JP5618153B2 - Resin composition and molded body - Google Patents

Resin composition and molded body Download PDF

Info

Publication number
JP5618153B2
JP5618153B2 JP2011020615A JP2011020615A JP5618153B2 JP 5618153 B2 JP5618153 B2 JP 5618153B2 JP 2011020615 A JP2011020615 A JP 2011020615A JP 2011020615 A JP2011020615 A JP 2011020615A JP 5618153 B2 JP5618153 B2 JP 5618153B2
Authority
JP
Japan
Prior art keywords
lignin
resin composition
mass
resin
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011020615A
Other languages
Japanese (ja)
Other versions
JP2012158707A (en
Inventor
昭人 後藤
昭人 後藤
小山 直之
直之 小山
美香 小舩
美香 小舩
郁子 菊地
郁子 菊地
智史 助川
智史 助川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011020615A priority Critical patent/JP5618153B2/en
Publication of JP2012158707A publication Critical patent/JP2012158707A/en
Application granted granted Critical
Publication of JP5618153B2 publication Critical patent/JP5618153B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials

Description

本発明は、樹脂組成物及び成形体に関するものである。 The present invention relates to a resin composition and a molded body .

生分解性樹脂とは、樹脂が、微生物、水、太陽光などの働きにより水や二酸化炭素に分解されることを意味する。このとき精製する分解物が、再び植物の成長に利用されるため、カーボンニュートラルな材料として地球温暖化の面から見直されている。また、生分解性樹脂を100%植物由来材料とすることで、石油由来材料の低減も図ることが可能となる。現在では、包装資材、家電製品の部材、自動車用部材等のプラスチックを、植物由来樹脂(バイオプラスチック)に置き換える動きが活発化している。   The biodegradable resin means that the resin is decomposed into water and carbon dioxide by the action of microorganisms, water, sunlight and the like. Since the decomposition product to be purified at this time is used again for the growth of plants, it is reviewed as a carbon neutral material from the viewpoint of global warming. In addition, by making the biodegradable resin 100% plant-derived material, it is possible to reduce the petroleum-derived material. At present, there is an active movement to replace plastics such as packaging materials, household appliances, and automobiles with plant-derived resins (bioplastics).

前記植物由来樹脂の具体例としては、ジャガイモやサトウキビやトウモロコシ等の糖質を醗酵させて得られた乳酸をモノマーとし、これを用いて化学重合を行い作製したポリ乳酸:PLA(PolyLactic Acid)や、澱粉を主成分としたエステル化澱粉、微生物が体内に生産するポリエステルである微生物産生樹脂:PHA(PolyHydoroxy Alkanoate)、醗酵法で得られる1,3−プロパンジオールと石油由来のテレフタル酸とを原料とするPTT(Poly Trimethylene Telephtalate)等が挙げられる。特にポリ乳酸は、生分解性樹脂として幅広くその応用が検討されている(特許文献1参照)。
また、PBS(Poly Butylene Succinate)は、現在は石油由来の原料が用いられているが、今後においては、植物由来樹脂として作製する研究が開発されており、主原料の一つであるコハク酸を植物由来で作製する技術についての開発がなされている。
Specific examples of the plant-derived resin include polylactic acid: PLA (Polylactic Acid) produced by chemical polymerization using lactic acid obtained by fermenting sugars such as potato, sugarcane, and corn as a monomer. , Starch-based esterified starch, microorganism-produced resin that is a polyester produced by microorganisms in the body: PHA (PolyHydroxy Alkanoate), 1,3-propanediol obtained by fermentation, and petroleum-derived terephthalic acid as raw materials And PTT (Poly Trimethylene Telephthalate). In particular, polylactic acid has been widely studied as a biodegradable resin (see Patent Document 1).
In addition, PBS (Poly Butylene Succinate) is currently used as a raw material derived from petroleum, but in the future, research to produce it as a plant-derived resin has been developed, and succinic acid, one of the main raw materials, has been developed. Developments have been made on technologies that are derived from plants.

また、リグニンも木質材料から得られる植物由来生分解樹脂として注目されている。しかし、国内で容易に入手できるリグニンとして、リグニンスルホン酸塩が挙げられるが、水溶性であり、有機溶媒に難溶である。そのため、他の樹脂との相溶性が悪くバイオマス材料として活用が進んでいないのが現状である。   Lignin is also attracting attention as a plant-derived biodegradable resin obtained from woody materials. However, lignin sulfonate is mentioned as lignin which can be easily obtained in Japan, but it is water-soluble and hardly soluble in organic solvents. Therefore, the current situation is that the compatibility with other resins is poor and the utilization as a biomass material is not progressing.

特開2005−60556号公報JP 2005-60556 A

本発明においては、環境負荷低減化の観点から石油由来材料を削減し、用途に合せた生
分解速度を持つ樹脂組成物を提供することを目的とする。また、樹脂組成物を用いた外観
良好な成形体を提供することを目的とする。
In the present invention, it is an object to provide a resin composition having a biodegradation rate suitable for use by reducing petroleum-derived materials from the viewpoint of reducing environmental burden. Moreover, it aims at providing the molded object with the favorable external appearance using a resin composition.

リグニンを有機溶媒に可溶な形態で取り出すことができれば、生分解速度の異なるバイ
オマス材料と組み合わせることで、生分解速度をコントロールすることができると考え、
検討した結果、本発明に至った。
本発明は以下の通りである。
(1)農業又は土木用途の成形体に用いられる樹脂組成物であって、前記組成物は、リグニンと、リグニン以外の生分解性樹脂成分とを含む、樹脂組成物であって、リグニンの含有量が、不揮発分として1〜50質量%であり、前記リグニンが、水を用いた分離技術によりセルロース成分、ヘミセルロース成分から分離し、溶解させることにより得られたものであり、重量平均分子量が、100〜7000であり、有機溶媒に可溶であることにより、生分解速度を制御し得る樹脂組成物
(2)リグニンが、植物原料に水蒸気を圧入し、瞬時に圧力を開放することで植物原料を爆砕する水蒸気爆砕法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである前記(1)に記載の樹脂組成物。
)さらに可塑剤を含むことを特徴とする前記(1)又は(2)に記載の樹脂組成物。
(4)生分解性樹脂が、ポリ乳酸又はポリエチレンサクシネートである請求項1〜3のいずれかに記載の樹脂組成物。
前記(1)〜(4)のいずれかに記載の樹脂組成物を成形して得られる農業又は土木用途に用いられる成形体
成形体が、シート状に硬化してなるシートである前記(5)に記載の成形体。
If we can extract lignin in a form soluble in organic solvents, we believe that the biodegradation rate can be controlled by combining it with biomass materials with different biodegradation rates,
As a result of investigation, the present invention has been achieved.
The present invention is as follows.
(1) A resin composition used for a molded product for agricultural or civil engineering applications, wherein the composition comprises a lignin and a biodegradable resin component other than lignin, the lignin containing The amount is 1 to 50% by mass as a nonvolatile content, and the lignin is obtained by separating and dissolving the cellulose component and the hemicellulose component by a separation technique using water, and the weight average molecular weight is A resin composition that is 100 to 7000 and can control the biodegradation rate by being soluble in an organic solvent .
(2 ) Lignin was obtained by separating water from a cellulose component and hemicellulose component by a steam explosion method that injects water vapor into the plant material and instantly releases the pressure to explode the plant material and dissolves it in an organic solvent. The resin composition according to (1 ), which is a product.
( 3 ) The resin composition as described in (1) or (2) above, further comprising a plasticizer.
(4) The resin composition according to any one of claims 1 to 3, wherein the biodegradable resin is polylactic acid or polyethylene succinate.
( 5 ) A molded article used for agriculture or civil engineering obtained by molding the resin composition according to any one of (1) to (4) .
(6) molded article, the molded body according to the a Resid over preparative such cured into a sheet (5).

