JP2011219725A - Ligneous film - Google Patents

Ligneous film Download PDF

Info

Publication number
JP2011219725A
JP2011219725A JP2010205501A JP2010205501A JP2011219725A JP 2011219725 A JP2011219725 A JP 2011219725A JP 2010205501 A JP2010205501 A JP 2010205501A JP 2010205501 A JP2010205501 A JP 2010205501A JP 2011219725 A JP2011219725 A JP 2011219725A
Authority
JP
Japan
Prior art keywords
lignin
rubber
woody
film
film according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010205501A
Other languages
Japanese (ja)
Other versions
JP5652646B2 (en
Inventor
Naoyuki Koyama
直之 小山
Mika Kofune
美香 小舩
Ikuko Kikuchi
郁子 菊地
Akihito Goto
昭人 後藤
Tomoji Sukegawa
智史 助川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010205501A priority Critical patent/JP5652646B2/en
Publication of JP2011219725A publication Critical patent/JP2011219725A/en
Application granted granted Critical
Publication of JP5652646B2 publication Critical patent/JP5652646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Reinforced Plastic Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Cosmetics (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Epoxy Resins (AREA)
  • Laminated Bodies (AREA)
  • Finished Plywoods (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Paints Or Removers (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ligneous film which uses vegetable resources as the principal raw material, and which is imparted with the flame retardancy and antibacterial properties.SOLUTION: The ligneous film is formed by curing a resin composition containing lignin, a curing agent, and an elastomer, and this ligneous film is characterized in that the lignin is soluble in organic solvents, and the content of the lignin in the solid of the resin composition is 5-85 mass%. The ligneous film is a sheet or a film, in which the lignin has a weight-average molecular weight of 100-7,000.

Description

本発明は、地球環境保全を考慮した木質系皮膜に関するものである。   The present invention relates to a woody film in consideration of global environmental conservation.

シート又はフィルムは日用品や包装材料の用途のほかに、土木建築材料、医療用材料、電子材料等の用途として広範に利用されている。シート又はフィルムは主にプラスチック材料を成形加工したものが主であり、厚さがおおむね0.2mm付近より厚手のものをシート、薄いものをフィルムと呼称している。原料となるプラスチック材料としては石油由来のプラスチックが主である。   Sheets or films are widely used for applications such as civil engineering and building materials, medical materials, and electronic materials in addition to the use of daily necessities and packaging materials. A sheet or a film is mainly formed by molding a plastic material. A sheet having a thickness of approximately 0.2 mm or more is referred to as a sheet, and a thin film or film is referred to as a film. Petroleum-derived plastic is the main plastic material.

近年、化石資源を焼却することで発生する二酸化炭素量の増加に伴い、地球温暖化の問題が関心を集めるようになった。そこで地球温暖化防止の観点からバイオマス(生物資源)の有効活用が見直されている。近年、包装資材、家電製品の部材、自動車用部材などのプラスチックを植物由来樹脂(バイオプラスチック)に置き換える動きが活発化している。   In recent years, with the increase in the amount of carbon dioxide generated by incineration of fossil resources, the issue of global warming has attracted attention. Therefore, effective use of biomass (biological resources) has been reviewed from the viewpoint of preventing global warming. In recent years, there has been an active movement to replace plastics such as packaging materials, household appliances, and automobiles with plant-derived resins (bioplastics).

前記植物由来樹脂の具体例としては、ジャガイモやサトウキビやトウモロコシ等の糖質を醗酵させて得られた乳酸をモノマーとし、これを用いて化学重合を行い作製したポリ乳酸:PLA(PolyLactic Acid)や、澱粉を主成分としたエステル化澱粉、微生物が体内に生産するポリエステルである微生物産生樹脂:PHA(PolyHydoroxy Alkanoate)、発酵法で得られる1,3−プロパンジオールと石油由来のテレフタル酸とを原料とするPTT(Poly Trimethylene Telephtalate)等が挙げられる。
また、PBS(Poly Butylene Succinate)は、現在は石油由来の原料が用いられているが、今後においては、植物由来樹脂として作製する研究が開発されており、主原料の一つであるコハク酸を植物由来で作製する技術についての開発がなされている。
Specific examples of the plant-derived resin include polylactic acid: PLA (Polylactic Acid) produced by chemical polymerization using lactic acid obtained by fermenting sugars such as potato, sugarcane, and corn as a monomer. , Starch-based esterified starch, microorganism-produced resin that is a polyester produced by microorganisms in the body: PHA (PolyHydroxy Alkanoate), 1,3-propanediol obtained by fermentation, and petroleum-derived terephthalic acid And PTT (Poly Trimethylene Telephthalate).
In addition, PBS (Poly Butylene Succinate) is currently used as a raw material derived from petroleum, but in the future, research to produce it as a plant-derived resin has been developed, and succinic acid, one of the main raw materials, has been developed. Developments have been made on technologies that are derived from plants.

これらの植物由来原料を用いた樹脂は、OA関連用部品または自動車部品に加え、便座・台所・風呂場まわり等のサニタリー分野、雑貨などの幅広い分野に導入されている。このような用途においては、安全上の問題から難燃性、耐熱性が要求される。難燃性、耐熱性に関してはこれまでにも、植物由来原料を用いた樹脂、特にポリ乳酸樹脂において種々の試みがなされてきた。しかし、植物由来樹脂はいずれも熱可塑性であり(非特許文献1参照)、耐熱性において課題がある。一方シート又はフィルム用途では、安全上の問題から不燃性があることが要求される。また、気候によっては細菌や黴(カビ)が繁殖する場合があり、抗菌性を付与することが好ましい。上記植物由来樹脂は融点が低く、耐熱性に難があった。   Resins using these plant-derived materials have been introduced into a wide range of sanitary fields such as toilet seats, kitchens, and bathrooms, as well as miscellaneous goods, in addition to OA-related parts or automobile parts. In such applications, flame retardancy and heat resistance are required for safety reasons. With respect to flame retardancy and heat resistance, various attempts have been made so far in resins using plant-derived raw materials, particularly polylactic acid resins. However, all plant-derived resins are thermoplastic (see Non-Patent Document 1), and there is a problem in heat resistance. On the other hand, in sheet or film applications, nonflammability is required for safety reasons. Also, depending on the climate, bacteria and molds may grow, and it is preferable to impart antibacterial properties. The plant-derived resin has a low melting point and has difficulty in heat resistance.

公知の難燃剤としては、臭素系・ハロゲン系難燃剤、リン系難燃剤、窒素化合物系難燃剤、シリコーン系難燃剤、無機系難燃剤が挙げられる(特許文献1参照)。従来においても各種難燃剤が知られているが、上記の難燃剤は、有効に機能を発揮させるための添加量が多く、樹脂100質量部に対して10〜30質量部、多いものでは50質量部程度必要とする場合もある。
これらの難燃剤は、化石資源を原料として合成されているものであるから、主材料として植物由来樹脂を用いたとしても、環境負荷削減効果は低いものとなっていた。
Known flame retardants include bromine / halogen flame retardants, phosphorus flame retardants, nitrogen compound flame retardants, silicone flame retardants, and inorganic flame retardants (see Patent Document 1). Conventionally, various flame retardants are known, but the above-mentioned flame retardant has a large amount of addition for effectively exhibiting the function, and 10 to 30 parts by mass with respect to 100 parts by mass of the resin, and 50 masses in many cases. Some parts may be required.
Since these flame retardants are synthesized using fossil resources as raw materials, even if plant-derived resin is used as the main material, the effect of reducing environmental burden has been low.

植物由来の硬化性樹脂原料として、古くからリグニンが注目されてきた。国内で容易に入手できるリグニンとして、例えば、リグニンスルホン酸塩が挙げられるが、水溶性であり、有機溶媒に難溶である。そのため、硬化剤及び硬化促進剤との相溶性が悪く、均質な硬化物が得られなかった。   As a plant-derived curable resin material, lignin has attracted attention for a long time. Examples of lignin that can be easily obtained in Japan include lignin sulfonate, which is water-soluble and hardly soluble in organic solvents. Therefore, compatibility with a hardening | curing agent and a hardening accelerator was bad, and the homogeneous hardened | cured material was not obtained.

一方、抗菌性を付与する方法としては、抗菌剤を塗料に練り込むか、あるいは表面に抗菌剤を塗布する方法がある。現状では、抗菌剤としては無機系抗菌剤が主に練り込みに使用され、一方、有機系抗菌剤が主に液状で製品に塗布して使用されている。無機系抗菌剤の代表例は、銀などの金属で置換されたゼオライトや合成鉱物などが挙げられ、有機抗菌剤としては、クロロヘキシジン、第4級アンモニウム塩等が挙げられる。   On the other hand, as a method for imparting antibacterial properties, there are methods of kneading an antibacterial agent into a paint or applying an antibacterial agent to the surface. At present, as an antibacterial agent, an inorganic antibacterial agent is mainly used for kneading, while an organic antibacterial agent is mainly used in a liquid form applied to a product. Representative examples of inorganic antibacterial agents include zeolites substituted with metals such as silver and synthetic minerals, and examples of organic antibacterial agents include chlorohexidine and quaternary ammonium salts.

一方、天然由来の抗菌剤の検討もされ始めている。天然物由来の有機系抗菌剤としては、ヒノキチオール、ワサオーロ(有効成分;アリルイソチオシアネート)、わさび、しょうが、等各種あり、天然物由来という長所はあるものの、一般的に樹脂の加工温度に耐えない、供給が限られて入手困難、樹脂との相溶性を改善するために他の添加剤を加えなければならない等の問題点があった。   On the other hand, the study of naturally-derived antibacterial agents has begun. Organic antibacterial agents derived from natural products include hinokitiol, wasaolo (active ingredient: allyl isothiocyanate), wasabi, ginger, etc., and although they have the advantage of being derived from natural products, they generally cannot withstand the processing temperatures of resins. However, there are problems such as difficulty in obtaining due to limited supply, and addition of other additives to improve compatibility with the resin.

特開2007−002120号公報JP 2007-002120 A

土肥義治(編) 生分解性高分子材料、工業調査会 1990年発行Yoshiharu Tohi (Edition) Biodegradable polymer materials, Industrial Research Committee, published in 1990

そこで本発明においては、環境負荷低減化の観点から、植物由来の木質系樹脂を利用した皮膜を提供することを目的とする。特に植物由来であるリグニンを主原料とし、かつ難燃性、抗菌性を付与した木質系皮膜を提供することにある。   Then, in this invention, it aims at providing the membrane | film | coat using the woody resin derived from a plant from a viewpoint of environmental load reduction. In particular, it is an object of the present invention to provide a woody film that uses lignin derived from a plant as a main raw material and imparts flame retardancy and antibacterial properties.

