JP7338130B2 - Epoxy resin composition and prepreg for fiber reinforced composites - Google Patents
Epoxy resin composition and prepreg for fiber reinforced composites Download PDFInfo
- Publication number
- JP7338130B2 JP7338130B2 JP2018056097A JP2018056097A JP7338130B2 JP 7338130 B2 JP7338130 B2 JP 7338130B2 JP 2018056097 A JP2018056097 A JP 2018056097A JP 2018056097 A JP2018056097 A JP 2018056097A JP 7338130 B2 JP7338130 B2 JP 7338130B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- component
- mass
- resin composition
- prepreg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Description
本発明は、繊維強化複合材料用プリプレグに用いられるエポキシ樹脂組成物、および該エポキシ樹脂組成物を用いた繊維強化複合材料用プリプレグに関する。 TECHNICAL FIELD The present invention relates to an epoxy resin composition used for a prepreg for fiber-reinforced composite materials, and a prepreg for fiber-reinforced composite materials using the epoxy resin composition.
強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、軽量で優れた機械特性を有するため、航空宇宙用途(航空機部材等)、自動車用途(自動車部材)、スポーツ用途(自転車部材等)、一般産業用途等に広く用いられている。繊維強化複合材料は、中間材料である繊維強化複合材料用プリプレグを加熱成型することによって得られる。 Fiber reinforced composite materials consisting of reinforcing fibers and matrix resins are lightweight and have excellent mechanical properties. Widely used for various purposes. A fiber-reinforced composite material is obtained by thermoforming a prepreg for a fiber-reinforced composite material, which is an intermediate material.
プリプレグは、強化繊維に熱硬化性樹脂または熱可塑性樹脂を含浸させたものである。プリプレグ用の樹脂としては、繊維強化複合材料の耐熱性、強度の点から、主として熱硬化性樹脂が用いられ、耐熱性、弾性率、低硬化収縮性、耐薬品性等に優れた繊維強化複合材料が得られる点から、エポキシ樹脂が最もよく用いられる。特に、航空宇宙用途や産業用途などの耐熱性が求められる用途においては、180℃硬化型のエポキシ樹脂がよく用いられる。 A prepreg is a reinforcing fiber impregnated with a thermosetting resin or a thermoplastic resin. Thermosetting resins are mainly used as resins for prepregs because of the heat resistance and strength of fiber-reinforced composite materials. Epoxy resins are most often used because of the availability of the materials. In particular, in applications requiring heat resistance such as aerospace applications and industrial applications, 180° C. curing type epoxy resins are often used.
しかしながら、一般的な180℃硬化型エポキシ樹脂は、硬化のために180℃で2時間以上の加熱が必要である。そのため、(i)プリプレグの成型に用いる加熱炉に十分な加熱能力が必要となる、(ii)成形時間が長くなる、(iii)副資材にも同程度の耐熱性が要求される、など繊維強化複合材料の製造コストが高くなるという問題がある。 However, a general 180° C. curing type epoxy resin requires heating at 180° C. for 2 hours or more for curing. Therefore, (i) the heating furnace used to mold the prepreg must have a sufficient heating capacity, (ii) the molding time will be longer, and (iii) the auxiliary materials are required to have the same degree of heat resistance. There is a problem that the manufacturing cost of the reinforced composite material becomes high.
この問題を解決する方法として、例えば、エポキシ樹脂組成物を80~140℃の低温で一次硬化させて脱型した後、180℃以上の高温でポストキュアする方法が知られている(特許文献1参照)。また、150℃、60分で完全硬化可能なエポキシ樹脂組成物も提案されている(特許文献2参照)。 As a method for solving this problem, for example, a method is known in which an epoxy resin composition is primarily cured at a low temperature of 80 to 140° C., demolded, and then post-cured at a high temperature of 180° C. or higher (Patent Document 1). reference). An epoxy resin composition that can be completely cured at 150° C. for 60 minutes has also been proposed (see Patent Document 2).
しかしながら、特許文献1に記載のように、低温での一次硬化と高温でのポストキュアを組み合わせる方法の場合、2回の成形硬化プロセスが必要なため、成形硬化時間やプロセス時間が長くなり、製造コストが高くなるという問題を抱えている。
また、特許文献2に記載のエポキシ樹脂組成物は、150℃という低温ながら60分間の加熱が必要であり、製造コストは依然高い。さらには得られる硬化物が、航空宇宙、自動車、自転車分野等において要求される耐熱性(具体的には180℃以上のガラス転移点)を達成することが困難である。
However, as described in Patent Document 1, in the case of a method that combines primary curing at a low temperature and post-curing at a high temperature, two molding and curing processes are required. It has a problem of high cost.
Moreover, the epoxy resin composition described in Patent Document 2 requires heating for 60 minutes at a low temperature of 150° C., and the manufacturing cost is still high. Furthermore, it is difficult for the resulting cured product to achieve the heat resistance (specifically, a glass transition point of 180° C. or higher) required in the fields of aerospace, automobiles, bicycles, and the like.
本発明は、低温・高速硬化性を有するにもかかわらず、硬化物の耐熱性および弾性率、高温領域での弾性率保持、機械特性にも優れるエポキシ樹脂組成物、および該エポキシ樹脂組成物を用いた繊維強化複合材料用プリプレグを提供する。 The present invention provides an epoxy resin composition which is excellent in heat resistance and elastic modulus of the cured product, elastic modulus retention in a high temperature range, and mechanical properties in spite of having low-temperature and high-speed curability, and the epoxy resin composition. The present invention provides a prepreg for fiber-reinforced composite material using the present invention.