本発明によれば、化石資源使用量の削減、及び二酸化炭素の排出量の低減効果が得られ、生分解により環境負荷低減化に好適な農業・土木用途向け生分解性樹脂組成物及び成形体を提供することができる。
本発明によれば、リグニンの添加により、多様な生分解速度を有する生分解樹脂組成物を提供することができる。また、樹脂組成物を用いた外観良好な成形体を提供することできる。
ADVANTAGE OF THE INVENTION According to this invention, the biodegradable resin composition and molded object for agricultural and civil engineering use with which the reduction effect of a fossil resource usage and the reduction | decrease effect of the discharge | emission of a carbon dioxide are acquired and it is suitable for environmental load reduction by biodegradation Can be provided.
According to the present invention, biodegradable resin compositions having various biodegradation rates can be provided by adding lignin. Further, it is possible to provide a good appearance molded article using the resin composition.

以下、上記本発明をさらに詳細に説明する。
本発明は、リグニンと樹脂成分を含む樹脂組成物であって、当該リグニンが有機溶媒に可溶であり、不揮発分としてリグニンを1〜50質量%含む樹脂組成物である。
また、本発明は、前記の樹脂組成物を、シート状に硬化してなる、シートであり、本発明の樹脂組成物及びシートは、農業又は土木用途として好適である。
また、樹脂組成物において、リグニンを、好ましくは1〜40質量%、さらに1〜35質量%含むことがより好ましい。50質量%を超えると樹脂組成物及びシートの強度・柔軟性が劣化するおそれがある。また、1質量%未満であると、リグニンが生分解速度に与える影響が低下するおそれがある。
Hereinafter, the present invention will be described in more detail.
The present invention is a resin composition containing lignin and a resin component, wherein the lignin is soluble in an organic solvent and contains 1 to 50% by mass of lignin as a nonvolatile content.
Moreover, this invention is a sheet | seat formed by hardening | curing the said resin composition in a sheet form, and the resin composition and sheet | seat of this invention are suitable for agriculture or a civil engineering use.
In the resin composition, lignin is preferably contained in an amount of 1 to 40% by mass, and more preferably 1 to 35% by mass. If it exceeds 50% by mass, the strength and flexibility of the resin composition and the sheet may be deteriorated. Moreover, there exists a possibility that the influence which lignin has on the biodegradation rate may fall that it is less than 1 mass%.

本発明で用いるリグニンの重量平均分子量は、ポリスチレン換算値において、100〜7000が好ましく、さらに200〜5000がより好ましく、500〜4000であることが特に好ましい。リグニンの重量平均分子量が、7000を超えると有機溶媒への溶解性が低下するおそれがある。重量平均分子量が、100未満であるとリグニンの構造を活かした農業・土木用途向け樹脂組成物及びシートを得ることができないおそれがある。
なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリスチレン換算した値を使用した。
The weight average molecular weight of the lignin used in the present invention is preferably 100 to 7000, more preferably 200 to 5000, and particularly preferably 500 to 4000 in terms of polystyrene. When the weight average molecular weight of lignin exceeds 7000, there exists a possibility that the solubility to an organic solvent may fall. If the weight average molecular weight is less than 100, there is a possibility that a resin composition and sheet for agricultural / civil engineering applications utilizing the structure of lignin cannot be obtained.
The weight average molecular weight was measured by gel permeation chromatography (GPC), and a value converted to standard polystyrene was used.

本発明で用いるリグニンの原料に特に制限は無い。スギ、マツ、ヒノキ等の針葉樹、ブナ等の広葉樹、タケ、イネワラ、バガス等が使用される。樹木からリグニンを分離し取り出す方法としては、クラフト法、硫酸法、爆砕法等が挙げられる。現在、多量に製造されているリグニンの多くは、紙やバイオエタノールの原料であるセルロース製造時に残渣として得られる。他にも、アルカリリグニン、オルガノソルブリグニン、ソルボリシスリグニン、糸状菌処理木材、ジオキサンリグニン及びミルドウッドリグニン、爆砕リグニン等がある。本発明に用いるリグニンは、取り出す方法によらず、リグニンが有機溶媒に可溶であれば上記のリグニンを用いることができる。   There is no restriction | limiting in particular in the raw material of lignin used by this invention. Conifers such as cedar, pine and cypress, broad-leaved trees such as beech, bamboo, rice straw, bagasse and the like are used. Examples of methods for separating and taking out lignin from trees include the kraft method, the sulfuric acid method, and the explosion method. Currently, most of the lignin produced in large quantities is obtained as a residue during the production of cellulose, which is a raw material for paper and bioethanol. In addition, there are alkali lignin, organosolv lignin, solvolysis lignin, wood treated with filamentous fungi, dioxane lignin and milled wood lignin, explosive lignin and the like. As for the lignin used in the present invention, the above lignin can be used as long as the lignin is soluble in an organic solvent, regardless of the extraction method.

リグニンを取りだした際、リグニン以外の例えばセルロースやヘミセルロースのような成分が、多少含まれていても良い。また、これらのリグニンをアセチル化、メチル化、ハロゲン化、ニトロ化、スルホン化、硫化ナトリウムや硫化水素との反応等によって作製されたリグニン誘導体も範疇として含む。   When lignin is taken out, components such as cellulose and hemicellulose other than lignin may be contained to some extent. In addition, lignin derivatives produced by acetylation, methylation, halogenation, nitration, sulfonation, reaction with sodium sulfide or hydrogen sulfide, and the like are included in the category.