本発明は以下の通りである。
(1) リグニン、硬化剤及びエラストマーを含む樹脂組成物を硬化させてなる木質系皮膜であって、前記リグニンが有機溶媒に可溶であり、前記樹脂組成物の固形分中のリグニンの含有量が5質量%〜85質量%であることを特徴とする木質系皮膜。
(2) 木質系皮膜が、シート又はフィルムであり、リグニンの重量平均分子量が100〜7000である前記(1)に記載の木質系皮膜。
(3) リグニン中の硫黄原子の含有率が2質量%以下である前記(1)又は(2)に記載の木質系皮膜。
(4) リグニンが、水のみを用いた処理方法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである前記(1)〜(3)のいずれかに記載の木質系皮膜。
(5) リグニンが、植物原料に水蒸気を圧入し、瞬時に圧力を開放することで植物原料を爆砕する水蒸気爆砕法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである前記(1)〜(3)のいずれかに記載の木質系皮膜。
(6) エラストマーがアクリルゴム、水素化ニトリルゴム、ニトリルブタジェンゴム、イソプレンゴム、ウレタンゴム、エチレンプロピレンゴム、エピクロルヒドリンゴム、クロロプレンゴム、シリコーンゴム、スチレン・ブタジエンゴム、ブタジエンゴム、フッ素ゴム、ポリイソブチレンゴム、四フッ化エチレンプロピレンゴム、クロロスルホン化ポリエチレンゴム、エチレンアクリルゴム、ノルボルネンゴム、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、1,2−ポリブタジェン系熱可塑性エラストマーのいずれかであることを特徴とする前記(1)〜(5)のいずれかに記載の木質系皮膜。
(7) 硬化剤が、イソシアネートである前記(1)〜(6)のいずれかに記載の木質系皮膜。
(8) 硬化剤が、エポキシ樹脂である前記(1)〜(6)のいずれかに記載の木質系皮膜。
(9) 硬化剤が、アルデヒド又はホルムアルデヒドを生成する化合物である前記(1)〜(6)のいずれかに記載の木質系皮膜。
(10) 硬化剤が、多価カルボン酸または多価カルボン酸無水物から選ばれる少なくとも一つである前記(1)〜(6)のいずれかに記載の木質系皮膜。
(11) 硬化剤が、不飽和多価カルボン酸または不飽和多価カルボン酸無水物から選ばれる少なくとも一つである前記(1)〜(6)のいずれかに記載の木質系皮膜。
(12) 皮膜の厚みが、0.005〜2mmである前記(1)〜(11)のいずれかに記載の木質系皮膜。
The present invention is as follows.
(1) A woody film formed by curing a resin composition containing lignin, a curing agent and an elastomer, wherein the lignin is soluble in an organic solvent, and the content of lignin in the solid content of the resin composition Is a wood-based film, characterized by being 5 mass% to 85 mass%.
(2) The woody film according to (1), wherein the woody film is a sheet or a film, and the weight average molecular weight of lignin is 100 to 7000.
(3) The woody film according to (1) or (2), wherein the content of sulfur atoms in lignin is 2% by mass or less.
(4) The lignin is obtained by separating from a cellulose component and a hemicellulose component by a treatment method using only water, and dissolving the lignin in an organic solvent. Woody film.
(5) Lignin was obtained by separating water from a cellulose component and a hemicellulose component by a water vapor explosion method in which water vapor was injected into the plant raw material and the plant raw material was explode by instantaneously releasing the pressure, and dissolved in an organic solvent. The woody film according to any one of (1) to (3), which is a thing.
(6) Elastomer is acrylic rubber, hydrogenated nitrile rubber, nitrile butadiene rubber, isoprene rubber, urethane rubber, ethylene propylene rubber, epichlorohydrin rubber, chloroprene rubber, silicone rubber, styrene / butadiene rubber, butadiene rubber, fluoro rubber, polyisobutylene Rubber, Tetrafluoroethylene propylene rubber, Chlorosulfonated polyethylene rubber, Ethylene acrylic rubber, Norbornene rubber, Styrenic thermoplastic elastomer, Olefin thermoplastic elastomer, Urethane thermoplastic elastomer, Polyamide thermoplastic elastomer, 1,2- The woody film according to any one of the above (1) to (5), which is any one of a polybutadiene type thermoplastic elastomer.
(7) The woody film according to any one of (1) to (6), wherein the curing agent is isocyanate.
(8) The woody film according to any one of (1) to (6), wherein the curing agent is an epoxy resin.
(9) The woody film according to any one of (1) to (6), wherein the curing agent is a compound that generates aldehyde or formaldehyde.
(10) The woody film according to any one of (1) to (6), wherein the curing agent is at least one selected from a polyvalent carboxylic acid or a polyvalent carboxylic anhydride.
(11) The woody film according to any one of (1) to (6), wherein the curing agent is at least one selected from an unsaturated polycarboxylic acid or an unsaturated polycarboxylic anhydride.
(12) The woody film according to any one of (1) to (11), wherein the film has a thickness of 0.005 to 2 mm.

本発明によれば、化石資源使用量の削減、及び二酸化炭素の排出量の低減効果が得られ、環境負荷低減化に好適な木質系皮膜が提供できた。また、樹脂成分の主原料としてリグニンを使用することで、耐熱性に優れた木質系皮膜を提供できた。   According to the present invention, the effect of reducing the amount of fossil resources used and the amount of carbon dioxide emission can be obtained, and a woody film suitable for reducing the environmental load can be provided. Further, by using lignin as the main raw material of the resin component, it was possible to provide a woody film excellent in heat resistance.

本発明によれば、樹脂成分の主原料としてリグニンを使用することで、前記効果に加え、難燃効果を付与した木質系皮膜を提供できた。   According to the present invention, by using lignin as the main raw material of the resin component, it is possible to provide a woody film imparted with a flame retardant effect in addition to the above effects.

本発明によれば、樹脂成分の主原料としてリグニンを使用することで、前記効果に加え、抗菌効果を付与した木質系皮膜を提供できた。   According to the present invention, by using lignin as the main raw material of the resin component, it was possible to provide a woody film imparted with an antibacterial effect in addition to the above effects.

以下、本発明をさらに詳細に説明する。
本発明は、リグニン、硬化剤及びエラストマーを含む樹脂組成物を硬化させてなる木質系皮膜であって、前記リグニンが有機溶媒に可溶であり、前記樹脂組成物の固形分中のリグニンの含有量が5質量%〜85質量%であることを特徴としている。また、前記樹脂組成物は、通常、有機溶媒を含む。
また、本発明の木質系皮膜は、木質系シート又は木質系フィルムであることが好ましく、その厚みは、一般的に、0.005〜2mmである。なお、木質系シートであれば、厚みは、通常、0.2〜2mmであり、また、木質系フィルムであれば、厚みは、通常、0.005〜0.2mmである。
以下、本発明の木質系皮膜は、木質系シート又は木質系フィルムとも表す。
Hereinafter, the present invention will be described in more detail.
The present invention is a wood-based film obtained by curing a resin composition containing lignin, a curing agent and an elastomer, wherein the lignin is soluble in an organic solvent, and the lignin contained in the solid content of the resin composition The amount is 5% by mass to 85% by mass. The resin composition usually contains an organic solvent.
Moreover, it is preferable that the wood type film | membrane of this invention is a wood type sheet | seat or a wood type film, and the thickness is generally 0.005-2 mm. In addition, if it is a wood type sheet | seat, thickness will be 0.2-2 mm normally, and if it is a wood type film, thickness will be 0.005-0.2 mm normally.
Hereinafter, the woody film of the present invention is also referred to as a woody sheet or a woody film.

前記樹脂組成物の固形分中のリグニンの含有量としては、5質量%〜85質量%であるが、20質量%〜80質量%の範囲である事が好ましい。より好ましくは30質量%〜70質量%であり、特に好ましくは40質量%〜70質量%である。リグニンの含有量が5質量%未満であると、植物由来度低下によるCO発生削減効果が低く、難燃性、抗菌性の効果が得られないおそれがある。一方リグニンの含有量が85質量%を超えると、架橋反応が不十分で3次元構造が形成されず、木質系皮膜の強度が低下してしまうおそれがある。 The content of lignin in the solid content of the resin composition is 5% by mass to 85% by mass, preferably 20% by mass to 80% by mass. More preferably, it is 30 mass%-70 mass%, Most preferably, it is 40 mass%-70 mass%. When the content of lignin is less than 5% by mass, the effect of reducing CO 2 generation due to the decrease in the degree of plant origin is low, and there is a possibility that flame retardancy and antibacterial effects cannot be obtained. On the other hand, if the content of lignin exceeds 85% by mass, the crosslinking reaction is insufficient, a three-dimensional structure is not formed, and the strength of the woody film may be reduced.

前記リグニンの重量平均分子量は、ポリスチレン換算値において、100〜7000が好ましく、さらに200〜5000が好ましく、500〜4000であることが特に好ましい。リグニンの重量平均分子量が7000を超えると有機溶媒への溶解性が低下するおそれがある。重量平均分子量が100未満であるとリグニンの構造を活かした木質系シート又はフィルムの強度が低下するおそれがある。
なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリスチレン換算した値を使用した。
The weight average molecular weight of the lignin is preferably from 100 to 7000, more preferably from 200 to 5000, and particularly preferably from 500 to 4000 in terms of polystyrene. When the weight average molecular weight of lignin exceeds 7000, there exists a possibility that the solubility to an organic solvent may fall. If the weight average molecular weight is less than 100, the strength of the woody sheet or film utilizing the structure of lignin may be reduced.
The weight average molecular weight was measured by gel permeation chromatography (GPC), and a value converted to standard polystyrene was used.

リグニンの基本骨格は一般的にヒドロキシフェニルプロパン単位を基本単位とする架橋構造の高分子である。樹木は親水性の線状高分子の多糖類(セルロースとヘミセルロース)と疎水性の架橋構造リグニンの相互侵入網目(IPN)構造を形成している。リグニンは樹木の約25質量%を占め、不規則かつ極めて複雑なポリフェノールの化学構造をしている。フェノール類は燃焼の際、黒鉛を形成し易いため難燃性に優れ、抗菌作用を有することが知られている。本発明は植物から得られたこの複雑な構造をそのまま活かし、シート又はフィルムに用いる組成物の原料とすることで、難燃性、抗菌性を有する木質系シート又はフィルムを提供するものである。   The basic skeleton of lignin is generally a crosslinked polymer having a hydroxyphenylpropane unit as a basic unit. Trees form an interpenetrating network (IPN) structure of hydrophilic linear polymer polysaccharides (cellulose and hemicellulose) and hydrophobic cross-linked lignin. Lignin accounts for about 25% by weight of trees and has an irregular and extremely complex chemical structure of polyphenols. It is known that phenols are excellent in flame retardancy and have antibacterial action because they easily form graphite upon combustion. The present invention provides a wood-based sheet or film having flame retardancy and antibacterial properties by making use of this complex structure obtained from plants as it is and as a raw material for a composition used for the sheet or film.

リグニンの原料に特に制限は無い。スギ、マツ、ヒノキ等の針葉樹、ブナ等の広葉樹、タケ、イネワラ、バガス等が使用される。樹木からリグニンを分離し取り出す方法としては、クラフト法、硫酸法、爆砕法などが挙げられる。現在多量に製造されているリグニンの多くは、紙やバイオエタノールの原料であるセルロース製造時に残渣として得られる。入手可能なリグニンとしては、主に硫酸法により副生するリグニンスルホン酸塩があげられる。他にもアルカリリグニン、オルガノソルブリグニン、ソルボリシスリグニン、糸状菌処理木材、ジオキサンリグニン及びミルドウッドリグニン、爆砕リグニンなどがある。本発明に用いるリグニンは取り出す方法によらず、上記記載のリグニンを用いることができる。   There are no particular restrictions on the raw material of lignin. Conifers such as cedar, pine and cypress, broad-leaved trees such as beech, bamboo, rice straw, bagasse and the like are used. Examples of methods for separating and taking out lignin from trees include kraft method, sulfuric acid method, and explosion method. Many of the lignins currently produced in large quantities are obtained as residues during the production of cellulose, which is a raw material for paper and bioethanol. Examples of lignin that can be obtained include lignin sulfonate that is produced as a by-product mainly by the sulfuric acid method. Other examples include alkaline lignin, organosolv lignin, solvolysis lignin, filamentous fungus treated wood, dioxane lignin and milled wood lignin, and explosive lignin. The lignin described above can be used regardless of the method of taking out the lignin used in the present invention.

