのグリシジル基を有するエポキシ樹脂(A)と、分子内に少なくとも1つの硫黄原子を有するエポキシ樹脂(B)と、下記式(1)で表される2-フェニル-4,5-ジヒドロキシメチルイミダゾール、および下記式(2)で表される2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールの少なくとも一方を含むイミダゾール化合物(C)とを含む、エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    An epoxy resin (A) having at least three glycidyl groups in the molecule, an epoxy resin (B) having at least one sulfur atom in the molecule, and 2-phenyl-4,5 represented by the following formula (1) An epoxy resin composition comprising dihydroxymethylimidazole and an imidazole compound (C) containing at least one of 2-phenyl-4-methyl-5-hydroxymethylimidazole represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000001
  2.  前記(B) 成分として、エポキシ樹脂と分子内に少なくとも1つの硫黄原子を有するアミン化合物との反応生成物を含む、請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, comprising a reaction product of the epoxy resin and an amine compound having at least one sulfur atom in the molecule as the (B) soot component.
  3.  前記エポキシ樹脂組成物に含まれる全てのエポキシ樹脂の総質量に対して、前記(A)成分の含有量が25~90質量%であり、前記(B)成分の含有量が10~75質量%である、請求項1または2に記載のエポキシ樹脂組成物。 The content of the component (A) is 25 to 90% by mass and the content of the component (B) is 10 to 75% by mass with respect to the total mass of all epoxy resins contained in the epoxy resin composition. The epoxy resin composition according to claim 1 or 2, wherein
  4.  前記(C)成分として、2-フェニル-4,5-ジヒドロキシメチルイミダゾールを含む、請求項1~3のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, comprising 2-phenyl-4,5-dihydroxymethylimidazole as the component (C).
  5.  前記エポキシ樹脂組成物を150℃で30分間加熱して得られる硬化物の、動的粘弾性測定によるガラス転移点が180℃以上である、請求項1~4のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy according to any one of claims 1 to 4, wherein a cured product obtained by heating the epoxy resin composition at 150 ° C for 30 minutes has a glass transition point of 180 ° C or higher by dynamic viscoelasticity measurement. Resin composition.
  6.  前記ガラス転移点が185℃以上である、請求項5に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 5, wherein the glass transition point is 185 ° C. or higher.
  7.  前記ガラス転移点が190℃以上である、請求項5に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 5, wherein the glass transition point is 190 ° C. or higher.
  8.  前記エポキシ樹脂組成物の、21℃で保存した時のポットライフが4週間以上である、請求項1~7のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 7, wherein a pot life of the epoxy resin composition when stored at 21 ° C is 4 weeks or more.
  9.  前記エポキシ樹脂組成物の、示差走査熱量測定による反応発熱の半値幅が18℃以下である、請求項1~8のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 8, wherein the epoxy resin composition has a half-value width of reaction exotherm by differential scanning calorimetry of 18 ° C or less.
  10.  前記エポキシ樹脂組成物を150℃で30分間加熱して得られる硬化物の、示差走査熱量測定による硬化度が94%以上である、請求項1~9のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 9, wherein the cured product obtained by heating the epoxy resin composition at 150 ° C for 30 minutes has a degree of cure of 94% or more by differential scanning calorimetry. object.
  11.  繊維強化複合材料用プリプレグに用いられる、請求項1~10のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 10, which is used for a prepreg for a fiber-reinforced composite material.
  12.  請求項1~11のいずれか一項に記載のエポキシ樹脂組成物、および強化繊維を含む、繊維強化複合材料用プリプレグ。 A prepreg for a fiber-reinforced composite material, comprising the epoxy resin composition according to any one of claims 1 to 11 and a reinforcing fiber.
  13.  請求項12に記載の繊維強化複合材料用プリプレグを硬化して得られる、繊維強化複合材料。 A fiber-reinforced composite material obtained by curing the prepreg for fiber-reinforced composite material according to claim 12.
PCT/JP2016/088876 2016-01-19 2016-12-27 Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material WO2017126307A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680078322.5A CN108473660B (en) 2016-01-19 2016-12-27 Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material
JP2017501412A JP6409951B2 (en) 2016-01-19 2016-12-27 Epoxy resin composition, prepreg for fiber reinforced composite material, and fiber reinforced composite material
US16/034,124 US10577455B2 (en) 2016-01-19 2018-07-12 Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016007708 2016-01-19
JP2016-007708 2016-01-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/034,124 Continuation US10577455B2 (en) 2016-01-19 2018-07-12 Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
WO2017126307A1 true WO2017126307A1 (en) 2017-07-27