主原料とするリグニンを取得する方法として、水を用いた分離技術を用いた方法が好ましい。使用するリグニンが、水のみを用いた処理方法により、セルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得たリグニンであることが好ましい。また、リグニンを取得する方法としては、水蒸気爆砕法がより好ましい。水蒸気爆砕法は、高温高圧の水蒸気による加水分解と、圧力を瞬時に開放することによる物理的破砕効果により、植物を短時間に破砕するものである。
水蒸気爆砕の条件は、特に制限しないが、通常、原料を水蒸気爆砕装置用の耐圧容器に入れ、3〜4MPaの水蒸気を圧入し、1〜15分間放置した後、瞬時に圧力を開放することにより爆砕する。なお、前記有機溶媒可溶リグニンは、水蒸気爆砕リグニンとも表す。また、原料としては、リグニンが抽出できれば特に限定しないが、例えば、スギ、竹、稲わら、麦わら、ひのき、アカシア、ヤナギ、ポプラ、バガス、とうもろこし、サトウキビ、米穀、ユーカリ、エリアンサス等が挙げられる。この方法は硫酸法、クラフト法等他の分離方法と比較し、硫酸、亜硫酸塩等を用いることなく、水のみを使用するので、クリーンな分離方法である。この方法では、リグニン中に硫黄原子を含まないリグニン、又は、硫黄原子の含有率が少ないリグニンが得られる。通常、リグニン中の硫黄原子の含有率は、2質量%以下が好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることが特に好ましい。硫黄原子の含有量が増大すると親水性のスルホン酸基が増加するため、有機溶媒への溶解性が低下する。本発明者らは、さらに、爆砕物から有機溶媒でリグニンを抽出することにより、リグニンの分子量を制御し得ることを見出した。
As a method for obtaining lignin as a main raw material, a method using a separation technique using water is preferable. The lignin used is preferably a lignin obtained by separating it from a cellulose component and a hemicellulose component by a treatment method using only water and dissolving it in an organic solvent. Moreover, as a method for obtaining lignin, the steam explosion method is more preferable. The steam explosion method crushes plants in a short time by hydrolysis with high-temperature and high-pressure steam and a physical crushing effect by instantaneously releasing the pressure.
The conditions for steam explosion are not particularly limited. Usually, the raw material is placed in a pressure vessel for a steam explosion apparatus, 3-4 MPa of steam is injected, left for 1-15 minutes, and then the pressure is released immediately. Explode. The organic solvent-soluble lignin is also referred to as steam explosion lignin. The raw material is not particularly limited as long as lignin can be extracted, and examples include cedar, bamboo, rice straw, straw, hinoki, acacia, willow, poplar, bagasse, corn, sugarcane, rice grain, eucalyptus, and Eliansus. . This method is a clean separation method because only water is used without using sulfuric acid, sulfite or the like, compared with other separation methods such as sulfuric acid method and kraft method. In this method, lignin containing no sulfur atom in the lignin or lignin having a low content of sulfur atoms can be obtained. Usually, the content of sulfur atoms in lignin is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. When the sulfur atom content is increased, hydrophilic sulfonic acid groups are increased, so that the solubility in an organic solvent is lowered. Furthermore, the present inventors have found that the molecular weight of lignin can be controlled by extracting lignin from an explosion with an organic solvent.

本発明で用いるリグニンの抽出に用いる有機溶媒は、1種又は2種以上複数の混合のアルコール溶媒、アルコールと水を混合した含水アルコール溶媒、そのほかの有機溶媒または、水と混合した含水有機溶媒を使用することができる。水にはイオン交換水を使用することが好ましい。水との混合溶媒の含水率は、0〜70質量%が好ましい。リグニンは、水への溶解度が低いため、水のみを溶媒とするとリグニンを抽出することが困難である。また、用いる溶媒を選択することにより、得られるリグニンの重量平均分子量を制御することが可能である。   The organic solvent used in the extraction of lignin used in the present invention is one or a mixture of two or more kinds of alcohol solvents, a hydrous alcohol solvent in which alcohol and water are mixed, another organic solvent, or a hydrous organic solvent in which water is mixed. Can be used. It is preferable to use ion exchange water as water. The water content of the mixed solvent with water is preferably 0 to 70% by mass. Since lignin has low solubility in water, it is difficult to extract lignin using only water as a solvent. Moreover, it is possible to control the weight average molecular weight of the lignin obtained by selecting the solvent to be used.

抽出する有機溶媒のアルコールには、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、n−ヘキサノール、ベンジルアルコール、シクノヘキサノール等のモノオール系とエチレングリコール、ジエチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、トリメチロールプロパン、グリセリン、トリエタノールアミン等のポリオールが挙げられる。また、さらに好ましくは、天然物質から得られるアルコールであることが、環境負荷低減化の観点で好ましい。具体的には、天然物質から得たメタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、エチレングリコール、グリセリン、ヒドロキシメチルフルフラール等が挙げられる。   Examples of the organic solvent alcohol to be extracted include monools such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, n-hexanol, benzyl alcohol, and cyclohexanol, and ethylene glycol, diethylene glycol, Examples include polyols such as 1,4-butanediol, 1,6-hexanediol, trimethylolpropane, glycerin, and triethanolamine. Further, an alcohol obtained from a natural substance is more preferable from the viewpoint of reducing environmental load. Specifically, methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, ethylene obtained from natural substances Examples include glycol, glycerin, and hydroxymethylfurfural.

本発明で用いる樹脂成分には、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリウレタン、ポリフェニレンサルファイド、ポリエチレン酢酸ビニル共重合体、メタクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネイト等が挙げられ、生分解性樹脂としては、バイオマス由来であるポリ乳酸、ポリヒドロキシアルカノエート、澱粉、エステル化澱粉、キトサン、ポリヒドロキシブチレート、酢酸セルロース、セルロースエステル、1,3−プロパンジオール、石油由来であるポリカプロラクタン、ポリビニルアルコール、ポリブチレンサクシネート、ポリグリコール酸、ポリエチレンサクシネート等が挙げられる。上記の樹脂成分のうち、生分解性樹脂であることが生分解性向上のため、より好ましく、さらにはバイオマス由来である生分解樹脂であることが、石油由来物質の低減の観点から特に好ましい。
また、樹脂組成物において、樹脂成分の含有量は、不揮発分として40〜99質量%が好ましく、50〜90質量%がより好ましく、60〜80質量%が特に好ましい。また、樹脂成分中の生分解性樹脂の割合は、10〜100質量%が好ましく、50〜95質量%がより好ましく、70〜90質量%が特に好ましい。
Examples of the resin component used in the present invention include polyethylene, polypropylene, polyolefin, polystyrene, polyvinyl chloride, polyethylene terephthalate, polybutylene terephthalate, polytetramethylene terephthalate, polyurethane, polyphenylene sulfide, polyethylene vinyl acetate copolymer, methacrylic resin, Polyamide, polyacetal, polycarbonate and the like can be mentioned. Biodegradable resins include biomass-derived polylactic acid, polyhydroxyalkanoate, starch, esterified starch, chitosan, polyhydroxybutyrate, cellulose acetate, cellulose ester, 1, 3-propanediol, polycaprolactan derived from petroleum, polyvinyl alcohol, polybutylene succinate, polyglycolic acid, polyethylene Shineto, and the like. Among the above resin components, a biodegradable resin is more preferable for improving biodegradability, and a biodegradable resin derived from biomass is particularly preferable from the viewpoint of reducing petroleum-derived substances.
In the resin composition, the content of the resin component is preferably 40 to 99% by mass, more preferably 50 to 90% by mass, and particularly preferably 60 to 80% by mass as a nonvolatile content. Moreover, 10-100 mass% is preferable, as for the ratio of the biodegradable resin in a resin component, 50-95 mass% is more preferable, and 70-90 mass% is especially preferable.