取りだした際、リグニン以外の例えばセルロースやヘミセルロースのような成分が、含まれていても良い。また、これらのリグニンをアセチル化、メチル化、ハロゲン化、ニトロ化、スルホン化、硫化ナトリウムや硫化水素との反応等によって作製されたリグニン誘導体も含む。   When taking out, components other than lignin, such as cellulose and hemicellulose, may be included. Also included are lignin derivatives prepared by acetylation, methylation, halogenation, nitration, sulfonation, reaction with sodium sulfide or hydrogen sulfide, and the like.

主原料とするリグニンを取得する方法として、水を用いた分離技術を用いた方法が好ましい。使用するリグニンが、水のみを用いた処理方法により、セルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得たリグニンであることが好ましい。また、リグニンを取得する方法としては、水蒸気爆砕法がより好ましい。水蒸気爆砕法は高温高圧の水蒸気による加水分解と、圧力を瞬時に開放することによる物理的破砕効果により、植物を短時間に破砕するものである。
水蒸気爆砕の条件は特に限定しないが、通常、原料を水蒸気爆砕装置用の耐圧容器に入れ、3〜4MPaの水蒸気を圧入し、1〜15分間放置した後、瞬時に圧力を開放することにより爆砕する。なお、前記有機溶媒可溶リグニンは、水蒸気爆砕リグニンとも表す。また、原料としては、リグニンが抽出できれば特に限定しないが、例えば、スギ、竹、稲わら、麦わら、ひのき、アカシア、ヤナギ、ポプラ、バガス、とうもろこし、サトウキビ、米穀、ユーカリ、エリアンサスなどが挙げられる。
この方法は硫酸法、クラフト法など他の分離方法と比較し、硫酸、亜硫酸塩等を用いることなく、水のみを使用するので、クリーンな分離方法である。この方法では、リグニン中に硫黄原子を含まないリグニン、又は、硫黄原子の含有率が少ないリグニンが得られる。通常、リグニン中の硫黄原子の含有率は、2質量%以下が好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることが特に好ましい。硫黄原子の含有量が増大すると親水性のスルホン酸基が増加するため、有機溶剤への溶解性が低下するおそれがある。本発明者らは、さらに、爆砕物から有機溶媒による抽出により、リグニンの分子量を制御し得ることを見出した。
As a method for obtaining lignin as a main raw material, a method using a separation technique using water is preferable. The lignin used is preferably a lignin obtained by separating it from a cellulose component and a hemicellulose component by a treatment method using only water and dissolving it in an organic solvent. Moreover, as a method for obtaining lignin, the steam explosion method is more preferable. The steam explosion method crushes plants in a short time by hydrolysis with high-temperature and high-pressure steam and a physical crushing effect by instantaneously releasing the pressure.
The conditions for steam explosion are not particularly limited. Usually, the raw material is placed in a pressure vessel for a steam explosion apparatus, 3-4 MPa of steam is injected, left to stand for 1-15 minutes, and then the pressure is instantaneously released for explosion. To do. The organic solvent-soluble lignin is also referred to as steam explosion lignin. The raw material is not particularly limited as long as lignin can be extracted. .
This method is a clean separation method because only water is used without using sulfuric acid, sulfite or the like, compared with other separation methods such as sulfuric acid method and kraft method. In this method, lignin containing no sulfur atom in the lignin or lignin having a low content of sulfur atoms can be obtained. Usually, the content of sulfur atoms in lignin is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. When the sulfur atom content is increased, hydrophilic sulfonic acid groups are increased, which may reduce the solubility in organic solvents. The present inventors have further found that the molecular weight of lignin can be controlled from the blasted product by extraction with an organic solvent.

本発明で用いるリグニンの抽出に用いる有機溶媒は、1種又は2種以上複数の混合のアルコール溶媒、アルコールと水を混合した含水アルコール溶媒、そのほかの有機溶媒または、水と混合した含水有機溶媒を使用することができる。水にはイオン交換水を使用することが好ましい。水との混合溶媒の含水率は0質量%〜70質量%が好ましい。リグニンは水への溶解度が低いため、水のみを溶媒とするとリグニンを抽出することが困難である。また、用いる溶媒を選択することにより、得られるリグニンの重量平均分子量を制御することが可能である。樹脂組成物に含まれる有機溶媒、あるいは、リグニンの抽出に用いられる有機溶媒としてはアルコール、トルエン、ベンゼン、N−メチルピロリドン、メチルエチルケトン、メチルイソブチルケトン、ジエチルエーテル、メチルセロソルブ(エチレングリコールモノメチルエーテル)、シクロヘキサノン、ジメチルホルムアミド、酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどがあり、これらは二種類以上、混合して用いることができる。   The organic solvent used in the extraction of lignin used in the present invention is one or a mixture of two or more kinds of alcohol solvents, a hydrous alcohol solvent in which alcohol and water are mixed, another organic solvent, or a hydrous organic solvent in which water is mixed. Can be used. It is preferable to use ion exchange water as water. The water content of the mixed solvent with water is preferably 0% by mass to 70% by mass. Since lignin has low solubility in water, it is difficult to extract lignin using only water as a solvent. Moreover, it is possible to control the weight average molecular weight of the lignin obtained by selecting the solvent to be used. The organic solvent contained in the resin composition or the organic solvent used for the extraction of lignin is alcohol, toluene, benzene, N-methylpyrrolidone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ether, methyl cellosolve (ethylene glycol monomethyl ether), There are cyclohexanone, dimethylformamide, methyl acetate, ethyl acetate, acetone, tetrahydrofuran, and the like, and two or more of these can be used in combination.

本発明の木質系皮膜(木質系シート又はフィルム)は、リグニンと少なくとも1種の硬化剤とエラストマーを含む組成物(樹脂組成物)を硬化させてなるものである。さらに前記組成物は、硬化促進剤及び所望の添加剤を混合しても良い。硬化を促進するため加熱、加圧をして、成形しても良い。前記木質系シート又はフィルムは硬化後に前記リグニンの構造を活かした3次元構造を形成し、さらにエラストマーと海島構造をとることで耐衝撃性や柔軟性も併せ持った強靭な材料となる。   The woody film (woody sheet or film) of the present invention is obtained by curing a composition (resin composition) containing lignin, at least one curing agent and an elastomer. Furthermore, the said composition may mix a hardening accelerator and a desired additive. You may shape | mold by heating and pressurizing in order to accelerate hardening. The woody sheet or film forms a three-dimensional structure utilizing the structure of the lignin after curing, and becomes a tough material having both impact resistance and flexibility by taking an elastomer and sea-island structure.

本発明で用いるエラストマーとしてアクリルゴム、水素化ニトリルゴム、ニトリルブタジェンゴム、イソプレンゴム、ウレタンゴム、エチレンプロピレンゴム、エピクロルヒドリンゴム、クロロプレンゴム、シリコーンゴム、スチレン・ブタジエンゴム、ブタジエンゴム、フッ素ゴム、ポリイソブチレンゴム、四フッ化エチレンプロピレンゴム、クロロスルホン化ポリエチレンゴム、エチレンアクリルゴム、ノルボルネンゴム、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、1,2−ポリブタジェン系熱可塑性エラストマーが挙げられる。樹脂組成物の固形分中のエラストマー含有量は2質量%〜70質量%の範囲が好ましく、5質量%〜60質量%がより好ましく、8質量%〜50質量%が特に好ましい。エラストマーの含有量が2質量%未満であると、フィルム又はシートに柔軟性が得られないおそれがある。またエラストマーの含有量が70質量%を超えると植物由来度低下によるCO発生削減効果が低く、難燃性、抗菌性の効果が得られないおそれがある。 As the elastomer used in the present invention, acrylic rubber, hydrogenated nitrile rubber, nitrile butadiene rubber, isoprene rubber, urethane rubber, ethylene propylene rubber, epichlorohydrin rubber, chloroprene rubber, silicone rubber, styrene / butadiene rubber, butadiene rubber, fluoro rubber, poly Isobutylene rubber, tetrafluoroethylene propylene rubber, chlorosulfonated polyethylene rubber, ethylene acrylic rubber, norbornene rubber, styrene thermoplastic elastomer, olefin thermoplastic elastomer, urethane thermoplastic elastomer, polyamide thermoplastic elastomer, 1, 2 -Polybutadiene type thermoplastic elastomer is mentioned. The elastomer content in the solid content of the resin composition is preferably in the range of 2% by mass to 70% by mass, more preferably 5% by mass to 60% by mass, and particularly preferably 8% by mass to 50% by mass. If the elastomer content is less than 2% by mass, the film or sheet may not be flexible. On the other hand, when the elastomer content exceeds 70% by mass, the effect of reducing CO 2 generation due to the decrease in the degree of plant origin is low, and there is a possibility that flame retardancy and antibacterial effects cannot be obtained.

本発明で用いる硬化剤としてイソシアネートが挙げられる。イソシアネートには、脂肪族系イソシアネート、脂環族系イソシアネートおよび芳香族系イソシアネートの他、それらの変性体が挙げられる。脂肪族系イソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等が挙げられ、脂環族系イソシアネートとしては、例えば、イソホロンジイソシアネートが挙げられる。芳香族系イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメリックジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート等が挙げられる。イソシアネート変性体としては、例えば、ウレタンプレポリマー、ヘキサメチレンジイソシアネートビューレット、ヘキサメチレンジイソシアネートトリマー、イソホロンジイソシアネートトリマー等が挙げられる。   An isocyanate is mentioned as a hardening | curing agent used by this invention. Isocyanates include aliphatic isocyanates, alicyclic isocyanates and aromatic isocyanates, as well as modified products thereof. Examples of the aliphatic isocyanate include hexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate. Examples of the alicyclic isocyanate include isophorone diisocyanate. Examples of the aromatic isocyanate include tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, polymeric diphenylmethane diisocyanate, triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate, and the like. Examples of the modified isocyanate include urethane prepolymer, hexamethylene diisocyanate burette, hexamethylene diisocyanate trimer, and isophorone diisocyanate trimer.

本発明で用いる硬化剤としてエポキシ樹脂が挙げられる。エポキシ樹脂にはビスフェノールAグリシジルエーテル型エポキシ、ビスフェノールFグリシジルエーテル型エポキシ、ビスフェノールSグリシジルエーテル型エポキシ、ビスフェノールADグリシジルエーテル型エポキシ、フェノールノボラック型エポキシ、ビフェニル型エポキシ、クレゾールノボラック型エポキシがある。また、さらに天然由来物質から得られたエポキシ樹脂であることが環境負荷低減化の観点で好ましい。具体的には、エポキシ化大豆油、エポキシ化脂肪酸エステル類、エポキシ化アマニ油、ダイマー酸変性エポキシ樹脂などが挙げられる。   Examples of the curing agent used in the present invention include an epoxy resin. Epoxy resins include bisphenol A glycidyl ether type epoxy, bisphenol F glycidyl ether type epoxy, bisphenol S glycidyl ether type epoxy, bisphenol AD glycidyl ether type epoxy, phenol novolac type epoxy, biphenyl type epoxy, and cresol novolac type epoxy. Further, an epoxy resin obtained from a naturally-derived substance is preferable from the viewpoint of reducing the environmental load. Specific examples include epoxidized soybean oil, epoxidized fatty acid esters, epoxidized linseed oil, and dimer acid-modified epoxy resin.