本発明者等は、上記課題を解決すべく鋭意検討した結果、特定のエポキシ樹脂、イミダゾール化合物および熱顔性樹脂を組み合わせることにより上記課題をかいけるできることを見出し、本発明を完成するに至った。即ち本発明の要旨は以下の(1)から(10)に存する。
(1) 下記(A)成分、(B)成分および(C)成分を含んでなるエポキシ樹脂組成物。
(A)成分:一分子内に少なくとも3つのグリシジル基を有するグリシジルアミン型エポキシ樹脂
(B)成分:分子内にオキサゾリドン環を有するエポキシ樹脂
(C)成分:式(1)で表されるイミダゾール化合物
(2) 前記成分(A)と前記成分(B)の割合が質量比で30:70~40:60である、上記(1)に記載のエポキシ樹脂組成物。
(3) 更に、下記成分(D)を含む、上記(1)または(2)に記載のエポキシ樹脂組成物。
(D)成分:熱可塑性樹脂
(4) 150℃で30分間加熱して得られる硬化物の動的粘弾性試験におけるガラス転移温度が180℃以上である、上記(1)から(3)のいずれかに記載のエポキシ樹脂組成物。
(5) 150℃で30分間加熱して得られる硬化物の動的粘弾性試験における35℃での貯蔵弾性率が2,900MPa以上、150℃での貯蔵弾性率が2,000MPa以上である、上記(1)から(4)のいずれかに記載のエポキシ樹脂組成物。
(6) 150℃で30分間加熱して得られる硬化物の示差走査熱量測定における反応発熱ピークの半値幅が12℃以下である、上記(1)から(5)のいずれかに記載のエポキシ樹脂組成物。
(7) 強化繊維とマトリクス樹脂を含むプリプレグであって、マトリクス樹脂が下記(A)成分、(B)成分および(C)成分を含んでなるエポキシ樹脂組成物であるプリプレグ。
(A)成分:一分子内に少なくとも3つのグリシジル基を有するグリシジルアミン型エポキシ樹脂
(B)成分:分子内にオキサゾリドン環を有するエポキシ樹脂(B)
(C)成分:式(1)で表されるイミダゾール化合物(C)
(8) 前記成分(A)と前記成分(B)の割合が質量比で30:70~40:60である、上記(7)に記載のプリプレグ。
(9) 前記マトリクス樹脂が更に下記成分(D)を含む、上記(7)または(8)に記載のプリプレグ。
(D)成分:熱可塑性樹脂
(10) 前記強化繊維が炭素繊維である、上記(7)から(9)のいずれかに記載のプリプレグ。
As a result of intensive studies aimed at solving the above problems, the present inventors have found that the above problems can be overcome by combining a specific epoxy resin, an imidazole compound and a thermal facial resin, and have completed the present invention. . That is, the gist of the present invention resides in the following (1) to (10).
(1) An epoxy resin composition comprising the following components (A), (B) and (C).
(A) component: glycidylamine type epoxy resin having at least three glycidyl groups in one molecule (B) component: epoxy resin having an oxazolidone ring in the molecule (C) component: imidazole compound represented by formula (1)
(2) The epoxy resin composition according to (1) above, wherein the weight ratio of component (A) to component (B) is 30:70 to 40:60.
(3) The epoxy resin composition according to (1) or (2) above, further comprising the following component (D).
(D) component: thermoplastic resin (4) Any of the above (1) to (3), wherein the glass transition temperature in the dynamic viscoelasticity test of the cured product obtained by heating at 150 ° C. for 30 minutes is 180 ° C. or higher. 1. The epoxy resin composition according to claim 1.
(5) The cured product obtained by heating at 150°C for 30 minutes has a storage elastic modulus of 2,900 MPa or more at 35°C in a dynamic viscoelasticity test, and a storage elastic modulus of 2,000 MPa or more at 150°C. The epoxy resin composition according to any one of (1) to (4) above.
(6) The epoxy resin according to any one of (1) to (5) above, wherein the cured product obtained by heating at 150° C. for 30 minutes has a reaction exothermic peak half width of 12° C. or less in differential scanning calorimetry. Composition.
(7) A prepreg containing reinforcing fibers and a matrix resin, wherein the matrix resin is an epoxy resin composition containing the following components (A), (B) and (C).
(A) component: glycidylamine type epoxy resin having at least three glycidyl groups in one molecule (B) component: epoxy resin (B) having an oxazolidone ring in the molecule
(C) component: imidazole compound (C) represented by formula (1)
(8) The prepreg according to (7) above, wherein the weight ratio of component (A) to component (B) is 30:70 to 40:60.
(9) The prepreg according to (7) or (8) above, wherein the matrix resin further contains the following component (D).
(D) component: thermoplastic resin (10) The prepreg according to any one of (7) to (9) above, wherein the reinforcing fibers are carbon fibers.
本発明によれば、低温、高速硬化性を有するにもかかわらず、硬化物の耐熱性および弾性率、高温領域での弾性率保持、機械特性にも優れるエポキシ樹脂組成物、および該エポキシ樹脂組成物を用いた繊維強化複合材料用プリプレグを提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, an epoxy resin composition which is excellent in heat resistance and elastic modulus of a cured product, elastic modulus retention in a high temperature range, and mechanical properties in spite of having low-temperature, high-speed curability, and the epoxy resin composition. It is possible to provide a prepreg for a fiber-reinforced composite material using a material.
以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「エポキシ樹脂組成物の反応発熱ピークの半値幅」とは、示差走査熱量計(DSC)を用いて測定された反応発熱ピークの高さの半分となる位置における、ピークのX軸方向の幅(単位:℃)を意味する。
「硬化物のガラス転移点」は、樹脂硬化物から長さ:55mm、幅:12.7mm、厚さ:2mmの試験片を切り出し、動的粘弾性測定装置(DMA)を用い、ASTM D7028に従い、周波数:1Hz、昇温レート:5℃/分の条件で曲げモードでの貯蔵弾性率(E’)を測定し、logE’を温度に対してプロットし、logE’の転移する前の平坦領域の接線とlogE’が転移する領域の変曲点における接線との交点の温度(E’onset)である。
The following term definitions apply throughout the specification and claims.
The “half width of the reaction exothermic peak of the epoxy resin composition” is the width of the peak in the X-axis direction ( unit: °C).
"Glass transition point of cured product" is obtained by cutting out a test piece having a length of 55 mm, a width of 12.7 mm, and a thickness of 2 mm from the cured resin, and using a dynamic viscoelasticity measuring device (DMA) according to ASTM D7028. , frequency: 1 Hz, heating rate: 5 ° C./min. The storage modulus (E ') in bending mode is measured, log E ' is plotted against temperature, and the flat region before the transition of log E ' is the temperature (E'onset) at the intersection of the tangent of E' with the tangent at the inflection point of the region where log E' transitions.
<エポキシ樹脂組成物>
本発明のエポキシ樹脂組成物は、 下記(A)成分、(B)成分および(C)成分を含んでなるエポキシ樹脂組成物である。
(A)成分:一分子内に少なくとも3つのグリシジル基を有するグリシジルアミン型エポキシ樹脂
(B)成分:分子内にオキサゾリドン環を有するエポキシ樹脂
(C)成分:式(1)で表されるイミダゾール化合物下記
The epoxy resin composition of the present invention is an epoxy resin composition comprising the following components (A), (B) and (C).
(A) component: glycidylamine type epoxy resin having at least three glycidyl groups in one molecule (B) component: epoxy resin having an oxazolidone ring in the molecule (C) component: imidazole compound represented by formula (1) the below described
本発明のエポキシ樹脂組成物は、更に(D)成分として、熱可塑性樹脂を含んでいることが好ましい。また、本発明の効果を損なわない範囲内で必要に応じて、(A)成分、(B)成分、(C)成分、(D)成分以外の他の成分を含んでもよい。他の成分としては、(A)成分および(B)成分以外のエポキシ樹脂、特定の機能を付与する任意の添加剤などが挙げられる。 The epoxy resin composition of the present invention preferably further contains a thermoplastic resin as component (D). Moreover, other components than the (A) component, (B) component, (C) component, and (D) component may be included as necessary within a range that does not impair the effects of the present invention. Other components include epoxy resins other than components (A) and (B), optional additives that impart specific functions, and the like.