本発明の樹脂組成物は、さらに可塑剤を含むことが好ましい。本発明で用いる可塑剤には、例えば、ジ−n−オクチルフタレート、ジ−2−エチルヘキシルフタレート、ジベンジルフタレート、ジイソデシルフタレート、ジトリデシルフタレート、ジウンデシルフタレート等のフタル酸誘導体、ジイソオクチルフタレート等のイソフタル酸誘導体、ジ−n−ブチルアジペート、ジオクチルアジペート等のアジピン酸誘導体、ジ−n−ブチルマレート等のマレイン酸誘導体、トリ−n−ブチルシトレート等のクエン酸誘導体、モノブチルイタコネート等のイタコン酸誘導体、ブチルオレート等のオレイン酸誘導体、グリセリンモノリシノレート等のリシノール酸誘導体、トリクレジルフォスフェート、トリキシレニルフォスフェート等のリン酸エステル等の低分子化合物、ポリエチレンアジペート、ポリアクリレート等の高分子可塑剤が挙げられる。
また、樹脂組成物において、可塑剤の含有量は、不揮発分として1〜30質量%が好ましく、5〜20質量%がより好ましく、10〜15質量%が特に好ましい。
The resin composition of the present invention preferably further contains a plasticizer. Examples of the plasticizer used in the present invention include di-n-octyl phthalate, di-2-ethylhexyl phthalate, dibenzyl phthalate, diisodecyl phthalate, ditridecyl phthalate, diundecyl phthalate and other phthalic acid derivatives, diisooctyl phthalate, and the like. Isophthalic acid derivatives, di-n-butyl adipate, adipic acid derivatives such as dioctyl adipate, maleic acid derivatives such as di-n-butyl malate, citric acid derivatives such as tri-n-butyl citrate, monobutyl itaconate, etc. Low molecular weight compounds such as itaconic acid derivatives, oleic acid derivatives such as butyl oleate, ricinoleic acid derivatives such as glycerol monoricinoleate, phosphate esters such as tricresyl phosphate and trixylenyl phosphate, polyethylene adipate, polya Polymeric plasticizers such relations are exemplified.
In the resin composition, the content of the plasticizer is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, and particularly preferably 10 to 15% by mass as a nonvolatile content.

本発明の樹脂組成物及びシートにおいては、強度向上などの目的で繊維質を含んでいてもよい。繊維質としては、植物繊維、合成繊維、炭素繊維、無機繊維が挙げられる。
また、樹脂組成物において、繊維質の含有量は、不揮発分として1〜30質量%が好ましく、5〜20質量%がより好ましく、10〜15質量%が特に好ましい。
The resin composition and sheet of the present invention may contain a fiber for the purpose of improving the strength. Examples of the fiber include plant fibers, synthetic fibers, carbon fibers, and inorganic fibers.
Moreover, in a resin composition, 1-30 mass% is preferable as a non-volatile content, and 5-20 mass% is more preferable, and 10-15 mass% is especially preferable.

本発明の樹脂組成物及びシートにおいては、必要に応じて各種添加剤成分、滑剤、安定剤、酸化防止剤、紫外線吸収剤、防黴剤、充填材、離型剤、難燃剤等を配合することもできる。
また、本発明の樹脂組成物及びシートは、農業又は土木用途として好適である。例えば、減農・無農薬栽培用の防虫ネット、除草剤不要の防草シート、強い日ざしをコントローする遮光ネット、野生動物侵入防止のアニマルネット、家庭菜園の有機栽培農法をサポートする防草シート、リサイクルするペットボトルやアルミ缶等の分別資源回収袋、カラス・野良犬・野良猫の攻撃から生ゴミを守るゴミガードネット、港湾・河川での防波堤洗堀防止用シート・土砂吸出防止用シート、隣接建設地での連続地中壁型枠用シート等として使用可能である。
In the resin composition and sheet of the present invention, various additive components, lubricants, stabilizers, antioxidants, ultraviolet absorbers, antifungal agents, fillers, mold release agents, flame retardants, and the like are blended as necessary. You can also.
Moreover, the resin composition and sheet | seat of this invention are suitable for agriculture or a civil engineering use. For example, insect-proof nets for reduced farming and pesticide-free cultivation, herbicide-free herbicide sheets, shading nets that control strong sunlight, animal nets that prevent wild animals from entering, and herbicide sheets that support organic farming in home gardens Recyclable PET bottles, aluminum cans, etc., separate resource collection bags, garbage guard nets that protect garbage from attacks by crows, stray dogs, and stray cats, breakwater scour prevention sheets and sediment prevention sheets in harbors and rivers It can be used as a sheet for continuous underground wall formwork at construction sites.

本発明のシートを作製する方法としては、樹脂組成物を、シート状に硬化することが可能であれば、特に限定しない。例えば、粉砕、造粒、射出成型(成形)、金型成型、インフレーション法、Tダイ法、溶液流延法、カレンダー法等により作製される。本発明のシートの厚みとしては、通常、0.1〜2mm、好ましくは0.2〜1.5mmである。
また、本発明の樹脂組成物は、シート以外の成型体(又は成形体)としても、利用可能であり、例えば、射出成形法、金型成型法等により、成型体(又は成形体)を作製してもよい。
The method for producing the sheet of the present invention is not particularly limited as long as the resin composition can be cured into a sheet shape. For example, it is produced by pulverization, granulation, injection molding (molding), mold molding, inflation method, T-die method, solution casting method, calendar method and the like. The thickness of the sheet of the present invention is usually 0.1 to 2 mm, preferably 0.2 to 1.5 mm.
The resin composition of the present invention can also be used as a molded body (or molded body) other than a sheet. For example, a molded body (or molded body) is produced by an injection molding method, a mold molding method, or the like. May be.

以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited to these Examples.