本発明で用いる硬化剤としてアルデヒド又はホルムアルデヒドを生成する化合物が挙げられる。アルデヒドとしては、特に限定されず、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、クロラール、フルフラール、グリオキザール、n−ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、フェニルアセトアルデヒド、o−トルアルデヒド、サリチルアルデヒド等が挙げられる。また、ホルムアルデヒドを生成する化合物としてはヘキサメチレンテトラミンが挙げられる。特にヘキサメチレンテトラミンが好ましい。これらを単独または2種類以上組み合わせて使用することもできる。また、硬化性、耐熱性の面からヘキサメチレンテトラミンが好ましい。   Examples of the curing agent used in the present invention include compounds that generate aldehyde or formaldehyde. The aldehyde is not particularly limited. For example, formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, chloral, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, benzaldehyde, crotonaldehyde, acrolein, phenylacetaldehyde , O-tolualdehyde, salicylaldehyde and the like. Moreover, hexamethylenetetramine is mentioned as a compound which produces | generates formaldehyde. Hexamethylenetetramine is particularly preferable. These may be used alone or in combination of two or more. Moreover, hexamethylenetetramine is preferable from the viewpoint of curability and heat resistance.

本発明で用いる硬化剤として多価カルボン酸または多価カルボン酸無水物が挙げられる。多価カルボン酸の具体例としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族多価カルボン酸や、トリメリット酸、ピロメリット酸、イソフタル酸、テレフタル酸、フタル酸、2,6−ナフタレンジカルボン酸等の芳香族多価カルボン酸が挙げられる。多価カルボン酸無水物の具体例としては、例えば、マロン酸無水物、コハク酸無水物、グルタル酸無水物、アジピン酸無水物、ピメリン酸無水物、スベリン酸無水物、アゼライン酸無水物、エチルナジック酸無水物、アルケニルコハク酸無水物、ヘキサヒドロフタル酸無水物等の脂肪族多価カルボン酸無水物や、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、フタル酸無水物等の芳香族多価カルボン酸無水物が挙げられる。多価カルボン酸または多価カルボン酸無水物が、リグニンが有する水酸基と反応させることにより得られるものであることが好ましい。   Examples of the curing agent used in the present invention include polyvalent carboxylic acids or polyvalent carboxylic acid anhydrides. Specific examples of the polycarboxylic acid include aliphatic polycarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, trimellitic acid, and pyromellitic acid. And aromatic polyvalent carboxylic acids such as isophthalic acid, terephthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid. Specific examples of the polyvalent carboxylic acid anhydride include, for example, malonic acid anhydride, succinic acid anhydride, glutaric acid anhydride, adipic acid anhydride, pimelic acid anhydride, suberic acid anhydride, azelaic acid anhydride, ethyl Aliphatic polycarboxylic acid anhydrides such as nadic acid anhydride, alkenyl succinic acid anhydride, hexahydrophthalic acid anhydride, trimellitic acid anhydride, pyromellitic acid anhydride, benzophenone tetracarboxylic acid anhydride, phthalic acid Aromatic polyvalent carboxylic acid anhydrides such as anhydrides may be mentioned. It is preferable that the polyvalent carboxylic acid or polyvalent carboxylic acid anhydride is obtained by reacting with the hydroxyl group of lignin.

本発明で用いる硬化剤として不飽和多価カルボン酸または不飽和多価カルボン酸無水物が挙げられる。不飽和多価カルボン酸の具体例としては、アクリル酸、クロトン酸、α−エチルアクリル酸、α−n−プロピルアクリル酸、α−n−ブチルアクリル酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸などが挙げられる。また、不飽和多価カルボン酸無水物の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、シス−1,2,3,4−テトラヒドロフタル酸無水物などが挙げられる。不飽和多価カルボン酸または不飽和多価カルボン酸無水物が、リグニンが有する水酸基と反応させることにより得られるものであることが好ましい。   Examples of the curing agent used in the present invention include unsaturated polyvalent carboxylic acid or unsaturated polyvalent carboxylic acid anhydride. Specific examples of the unsaturated polycarboxylic acid include acrylic acid, crotonic acid, α-ethylacrylic acid, α-n-propylacrylic acid, α-n-butylacrylic acid, maleic acid, fumaric acid, citraconic acid, and mesacone. An acid, itaconic acid, etc. are mentioned. Specific examples of the unsaturated polyvalent carboxylic acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, cis-1,2,3,4-tetrahydrophthalic anhydride. It is preferable that the unsaturated polyvalent carboxylic acid or unsaturated polyvalent carboxylic acid anhydride is obtained by reacting with the hydroxyl group of lignin.

硬化促進剤としては、シクロアミジン化合物、キノン化合物、三級アミン類、有機ホスフィン類、1−シアノエチル−2−フェニルイミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール等のイミダゾール類などが挙げられる。   As the curing accelerator, cycloamidine compounds, quinone compounds, tertiary amines, organic phosphines, 1-cyanoethyl-2-phenylimidazole, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, Examples thereof include imidazoles such as 2-heptadecylimidazole.

本発明の木質系フィルムの製法の一つとしては、リグニンと少なくとも1種の硬化剤と硬化促進剤に加えて、さらにエラストマーと有機溶媒を混合して樹脂組成物ワニスを調製し、アプリケータ等を用いて表面処理をしたPETフィルム上に塗工し、硬化させる方法がある。塗工条件や硬化条件等は特に限定しないが、例えば、40〜160℃で10〜240分間加熱乾燥し、その後160〜240℃で、30分間から3時間程度、硬化処理をしてもよい。また、作製した木質系フィルムの厚みは、通常、0.005〜0.2mmであるが、0.01〜0.1mmが好ましい。
また、木質系シートの製法として、溶融押し出し法、溶液流延法、カレンダー法なども挙げられる。
木質系シートを得るための製造条件としては、特に限定しないが、例えば、油圧真空加熱プレス機、射出成形機、コンプレッション成形機などの樹脂組成物用の乾燥機、成形機により、硬化、圧縮、押出し、または、射出され、製造(成形)してもよい。油圧真空加熱プレス機を使用する場合は、例えば、リグニンと、エラストマーと、硬化剤を含んだ樹脂組成物を、繊維織布などに含浸させ、プリプレグ状態にし、これを、面圧0.1〜10MPa、80〜250℃、5分間〜2時間ほど、プレスし、成形(硬化)し、木質系シートとしてもよい。また、樹脂組成物のワニスを真空乾燥機で50〜180℃、1〜3時間乾燥させ、樹脂組成物の固形物を粉砕し、粒状のサンプルし、このサンプルをSUS製の金型に充填し、得られたサンプルを積層し、油圧真空加熱プレス機で、面圧0.1〜10MPa、80〜250℃、5分間〜2時間ほど、プレスして硬化し、木質系シートとしてもよい。あるいは、所定の形状の型に樹脂組成物のワニスを注ぎ、25〜250℃、10分間〜5時間程度硬化し、木質系シートとしてもよい。また、例えば、射出成形機により、樹脂組成物を、ノズル温度80〜200℃、射出圧力1〜30MPa、型締圧力1〜30MPa、金型温度50〜300℃、硬化時間1分〜100分の条件で射出、成形し、さらに50〜300℃で1〜8時間熱処理し、硬化させ、木質系シートとしてもよい。
また、作製した木質系シートの厚みは、通常、0.2〜2mmであるが、0.5〜1.5mmが好ましい。
As one of the methods for producing the woody film of the present invention, in addition to lignin, at least one curing agent and a curing accelerator, an elastomer and an organic solvent are further mixed to prepare a resin composition varnish, and an applicator, etc. There is a method of coating and curing on a PET film that has been surface-treated using a slag. Coating conditions, curing conditions, and the like are not particularly limited. For example, the coating may be heated and dried at 40 to 160 ° C. for 10 to 240 minutes, and then cured at 160 to 240 ° C. for about 30 minutes to 3 hours. Moreover, although the thickness of the produced wooden film is 0.005-0.2 mm normally, 0.01-0.1 mm is preferable.
In addition, examples of the method for producing a wood-based sheet include a melt extrusion method, a solution casting method, and a calendar method.
The production conditions for obtaining the wood-based sheet are not particularly limited. For example, a dryer for a resin composition such as a hydraulic vacuum heating press, an injection molding machine, a compression molding machine, and a molding machine are used to cure, compress, It may be extruded or injected and manufactured (molded). When using a hydraulic vacuum heating press, for example, a fiber woven fabric or the like is impregnated with a resin composition containing lignin, an elastomer, and a curing agent to form a prepreg, which has a surface pressure of 0.1 to 0.1. It may be pressed and molded (cured) at 10 MPa, 80 to 250 ° C. for 5 minutes to 2 hours to form a wood-based sheet. Also, the resin composition varnish is dried in a vacuum dryer at 50 to 180 ° C. for 1 to 3 hours, the resin composition solid is pulverized, granulated, and this sample is filled in a SUS mold. Then, the obtained samples are laminated, and pressed and cured with a hydraulic vacuum heating press for about 1 to 10 MPa at a surface pressure of 80 to 250 ° C. for 5 minutes to 2 hours, and may be made into a woody sheet. Alternatively, the varnish of the resin composition is poured into a mold having a predetermined shape and cured at 25 to 250 ° C. for about 10 minutes to 5 hours to form a woody sheet. Further, for example, the resin composition is made into a nozzle temperature of 80 to 200 ° C., an injection pressure of 1 to 30 MPa, a mold clamping pressure of 1 to 30 MPa, a mold temperature of 50 to 300 ° C., and a curing time of 1 to 100 minutes by an injection molding machine. It is good also as a wood-type sheet | seat by inject | pouring and shaping | molding on conditions, and also heat-processing at 50-300 degreeC for 1 to 8 hours, making it harden | cure.
Moreover, although the thickness of the produced wood type sheet | seat is 0.2-2 mm normally, 0.5-1.5 mm is preferable.

前記のようにして得られた木質系シート又はフィルムは、樹脂成分としてリグニンを含有している。リグニンはフェニルプロパンの架橋体であり、フェノール樹脂と同様に芳香族環を多く含む。芳香族環炭素は容易に燃焼せず炭化反応を起こす事から、本発明の木質系シート又はフィルムは難燃性を有しているという特徴がある。さらに分子内に多くのフェノール性水酸基を有する事から、微生物等に対する抗菌作用を有するという特徴がある。   The woody sheet or film obtained as described above contains lignin as a resin component. Lignin is a cross-linked product of phenylpropane and contains many aromatic rings like phenolic resins. Since the aromatic ring carbon does not easily burn and causes a carbonization reaction, the woody sheet or film of the present invention is characterized by having flame retardancy. Furthermore, since it has many phenolic hydroxyl groups in the molecule, it has an antibacterial action against microorganisms and the like.

本発明の木質系シート又はフィルムに用いる樹脂組成物においては、必要に応じて各種添加剤成分、可塑剤(鉱油、シリコンオイル等)、滑剤、安定剤、酸化防止剤、紫外線吸収剤、防黴剤、無機充填材、有機充填材などを配合することもできる。また、他の公知の難燃剤や抗菌剤と併用しても良い。   In the resin composition used for the woody sheet or film of the present invention, various additive components, plasticizers (mineral oil, silicone oil, etc.), lubricants, stabilizers, antioxidants, ultraviolet absorbers, antifungals as necessary. An agent, an inorganic filler, an organic filler and the like can also be blended. Moreover, you may use together with another well-known flame retardant and antibacterial agent.