<(A)成分>
(A)成分は、一分子内に少なくとも3つのグリシジル基を有するグリシジルアミン型のエポキシ樹脂であり、エポキシ樹脂組成物の硬化物に必要な耐熱性を付与する成分である。
<(A) Component>
Component (A) is a glycidylamine type epoxy resin having at least three glycidyl groups in one molecule, and is a component that imparts necessary heat resistance to the cured product of the epoxy resin composition.
(A)成分としては、例えば、テトラグリシジルアミン型エポキシ樹脂、トリグリシジルアミノフェノール型エポキシ樹脂が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of component (A) include tetraglycidylamine type epoxy resins and triglycidylaminophenol type epoxy resins. These may be used individually by 1 type, and may use 2 or more types together.
(A)成分の市販品としては、例えば、Araldite(登録商標)MY720、MY721、MY9663、MY9634、MY9655、MY0500、MY0510、MY0600、三菱ケミカル社製のjER(登録商標)604、jER630、住友化学社製のスミエポキシ(登録商標)ELM-434、ELM-100などが挙げられるが、これらに限定されない。 Commercially available products of component (A) include, for example, Araldite (registered trademark) MY720, MY721, MY9663, MY9634, MY9655, MY0500, MY0510, MY0600, jER (registered trademark) 604 and jER630 manufactured by Mitsubishi Chemical Corporation, and Sumitomo Chemical Co., Ltd. Sumiepoxy (registered trademark) ELM-434, ELM-100 and the like manufactured by Sumitomo Chemical Co., Ltd., but are not limited to these.
<(B)成分)>
(B)成分は、分子内にオキサゾリドン環を有するエポキシ樹脂であり、エポキシ樹脂組成物の硬化物に高い靭性を与える成分である。
<(B) component)>
Component (B) is an epoxy resin having an oxazolidone ring in the molecule, and is a component that imparts high toughness to the cured product of the epoxy resin composition.
(B)成分の市販品としては、例えばDIC社製のTSR-400が挙げられる。 Commercially available products of component (B) include, for example, TSR-400 manufactured by DIC.
<(C)成分>
(C)成分は、下記式(1)で表される2-フェニル-4,5-ジヒドロキシメチルイミダゾールである。
<(C) Component>
Component (C) is 2-phenyl-4,5-dihydroxymethylimidazole represented by the following formula (1).
(C)成分は、エポキシ樹脂の硬化剤、硬化触媒であり、室温でのポットライフに優れ、且つエポキシ樹脂の硬化物に高い耐熱性と高い靱性を与える成分である。
(C)成分の市販品としては、例えば四国化成工業社製の2PHZ-PWが挙げられる。 Commercially available products of component (C) include, for example, 2PHZ-PW manufactured by Shikoku Kasei Kogyo Co., Ltd.
<(D)成分>
(D)成分は、熱可塑性樹脂である。(D)成分は、エポキシ樹脂組成物の硬化物に高い靱性を付与する他、エポキシ樹脂組成物のべたつきを抑えて、プリプレグのタックを適正レベルに調整したり、高温時、硬化直前の樹脂フローを抑制したりする効果を有する。
<(D) Component>
(D) Component is a thermoplastic resin. Component (D) imparts high toughness to the cured product of the epoxy resin composition, suppresses the stickiness of the epoxy resin composition, adjusts the tackiness of the prepreg to an appropriate level, and prevents resin flow at high temperatures just before curing. It has the effect of suppressing
(D)成分としては、例えばポリエーテルスルフォン、ポリビニルホルマール、フェノキシ樹脂、ポリアミド、アクリル系のブロック共重合物などが挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。 Component (D) includes, for example, polyether sulfone, polyvinyl formal, phenoxy resin, polyamide, and acrylic block copolymers. These may be used individually by 1 type, and may use 2 or more types together.
(D)成分の市販品としては、住友化学社製PES5003MPS、BASF社製UltrasonE2020P-SRmicro、Slovay社製Virantage VW-10200、チッソ社製ビニレックE、新日鉄住金化学社製YP-70、YP-50、EMSケミー社製2AP0-35、TR55、TR90、Evonik社製Vestosint2158、2159、Alkema社製M52N、M22Nなどが挙げられるが、これらに限定されない。 Commercially available products of component (D) include PES5003MPS manufactured by Sumitomo Chemical Co., Ltd., Ultrason E2020P-SRmicro manufactured by BASF, Virantage VW-10200 manufactured by Slovay, Vinylec E manufactured by Chisso, YP-70 and YP-50 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. 2AP0-35, TR55, TR90 from EMS Chemie; Vestosint 2158, 2159 from Evonik; M52N, M22N from Alkema;
<その他のエポキシ樹脂>
エポキシ樹脂組成物の粘度、繊維強化複合材料用プリプレグにした際のタック、ドレープ性等を調整する他、エポキシ樹脂の硬化物に適度な強靭性を与える目的として、エポキシ樹脂(A)および(B)成分以外のエポキシ樹脂を必要に応じて添加することが出来る。
<Other epoxy resins>
Epoxy resins (A) and (B ), an epoxy resin other than the component can be added as required.
例えばビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、フェノールノボラック型、クレゾールノボラック型のグリシジルエーテル樹脂、ナフタレン型、ジシクロペンタジエン型グリシジルエーテル樹脂などが好ましい。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。 For example, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, phenol novolac type and cresol novolak type glycidyl ether resins, naphthalene type and dicyclopentadiene type glycidyl ether resins are preferred. These may be used individually by 1 type, and may use 2 or more types together.
その他のエポキシ樹脂の市販品としては、三菱ケミカル社製jER(登録商標)828、827、807、1001、1002、1004、4004、4007、1032H60、DIC社製EPICLON(登録商標)830、850、N673、N675、N770、N775、HP4032、HP4700、HP4770、EXA-1514、Huntsman Advanced Materials社製のTactix(登録商標)742、556、などが挙げられるが、これらに限定されない。 Other commercially available epoxy resins include JER (registered trademark) 828, 827, 807, 1001, 1002, 1004, 4004, 4007, 1032H60 manufactured by Mitsubishi Chemical Corporation, and EPICLON (registered trademark) 830, 850, N673 manufactured by DIC. , N675, N770, N775, HP4032, HP4700, HP4770, EXA-1514, Tactix® 742, 556 from Huntsman Advanced Materials, and the like.
<その他の添加剤>
本発明のエポキシ樹脂組成物には、公知の添加剤(充填材、希釈剤、溶剤、顔料、可塑剤、酸化防止剤、安定化剤等)などを必要に応じて添加することが出来る。
<Other additives>
Known additives (fillers, diluents, solvents, pigments, plasticizers, antioxidants, stabilizers, etc.) can be added to the epoxy resin composition of the present invention, if necessary.