(実施例1)
(リグニンの抽出)
リグニン抽出原料としては、竹を使用した。適当な大きさにカットした竹材を水蒸気爆砕装置の2Lの耐圧容器に入れ、3.5MPaの水蒸気を圧入し、4分間保持した。その後バルブを急速に開放することで爆砕処理物を得た。洗浄液のpHが6以上になるまで得られた爆砕処理物を水により洗浄して水溶性成分を除去した。その後、真空乾燥機で残存水分を除去した。得られた乾燥体:100gに抽出溶媒(アセトン)1000mlを加え、3時間攪拌した後、ろ過により繊維物質を取り除いた。得られたろ液から抽出溶媒(アセトン)を除去し、リグニンを得た。得られたリグニンは常温(25℃)で茶褐色の粉末であった。
Example 1
(Extraction of lignin)
Bamboo was used as a lignin extraction raw material. Bamboo material cut to an appropriate size was placed in a 2 L pressure vessel of a steam explosion device, 3.5 MPa of water vapor was injected and held for 4 minutes. Thereafter, the valve was rapidly opened to obtain an explosion-treated product. The explosion-treated product obtained until the pH of the cleaning solution reached 6 or more was washed with water to remove water-soluble components. Thereafter, residual moisture was removed with a vacuum dryer. The resulting dried product: 100 g of an extraction solvent (acetone) was added to 100 g, and the mixture was stirred for 3 hours, and then the fiber material was removed by filtration. The extraction solvent (acetone) was removed from the obtained filtrate to obtain lignin. The obtained lignin was a brown powder at room temperature (25 ° C.).

(リグニンの分析)
溶媒溶解性としては、前記リグニン:1gを、有機溶媒:10mlに加えて評価した。常温(25℃)で容易に溶解した場合は「○」、50〜70℃で溶解した場合は「△」、加熱しても溶解しなかった場合を「×」として、評価した。溶媒群1としてアセトン、シクロヘキサノン、テトラヒドロフラン、溶媒群2としてメタノール、エタノール、メチルエチルケトンとして溶解性を評価した結果、溶媒群1ではいずれも「○」、溶媒群2ではいずれも「△」の判定であった。
(Lignin analysis)
The solvent solubility was evaluated by adding 1 g of the lignin to 10 ml of an organic solvent. When it melt | dissolved easily at normal temperature (25 degreeC), it evaluated as "(circle)" when melt | dissolving at 50-70 degreeC, and (△) when it did not melt | dissolve even if heated. As a result of evaluating the solubility as acetone, cyclohexanone, tetrahydrofuran as the solvent group 1 and methanol, ethanol, and methyl ethyl ketone as the solvent group 2, the solvent group 1 was judged as “◯” and the solvent group 2 as “△”. It was.

リグニン中の硫黄原子の含有率は、燃焼分解−イオンクロマトグラフ法により定量した。装置は、株式会社三菱化学アナリテック製自動試料燃焼装置(AQF−100)及び日本ダイオネクス株式会社製イオンクロマトグラフ(ICS−1600)を用いた。上記リグニン中の硫黄原子の含有率は、0.01質量%であった。さらに示差屈折計を備えたゲルパーミエーションクロマトグラフィー(GPC)にてリグニンの重量平均分子量を測定した。多分散度の小さいポリスチレンを標準試料として用い、移動相をテトラヒドロフランとして使用し、カラムとして株式会社日立ハイテクノロジーズ製ゲルパックGL−A120SとGL−A170Sとを直列に接続して分子量測定を行った。その重量平均分子量は、2400であった。   The content of sulfur atoms in lignin was quantified by combustion decomposition-ion chromatography. As the apparatus, an automatic sample combustion apparatus (AQF-100) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and an ion chromatograph (ICS-1600) manufactured by Nippon Dionex Co., Ltd. were used. The content rate of the sulfur atom in the said lignin was 0.01 mass%. Further, the weight average molecular weight of lignin was measured by gel permeation chromatography (GPC) equipped with a differential refractometer. Polystyrene having a low polydispersity was used as a standard sample, the mobile phase was used as tetrahydrofuran, and gel packs GL-A120S and GL-A170S manufactured by Hitachi High-Technologies Corporation were connected in series as columns to perform molecular weight measurement. Its weight average molecular weight was 2400.

上記で得られたリグニン(有機溶媒可溶リグニン)の水酸基当量は、無水酢酸−ピリジン法により水酸基価、電位差滴定法により酸価を測定し求めた。アセトン抽出竹由来リグニンの水酸基当量は、140g/eq.であった。
リグニンのフェノール性水酸基とアルコール性水酸基のモル比(以下P/A比)を以下の方法で決定した。リグニン:2gのアセチル化処理を行い、未反応のアセチル化剤を留去し、乾燥させたものを、重クロロホルムに溶解させ、H−NMR(BRUKER社製、V400M、プロトン基本周波数400.13MHz)により測定した。アセチル基由来のプロトンの積分比(フェノール性水酸基に結合したアセチル基由来:2.2〜3.0ppm、アルコール性水酸基に結合したアセチル基由来:1.5〜2.2ppm)からモル比を決定したところ、P/A比は、2.2/1.0であった。
The hydroxyl equivalent of the lignin (organic solvent soluble lignin) obtained above was determined by measuring the hydroxyl value by acetic anhydride-pyridine method and the acid value by potentiometric titration method. The hydroxyl equivalent of acetone-extracted bamboo-derived lignin is 140 g / eq. Met.
The molar ratio (hereinafter P / A ratio) of the phenolic hydroxyl group and alcoholic hydroxyl group of lignin was determined by the following method. Lignin: 2 g of acetylation treatment was performed, the unreacted acetylating agent was distilled off, and the dried product was dissolved in deuterated chloroform. 1 H-NMR (manufactured by BRUKER, V400M, proton fundamental frequency 400.13 MHz) ). Determine the molar ratio from the integral ratio of protons derived from acetyl groups (derived from acetyl groups bonded to phenolic hydroxyl groups: 2.2 to 3.0 ppm, derived from acetyl groups bonded to alcoholic hydroxyl groups: 1.5 to 2.2 ppm). As a result, the P / A ratio was 2.2 / 1.0.

(実施例2)
(樹脂組成物の作製)
植物由来の生分解性樹脂であるポリ乳酸(浙江海正生物材料股粉有限公司製REVODE)99gを、混練機(東洋精機株式会社製ラボプラストミル、型式:4C150)に投入して溶融した後、上記リグニン(有機溶媒可溶リグニン;アセトン抽出)を1g添加した。よって、リグニンを1質量%含み、植物由来成分比100質量%の樹脂組成物が得られた。
なお、以下、リグニンの含有量は、樹脂組成物の不揮発分中におけるものである。
さらに、前記樹脂組成物を、180℃で5分間混練し、その後1MPa、180℃、5分間の条件でプレス成形し成形体を得た。
(Example 2)
(Preparation of resin composition)
After 99 g of polylactic acid (REVODE manufactured by Zhejiang Kaisei Biological Materials Co., Ltd.), a plant-derived biodegradable resin, is charged into a kneader (Toyo Seiki Co., Ltd., Lab Plast Mill, model: 4C150) and melted. 1 g of the above lignin (organic solvent-soluble lignin; acetone extraction) was added. Therefore, a resin composition containing 1% by mass of lignin and having a plant-derived component ratio of 100% by mass was obtained.
Hereinafter, the content of lignin is in the nonvolatile content of the resin composition.
Furthermore, the resin composition was kneaded at 180 ° C. for 5 minutes, and then press molded under the conditions of 1 MPa, 180 ° C. and 5 minutes to obtain a molded body.