以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
(実施例1)
(リグニンの抽出)
リグニン抽出原料としては、竹を使用した。適当な大きさにカットした竹材を水蒸気爆砕装置の3Lの耐圧容器に入れ、3.5MPaの水蒸気を圧入し、4分間保持した。その後バルブを急速に開放することで爆砕処理物を得た。洗浄液のpHが6以上になるまで得られた爆砕処理物を水により洗浄して水溶性成分を除去した。その後、真空乾燥機で残存水分を除去した。得られた乾燥体100gに抽出溶媒(アセトン)1000mlを加え、3時間攪拌した後、ろ過により繊維物質を取り除いた。得られた濾液から抽出溶媒(アセトン)を除去し、リグニンを得た。得られたリグニンは常温(25℃)で茶褐色の粉末であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited to these Examples.
(Example 1)
(Extraction of lignin)
Bamboo was used as a lignin extraction raw material. Bamboo material cut to an appropriate size was placed in a 3 L pressure-resistant container of a steam explosion apparatus, 3.5 MPa of steam was injected, and held for 4 minutes. Thereafter, the valve was rapidly opened to obtain an explosion-treated product. The explosion-treated product obtained until the pH of the cleaning solution reached 6 or more was washed with water to remove water-soluble components. Thereafter, residual moisture was removed with a vacuum dryer. After adding 1000 ml of extraction solvent (acetone) to 100 g of the obtained dried product and stirring for 3 hours, the fiber material was removed by filtration. The extraction solvent (acetone) was removed from the obtained filtrate to obtain lignin. The obtained lignin was a brown powder at room temperature (25 ° C.).

(リグニンの分析)
溶媒溶解性としては、前記リグニン1gを、有機溶媒10mlに加えて評価した。常温(25℃)で容易に溶解した場合は○、50〜70℃で溶解した場合は△、加熱しても溶解しなかった場合を×として、評価した。溶媒群1としてアセトン、シクロヘキサノン、テトラヒドロフラン、溶媒群2としてメタノール、エタノール、メチルエチルケトンとして溶解性を評価した結果、溶媒群1ではいずれも○、溶媒群2ではいずれも△の判定であった。
(Lignin analysis)
The solvent solubility was evaluated by adding 1 g of the lignin to 10 ml of an organic solvent. When it melt | dissolved easily at normal temperature (25 degreeC), it evaluated as (circle), when it melt | dissolved at 50-70 degreeC, (triangle | delta), and the case where it did not melt | dissolve even if heated was evaluated as x. As a result of evaluating the solubility as acetone, cyclohexanone, tetrahydrofuran as the solvent group 1 and methanol, ethanol, and methyl ethyl ketone as the solvent group 2, the solvent group 1 was evaluated as ◯ and the solvent group 2 as △.

リグニン中の硫黄原子の含有率は燃焼分解−イオンクロマトグラフ法により定量した。装置は株式会社三菱化学アナリテック製自動試料燃焼装置(AQF−100)及び日本ダイオネクス株式会社製イオンクロマトグラフ(ICS−1600)であり、上記リグニン中の硫黄原子の含有率は0.2質量%であった。さらに示差屈折計を備えたゲルパーミエイションクロマトグラフィー(GPC)にてリグニンの分子量を測定した。多分散度の小さいポリスチレンを標準試料として用い、移動相をテトラヒドロフランとして使用し、カラムとして株式会社日立ハイテクノロジーズ製ゲルパックGL−A120SとGL−A170Sとを直列に接続して分子量測定を行った。その重量平均分子量は2400であった。   The content of sulfur atoms in lignin was quantified by combustion decomposition-ion chromatography. The apparatus is an automatic sample combustion apparatus (AQF-100) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and an ion chromatograph (ICS-1600) manufactured by Nippon Dionex Co., Ltd., and the content of sulfur atoms in the lignin is 0.2% by mass. Met. Furthermore, the molecular weight of lignin was measured by gel permeation chromatography (GPC) equipped with a differential refractometer. Polystyrene having a low polydispersity was used as a standard sample, the mobile phase was used as tetrahydrofuran, and gel packs GL-A120S and GL-A170S manufactured by Hitachi High-Technologies Corporation were connected in series as columns to perform molecular weight measurement. Its weight average molecular weight was 2400.

上記で得られたリグニン(有機溶媒可溶リグニン)の水酸基当量は無水酢酸−ピリジン法により水酸基価、電位差滴定法により酸価を測定し求めた(下記の水酸基当量及びエポキシ当量の単位は、グラム/当量であって以下g/eq.で表わす。)。アセトン抽出竹由来リグニンの水酸基当量は140g/eq.であった。リグニンのフェノール性水酸基とアルコール性水酸基のモル比(以下P/A比)を以下の方法で決定した。リグニン2gのアセチル化処理を行い、未反応のアセチル化剤を留去し、乾燥させたものを、重クロロホルムに溶解させ、H−NMR(BRUKER社製、V400M、プロトン基本周波数400.13MHz)により測定した。アセチル基由来のプロトンの積分比(フェノール性水酸基に結合したアセチル基由来:2.2〜3.0ppm、アルコール性水酸基に結合したアセチル基由来:1.5〜2.2ppm)からモル比を決定したところ、P/A比は2.2/1.0であった。 The hydroxyl equivalent of the lignin (organic solvent soluble lignin) obtained above was determined by measuring the hydroxyl value by acetic anhydride-pyridine method and the acid value by potentiometric titration (the units of hydroxyl equivalent and epoxy equivalent below are gram). / Equivalent and hereinafter expressed as g / eq.). The hydroxyl equivalent of acetone-extracted bamboo-derived lignin is 140 g / eq. Met. The molar ratio (hereinafter P / A ratio) of the phenolic hydroxyl group and alcoholic hydroxyl group of lignin was determined by the following method. An acetylation treatment of 2 g of lignin was carried out, the unreacted acetylating agent was distilled off, and the dried product was dissolved in deuterated chloroform, and 1 H-NMR (manufactured by BRUKER, V400M, proton fundamental frequency 400.13 MHz) It was measured by. Determine the molar ratio from the integral ratio of protons derived from acetyl groups (derived from acetyl groups bonded to phenolic hydroxyl groups: 2.2 to 3.0 ppm, derived from acetyl groups bonded to alcoholic hydroxyl groups: 1.5 to 2.2 ppm). As a result, the P / A ratio was 2.2 / 1.0.

(木質系シートの作製)
前記リグニンとエポキシ樹脂との相溶性を評価した。前記リグニン1g、シクロヘキサノン1g、ビスフェノールFグリシジルエーテル型エポキシ(YDF−8170C、東都化成株式会社製)1gを混合し、常温(25℃)で2時間攪拌した。その結果、分離せず、析出物がないことを目視で確認した。
攪拌羽根のついた300mLの4ツ口セパラブルフラスコに、前記リグニン12gとアセトン(和光純薬工業株式会社製)18gを入れ攪拌した。さらに硬化剤としてビスフェノールFグリシジルエーテル型エポキシ樹脂(YDF−8170C、東都化成株式会社製、エポキシ当量156g/eq.)9.3g、硬化促進剤としてイミダゾール(キュアゾール2PZ−CN、四国化成工業株式会社製、1−シアノエチル−2−フェニルイミダゾール)の10質量%溶液0.93gを加え、さらにエラストマーとしてアクリルゴム(HTR−860、帝国化学産業株式会社製)が11.9質量%のシクロヘキサノン溶液41.7gを加え、常温(25℃)で2時間攪拌し、樹脂組成物のワニス(固形分32質量%)を得た。樹脂組成物の固形分中のリグニン含有量(植物由来度)は45質量%であった。
(Production of wood-based sheet)
The compatibility between the lignin and the epoxy resin was evaluated. 1 g of the lignin, 1 g of cyclohexanone and 1 g of bisphenol F glycidyl ether type epoxy (YDF-8170C, manufactured by Tohto Kasei Co., Ltd.) were mixed and stirred at room temperature (25 ° C.) for 2 hours. As a result, it was not visually separated and visually confirmed that there was no precipitate.
In a 300 mL four-necked separable flask with a stirring blade, 12 g of the lignin and 18 g of acetone (manufactured by Wako Pure Chemical Industries, Ltd.) were added and stirred. Furthermore, bisphenol F glycidyl ether type epoxy resin (YDF-8170C, manufactured by Tohto Kasei Co., Ltd., epoxy equivalent 156 g / eq.) 9.3 g as a curing agent, and imidazole (Curesol 2PZ-CN, manufactured by Shikoku Chemical Industry Co., Ltd.) as a curing accelerator 1-cyanoethyl-2-phenylimidazole) 0.93 g of a 10% by mass solution, and 41.7 g of a cyclohexanone solution containing 11.9% by mass of acrylic rubber (HTR-860, manufactured by Teikoku Chemical Co., Ltd.) as an elastomer. And stirred at room temperature (25 ° C.) for 2 hours to obtain a varnish (solid content 32% by mass) of the resin composition. The lignin content (plant-derived degree) in the solid content of the resin composition was 45% by mass.

この樹脂組成物のワニスを真空乾燥機で100℃、2時間乾燥させ、固形物を粉砕し、粒状のサンプルを得た。このサンプルを100×100mm、深さ1mmのSUS製の金型に充填し得られたサンプルを積層し、油圧真空加熱プレス機で面圧0.2MPa、180℃/120分プレスして硬化し、厚み1mmの木質系シートを得た。   The varnish of this resin composition was dried with a vacuum dryer at 100 ° C. for 2 hours, and the solid matter was pulverized to obtain a granular sample. The sample obtained by filling this sample into a SUS mold having a size of 100 × 100 mm and a depth of 1 mm is laminated, cured by pressing with a hydraulic vacuum heating press machine at a surface pressure of 0.2 MPa, 180 ° C./120 minutes, A woody sheet having a thickness of 1 mm was obtained.

作製した木質系シートの引っ張り強度及び弾性率はテンシロン(株式会社オリエンテック製)を用いて評価した。50×10×1mmの試験片を用い、支点間距離30mm、試験速度10mm/分で測定した。その結果、実施例1の引っ張り強度は23MPa、引っ張り弾性率は1.3GPaであり、実用上問題ないことがわかった。また破断伸びは15%であった。   The tensile strength and elastic modulus of the produced wooden sheet were evaluated using Tensilon (manufactured by Orientec Co., Ltd.). Using a 50 × 10 × 1 mm test piece, the measurement was performed at a fulcrum distance of 30 mm and a test speed of 10 mm / min. As a result, the tensile strength of Example 1 was 23 MPa and the tensile elastic modulus was 1.3 GPa, and it was found that there was no practical problem. The elongation at break was 15%.

(抗菌性試験)
JIS Z2801に準じて、黄色ぶどう球菌、大腸菌に対する抗菌性を評価した。試験片上に菌液(生菌数2.5〜10×10の5乗個/mL)0.4mLを播き、フィルムをかぶせ35℃±1℃、24時間培養した。試験片上の生菌数を測定するため、サンプリングし、サンプルを適宜希釈し、寒天平板培養にて35℃±1℃、48時間培養して生菌数を得た。
R=[Log(B/A)−Log(C/A)]=[Log(B/C)]
R:抗菌活性値
A:無加工試験片における接種直後の生菌数の平均値(個)
B:無加工試験片における24時間後の生菌数の平均値(個)
C:抗菌加工試験片における24時間後の生菌数の平均値(個)
抗菌活性値2以上を抗菌性ありとした。形成された被膜の抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.5、5.2であった。
(Antimicrobial test)
According to JIS Z2801, antibacterial activity against Staphylococcus aureus and Escherichia coli was evaluated. On the test piece, 0.4 mL of a bacterial solution (viable cells of 2.5 to 10 × 10 5 cells / mL) was inoculated, and the film was covered and cultured at 35 ° C. ± 1 ° C. for 24 hours. In order to measure the number of viable bacteria on the test piece, sampling was performed, the sample was appropriately diluted, and cultured in an agar plate culture at 35 ° C. ± 1 ° C. for 48 hours to obtain the viable cell count.
R = [Log (B / A) -Log (C / A)] = [Log (B / C)]
R: antibacterial activity value A: average number of viable bacteria immediately after inoculation in unprocessed test pieces (pieces)
B: Average number of viable cells after 24 hours in unprocessed test piece
C: Average number of viable bacteria after 24 hours in antibacterial processed test piece
An antibacterial activity value of 2 or more was considered to be antibacterial. The antibacterial activity value of the formed film was 6.5 and 5.2 against Escherichia coli and Staphylococcus aureus, respectively.