例えば、顔料としてカーボンブラックやグラフェンなどが挙げられる。カーボンブラックやグラフェンは、エポキシ樹脂を黒色に着色し、後述する繊維強化複合材料を成形した際の樹脂の色目を隠し、特にスポーツ製品に適用した際に高品位な外観を付与する効果を有すると共に、紫外線吸収能力や、放熱機能も併せ持つ。 Examples of pigments include carbon black and graphene. Carbon black and graphene have the effect of coloring the epoxy resin black, hiding the color of the resin when molding the fiber-reinforced composite material described later, and imparting a high-quality appearance especially when applied to sports products. , It also has an ultraviolet absorption ability and a heat dissipation function.
<樹脂組成>
本発明のエポキシ樹脂組成物は、(A)成分と、(B)成分と、(C)成分が必須である。前記成分(A)と前記成分(B)の割合は、質量比で30:70~40:60であることが好ましい。(A)成分の含有量が当該質量比であれば、エポキシ樹脂組成物の硬化物の耐熱性が高まる。また(B)成分の含有量が当該質量比であれば、エポキシ樹脂組成物の硬化物の破断伸度が十分となる。(C)成分の含有量は、エポキシ樹脂組成物に含まれる全てのエポキシ樹脂の総質量(すなわち、(A)成分と(B)成分、及びその他のエポキシ樹脂との合計)100質量%に対して、2質量%以上添加することが好ましく、3質量%以上がより好ましい。(C)成分の含有量が2質量%以上であれば、エポキシ樹脂組成物の硬化物に十分な耐熱性を与えることができる。(D)成分の含有量は、エポキシ樹脂組成物に含まれる全てのエポキシ樹脂(すなわち、(A)成分と(B)成分、及びその他のエポキシ樹脂との合計)100質量%に対して、2~30質量%が好ましく、3~20質量%がより好ましい。(D)成分の含有量が2質量%以上であれば、エポキシ樹脂に十分な靱性を与えることができる。30質量%以下であれば、繊維強化複合材料用プリプレグ用途としてエポキシ樹脂組成物を強化繊維に十分に含浸させることが出来るとともに、繊維強化複合材料用プリプレグとした際に、適度な表面タックを与えることができる。
<Resin composition>
The epoxy resin composition of the present invention essentially comprises (A) component, (B) component and (C) component. The ratio of the component (A) and the component (B) is preferably 30:70 to 40:60 by weight. If the content of component (A) is in this mass ratio, the heat resistance of the cured product of the epoxy resin composition increases. Further, when the content of the component (B) is in the above mass ratio, the elongation at break of the cured product of the epoxy resin composition is sufficient. The content of component (C) is based on 100% by mass of the total mass of all epoxy resins contained in the epoxy resin composition (that is, the sum of components (A), (B), and other epoxy resins). Therefore, it is preferably added in an amount of 2% by mass or more, more preferably 3% by mass or more. If the content of component (C) is 2% by mass or more, sufficient heat resistance can be imparted to the cured product of the epoxy resin composition. The content of component (D) is 2 per 100% by mass of all epoxy resins contained in the epoxy resin composition (that is, the total of component (A), component (B), and other epoxy resins). ~30% by mass is preferable, and 3 to 20% by mass is more preferable. If the content of component (D) is 2% by mass or more, sufficient toughness can be imparted to the epoxy resin. If it is 30% by mass or less, the reinforcing fibers can be sufficiently impregnated with the epoxy resin composition for use as a prepreg for fiber-reinforced composite materials, and the prepreg for fiber-reinforced composite materials has an appropriate surface tack. be able to.
<反応発熱の半値幅>
エポキシ樹脂組成物の、示差走査熱量測定(DSC)における反応発熱(Heat Flow)の半値幅は12℃以下が好ましく、10℃以下がより好ましい。反応発熱の半値幅が10℃以下であれば、エポキシ樹脂組成物の速硬化性、硬化物の耐熱性付与に優れる。
<Half width of reaction exotherm>
The half-value width of reaction heat (Heat Flow) in differential scanning calorimetry (DSC) of the epoxy resin composition is preferably 12° C. or less, more preferably 10° C. or less. If the half-value width of the reaction heat generation is 10° C. or less, the epoxy resin composition is excellent in rapid curability and in imparting heat resistance to the cured product.
<硬化物のガラス転移点>
エポキシ樹脂組成物を150℃で30分間加熱して得られる硬化物の、動的粘弾性測定によるガラス転移点は、180℃以上が好ましい。硬化物のガラス転移点が180℃以上であれば、航空機用途、自動車用途、自転車用途として十分な耐熱性を有する。
<Glass transition point of cured product>
A cured product obtained by heating the epoxy resin composition at 150° C. for 30 minutes preferably has a glass transition point of 180° C. or higher as determined by dynamic viscoelasticity measurement. If the cured product has a glass transition point of 180° C. or higher, it has sufficient heat resistance for use in aircraft, automobiles, and bicycles.
<作用効果>
以上説明した本発明のエポキシ樹脂組成物にあっては、上述した成分(A)(B)(C)(D)を含むので、低温・高速硬化性を有する。具体的には、エポキシ樹脂組成物が150℃、30分以内での加熱によって十分に硬化する。
また、本発明のエポキシ樹脂組成物は、硬化物の耐熱性、高温領域での弾性率保持、及び機械特性に優れる。耐熱性については具体的には150℃、30分間の硬化によって硬化物が180℃以上のガラス転移点を有する。高温領域での弾性率保持について具体的には、150℃、30分間の硬化により得られる硬化物の貯蔵弾性率が150℃で2,000MPa以上となる。機械特性については、150℃、30分間の硬化により得られる硬化物の3点曲げ試験における破断時の伸度が5%以上となる。
<Effect>
Since the epoxy resin composition of the present invention described above contains the components (A), (B), (C), and (D) described above, it has low-temperature and high-speed curability. Specifically, the epoxy resin composition is sufficiently cured by heating at 150° C. within 30 minutes.
In addition, the epoxy resin composition of the present invention is excellent in heat resistance of the cured product, retention of elastic modulus in a high temperature range, and mechanical properties. Regarding heat resistance, specifically, the cured product has a glass transition point of 180° C. or higher when cured at 150° C. for 30 minutes. Specifically, the storage elastic modulus of a cured product obtained by curing at 150°C for 30 minutes is 2,000 MPa or more at 150°C. As for mechanical properties, the cured product obtained by curing at 150° C. for 30 minutes has an elongation at break of 5% or more in a three-point bending test.
<プリプレグ>
本発明のプリプレグは、強化繊維とマトリクス樹脂を含むプリプレグであって、マトリクス樹脂が下記(A)成分、(B)成分、(C)成分および(D)成分を含んでなるエポキシ樹脂組成物であって、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部中に前記成分(A)を30質量部以上60質量部以下、前記成分(B)を25質量部以上55質量部以下含むエポキシ樹脂組成物であるプリプレグである。
(A)成分:一分子内に少なくとも3つのグリシジル基を有するグリシジルアミン型エポキシ樹脂
(B)成分:分子内にオキサゾリドン環を有するエポキシ樹脂(B)
(C)成分:式(1)で表されるイミダゾール化合物(C)
(D)成分:熱可塑性樹脂
<Prepreg>
The prepreg of the present invention is a prepreg containing reinforcing fibers and a matrix resin, and the matrix resin is an epoxy resin composition containing the following components (A), (B), (C) and (D). An epoxy containing 30 parts by mass or more and 60 parts by mass or less of the component (A) and 25 parts by mass or more and 55 parts by mass or less of the component (B) in 100 parts by mass of the total epoxy resin contained in the epoxy resin composition It is a prepreg that is a resin composition.