(外観評価)
得られた成形体の外観を目視で評価した。表面形状が滑らかで成形体として適しているものを「○」、リグニンの混練度合いが不均一または表面形状が不良で成形体として適さないものを「×」とした。
上記で得られた実施例2の成形体の外観は、「○」の判定であった。
(Appearance evaluation)
The appearance of the obtained molded body was visually evaluated. “◯” indicates that the surface shape is smooth and suitable as a molded body, and “x” indicates that the degree of kneading of lignin is not uniform or the surface shape is poor and is not suitable as a molded body.
The appearance of the molded body of Example 2 obtained above was judged as “◯”.

(成形体の生分解速度(分解率)の測定)
前記成形体を短冊状に切断した切片をサラン布に挟み、土壌中に埋設し、土壌水分を最大容水量の50%、温度:60℃の恒温条件下で培養した。経時的に取り出した切片を表面の土壌を落とすため超音波洗浄した後乾燥し重量を測定することで生分解速度(分解率)を測定した。その結果、80日後の分解率は、10%であった。
(Measurement of biodegradation rate (decomposition rate) of compacts)
A section obtained by cutting the shaped body into strips was sandwiched between saran cloths and embedded in soil, and the soil water was cultured under constant temperature conditions of 50% of the maximum water volume and temperature: 60 ° C. The section taken out with time was subjected to ultrasonic cleaning to remove the surface soil, dried, and weighed to measure the biodegradation rate (decomposition rate). As a result, the decomposition rate after 80 days was 10%.

(実施例3)
(リグニンの抽出及び分析)
抽出溶媒としてメタノールを用いた以外は、実施例1と同様にリグニンを得た。実施例1と同様に元素分析及び分子量測定をした結果、それぞれリグニン中の硫黄原子の含有率0.2質量%未満、重量平均分子量は1900であった。実施例1と同様に溶媒溶解性を評価した結果、溶媒群1では「○」、溶媒群2では「○」の判定であった。リグニンのフェノール性水酸基とアルコール性水酸基のモル比(以下P/A比)を実施例1と同様の方法で実施した。
前記リグニンのP/A比は、1.6/1.0であった。実施例1と同様に、前記で得られたリグニン(有機溶媒可溶リグニン)の水酸基当量を測定した結果、水酸基当量は120g/eq.であった。
Example 3
(Extraction and analysis of lignin)
Lignin was obtained in the same manner as in Example 1 except that methanol was used as the extraction solvent. Elemental analysis and molecular weight measurement were performed in the same manner as in Example 1. As a result, the content of sulfur atoms in lignin was less than 0.2% by mass, and the weight average molecular weight was 1,900. As a result of evaluating the solvent solubility in the same manner as in Example 1, the determination was “◯” for the solvent group 1 and “◯” for the solvent group 2. The molar ratio of the phenolic hydroxyl group and alcoholic hydroxyl group of lignin (hereinafter referred to as P / A ratio) was carried out in the same manner as in Example 1.
The lignin P / A ratio was 1.6 / 1.0. As in Example 1, as a result of measuring the hydroxyl equivalent of the lignin (organic solvent-soluble lignin) obtained above, the hydroxyl equivalent was 120 g / eq. Met.

(樹脂組成物の作製)
前記リグニン(有機溶媒可溶リグニン;メタノール抽出)を用いた以外は、実施例2と同様に行い、リグニンを1質量%含む植物由来成分比100質量%の樹脂組成物を作製した。
さらに前記樹脂組成物を、180℃で5分間混練し、その後1MPa、180℃、5分間の条件でプレス成形し、成形体を得た。
(Preparation of resin composition)
Except having used the said lignin (organic solvent soluble lignin; methanol extraction), it carried out like Example 2 and produced the resin composition of the plant origin component ratio containing 1 mass% of lignin of 100 mass%.
Further, the resin composition was kneaded at 180 ° C. for 5 minutes, and then press-molded under the conditions of 1 MPa, 180 ° C. and 5 minutes to obtain a molded body.

(外観評価・生分解速度(分解率)の測定)
得られた成形体の外観を実施例2と同様に目視で評価した。得られた実施例3の成形体の外観は、「○」の判定であった。また、実施例2と同様に生分解速度(分解率)を測定した結果、80日後の分解率は、10%であった。
(Appearance evaluation and measurement of biodegradation rate (decomposition rate))
The appearance of the obtained molded body was visually evaluated in the same manner as in Example 2. The appearance of the obtained molded article of Example 3 was judged as “◯”. Further, the biodegradation rate (decomposition rate) was measured in the same manner as in Example 2. As a result, the decomposition rate after 80 days was 10%.

(実施例4)
実施例1記載のリグニンを50g添加、ポリ乳酸:50gとした以外は、実施例2と同様に行い樹脂組成物を得た。得られた樹脂組成物はリグニンを50質量%含み、植物由来成分比は100質量%であった。実施例2と同様に成形体を作製し外観を評価した結果、「○」の判定であった。また、実施例2と同様に生分解速度(分解率)を測定した結果、80日後の分解率は、20%であった。
Example 4
A resin composition was obtained in the same manner as in Example 2 except that 50 g of lignin described in Example 1 was added and polylactic acid was changed to 50 g. The obtained resin composition contained 50% by mass of lignin, and the plant-derived component ratio was 100% by mass. As a result of producing a molded body in the same manner as in Example 2 and evaluating the appearance, it was judged as “◯”. Further, the biodegradation rate (decomposition rate) was measured in the same manner as in Example 2. As a result, the decomposition rate after 80 days was 20%.

(実施例5)
ポリ乳酸の代わりに石油由来のポリエチレンサクシネート(PES):99gを用いた以外は、実施例2と同様に行い、リグニンを1質量%含む植物由来成分比1質量%の樹脂組成物を作製し、プレスにより成形体を得た。実施例2と同様に成形体を作製し外観を評価した結果、「○」の判定であった。また、実施例2と同様に生分解速度(分解率)を測定した結果、80日後の分解率は、95%であった。
(Example 5)
Polyethylene succinate (PES) derived from petroleum was used in place of polylactic acid except that 99 g was used, and a resin composition having a plant-derived component ratio of 1% by mass containing 1% by mass of lignin was prepared. A compact was obtained by pressing. As a result of producing a molded body in the same manner as in Example 2 and evaluating the appearance, it was judged as “◯”. Further, the biodegradation rate (decomposition rate) was measured in the same manner as in Example 2. As a result, the decomposition rate after 80 days was 95%.