(実施例2)
(リグニンの抽出及び分析)
抽出溶媒としてメタノールを用いた以外は実施例1と同様にリグニンを得た。実施例1と同様に元素分析及び分子量測定をした結果、それぞれリグニン中の硫黄原子の含有率0.2質量%、重量平均分子量は1900であった。実施例1と同様に溶媒溶解性を評価した結果、溶媒群1ではいずれも○、溶媒群2ではいずれも○の判定であった。リグニンのフェノール性水酸基とアルコール性水酸基のモル比(以下P/A比)を実施例1と同様の方法で実施した。
実施例2で得られたリグニンのP/A比は1.6/1.0であった。実施例1と同様に上記で得られたリグニン(有機溶媒可溶リグニン)の水酸基当量を測定した結果、水酸基当量は120g/eq.であった。
(Example 2)
(Extraction and analysis of lignin)
Lignin was obtained in the same manner as in Example 1 except that methanol was used as the extraction solvent. As a result of elemental analysis and molecular weight measurement in the same manner as in Example 1, the sulfur atom content in the lignin was 0.2% by mass, and the weight average molecular weight was 1,900. As a result of evaluating the solvent solubility in the same manner as in Example 1, the solvent group 1 was evaluated as “good” and the solvent group 2 was evaluated as “good”. The molar ratio of the phenolic hydroxyl group and alcoholic hydroxyl group of lignin (hereinafter referred to as P / A ratio) was carried out in the same manner as in Example 1.
The P / A ratio of the lignin obtained in Example 2 was 1.6 / 1.0. As a result of measuring the hydroxyl equivalent of the lignin (organic solvent-soluble lignin) obtained above in the same manner as in Example 1, the hydroxyl equivalent was 120 g / eq. Met.

(木質系フィルムの作製)
実施例2記載のリグニン10g、メチルエチルケトン(和光純薬工業株式会社製)10gを入れ攪拌した。さらに、硬化促進剤としてジラウリン酸ジブチルすず(IV)(和光純薬工業株式会社製)0.12gを加え、十分に攪拌した後、硬化剤としてヘキサメチレンジイソシアネート(和光純薬工業株式会社製)1.8g、さらにエラストマーとしてアクリルゴム(HTR−860、帝国化学産業株式会社製、固形分11.9質量%シクロヘキサノン溶液)2.96gを加え、樹脂組成物ワニス(固形分49質量%)を得た。樹脂組成物ワニスの固形分中のリグニン含有量(植物由来度)は82質量%であった。
上記樹脂組成物ワニスを、厚さ70μmの離型処理ポリエチレンテレフタレートフィルム上に塗布し、100℃で120分間加熱乾燥し、その後180℃2時間硬化処理を行った。膜厚が0.045mmの塗膜を形成し、これを離型処理ポリエチレンテレフタレートフィルムから剥離して木質フィルムを作製した。前記フィルム中のリグニン含有量は82質量%であった。
(Production of wood-based film)
10 g of lignin described in Example 2 and 10 g of methyl ethyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.) were added and stirred. Furthermore, after adding 0.12 g of dibutyltin dilaurate (IV) (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing accelerator and stirring sufficiently, hexamethylene diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.) 1 as a curing agent. .8 g, and 2.96 g of acrylic rubber (HTR-860, Teikoku Chemical Industry Co., Ltd., solid content 11.9% by mass cyclohexanone solution) as an elastomer were added to obtain a resin composition varnish (solid content 49% by mass). . The lignin content (plant-derived degree) in the solid content of the resin composition varnish was 82% by mass.
The resin composition varnish was applied onto a release-treated polyethylene terephthalate film having a thickness of 70 μm, dried by heating at 100 ° C. for 120 minutes, and then cured at 180 ° C. for 2 hours. A coating film having a thickness of 0.045 mm was formed, and this was peeled from the release-treated polyethylene terephthalate film to produce a wood film. The lignin content in the film was 82% by mass.

(引っ張り試験・抗菌性評価)
作製した木質系フィルムの引っ張り強度と弾性率を実施例1と同様に評価した。その結果、引っ張り強度、引っ張り弾性率はそれぞれ30MPa、0.73GPaであった。また破断伸びは23%であった。実施例1と同様に抗菌試験を実施した。抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.4、5.1であった。
(Tensile test and antibacterial evaluation)
The tensile strength and elastic modulus of the produced wood film were evaluated in the same manner as in Example 1. As a result, the tensile strength and tensile modulus were 30 MPa and 0.73 GPa, respectively. The elongation at break was 23%. An antibacterial test was carried out in the same manner as in Example 1. The antibacterial activity values were 6.4 and 5.1 for Escherichia coli and Staphylococcus aureus, respectively.

(実施例3)
(木質系フィルムの作製)
アクリルゴム(HTR−860、固形分11.9質量%)の配合量を7.88gとした以外は実施例2と同様に樹脂組成物ワニスを調製した。樹脂組成物ワニスの固形分濃度は43質量%であった。また、樹脂組成物ワニスの固形分中のリグニン含有量(植物由来度)は78質量%であった。
実施例2と同様に木質系フィルムを作製した。前記木質系フィルム中のリグニン含有量は78質量%であり、厚さは0.032mmであった。
(Example 3)
(Production of wood-based film)
A resin composition varnish was prepared in the same manner as in Example 2 except that the amount of acrylic rubber (HTR-860, solid content 11.9% by mass) was 7.88 g. The solid content concentration of the resin composition varnish was 43% by mass. The lignin content (plant-derived degree) in the solid content of the resin composition varnish was 78% by mass.
A woody film was produced in the same manner as in Example 2. The lignin content in the wooden film was 78% by mass, and the thickness was 0.032 mm.

(引っ張り試験・抗菌性評価)
作製した木質系フィルムの引っ張り強度と弾性率を実施例1と同様に評価した。その結果、引っ張り強度、引っ張り弾性率はそれぞれ30MPa、1.1GPaであり、実用的な強度を有していることがわかった。また、破断伸びは59%であった。実施例1と同様に抗菌試験を実施した。抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ5.2、4.2であった。
(Tensile test and antibacterial evaluation)
The tensile strength and elastic modulus of the produced wood film were evaluated in the same manner as in Example 1. As a result, it was found that the tensile strength and the tensile modulus were 30 MPa and 1.1 GPa, respectively, and had practical strength. The elongation at break was 59%. An antibacterial test was carried out in the same manner as in Example 1. The antibacterial activity values were 5.2 and 4.2 against Escherichia coli and Staphylococcus aureus, respectively.

(比較例1)
(溶解性評価)
リグニンとしてリグニンスルホン酸塩(バニレックスN、日本製紙株式会社製)を用い、樹脂組成物の作製を試みた。樹脂組成物ワニスの作製に先立ち、実施例1と同様に有機溶剤への溶解性を評価した。溶媒としてアセトン、シクロヘキサノン、テトラヒドロフラン、メタノール、エタノール、メチルエチルケトンを用いて溶解性を評価した結果、すべての溶媒に不溶であった。
(Comparative Example 1)
(Solubility evaluation)
Using lignin sulfonate (Vanilex N, manufactured by Nippon Paper Industries Co., Ltd.) as lignin, an attempt was made to produce a resin composition. Prior to the production of the resin composition varnish, the solubility in an organic solvent was evaluated in the same manner as in Example 1. As a result of evaluating the solubility using acetone, cyclohexanone, tetrahydrofuran, methanol, ethanol, and methyl ethyl ketone as the solvent, it was insoluble in all the solvents.

(木質系シートの作製)
実施例1と同様にエポキシ樹脂との相溶性を評価した。前記リグニンスルホン酸1g、シクロヘキサノン1g、ビスフェノールFグリシジルエーテル型エポキシ(YDF−8170C)1gを混合し、常温(25℃)で2時間攪拌した。その結果、リグニンスルホン酸とエポキシ樹脂が相分離し、木質系シートを作製できなかった。
(Production of wood-based sheet)
In the same manner as in Example 1, the compatibility with the epoxy resin was evaluated. 1 g of lignin sulfonic acid, 1 g of cyclohexanone and 1 g of bisphenol F glycidyl ether type epoxy (YDF-8170C) were mixed and stirred at room temperature (25 ° C.) for 2 hours. As a result, the lignin sulfonic acid and the epoxy resin were phase-separated and a wood-based sheet could not be produced.

(比較例2)
(木質系フィルムの作製)
リグニンとしてリグニンスルホン酸塩(サンエキスP321、日本製紙株式会社製)を用いた以外は比較例1と同様にフィルムの作製を試みた。樹脂組成物ワニスの作製に先立ち、比較例1と同様に有機溶剤への溶解性を評価した結果、すべての溶媒に不溶であった。
エポキシ樹脂との相溶性を評価した結果、リグニンスルホン酸とエポキシ樹脂が相分離し、木質系フィルムを作製できなかった。
(Comparative Example 2)
(Production of wood-based film)
An attempt was made to produce a film in the same manner as in Comparative Example 1, except that lignin sulfonate (Sun Extract P321, manufactured by Nippon Paper Industries Co., Ltd.) was used as the lignin. Prior to the production of the resin composition varnish, the solubility in an organic solvent was evaluated in the same manner as in Comparative Example 1, and as a result, it was insoluble in all solvents.
As a result of evaluating the compatibility with the epoxy resin, the lignin sulfonic acid and the epoxy resin were phase-separated and a woody film could not be produced.