(A) component: glycidylamine type epoxy resin having at least three glycidyl groups in one molecule (B) component: epoxy resin (B) having an oxazolidone ring in the molecule
(C) component: imidazole compound (C) represented by formula (1)
(D) component: thermoplastic resin
<強化繊維>
強化繊維としては、例えば、炭素繊維、アラミド繊維、ナイロン繊維、高強度ポリエステル繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維などが挙げられる。これらの中でも、難燃性に優れる点から、炭素繊維、アラミド繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維が好ましく、比強度および比弾性に優れる点から、炭素繊維が特に好ましい。強化繊維の形態としては、一方向に引き揃えられたもの、織物、ノンクリンプファブリック、不織布等が挙げられる。
<Reinforcing fiber>
Examples of reinforcing fibers include carbon fibers, aramid fibers, nylon fibers, high-strength polyester fibers, glass fibers, boron fibers, alumina fibers, and silicon nitride fibers. Among these, carbon fiber, aramid fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber are preferred from the viewpoint of excellent flame retardancy, and carbon fiber is particularly preferred from the viewpoint of excellent specific strength and specific elasticity. Forms of reinforcing fibers include unidirectionally aligned fibers, woven fabrics, non-crimped fabrics, non-woven fabrics, and the like.
本発明の繊維強化複合材料用プリプレグにおけるエポキシ樹脂組成物の含有率は、15~65質量%が好ましく、20~60質量%がより好ましい。
本発明の繊維強化複合材料用プリプレグは、本発明のエポキシ樹脂組成物と強化繊維とを用いて、公知の方法で製造することができる。
The content of the epoxy resin composition in the prepreg for fiber-reinforced composite material of the present invention is preferably 15 to 65% by mass, more preferably 20 to 60% by mass.
The prepreg for fiber-reinforced composite material of the present invention can be produced by a known method using the epoxy resin composition of the present invention and reinforcing fibers.
以上説明した本発明の繊維強化複合材料用プリプレグにあっては、本発明のエポキシ樹脂組成物を含んでいるので、低温(150℃)かつ短時間(30分)で硬化させることが可能でありながら、1か月以上の室温保存安定性を有する。さらにその硬化物は高いガラス転移点(180℃以上)を示すとともに、耐熱性、高温領域での弾性率保持、及び機械特性に優れる。 Since the prepreg for a fiber-reinforced composite material of the present invention described above contains the epoxy resin composition of the present invention, it can be cured at a low temperature (150° C.) in a short time (30 minutes). However, it has storage stability at room temperature for more than one month. Furthermore, the cured product exhibits a high glass transition point (180° C. or higher), and is excellent in heat resistance, retention of elastic modulus in a high temperature range, and mechanical properties.
<繊維強化複合材料>
本発明における繊維強化複合材料は、本発明のプリプレグを用いて公知の方法で製造することができる。例えば、所定の表面形状を有する下型と上型との間にプリプレグを挟み、加圧および加熱して所望の形状の硬化物を得る方法が挙げられる。本発明における繊維強化複合材料は、本発明のプリプレグを硬化してなるものであるため、耐熱性、高温領域での弾性率保持、及び機械特性に優れる。
<Fiber reinforced composite material>
The fiber-reinforced composite material in the present invention can be produced by a known method using the prepreg of the present invention. For example, there is a method in which a prepreg is sandwiched between a lower mold and an upper mold having a predetermined surface shape, and pressurized and heated to obtain a cured product having a desired shape. Since the fiber-reinforced composite material of the present invention is obtained by curing the prepreg of the present invention, it is excellent in heat resistance, retention of elastic modulus in a high temperature range, and mechanical properties.
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these.
<各成分>
(A)成分
(A)成分として、以下に示す化合物を用いた。
・A-1:トリグリシジル-p-アミノフェノール(Huntsman Advanced Materials社製MY0510)。
・A-2:テトラグリシジルジアミノジフェニルメタン(三菱ケミカル社製:jER604)。
<Each component>
(A) Component As the (A) component, the compounds shown below were used.
· A-1: Triglycidyl-p-aminophenol (MY0510 manufactured by Huntsman Advanced Materials).
· A-2: Tetraglycidyldiaminodiphenylmethane (manufactured by Mitsubishi Chemical Corporation: jER604).
(B)成分
(B)成分として、以下に示す化合物を用いた。
・オキサゾリドン環変性エポキシ樹脂(DIC社製TSR-400)
(B) Component As the component (B), the compounds shown below were used.
・ Oxazolidone ring-modified epoxy resin (DIC TSR-400)
(C)成分
(C)成分として、以下に示す化合物を用いた。
・C-1:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製2PHZ-PW)。
・C-2:2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(四国化成工業社製2P4MHZ-PW)。
・C-3:1-(4,6-ジアミノ-s-トリアジン-2-イル)エチル-2-メチルイミダゾール(四国化成工業社製2MZA-PW)。
(C) Component As the (C) component, the compounds shown below were used.
· C-1: 2-phenyl-4,5-dihydroxymethylimidazole (2PHZ-PW manufactured by Shikoku Kasei Co., Ltd.).
· C-2: 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ-PW manufactured by Shikoku Kasei Co., Ltd.).
· C-3: 1-(4,6-diamino-s-triazin-2-yl)ethyl-2-methylimidazole (2MZA-PW manufactured by Shikoku Chemical Industry Co., Ltd.).
(D)成分
(D)成分として、以下に示す化合物を用いた。
・D-1:ポリエーテルスルフォン(住友化学社製スミカエクセルPES5003MPS)。
・D-2:ポリビニルホルマール(チッソ社製ビニレックE)。
(D) Component As the (D) component, the compounds shown below were used.
· D-1: Polyethersulfone (Sumika Excel PES5003MPS manufactured by Sumitomo Chemical Co., Ltd.).
· D-2: Polyvinyl formal (Vinylec E manufactured by Chisso Corporation).
(その他の成分)
その他のエポキシ樹脂として、以下に示す化合物を用いた。
・液状ビスフェノールA型エポキシ樹脂(三菱ケミカル社製jER828)
・固形ビスフェノールA型エポキシ樹脂(三菱ケミカル社製jER1002)
・固形ビスフェノールF型エポキシ樹脂(三菱ケミカル社製jER4004)
・固形クレゾールノボラック型エポキシ樹脂(DIC社製EPICLON N673)
・固形フェノールノボラック型エポキシ樹脂(DIC社製EPICLON N775)
・固形多官能ナフタレン型エポキシ樹脂(DIC社製EPICLON HP4770)
・固形ビスフェノールS型エポキシ樹脂(DIC社製EXA1514)
・エポキシ樹脂の硬化剤(Dicy15)
(other ingredients )
As other epoxy resins, the following compounds were used.