(実施例6)
実施例1記載のリグニンを50gとし、ポリ乳酸の代わりに石油由来のポリエチレンサクシネート(PES)50gを用いた以外は、実施例2と同様に行い、樹脂組成物を得た。得られた樹脂組成物はリグニンを50質量%含み、植物由来成分比は50質量%であった。実施例2と同様に成形体を作製し外観を評価した結果、「○」の判定であった。また、実施例2と同様に生分解速度(分解率)を測定した結果、80日後の分解率は、50%であった。
(Example 6)
A resin composition was obtained in the same manner as in Example 2 except that 50 g of lignin described in Example 1 was used and 50 g of petroleum-derived polyethylene succinate (PES) was used instead of polylactic acid. The obtained resin composition contained 50% by mass of lignin, and the plant-derived component ratio was 50% by mass. As a result of producing a molded body in the same manner as in Example 2 and evaluating the appearance, it was judged as “◯”. Moreover, as a result of measuring the biodegradation rate (decomposition rate) in the same manner as in Example 2, the decomposition rate after 80 days was 50%.

(実施例7)
(シートの作製)
植物由来の生分解性樹脂であるポリ乳酸(浙江海正生物材料股粉有限公司製REVODE):72gと可塑剤である混合アジペート(大八工業株式会社製DAIFATTY−101):18gを混練機(東洋精機株式会社製ラボプラストミル、型式4C150)に投入して溶融した後、実施例1記載のリグニン(有機溶媒可溶リグニン)を10g添加した。よって、リグニンを10質量%含み、植物由来成分比:82質量%の樹脂組成物が得られた。この樹脂組成物を押出成型することで厚さ1mmのシートを得た。実施例2と同様にシートの外観を評価した結果、「○」の判定であった。また、実施例2と同様に生分解速度(分解率)を測定した結果、80日後の分解率は、13%であった。
(Example 7)
(Production of sheet)
Polylactic acid, which is a plant-derived biodegradable resin (REVODE manufactured by Zhejiang Haisei Biological Materials Co., Ltd.): 72 g and a mixed adipate, which is a plasticizer (DAIFATTY-101, manufactured by Daihachi Industry Co., Ltd.): 18 g 10 g of lignin (organic solvent-soluble lignin) described in Example 1 was added thereto after being poured into a Toyo Seiki Co., Ltd. Lab Plast Mill, Model 4C150) and melted. Therefore, a resin composition containing 10% by mass of lignin and having a plant-derived component ratio of 82% by mass was obtained. A sheet having a thickness of 1 mm was obtained by extruding this resin composition. As a result of evaluating the appearance of the sheet in the same manner as in Example 2, the result was “◯”. Further, the biodegradation rate (decomposition rate) was measured in the same manner as in Example 2. As a result, the decomposition rate after 80 days was 13%.

(比較例1)
実施例1記載のリグニンを52g添加、ポリエチレンサクシネート(PES):48g添加とした以外は、実施例6と同様に行い樹脂組成物を得た。得られた樹脂組成物はリグニンを52質量%含み、植物由来成分比は52質量%であった。実施例2と同様に成形体を作製し外観を評価した結果、「×」の判定であった。また、実施例2と同様に生分解速度(分解率)を測定した結果、80日後の分解率は、50%であった。
(Comparative Example 1)
A resin composition was obtained in the same manner as in Example 6 except that 52 g of lignin described in Example 1 was added and 48 g of polyethylene succinate (PES) was added. The obtained resin composition contained 52% by mass of lignin, and the plant-derived component ratio was 52% by mass. As a result of producing a molded body and evaluating the appearance in the same manner as in Example 2, the result was “x”. Moreover, as a result of measuring the biodegradation rate (decomposition rate) in the same manner as in Example 2, the decomposition rate after 80 days was 50%.

(比較例2)
リグニンとしてリグニンスルホン酸塩(バニレックスN、高純度部分脱スルホンリグニンスルホン酸ナトリウム、日本製紙株式会社製)を用いた以外は、実施例2と同様に行った。その結果、リグニンスルホン酸塩が、水溶性であり、有機溶媒に難溶であるため、リグニンスルホン酸塩とポリ乳酸が相溶せず、樹脂組成物を得ることができなかった。
(Comparative Example 2)
The same procedure as in Example 2 was conducted except that lignin sulfonate (Vanilex N, high-purity partially desulfurized sodium lignin sulfonate, manufactured by Nippon Paper Industries Co., Ltd.) was used as the lignin. As a result, since lignin sulfonate was water-soluble and hardly soluble in organic solvents, lignin sulfonate and polylactic acid were not compatible, and a resin composition could not be obtained.

(比較例3)
リグニンとしてリグニンスルホン酸塩(サンエキスP321、リグニンスルホン酸マグネシウム、日本製紙株式会社製)を用いた以外は、実施例2と同様に行った。その結果、リグニンスルホン酸塩とポリ乳酸が相溶せず、樹脂組成物を得ることができなかった。
(Comparative Example 3)
The same procedure as in Example 2 was performed except that lignin sulfonate (Sun extract P321, magnesium lignin sulfonate, manufactured by Nippon Paper Industries Co., Ltd.) was used as lignin. As a result, lignin sulfonate and polylactic acid were not compatible with each other, and a resin composition could not be obtained.

実施例に示したように、リグニンの含有量を、1〜50質量%としたことにより、成形体やシートの表面形状が滑らかになり、外観が良好であることがわかる。また、実施例や比較例に示したように、樹脂中のリグニン含有量を変えることで、土壌中で分解し難いポリ乳酸では生分解速度が促進され、生分解し易いポリエチレンサクシネートでは分解速度が抑制された。このように、植物由来成分比を変化させることにより、成形体やシートの生分解速度(分解率)をコントロールできることがわかった。

As shown in the Examples, it can be seen that when the content of lignin is 1 to 50% by mass, the surface shape of the molded body and the sheet becomes smooth and the appearance is good. In addition, as shown in the examples and comparative examples, by changing the lignin content in the resin, the biodegradation rate is accelerated with polylactic acid that is difficult to decompose in soil, and the degradation rate with polyethylene succinate that is easy to biodegrade. Suppressed. Thus, it turned out that the biodegradation rate (decomposition rate) of a molded object or a sheet | seat can be controlled by changing a plant-derived component ratio.