Claims (12)

リグニン、硬化剤及びエラストマーを含む樹脂組成物を硬化させてなる木質系皮膜であって、前記リグニンが有機溶媒に可溶であり、前記樹脂組成物の固形分中のリグニンの含有量が5質量%〜85質量%であることを特徴とする木質系皮膜。   A woody film formed by curing a resin composition containing lignin, a curing agent and an elastomer, wherein the lignin is soluble in an organic solvent, and the content of lignin in the solid content of the resin composition is 5 mass. A wood-based film characterized in that the content is from% to 85% by mass. 木質系皮膜が、シート又はフィルムであり、リグニンの重量平均分子量が100〜7000である請求項1に記載の木質系皮膜。   The woody film according to claim 1, wherein the woody film is a sheet or a film, and the weight average molecular weight of lignin is 100 to 7000. リグニン中の硫黄原子の含有率が2質量%以下である請求項1又は2に記載の木質系皮膜。   The woody film according to claim 1 or 2, wherein the content of sulfur atoms in the lignin is 2% by mass or less. リグニンが、水のみを用いた処理方法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである請求項1〜3のいずれかに記載の木質系皮膜。   The lignin is obtained by separating from a cellulose component and a hemicellulose component by a treatment method using only water and dissolving the lignin in an organic solvent. リグニンが、植物原料に水蒸気を圧入し、瞬時に圧力を開放することで植物原料を爆砕する水蒸気爆砕法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである請求項1〜3のいずれかに記載の木質系皮膜。   The lignin was obtained by separating the cellulose component and hemicellulose component by the steam explosion method, in which steam is injected into the plant material and the plant material is blasted by instantaneously releasing the pressure, and dissolved in an organic solvent. The woody film according to any one of claims 1 to 3. エラストマーが、アクリルゴム、水素化ニトリルゴム、ニトリルブタジェンゴム、イソプレンゴム、ウレタンゴム、エチレンプロピレンゴム、エピクロルヒドリンゴム、クロロプレンゴム、シリコーンゴム、スチレン・ブタジエンゴム、ブタジエンゴム、フッ素ゴム、ポリイソブチレンゴム、四フッ化エチレンプロピレンゴム、クロロスルホン化ポリエチレンゴム、エチレンアクリルゴム、ノルボルネンゴム、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、1,2−ポリブタジェン系熱可塑性エラストマーのいずれかであることを特徴とする請求項1〜5のいずれかに記載の木質系皮膜。   Elastomers are acrylic rubber, hydrogenated nitrile rubber, nitrile butadiene rubber, isoprene rubber, urethane rubber, ethylene propylene rubber, epichlorohydrin rubber, chloroprene rubber, silicone rubber, styrene / butadiene rubber, butadiene rubber, fluoro rubber, polyisobutylene rubber, Tetrafluoroethylene propylene rubber, chlorosulfonated polyethylene rubber, ethylene acrylic rubber, norbornene rubber, styrene thermoplastic elastomer, olefin thermoplastic elastomer, urethane thermoplastic elastomer, polyamide thermoplastic elastomer, 1,2-polybutadiene The woody film according to any one of claims 1 to 5, which is any one of thermoplastic elastomers. 硬化剤が、イソシアネートである請求項1〜6のいずれかに記載の木質系皮膜。   The woody film according to any one of claims 1 to 6, wherein the curing agent is an isocyanate. 硬化剤が、エポキシ樹脂である請求項1〜6のいずれかに記載の木質系皮膜。   The woody film according to any one of claims 1 to 6, wherein the curing agent is an epoxy resin. 硬化剤が、アルデヒド又はホルムアルデヒドを生成する化合物である請求項1〜6のいずれかに記載の木質系皮膜。   The woody film according to any one of claims 1 to 6, wherein the curing agent is a compound that generates aldehyde or formaldehyde. 硬化剤が、多価カルボン酸または多価カルボン酸無水物から選ばれる少なくとも一つである請求項1〜6のいずれかに記載の木質系皮膜。   The woody film according to any one of claims 1 to 6, wherein the curing agent is at least one selected from polyvalent carboxylic acids or polyvalent carboxylic acid anhydrides. 硬化剤が、不飽和多価カルボン酸または不飽和多価カルボン酸無水物から選ばれる少なくとも一つである請求項1〜6のいずれかに記載の木質系皮膜。   The woody film according to any one of claims 1 to 6, wherein the curing agent is at least one selected from an unsaturated polycarboxylic acid or an unsaturated polycarboxylic anhydride. 皮膜の厚みが、0.005〜2mmである請求項1〜11のいずれかに記載の木質系皮膜。   The woody film according to any one of claims 1 to 11, wherein the film has a thickness of 0.005 to 2 mm.
JP2010205501A 2010-02-10 2010-09-14 Wood-based film Expired - Fee Related JP5652646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010205501A JP5652646B2 (en) 2010-02-10 2010-09-14 Wood-based film

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010027547 2010-02-10
JP2010027547 2010-02-10
JP2010065953 2010-03-23
JP2010065953 2010-03-23
JP2010205501A JP5652646B2 (en) 2010-02-10 2010-09-14 Wood-based film

Publications (2)

Publication Number Publication Date
JP2011219725A true JP2011219725A (en) 2011-11-04
JP5652646B2 JP5652646B2 (en) 2015-01-14

Family

ID=45036344

Family Applications (11)

Application Number Title Priority Date Filing Date
JP2010168053A Pending JP2011219715A (en) 2010-02-10 2010-07-27 Resin compound material for molding
JP2010170394A Expired - Fee Related JP5641302B2 (en) 2010-02-10 2010-07-29 Antibacterial resin composition
JP2010173536A Expired - Fee Related JP5861856B2 (en) 2010-02-10 2010-08-02 Manufacturing method of adhesive
JP2010173535A Pending JP2011219717A (en) 2010-02-10 2010-08-02 Woody coating
JP2010175306A Pending JP2011218775A (en) 2010-02-10 2010-08-04 Woody building material
JP2010192127A Expired - Fee Related JP5618136B2 (en) 2010-02-10 2010-08-30 Resin composition and molded body
JP2010199771A Expired - Fee Related JP5582346B2 (en) 2010-02-10 2010-09-07 Prepreg and method for producing molded body
JP2010199770A Expired - Fee Related JP5720924B2 (en) 2010-02-10 2010-09-07 Wood-based decorative board
JP2010205501A Expired - Fee Related JP5652646B2 (en) 2010-02-10 2010-09-14 Wood-based film
JP2010223725A Pending JP2011219728A (en) 2010-02-10 2010-10-01 Tacky adhesive
JP2011020614A Expired - Fee Related JP5741904B2 (en) 2010-02-10 2011-02-02 Wooden foam

Family Applications Before (8)

Application Number Title Priority Date Filing Date
JP2010168053A Pending JP2011219715A (en) 2010-02-10 2010-07-27 Resin compound material for molding
JP2010170394A Expired - Fee Related JP5641302B2 (en) 2010-02-10 2010-07-29 Antibacterial resin composition
JP2010173536A Expired - Fee Related JP5861856B2 (en) 2010-02-10 2010-08-02 Manufacturing method of adhesive
JP2010173535A Pending JP2011219717A (en) 2010-02-10 2010-08-02 Woody coating
JP2010175306A Pending JP2011218775A (en) 2010-02-10 2010-08-04 Woody building material
JP2010192127A Expired - Fee Related JP5618136B2 (en) 2010-02-10 2010-08-30 Resin composition and molded body
JP2010199771A Expired - Fee Related JP5582346B2 (en) 2010-02-10 2010-09-07 Prepreg and method for producing molded body
JP2010199770A Expired - Fee Related JP5720924B2 (en) 2010-02-10 2010-09-07 Wood-based decorative board

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2010223725A Pending JP2011219728A (en) 2010-02-10 2010-10-01 Tacky adhesive
JP2011020614A Expired - Fee Related JP5741904B2 (en) 2010-02-10 2011-02-02 Wooden foam

Country Status (1)

Country Link
JP (11) JP2011219715A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035885A (en) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd Lignin, composition containing lignin and method for producing the lignin
WO2013157424A1 (en) * 2012-04-18 2013-10-24 株式会社 日立製作所 Lignin-derived epoxy resin composition and use thereof
JP2015519452A (en) * 2012-06-01 2015-07-09 ストラ エンソ オーワイジェイ Dispersed composition containing lignin, process for its production and use thereof
JP2016060750A (en) * 2014-09-12 2016-04-25 日本製紙株式会社 Lignin derivative for rubber reinforcement, lignin resin composition and rubber composition
JP2016060749A (en) * 2014-09-12 2016-04-25 日本製紙株式会社 Lignin derivative for rubber reinforcement, lignin resin composition and rubber composition
JP2019151681A (en) * 2018-02-28 2019-09-12 国立研究開発法人産業技術総合研究所 Lignin clay composite film and method for producing the same
CN110914029A (en) * 2017-04-10 2020-03-24 马里兰大学派克分院 Wood material with strong and tough structure and its making process and use
CN113637245A (en) * 2021-08-16 2021-11-12 深圳市峰源化工新材料股份有限公司 Lignin modified styrene butadiene rubber thermoplastic elastomer and preparation method thereof

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158008B2 (en) 2009-04-28 2013-03-06 トヨタ自動車株式会社 All solid battery
CA2769746C (en) 2010-01-19 2013-10-15 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
JP5618153B2 (en) * 2011-02-02 2014-11-05 日立化成株式会社 Resin composition and molded body
US8759498B2 (en) * 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
PL2807212T3 (en) * 2012-01-24 2017-09-29 Lenzing Aktiengesellschaft Foams composed of lignin-furan derivative polymers and production method therefor
JP2013170245A (en) * 2012-02-22 2013-09-02 Hitachi Chemical Co Ltd Novel polyurethane
JP2014024933A (en) * 2012-07-26 2014-02-06 Hitachi Chemical Co Ltd Self-curable resin using lignin
JP2014077107A (en) 2012-09-19 2014-05-01 Fuji Xerox Co Ltd Resin composition and resin molded article
JP2014065825A (en) * 2012-09-26 2014-04-17 Hitachi Chemical Co Ltd Resin material for injection molding and molded body
JP6163761B2 (en) * 2013-01-16 2017-07-19 住友ベークライト株式会社 Resin composition and resin molded body
DE102013002574A1 (en) 2013-02-11 2014-08-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Microstructured composite material, process for its production, moldings thereof and uses
DE102013002573A1 (en) * 2013-02-11 2014-08-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoplastic polymer compounds with low molecular weight lignins, process for their preparation, moldings and uses
JP2014160710A (en) * 2013-02-19 2014-09-04 Hitachi Chemical Co Ltd Printed circuit board
WO2014136762A1 (en) * 2013-03-06 2014-09-12 日立化成株式会社 Coated sand
CN103112072B (en) * 2013-03-20 2014-08-13 南京林业大学 Method for improving product surface properties by pennisetum man-made board processing residues
FI125416B (en) * 2013-06-28 2015-10-15 Upm Kymmene Corp Nonwoven reinforced composite resin
KR102569807B1 (en) * 2013-10-18 2023-08-22 퀸스랜드 유니버시티 오브 테크놀로지 Lignin based waterproof coating
MX2016005849A (en) * 2013-11-06 2016-11-18 Wood Innovations Ltd Core layer having wood elements, in particular wood elements having a corrugated structure.
KR101514899B1 (en) * 2013-12-30 2015-04-23 최미희 Composition and Manufacturing Method of self-exitinguishing fire-retardant wood by free carbon, metallic salts and micro-fibril by Modifide of Wood
JP6384717B2 (en) * 2014-02-21 2018-09-05 清水建設株式会社 Concrete coloring agent, concrete coloring method, concrete and concrete structure
JP6296285B2 (en) * 2014-02-21 2018-03-20 清水建設株式会社 How to protect concrete
JP6296284B2 (en) * 2014-02-21 2018-03-20 清水建設株式会社 Concrete member and manufacturing method thereof
CN103910850B (en) * 2014-04-02 2019-11-01 合肥杰事杰新材料股份有限公司 A kind of fire-retardant enhancing hard polyurethane foam of phosphatization lignin-base and preparation method thereof
JP6296293B2 (en) * 2014-05-19 2018-03-20 清水建設株式会社 Concrete coloring agent and method for producing the same, concrete coloring method, and concrete
KR101716142B1 (en) * 2014-09-05 2017-03-15 연세대학교 산학협력단 Insoluble lignin nanofiber and method for menufactruing the insoluble lignin nanofiber
CN104449501A (en) * 2014-12-26 2015-03-25 宁波中加低碳新技术研究院有限公司 Furfural/lignin/isocyanate adhesive
KR101713438B1 (en) * 2015-09-15 2017-03-07 권혁이 Producing method of eco-friendly lightweight tiles using waste coal tailings
JP2017066259A (en) * 2015-09-30 2017-04-06 株式会社ファインテック Bamboo fiber composite plant-derived resin composition and method for producing the same
JP6730043B2 (en) * 2016-02-22 2020-07-29 積水化学工業株式会社 Fiber reinforced resin prepreg sheet
WO2019051183A1 (en) 2017-09-07 2019-03-14 Renmatix, Inc. Antioxidant stabilizer in polymers
JP6964251B2 (en) * 2017-11-14 2021-11-10 パナソニックIpマネジメント株式会社 Biomass composition and biomass molding
JP7001317B2 (en) * 2018-04-10 2022-01-19 トヨタ車体株式会社 Manufacturing method of molded products
EP3818126A4 (en) * 2018-07-02 2022-03-23 Stora Enso Oyj Process for preparing a bonding resin
EP3632949A1 (en) 2018-10-02 2020-04-08 Vito NV Process for the production of epoxy resins
US20220251431A1 (en) * 2019-08-08 2022-08-11 Threebond Co., Ltd. Adhesive composition, cured product, and assembly
CN110900778B (en) * 2019-12-16 2021-05-14 清华大学 Plant fiber artificial board and preparation method and application thereof
CN111073325A (en) * 2019-12-31 2020-04-28 华南理工大学 Lignin/fiber thermoplastic composite material and preparation method thereof
US20220356308A1 (en) * 2020-10-28 2022-11-10 Lignum Inc. Method for preparation of antibacterial bio-filler for plastic and antibacterial bio-filler for plastic prepared thereby
WO2022200974A1 (en) * 2021-03-24 2022-09-29 Stora Enso Oyj Biobased adhesive mixture and the use of said adhesive mixture
WO2023219158A1 (en) * 2022-05-12 2023-11-16 スーパーレジン工業株式会社 Foamed body and layered structure
WO2024106457A1 (en) * 2022-11-18 2024-05-23 出光興産株式会社 Resin composition, fiber-reinforced resin composition and molded body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199309A (en) * 2004-01-15 2005-07-28 Ykk Corp Injection casting apparatus
JP2006066237A (en) * 2004-08-27 2006-03-09 Meidensha Corp Insulating polymeric material composition
JP2008138061A (en) * 2006-12-01 2008-06-19 Meidensha Corp Insulating polymer material composition
JP2008213370A (en) * 2007-03-06 2008-09-18 Toyota Auto Body Co Ltd Fibrous formed body and its manufacturing method
JP2009263549A (en) * 2008-04-28 2009-11-12 Hitachi Ltd Epoxy resin composition of vegetable origin, and various instruments using the same