Family

ID=59361618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088876 WO2017126307A1 (en) 2016-01-19 2016-12-27 Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material

Country Status (5)

Country Link
US (1) US10577455B2 (en)
JP (1) JP6409951B2 (en)
CN (1) CN108473660B (en)
TW (1) TWI647277B (en)
WO (1) WO2017126307A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167443A (en) * 2018-03-23 2019-10-03 三菱ケミカル株式会社 Epoxy resin composition and prepreg for fiber-reinforced composite material
WO2021025146A1 (en) * 2019-08-08 2021-02-11 住友ベークライト株式会社 Sealing resin composition and electronic part

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141904A (en) * 1987-11-30 1989-06-02 Taiyo Ink Seizo Kk Photosensitive thermosetting resin composition and formation of solder resist pattern
JPH0750473A (en) * 1991-09-21 1995-02-21 Taiyo Ink Mfg Ltd Formation of solder resist pattern
JP2000344864A (en) * 1999-06-09 2000-12-12 Sumitomo Bakelite Co Ltd Resin paste for semiconductor and semiconductor device sealed therewith
JP2005307169A (en) * 2004-03-22 2005-11-04 Hitachi Chem Co Ltd Filmy adhesive and production method of semiconductor device using this
JP2006206790A (en) * 2005-01-31 2006-08-10 Nichias Corp Conductive epoxy resin composition and method for producing the same
JP2009114325A (en) * 2007-11-06 2009-05-28 Kyocera Chemical Corp Epoxy resin molding compound for sealing use, and semiconductor device
JP2011231137A (en) * 2010-04-23 2011-11-17 Hitachi Chem Co Ltd Epoxy resin composition for seal-filling semiconductor and semiconductor device
JP2012188598A (en) * 2011-03-11 2012-10-04 Kyocera Chemical Corp Thermosetting resin composition for semiconductor adhesion, and semiconductor device
WO2013081058A1 (en) * 2011-11-29 2013-06-06 三菱レイヨン株式会社 Prepreg, fiber-reinforced composite material, method for producing same, and epoxy resin composition
WO2013157424A1 (en) * 2012-04-18 2013-10-24 株式会社 日立製作所 Lignin-derived epoxy resin composition and use thereof
JP2014028928A (en) * 2012-07-05 2014-02-13 Nippon Shokubai Co Ltd Resin composition for sealant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123600A (en) * 1974-08-22 1976-02-25 Fujitsu Ltd TAINETSUSEIEHOKISHIJUSHISEIKEIYOSOSEIBUTSU
US4331582A (en) * 1980-01-14 1982-05-25 Hitco Epoxy latent catalyst
JPH01110524A (en) * 1987-10-24 1989-04-27 Mitsubishi Rayon Co Ltd Resin composition for composite material
JPH01115924A (en) * 1987-10-29 1989-05-09 Mitsubishi Rayon Co Ltd Resin composition for composite material
JP4544656B2 (en) * 1998-06-30 2010-09-15 東レ株式会社 Prepreg and fiber reinforced composites
US20040247882A1 (en) 2001-11-07 2004-12-09 Shinji Kouchi Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
CN102341429B (en) * 2009-03-25 2015-04-01 东丽株式会社 Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and housing for electronic or electrical component
CN104024337B (en) 2011-11-15 2016-08-24 株式会社日本触媒 Silane-containing compositions, hardening resin composition and sealing material
DE102013201958A1 (en) * 2013-02-06 2014-08-07 Vacuumschmelze Gmbh & Co. Kg Composition for an adhesive composition
JP6658747B2 (en) * 2014-12-02 2020-03-04 東レ株式会社 Epoxy resin composition, prepreg, fiber reinforced plastic material, and method for producing fiber reinforced plastic material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141904A (en) * 1987-11-30 1989-06-02 Taiyo Ink Seizo Kk Photosensitive thermosetting resin composition and formation of solder resist pattern
JPH0750473A (en) * 1991-09-21 1995-02-21 Taiyo Ink Mfg Ltd Formation of solder resist pattern
JP2000344864A (en) * 1999-06-09 2000-12-12 Sumitomo Bakelite Co Ltd Resin paste for semiconductor and semiconductor device sealed therewith
JP2005307169A (en) * 2004-03-22 2005-11-04 Hitachi Chem Co Ltd Filmy adhesive and production method of semiconductor device using this
JP2006206790A (en) * 2005-01-31 2006-08-10 Nichias Corp Conductive epoxy resin composition and method for producing the same
JP2009114325A (en) * 2007-11-06 2009-05-28 Kyocera Chemical Corp Epoxy resin molding compound for sealing use, and semiconductor device
JP2011231137A (en) * 2010-04-23 2011-11-17 Hitachi Chem Co Ltd Epoxy resin composition for seal-filling semiconductor and semiconductor device
JP2012188598A (en) * 2011-03-11 2012-10-04 Kyocera Chemical Corp Thermosetting resin composition for semiconductor adhesion, and semiconductor device
WO2013081058A1 (en) * 2011-11-29 2013-06-06 三菱レイヨン株式会社 Prepreg, fiber-reinforced composite material, method for producing same, and epoxy resin composition
WO2013157424A1 (en) * 2012-04-18 2013-10-24 株式会社 日立製作所 Lignin-derived epoxy resin composition and use thereof
JP2014028928A (en) * 2012-07-05 2014-02-13 Nippon Shokubai Co Ltd Resin composition for sealant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167443A (en) * 2018-03-23 2019-10-03 三菱ケミカル株式会社 Epoxy resin composition and prepreg for fiber-reinforced composite material
JP7338130B2 (en) 2018-03-23 2023-09-05 三菱ケミカル株式会社 Epoxy resin composition and prepreg for fiber reinforced composites
WO2021025146A1 (en) * 2019-08-08 2021-02-11 住友ベークライト株式会社 Sealing resin composition and electronic part
JP6892024B1 (en) * 2019-08-08 2021-06-18 住友ベークライト株式会社 Encapsulating resin composition and electronic components