・Liquid bisphenol A type epoxy resin (Mitsubishi Chemical Corporation jER828)
・ Solid bisphenol A type epoxy resin (jER1002 manufactured by Mitsubishi Chemical Corporation)
・ Solid bisphenol F type epoxy resin (JER4004 manufactured by Mitsubishi Chemical Corporation)
・Solid cresol novolac type epoxy resin (EPICLON N673 manufactured by DIC)
- Solid phenolic novolac type epoxy resin (EPICLON N775 manufactured by DIC)
- Solid polyfunctional naphthalene type epoxy resin (EPICLON HP4770 manufactured by DIC)
・Solid bisphenol S-type epoxy resin (EXA1514 manufactured by DIC)
・ Curing agent for epoxy resin (Dicy15)
<測定・評価>
(樹脂板の作製)
エポキシ樹脂組成物を、離型処理された2枚の4mm厚のガラス板の間に2mm厚のポリテトラフルオロエチレン(PTFE)製スペーサーを介して注入し、150℃で30分間加熱して硬化樹脂板を得た。これを三点曲げ物性およびガラス転移点測定用の樹脂元板とした。
<Measurement/Evaluation>
(Production of resin plate)
The epoxy resin composition was injected between two release-treated 4 mm thick glass plates via a 2 mm thick polytetrafluoroethylene (PTFE) spacer and heated at 150° C. for 30 minutes to form a cured resin plate. Obtained. This was used as a resin base plate for measuring three-point bending physical properties and glass transition point.
(反応発熱量の測定)
硬化前のエポキシ樹脂組成物を1~10mg採取し(この範囲の量を採取すれば測定が可能)、示差走査熱量計(ティー・エイ・インスツルメント社製、DSC-Q100)を用いて、10℃/分の昇温レートにて300℃まで昇温して反応発熱量、反応開始温度、反応ピーク温度を測定した。
(Measurement of reaction calorific value)
1 to 10 mg of the epoxy resin composition before curing is sampled (measurement is possible if the amount within this range is sampled), and a differential scanning calorimeter (DSC-Q100, manufactured by TA Instruments) is used to The temperature was raised to 300°C at a temperature elevation rate of 10°C/min, and the reaction calorific value, reaction initiation temperature, and reaction peak temperature were measured.
(反応発熱ピークの半値幅の測定)
上記の反応発熱量測定において、反応発熱ピークの高さの半分となる位置における、ピークのX軸方向の幅(℃)を反応発熱ピークの半値幅(℃)として求めた。
(Measurement of half width of reaction exothermic peak)
In the measurement of the exothermic value of the reaction, the width (° C.) of the peak in the X-axis direction at half the height of the exothermic peak was determined as the half width (° C.) of the exothermic peak.
(曲げ物性の評価)
硬化樹脂板から長さ:60mm、幅:8mm、厚さ:2mmの試験片を切り出した。三点曲げ治具(圧子、サポートとも3.2mmR、サポート間距離=試験片の厚さの16倍)を設置したインストロン社製万能試験機を用い、クロスヘッドスピード:2mm/分にて三点曲げ物性(曲げ強度、曲げ弾性率および最大荷重時の曲げ伸度、破断時の曲げ伸度)を測定した。
(Evaluation of bending properties)
A test piece having a length of 60 mm, a width of 8 mm, and a thickness of 2 mm was cut out from the cured resin plate. Using an Instron universal testing machine equipped with a three-point bending jig (both indenter and support: 3.2 mmR, distance between supports = 16 times the thickness of the test piece), crosshead speed: 2 mm / min. Point bending physical properties (bending strength, bending elastic modulus, bending elongation at maximum load, bending elongation at break) were measured.
(ガラス転移点の測定)
硬化樹脂板から長さ:55mm、幅:12.7mm、厚さ:2mmの試験片を切り出した。動的粘弾性測定装置(ティー・エイ・インスツルメント社製、「DMA-Q800」)を用いて、ASTM D7028に従い、周波数:1Hz、昇温レート:5℃/分の条件で曲げモードでの貯蔵弾性率E’を測定した。logE’を温度に対してプロットし、logE’の転移する前の平坦領域の接線とlogE’が転移する領域の変曲点における接線との交点の温度をガラス転移点(E’onset)とした。なお、表1および表2中の「E’at 35C」は35℃での貯蔵弾性率E’のことであり、「E’at 150C」は150℃での貯蔵弾性率E’のことであり、「E’at 170C」は170℃での貯蔵弾性率E’のことである。
(Measurement of glass transition point)
A test piece having a length of 55 mm, a width of 12.7 mm, and a thickness of 2 mm was cut out from the cured resin plate. Using a dynamic viscoelasticity measuring device (manufactured by TA Instruments, "DMA-Q800"), according to ASTM D7028, frequency: 1 Hz, heating rate: 5 ° C./min. Storage modulus E' was measured. Plotting logE' against temperature, the temperature at the intersection of the tangent to the flat region before the transition of logE' and the tangent to the inflection point of the region to which logE' transitions was taken as the glass transition point (E'onset). . In Tables 1 and 2, "E'at 35C" means storage modulus E' at 35°C, and "E'at 150C" means storage modulus E' at 150°C. , "E'at 170C" is the storage modulus E' at 170°C.
<実施例1>
(A)成分と(D)成分とを、表1の組成でガラスフラスコに計量し、140℃で溶解混合させ、マスターバッチを調製した。
得られたマスターバッチに(B)成分を表1の配合量を計量、投入し、140℃で撹拌混合した。これを65℃に徐冷し、(C)成分及び残りの成分を表1に示す量添加し、均一になるまで撹拌混合した。その後真空脱泡し、エポキシ樹脂組成物を得た。
得られたエポキシ樹脂組成物を用いて各種測定・評価を行った。結果を表1に示す。
<Example 1>
Components (A) and (D) were weighed into a glass flask according to the composition shown in Table 1, melted and mixed at 140°C to prepare a masterbatch.
The amount of component (B) shown in Table 1 was weighed and added to the obtained masterbatch, and the mixture was stirred and mixed at 140°C. This was slowly cooled to 65° C., and the amount of component (C) and remaining components shown in Table 1 were added and mixed with stirring until uniform. After that, vacuum defoaming was performed to obtain an epoxy resin composition.
Various measurements and evaluations were performed using the obtained epoxy resin composition. Table 1 shows the results.
<実施例2~4、参考例>
各成分の量を表1の実施例2~4、参考例に示す量に変更した以外は、実施例1と同様にしてエポキシ樹脂組成物を調製し、各測定・評価を行った。結果を表1に示す。表1中、実施例5は参考例と読み替える。
<Examples 2 to 4, reference examples >
An epoxy resin composition was prepared in the same manner as in Example 1 except that the amount of each component was changed to the amount shown in Examples 2 to 4 and Reference Example in Table 1, and each measurement and evaluation were performed. Table 1 shows the results. In Table 1, Example 5 is read as Reference Example.