Claims (6)

農業又は土木用途の成形体に用いられる樹脂組成物であって、前記組成物は、リグニンと、リグニン以外の生分解性樹脂成分とを含む、樹脂組成物であって、リグニンの含有量が、不揮発分として1〜50質量%であり、前記リグニンが、水を用いた分離技術によりセルロース成分、ヘミセルロース成分から分離し、溶解させることにより得られたものであり、重量平均分子量が、100〜7000であり、有機溶媒に可溶であることにより、生分解速度を制御し得る樹脂組成物。 A resin composition used for a molded article for agriculture or civil engineering, wherein the composition comprises lignin and a biodegradable resin component other than lignin , wherein the content of lignin is The non-volatile content is 1 to 50% by mass, and the lignin is obtained by separating and dissolving the cellulose component and the hemicellulose component by a separation technique using water, and the weight average molecular weight is 100 to 7000. A resin composition that can control the biodegradation rate by being soluble in an organic solvent. リグニンが、植物原料に水蒸気を圧入し、瞬時に圧力を開放することで植物原料を爆砕する水蒸気爆砕法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである請求項1に記載の樹脂組成物。 The lignin was obtained by separating the cellulose component and hemicellulose component by the steam explosion method, in which steam is injected into the plant material and the plant material is blasted by instantaneously releasing the pressure, and dissolved in an organic solvent. The resin composition according to claim 1 . さらに可塑剤を含むことを特徴とする請求項1又は2に記載の樹脂組成物。 Further resin composition according to claim 1 or 2, characterized in that it comprises a plasticizer. 生分解性樹脂が、ポリ乳酸又はポリエチレンサクシネートである請求項1〜3のいずれかに記載の樹脂組成物。The resin composition according to any one of claims 1 to 3, wherein the biodegradable resin is polylactic acid or polyethylene succinate. 請求項1〜4のいずれかに記載の樹脂組成物を成形して得られる農業又は土木用途に用いられる成形体 The molded object used for agriculture or civil engineering obtained by shape | molding the resin composition in any one of Claims 1-4 . 成形体が、シート状に硬化してなるシートである請求項5に記載の成形体 Molded article, molded article according to claim 5 which is Resid over preparative such cured into a sheet.
JP2011020615A 2011-02-02 2011-02-02 Resin composition and molded body Expired - Fee Related JP5618153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020615A JP5618153B2 (en) 2011-02-02 2011-02-02 Resin composition and molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020615A JP5618153B2 (en) 2011-02-02 2011-02-02 Resin composition and molded body

Publications (2)

Publication Number Publication Date
JP2012158707A JP2012158707A (en) 2012-08-23
JP5618153B2 true JP5618153B2 (en) 2014-11-05

Family

ID=46839502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020615A Expired - Fee Related JP5618153B2 (en) 2011-02-02 2011-02-02 Resin composition and molded body

Country Status (1)

Country Link
JP (1) JP5618153B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364300B (en) * 2012-09-21 2017-07-18 乐金华奥斯株式会社 Automobile interior sheet added with bio-resin and preparation method thereof
JP2014160710A (en) * 2013-02-19 2014-09-04 Hitachi Chemical Co Ltd Printed circuit board
JP2014193977A (en) * 2013-03-29 2014-10-09 Sumitomo Bakelite Co Ltd Resin composition, prepreg including the resin composition, laminate sheet, and molding material
TWI652290B (en) * 2017-08-01 2019-03-01 賴至慶 Preparation method and product of purified lignin composite material
EP4083130A4 (en) * 2019-12-27 2023-10-11 Mitsubishi Chemical Corporation Degradation accelerator for biodegradable resin, biodegradable resin composition, biodegradable resin molded product, and method for producing degradation accelerator for biodegradable resin

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241615A (en) * 1996-03-11 1997-09-16 Rinyacho Shinrin Sogo Kenkyusho Composition having infrared light-absorbing property and its production
JP2002114896A (en) * 2000-08-01 2002-04-16 Nippon Paper Industries Co Ltd Lignin-based resin composition
JP4081579B2 (en) * 2001-09-14 2008-04-30 愛知県 Lignocellulosic material and use thereof
JP5045030B2 (en) * 2006-08-23 2012-10-10 富士ゼロックス株式会社 RESIN COMPOSITION, RESIN MOLDED BODY AND CASE, AND METHOD FOR MANUFACTURING AND RECYCLING METHOD OF RESIN MOLDED BODY
JP2008247963A (en) * 2007-03-29 2008-10-16 Mitsubishi Motors Corp Lignocellulose material molding and its molding method
IT1387503B (en) * 2008-05-08 2011-04-13 Novamont Spa ALYPATIC-AROMATIC BIODEGRADABLE POLYESTER
JP2011219715A (en) * 2010-02-10 2011-11-04 Hitachi Chem Co Ltd Resin compound material for molding

Also Published As

Publication number Publication date
JP2012158707A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
Prambauer et al. Biodegradable geotextiles–An overview of existing and potential materials
Chiellini et al. Composite films based on biorelated agro-industrial waste and poly (vinyl alcohol). Preparation and mechanical properties characterization
JP5618136B2 (en) Resin composition and molded body
Gowman et al. Fruit waste valorization for biodegradable biocomposite applications: A review
Mohanty et al. Biofibres, biodegradable polymers and biocomposites: An overview
JP5618153B2 (en) Resin composition and molded body
Gamage et al. Applications of starch biopolymers for a sustainable modern agriculture
Hubbe et al. Formulating Bioplastic Composites for Biodegradability, Recycling, and Performance: A Review.
John et al. Lignin fractionation and conversion to bio-based functional products
Bari et al. Durability of natural/synthetic/biomass fiber–based polymeric composites: Laboratory and field tests
Lora Lignin: A platform for renewable aromatic polymeric materials
Boneberg et al. Biorefinery of lignocellulosic biopolymers
Agüero et al. Use of bacterial cellulose obtained from kombucha fermentation in spent coffee grounds for active composites based on PLA and maleinized linseed oil
Reddy et al. Polyethylene/Other Biomaterials‐based Biocomposites and Bionanocomposites
Yu et al. Sustainable wood-based Poly (butylene adipate-co-terephthalate) biodegradable composite films reinforced by a rapid homogeneous esterification strategy
Mohammed et al. Corn: Its Structure, Polymer, Fiber, Composite, Properties, and Applications. Polymers 2022, 14, 4396
ElHady et al. Bioplastics, biodegradable plastics, and degradation in natural environments
Acquavia et al. Natural Polymeric Materials: A Solution to Plastic Pollution from the Agro-Food Sector. Polymers 2021, 13, 158
Gosecki et al. Converting Unrefined Birch Suberin Monomers into Vitrimer
Muniyasamy et al. Biopolymer synthesis and biodegradation
Grewal Investigations on biocomposites from oat hull and biodegradable polymers
Motaung et al. Agricultural waste fibers and biopolymer matrices used in biocomposites
Sapuan et al. Development and properties of sugar palm fiber reinforced polymer composites
Goldsborough et al. Polymers from renewable resources
Deshko et al. Prospects for the Use of Renewable Energy Sources while Increasing the Energy Efficiency Level of Office Buildings to the Level of nZEB

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140903

LAPS Cancellation because of no payment of annual fees