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171744A (en) * 1985-01-24 1986-08-02 Daiken Trade & Ind Co Ltd Wood-based foamed material and production thereof
JPS61215678A (en) * 1985-03-22 1986-09-25 Oji Paper Co Ltd Manufacture of lignin-epoxy resin adhesive
JP2595308B2 (en) * 1987-09-04 1997-04-02 王子製紙株式会社 Lignin-phenol resin composition
US5614564A (en) * 1993-07-28 1997-03-25 Samsung General Chemicals Co., Ltd. Degradable foam and the method for its production
JP3409092B2 (en) * 1993-11-29 2003-05-19 大倉工業株式会社 Thermosetting chemically modified wood material composition
JPH08104833A (en) * 1994-10-03 1996-04-23 Oobusu Kk Marine paint
DE4443431A1 (en) * 1994-12-06 1996-06-13 Elastogran Gmbh Pressurized, blowing agent-containing isocyanate semi-prepolymer mixtures based on lignin-polyether-polyols, their use for the production of polyurethane foams and a process therefor
WO1996019328A1 (en) * 1994-12-22 1996-06-27 Tsuyoshi Kono Board produced from malvaceous bast plant and process for producing the same
SG47174A1 (en) * 1995-09-18 1998-03-20 Ibm Cross-linked biobased materials and fabricating methods thereof
CN1176643A (en) * 1995-12-29 1998-03-18 K·R·库泼 Lignin based polyols
JPH09241615A (en) * 1996-03-11 1997-09-16 Rinyacho Shinrin Sogo Kenkyusho Composition having infrared light-absorbing property and its production
JP3103839B2 (en) * 1997-03-14 2000-10-30 トスコ株式会社 Water-absorbing polyurethane foam and method for producing the same
JPH10305409A (en) * 1997-04-30 1998-11-17 Takeshi Kono Board made of grass lignin and manufacture thereof
JPH11152410A (en) * 1997-11-21 1999-06-08 Asahi Chem Ind Co Ltd Resin composition including lignin
JPH11320516A (en) * 1998-03-17 1999-11-24 Bridgestone Corp Woody board
KR20010088785A (en) * 1998-07-27 2001-09-28 추후제출 Low Diisocyanate Content Polymeric MDI-containing Binders for Fiberboard Manufacture
JP2000102910A (en) * 1998-09-29 2000-04-11 Matsushita Electric Works Ltd Manufacture of fiber plate
JP2002114896A (en) * 2000-08-01 2002-04-16 Nippon Paper Industries Co Ltd Lignin-based resin composition
JP3960811B2 (en) * 2002-02-04 2007-08-15 機能性木質新素材技術研究組合 Wood paint
JP3936214B2 (en) * 2002-03-25 2007-06-27 株式会社東芝 Resin composition
JP2004107386A (en) * 2002-09-13 2004-04-08 Japan Science & Technology Corp Polyphenolic composition
JP2005041969A (en) * 2003-07-28 2005-02-17 Toyota Motor Corp Antioxidant for resin
JP2005111866A (en) * 2003-10-09 2005-04-28 Hiroshi Nakamura Method for producing decorative plate or decorative material having protrusion/recess pattern and decorative plate or decorative material
JP2005279959A (en) * 2004-03-26 2005-10-13 Matsushita Electric Works Ltd Surface reinforced woody building material
JP4457195B2 (en) * 2004-06-24 2010-04-28 名古屋市 Method for producing cellulosic fiberboard
JP2006150819A (en) * 2004-11-30 2006-06-15 Nichimen Kagaku Kogyo Kk Bamboo fiber reinforced plastic and its manufacturing process
JP3960996B2 (en) * 2005-01-17 2007-08-15 機能性木質新素材技術研究組合 Crude lignophenol derivative paint
JP2007169491A (en) * 2005-12-22 2007-07-05 Mitsubishi Chemicals Corp Method for producing phenol-based resin adhesive
JP2008006373A (en) * 2006-06-29 2008-01-17 Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Coating method of japanese lacquer, and resin composition
JP5045030B2 (en) * 2006-08-23 2012-10-10 富士ゼロックス株式会社 RESIN COMPOSITION, RESIN MOLDED BODY AND CASE, AND METHOD FOR MANUFACTURING AND RECYCLING METHOD OF RESIN MOLDED BODY
JP2008247963A (en) * 2007-03-29 2008-10-16 Mitsubishi Motors Corp Lignocellulose material molding and its molding method
JP2009057433A (en) * 2007-08-30 2009-03-19 Toshiba Corp Resin composition and method for producing the same
JP5396747B2 (en) * 2008-06-02 2014-01-22 住友ベークライト株式会社 Prepreg and substrate using the same
JP2009292884A (en) * 2008-06-03 2009-12-17 Hitachi Ltd Lignophenol-based epoxy resin composition
JP2010254952A (en) * 2009-03-31 2010-11-11 Hishie Kagaku Kk Resin composition for foaming and lignin-containing polymer foam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199309A (en) * 2004-01-15 2005-07-28 Ykk Corp Injection casting apparatus
JP2006066237A (en) * 2004-08-27 2006-03-09 Meidensha Corp Insulating polymeric material composition
JP2008138061A (en) * 2006-12-01 2008-06-19 Meidensha Corp Insulating polymer material composition
JP2008213370A (en) * 2007-03-06 2008-09-18 Toyota Auto Body Co Ltd Fibrous formed body and its manufacturing method
JP2009263549A (en) * 2008-04-28 2009-11-12 Hitachi Ltd Epoxy resin composition of vegetable origin, and various instruments using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035885A (en) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd Lignin, composition containing lignin and method for producing the lignin
WO2013157424A1 (en) * 2012-04-18 2013-10-24 株式会社 日立製作所 Lignin-derived epoxy resin composition and use thereof
JP2015519452A (en) * 2012-06-01 2015-07-09 ストラ エンソ オーワイジェイ Dispersed composition containing lignin, process for its production and use thereof
JP2018021211A (en) * 2012-06-01 2018-02-08 ストラ エンソ オーワイジェイ Composition in the form of dispersion comprising lignin, method for producing the same and use of the same
JP2016060750A (en) * 2014-09-12 2016-04-25 日本製紙株式会社 Lignin derivative for rubber reinforcement, lignin resin composition and rubber composition
JP2016060749A (en) * 2014-09-12 2016-04-25 日本製紙株式会社 Lignin derivative for rubber reinforcement, lignin resin composition and rubber composition
CN110914029A (en) * 2017-04-10 2020-03-24 马里兰大学派克分院 Wood material with strong and tough structure and its making process and use
CN110914029B (en) * 2017-04-10 2022-08-02 马里兰大学派克分院 Wood material with strong and tough structure and its making process and use
JP2019151681A (en) * 2018-02-28 2019-09-12 国立研究開発法人産業技術総合研究所 Lignin clay composite film and method for producing the same
CN113637245A (en) * 2021-08-16 2021-11-12 深圳市峰源化工新材料股份有限公司 Lignin modified styrene butadiene rubber thermoplastic elastomer and preparation method thereof

Also Published As

Publication number Publication date
JP2011219723A (en) 2011-11-04
JP5652646B2 (en) 2015-01-14
JP5861856B2 (en) 2016-02-16
JP5618136B2 (en) 2014-11-05
JP2011218777A (en) 2011-11-04
JP2011219722A (en) 2011-11-04
JP2011218775A (en) 2011-11-04
JP2011219717A (en) 2011-11-04
JP5641302B2 (en) 2014-12-17
JP2011219715A (en) 2011-11-04
JP2011219718A (en) 2011-11-04
JP2011219734A (en) 2011-11-04
JP2011219716A (en) 2011-11-04
JP2011219728A (en) 2011-11-04
JP5741904B2 (en) 2015-07-01
JP5582346B2 (en) 2014-09-03
JP5720924B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5652646B2 (en) Wood-based film
Collins et al. Valorization of lignin in polymer and composite systems for advanced engineering applications–a review
WO2011099544A1 (en) Resin composition, molded body and composite molded body
Sen et al. Thermal properties of lignin in copolymers, blends, and composites: a review
Raquez et al. Thermosetting (bio) materials derived from renewable resources: A critical review
Fache et al. Vanillin, a key-intermediate of biobased polymers
Khan et al. Lignin-based adhesives and coatings
Quirino et al. Thermosetting polymers from renewable sources
Zhang et al. Toughened sustainable green composites from poly (3-hydroxybutyrate-co-3-hydroxyvalerate) based ternary blends and miscanthus biofiber
Bass et al. Recent developments towards performance-enhancing lignin-based polymers
Dotan Biobased thermosets
Zhang et al. Starch-based rehealable and degradable bioplastic enabled by dynamic imine chemistry
John et al. Lignin fractionation and conversion to bio-based functional products
Dunky Wood adhesives based on natural resources: A critical review: Part IV. special topics
JP3936214B2 (en) Resin composition
Bassett et al. Richard P. Wool's contributions to sustainable polymers from 2000 to 2015
Gosecki et al. Converting Unrefined Birch Suberin Monomers into Vitrimer
Mamiński et al. Bio-derived adhesives and matrix polymers for composites
JP2012121938A (en) Thermal release adhesive film
JP2014024933A (en) Self-curable resin using lignin
Li Synthesis and characterization of copolymers from lignin
JP2014065779A (en) Thermosetting resin composition using lignin
Zhang et al. Bio–based polymers from lignin
Torr et al. Recent Advances in Thermoset and Thermoplastic Polymeric Materials Produced using Technical and Depolymerized Native Lignins
JP2014065825A (en) Resin material for injection molding and molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

LAPS Cancellation because of no payment of annual fees