<比較例1~14>
各成分の量を表2に示す量に変更した以外は、実施例1と同様にしてエポキシ樹脂組成物を調製し、各測定・評価を行った。結果を表2に示す。
<Comparative Examples 1 to 14>
An epoxy resin composition was prepared in the same manner as in Example 1 except that the amount of each component was changed to the amount shown in Table 2, and each measurement and evaluation were performed. Table 2 shows the results.
表1の結果から明らかなように、各実施例で得られたエポキシ樹脂組成物は、低温・高速硬化性を有するにもかかわらず、硬化物の耐熱性、弾性率及び高温領域での弾性率の保持、機械特性に優れていた。 As is clear from the results in Table 1, although the epoxy resin compositions obtained in each example have low-temperature and high-speed curability, the cured products have heat resistance, elastic modulus, and elastic modulus in the high-temperature region. was excellent in retention and mechanical properties.
一方、表2の結果から明らかなように、(A)成分の含有量が30%未満である比較例1のエポキシ樹脂組成物は、ガラス転移点が180℃未満であった。
(B)成分の代わりに他のエポキシ樹脂を用いた比較例2~9のエポキシ樹脂組成物は、ガラス転移点、150℃での弾性率、曲げ破断時伸度、保存安定性のいずれかが劣る結果となった。
(C)成分として2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールを用いた比較例10は、示差走査熱量測定における反応発熱の半値幅が12℃以上であった。
(C)成分の2-フェニル-4,5-ジヒドロキシメチルイミダゾールの量が少ない比較例11は、ガラス転移点が180℃未満となるばかりでなく、示差走査熱量測定における反応発熱の半値幅が12℃以上となった。
(C)成分として2-フェニル-4,5-ジヒドロキシメチルイミダゾールに代えて2MZA-PWを用いる比較例12は、ガラス転移点と保存安定性に劣る結果となる。
(D)成分としてポリビニルホルマールを用いた比較例13は高温での弾性率保持に劣る結果となった。
(A)成分として3官能以上のグリシジル基を有するグリシジルアミン型エポキシ樹脂に代えて2官能のグリシジルエーテル型エポキシを用いる比較例14は、ガラス転移点に劣る結果となる。
On the other hand, as is clear from the results in Table 2, the epoxy resin composition of Comparative Example 1, in which the content of component (A) was less than 30%, had a glass transition point of less than 180°C.
The epoxy resin compositions of Comparative Examples 2 to 9, in which other epoxy resins were used instead of the component (B), had a glass transition point, an elastic modulus at 150°C, an elongation at flexural break, or storage stability. A poor result was obtained.
In Comparative Example 10, in which 2-phenyl-4-methyl-5-hydroxymethylimidazole was used as the component (C), the half width of the reaction exotherm in differential scanning calorimetry was 12° C. or more.
Comparative Example 11, in which the amount of 2-phenyl-4,5-dihydroxymethylimidazole as component (C) is small, not only has a glass transition point of less than 180°C, but also has a half-value width of 12°C for the reaction exotherm in differential scanning calorimetry. °C or higher.
Comparative Example 12, in which 2MZA-PW was used instead of 2-phenyl-4,5-dihydroxymethylimidazole as component (C), resulted in inferior glass transition point and storage stability.
Comparative Example 13, in which polyvinyl formal was used as the component (D), resulted in poor retention of elastic modulus at high temperatures.
Comparative Example 14, in which a difunctional glycidyl ether type epoxy is used in place of the glycidyl amine type epoxy resin having tri- or more functional glycidyl groups as the component (A), results in an inferior glass transition point.
本発明のエポキシ樹脂組成物を用いて得られる繊維強化複合材料は、航空機部材、自動車部材、自転車部材、スポーツ用品部材、鉄道車両部材、船舶部材、建築部材、オイルライザ等に好適に用いられ、特に高い耐熱性や機械特性が要求される航空機部材、自動車部材、自転車部材に好適に用いられる。 The fiber-reinforced composite material obtained using the epoxy resin composition of the present invention is suitably used for aircraft members, automobile members, bicycle members, sporting goods members, railway vehicle members, ship members, construction members, oil risers, etc. It is particularly suitable for aircraft members, automobile members, and bicycle members that require high heat resistance and mechanical properties.
Claims (6)
分、(B)成分および(C)成分を含んでなるエポキシ樹脂組成物であり、前記エポキシ
樹脂組成物に含まれる全エポキシ樹脂100質量部中、前記(A)成分を30質量部以上
60質量部以下含み、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部中
、前記成分(B)を25質量部以上55質量部以下含み、エポキシ樹脂組成物に含まれる
全てのエポキシ樹脂の総質量100質量%に対して、前記(C)成分を3質量%以上含み
、前記エポキシ樹脂組成物を150℃で30分間加熱して得られる硬化物の動的粘弾性試
験における150℃での貯蔵弾性率が2,000MPa以上である、プリプレグ。
(A)成分:テトラグリシジルアミン型エポキシ樹脂およびトリグリシジルアミノフェ
ノール型エポキシ樹脂
(B)成分:分子内にオキサゾリドン環を有するエポキシ樹脂
(C)成分:式(1)で表されるイミダゾール化合物
30 parts by mass or more of the component (A) in 100 parts by mass of the total epoxy resin contained in the resin composition
60 parts by mass or less of all epoxy resins contained in the epoxy resin composition containing 25 parts by mass or more and 55 parts by mass or less of the component (B) in 100 parts by mass of all epoxy resins contained in the epoxy resin composition In a dynamic viscoelasticity test of a cured product obtained by heating the epoxy resin composition at 150°C for 30 minutes containing 3% by mass or more of the component (C) with respect to 100% by mass of the total mass, A prepreg having a storage modulus of 2,000 MPa or more.
(A) component: tetraglycidylamine type epoxy resin and triglycidylaminophenol type epoxy resin (B) component: epoxy resin having an oxazolidone ring in the molecule (C) component: imidazole compound represented by formula (1)
求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the ratio of said component (A) and said component (B) is 30:70 to 40:60 in mass ratio.
グ。
(D)成分:ポリエーテルスルフォン The prepreg according to claim 1 or 2, wherein the matrix resin further contains the following component (D).
(D) Component: Polyethersulfone
験におけるガラス転移温度が180℃以上である、請求項1から3のいずれか1項に記載
のプリプレグ。 The prepreg according to any one of claims 1 to 3, wherein a cured product obtained by heating the epoxy resin composition at 150°C for 30 minutes has a glass transition temperature of 180°C or higher in a dynamic viscoelasticity test.