Also Published As

Publication number Publication date
JPWO2017126307A1 (en) 2018-02-01
CN108473660B (en) 2021-06-25
TW201734127A (en) 2017-10-01
US20180319929A1 (en) 2018-11-08
US10577455B2 (en) 2020-03-03
TWI647277B (en) 2019-01-11
CN108473660A (en) 2018-08-31
JP6409951B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
RU2574054C2 (en) Epoxy resin-based curable compositions and composite materials obtained therefrom
JP6292345B2 (en) Molding materials and fiber reinforced composite materials
US9695312B2 (en) Resin composition and composite structure containing resin
JP6977842B2 (en) Methods for manufacturing thermosetting resin compositions, prepregs, fiber-reinforced composites, fiber-reinforced composites, automotive materials, and prepregs.
KR102341968B1 (en) Epoxy resin composition for fiber-reinforced composite materials, prepreg and fiber-reinforced composite material
US10344132B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2013253194A (en) Epoxy resin composition
KR20190022551A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
WO2016129167A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2016148022A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP6409951B2 (en) Epoxy resin composition, prepreg for fiber reinforced composite material, and fiber reinforced composite material
WO2016080202A1 (en) Epoxy resin composition, prepreg, cured resin object, and fiber-reinforced composite material
JP5842395B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2016210860A (en) Epoxy resin composition and prepreg for fiber-reinforced composite material
JP6995779B2 (en) Curable epoxy resin composition and fiber reinforced composite material using it
JP7338130B2 (en) Epoxy resin composition and prepreg for fiber reinforced composites
JP5297607B2 (en) RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME AND COMPOSITE MATERIAL INTERMEDIATE
RU2792592C1 (en) Composition and method for producing a binder based on an epoxy-benzoxazine composition
JP2019116545A (en) Method for curing epoxy resin composition
JP6844740B2 (en) Prepreg and fiber reinforced composite materials, and their manufacturing methods
CN116057043B (en) Urea derivatives and their use as curing agents and curing accelerators for resin systems
JP6421897B1 (en) Epoxy resin composition, prepreg, fiber reinforced composite material and method for producing the same
JP2009242585A (en) Resin composition for composite material intermediate member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017501412

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886545

Country of ref document: EP

Kind code of ref document: A1