測定における反応発熱ピークの半値幅が12℃以下である、請求項1から4のいずれか1
項に記載のプリプレグ。 5. Any one of claims 1 to 4 , wherein the cured product obtained by heating the epoxy resin composition at 150° C. for 30 minutes has a reaction exothermic peak half width of 12° C. or less in differential scanning calorimetry.
The prepreg described in the paragraph.
量100質量%に対して、成分(D)ポリエーテルスルフォンを3~20質量%含み、前
記エポキシ樹脂組成物には液状ビスフェノールA型エポキシ樹脂が配合され、前記エポキ
シ樹脂組成物に含まれる全エポキシ樹脂100質量部中、前記(A)成分を30質量部以
上60質量部以下含み、前記(A)成分がトリグリシジル-p-アミノフェノールおよび
テトラグリシジルジアミノジフェニルメタンを含む、請求項1に記載のプリプレグ。 The epoxy resin composition contains 3 to 20% by mass of the component (D) polyethersulfone with respect to 100% by mass of the total mass of all epoxy resins contained in the epoxy resin composition, and the epoxy resin composition contains A liquid bisphenol A type epoxy resin is blended, and 30 parts by mass or more and 60 parts by mass or less of the component (A) is contained in 100 parts by mass of the total epoxy resin contained in the epoxy resin composition, and the component (A) is triglycidyl. -p-aminophenol and tetraglycidyldiaminodiphenylmethane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018056097A JP7338130B2 (en) | 2018-03-23 | 2018-03-23 | Epoxy resin composition and prepreg for fiber reinforced composites |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018056097A JP7338130B2 (en) | 2018-03-23 | 2018-03-23 | Epoxy resin composition and prepreg for fiber reinforced composites |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019167443A JP2019167443A (en) | 2019-10-03 |
JP7338130B2 true JP7338130B2 (en) | 2023-09-05 |
Family
ID=68108074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018056097A Active JP7338130B2 (en) | 2018-03-23 | 2018-03-23 | Epoxy resin composition and prepreg for fiber reinforced composites |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7338130B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021241734A1 (en) * | 2020-05-29 | 2021-12-02 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010100834A (en) | 2008-09-29 | 2010-05-06 | Toray Ind Inc | Epoxy resin composition, prepreg, and fiber-reinforced composite material |
JP2010539287A (en) | 2007-09-11 | 2010-12-16 | ダウ グローバル テクノロジーズ インコーポレイティド | Isocyanate-modified epoxy resin for fused epoxy foam |
WO2015083714A1 (en) | 2013-12-02 | 2015-06-11 | 三菱レイヨン株式会社 | Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same |
CN105315614A (en) | 2014-07-31 | 2016-02-10 | 太阳油墨(苏州)有限公司 | Porefilling thermosetting resin composition for printed circuit board, cured product and printed circuit board |
WO2017126307A1 (en) | 2016-01-19 | 2017-07-27 | 三菱ケミカル株式会社 | Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material |
JP2017206615A (en) | 2016-05-18 | 2017-11-24 | 三菱ケミカル株式会社 | Method for producing fiber-reinforced composite material |
WO2018043490A1 (en) | 2016-08-29 | 2018-03-08 | 三菱ケミカル株式会社 | Thermosetting resin composition, prepreg, fiber-reinforced plastic molded body and method for producing same |
-
2018
- 2018-03-23 JP JP2018056097A patent/JP7338130B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010539287A (en) | 2007-09-11 | 2010-12-16 | ダウ グローバル テクノロジーズ インコーポレイティド | Isocyanate-modified epoxy resin for fused epoxy foam |
JP2010100834A (en) | 2008-09-29 | 2010-05-06 | Toray Ind Inc | Epoxy resin composition, prepreg, and fiber-reinforced composite material |
WO2015083714A1 (en) | 2013-12-02 | 2015-06-11 | 三菱レイヨン株式会社 | Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same |
CN105315614A (en) | 2014-07-31 | 2016-02-10 | 太阳油墨(苏州)有限公司 | Porefilling thermosetting resin composition for printed circuit board, cured product and printed circuit board |
WO2017126307A1 (en) | 2016-01-19 | 2017-07-27 | 三菱ケミカル株式会社 | Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material |
JP2017206615A (en) | 2016-05-18 | 2017-11-24 | 三菱ケミカル株式会社 | Method for producing fiber-reinforced composite material |
WO2018043490A1 (en) | 2016-08-29 | 2018-03-08 | 三菱ケミカル株式会社 | Thermosetting resin composition, prepreg, fiber-reinforced plastic molded body and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP2019167443A (en) | 2019-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6977842B2 (en) | Methods for manufacturing thermosetting resin compositions, prepregs, fiber-reinforced composites, fiber-reinforced composites, automotive materials, and prepregs. | |
JP6771883B2 (en) | Epoxy resin compositions, prepregs and fiber reinforced composites | |
US10344132B2 (en) | Epoxy resin composition, prepreg and fiber reinforced composite material | |
JP7186711B2 (en) | Curable resin composition and Tuprepreg using the same | |
KR102389775B1 (en) | Epoxy resin composition, prepreg, and fiber-reinforced composite material | |
WO2014030636A1 (en) | Epoxy resin composition and film, prepreg, and fiber-reinforced plastic using same | |
KR101878128B1 (en) | Epoxy resin composition, prepreg and fiber reinforced composite material | |
JP7200928B2 (en) | Thermosetting resin compositions, prepregs and fiber-reinforced composites | |
JP6771885B2 (en) | Epoxy resin compositions, prepregs and fiber reinforced composites | |
JP6710972B2 (en) | Epoxy resin composition, prepreg, cured resin and fiber reinforced composite material | |
JP2013253194A (en) | Epoxy resin composition | |
JP2017020004A (en) | Epoxy resin composition, prepreg and fiber reinforced composite material | |
JP2016210860A (en) | Epoxy resin composition and prepreg for fiber-reinforced composite material | |
US20230279219A1 (en) | Epoxy resin composition, prepreg, and fiber-reinforced composite material | |
JP7338130B2 (en) | Epoxy resin composition and prepreg for fiber reinforced composites | |
JP6409951B2 (en) | Epoxy resin composition, prepreg for fiber reinforced composite material, and fiber reinforced composite material | |
WO2020217894A1 (en) | Epoxy resin composition, intermediate substrate, and fiber-reinforced composite material | |
JP5297607B2 (en) | RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME AND COMPOSITE MATERIAL INTERMEDIATE | |
JP6421897B1 (en) | Epoxy resin composition, prepreg, fiber reinforced composite material and method for producing the same | |
JP6844740B2 (en) | Prepreg and fiber reinforced composite materials, and their manufacturing methods | |
JP2023049239A (en) | Prepreg and fiber-reinforced composite material | |
JP6066026B1 (en) | Epoxy resin composition, prepreg and fiber reinforced composite material | |
JPWO2020066746A1 (en) | Resin composition for fiber reinforced composite material and fiber reinforced composite material using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220315 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220712 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20221108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230118 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20230118 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230125 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20230131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230328 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20230511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230807 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7338130 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |