JP2019151681A - Lignin clay composite film and method for producing the same - Google Patents

Lignin clay composite film and method for producing the same Download PDF

Info

Publication number
JP2019151681A
JP2019151681A JP2018035611A JP2018035611A JP2019151681A JP 2019151681 A JP2019151681 A JP 2019151681A JP 2018035611 A JP2018035611 A JP 2018035611A JP 2018035611 A JP2018035611 A JP 2018035611A JP 2019151681 A JP2019151681 A JP 2019151681A
Authority
JP
Japan
Prior art keywords
lignin
composite film
clay
mass
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018035611A
Other languages
Japanese (ja)
Other versions
JP6964881B2 (en
Inventor
一洋 敷中
Kazuhiro Shikinaka
一洋 敷中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018035611A priority Critical patent/JP6964881B2/en
Publication of JP2019151681A publication Critical patent/JP2019151681A/en
Application granted granted Critical
Publication of JP6964881B2 publication Critical patent/JP6964881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a lignin clay composite film that contains lignin and clay mineral, and can have excellent ultraviolet absorption properties or the like.SOLUTION: A lignin clay composite film contains lignin and clay mineral, and has an incombustibility corresponding to V-0 in vertical combustion test UL94 and shows 90% or more ultraviolet absorption properties at 400 nm. The lignin used herein is low modified lignin with a yield of an aromatic compound monomer, obtained by alkaline nitrobenzene oxidation reaction, of 15% or more.SELECTED DRAWING: None

Description

本発明は、リグニン粘土複合膜およびその製造方法に関する。   The present invention relates to a lignin clay composite film and a method for producing the same.

特定の粘土材料をフィルム状に成形し、ついで加熱処理して形成した粘土膜は、ガスバリア性を始めとした各種機能を持つ機能材料である(特許文献1)。しかしながら、これらの粘土膜は粘土のバインダーとなる有機高分子の低い熱耐性による燃焼性に難がある。植物バイオマスである芳香族系高分子のリグニンは熱耐性に優れるため耐熱性を与えるバインダーとして期待が持たれるが、従来のリグニンは深い黒色を有するためフィルムの透明性が失われる (非特許文献1)。また、膜化に粘土・リグニン以外の第3成分を必要とするため不燃性付与に難がある。さらに、従来の光透過性粘土膜においては紫外領域(400 nm以下)の光を通すため、紫外線保護としての役割は果たせなかった(非特許文献2)。   A clay film formed by molding a specific clay material into a film and then heat-treating it is a functional material having various functions including gas barrier properties (Patent Document 1). However, these clay films have difficulty in combustibility due to the low heat resistance of the organic polymer serving as a clay binder. Aromatic polymer lignin, which is a plant biomass, is expected to be a binder that gives heat resistance because of its excellent heat resistance, but conventional lignin has a deep black color so that the transparency of the film is lost (Non-patent Document 1). ). Further, since a third component other than clay and lignin is required for film formation, it is difficult to impart nonflammability. Furthermore, since the conventional light-transmitting clay film allows light in the ultraviolet region (400 nm or less) to pass through, it cannot play a role as ultraviolet protection (Non-Patent Document 2).

他方、植物系原料の主成分である細胞壁成分は主にセルロース、ヘミセルロース、リグニンから構成されている。これら3つの成分は細胞壁中ではお互いに複雑に結合しているため、それらをそのまま分離することは容易ではない。細胞壁成分の分離技術は、紙・パルプの製造分野でいくつか開発され行われているが、これらの方法では酸・アルカリもしくは高温、等、非常に強い反応条件で成分分離を行うため、セルロース、ヘミセルロースは良好に得られるもののリグニンは著しく変性してしまう。このような状況下で、60℃以下の条件で強酸もしくは強アルカリを用いることなく、細胞壁成分から低変性リグニンを取り出す技術として、糖化酵素の存在下に植物系原料を湿式粉砕し、その粉砕物を固液分離して低変性リグニンを得ることが特許文献2および非特許文献3で知られている。   On the other hand, the cell wall component which is the main component of the plant-based material is mainly composed of cellulose, hemicellulose, and lignin. Since these three components are complexly bound to each other in the cell wall, it is not easy to separate them as they are. Several cell wall component separation technologies have been developed and carried out in the field of paper and pulp production. In these methods, component separation is performed under extremely strong reaction conditions such as acid, alkali, or high temperature. Although hemicellulose can be obtained satisfactorily, lignin is significantly modified. Under such circumstances, as a technique for extracting low-denatured lignin from cell wall components without using a strong acid or strong alkali at 60 ° C. or lower, a plant raw material is wet-ground in the presence of a saccharifying enzyme, and the pulverized product. It is known from Patent Document 2 and Non-Patent Document 3 that solid-liquid separation is performed to obtain low-denatured lignin.

特開2008−247695号公報JP 2008-247695 A 特開2011−92151号公報JP 2011-92151 A

Adv. Mater., 2017, 29, 1606512Adv. Mater., 2017, 29, 1606512 Adv. Mater., 2007, 19, 2450Adv. Mater., 2007, 19, 2450 Green. Chem., 2016, 18, 5962Green. Chem., 2016, 18, 5962

本発明は、リグニンと粘土鉱物とを含み、半透明性を維持しながら、優れた紫外線吸収特性等を有し得るリグニン粘土複合膜を提供することを課題とする。   An object of the present invention is to provide a lignin clay composite film that contains lignin and a clay mineral and can have excellent ultraviolet absorption characteristics while maintaining translucency.

本発明は、上記の課題を解決するために、以下の発明を提供する。
(1)アルカリ性ニトロベンゼン酸化反応により得られる芳香族化合物単量体の収率が15%以上である低変性リグニンと粘土鉱物とを含み、垂直燃焼試験UL94 V−0相当の不燃性と400nmで90%以上の紫外線吸収特性とを有するリグニン粘土複合膜。
(2)膜厚が3〜100μmである上記(1)に記載のリグニン粘土複合膜。
(3)低変性リグニンと粘土鉱物の質量比が、5質量部:95質量部〜40質量部:60質量部である上記(1)または(2)に記載のリグニン粘土複合膜。
(4)セルロース、ヘミセルロースおよびリグニンを含有する植物系原料をセルロースおよびヘミセルロースの糖化酵素の存在下に湿式粉砕して粉砕物を得、該粉砕物を、糖類を含む液状成分とアルカリ性ニトロベンゼン酸化反応により得られる芳香族化合物単量体の収率が15%以上である低変性リグニンを含む固形成分とに固液分離し、ついで該固形成分分散液と粘土鉱物を混合した後に、支持体上に塗布して乾燥することにより、低変性リグニンと粘土鉱物とを含み、垂直燃焼試験UL94 V−0相当の不燃性と400nmで90%以上の紫外線吸収特性とを有するリグニン粘土複合膜を製造することを特徴とするリグニン粘土複合膜の製造方法。
(5)膜厚が3〜100μmである上記(4)に記載のリグニン粘土複合膜の製造方法。
(6)低変性リグニンと粘土鉱物の質量比が、5質量部:95質量部〜40質量部:60質量部である上記(4)または(5)に記載のリグニン粘土複合膜の製造方法。
(7)リグニン粘土複合膜を100〜200℃で加熱処理して耐水化する上記(4)〜(6)のいずれかに記載のリグニン粘土複合膜の製造方法。
In order to solve the above problems, the present invention provides the following inventions.
(1) A low-modified lignin having a yield of aromatic compound monomer obtained by alkaline nitrobenzene oxidation reaction of 15% or more and a clay mineral, nonflammability equivalent to vertical combustion test UL94 V-0, and 90 at 400 nm A lignin clay composite film having an ultraviolet absorption property of at least%.
(2) The lignin clay composite film according to (1), wherein the film thickness is 3 to 100 μm.
(3) The lignin clay composite film according to the above (1) or (2), wherein the mass ratio of the low-modified lignin and the clay mineral is 5 parts by mass: 95 parts by mass to 40 parts by mass: 60 parts by mass.
(4) A plant raw material containing cellulose, hemicellulose and lignin is wet pulverized in the presence of cellulose and hemicellulose saccharifying enzyme to obtain a pulverized product, and the pulverized product is subjected to an nitrobenzene oxidation reaction with a liquid component containing a saccharide. The resulting aromatic compound monomer is solid-liquid separated into a solid component containing low-modified lignin having a yield of 15% or more, and then mixed on the support after mixing the solid component dispersion and clay mineral. And drying to produce a lignin clay composite film containing low-denatured lignin and clay mineral, having a nonflammability equivalent to the vertical combustion test UL94 V-0 and an ultraviolet absorption property of 90% or more at 400 nm. A method for producing a lignin clay composite film.
(5) The manufacturing method of the lignin clay composite film as described in said (4) whose film thickness is 3-100 micrometers.
(6) The manufacturing method of the lignin clay composite film as described in said (4) or (5) whose mass ratio of low modified | denatured lignin and a clay mineral is 5 mass parts: 95 mass parts-40 mass parts: 60 mass parts.
(7) The method for producing a lignin clay composite film according to any one of the above (4) to (6), wherein the lignin clay composite film is heat-treated at 100 to 200 ° C. to make it water resistant.

本発明は、半透明性を維持しながら、優れた不燃性と紫外線吸収特性を有するリグニン粘土複合膜を提供し得る。石油由来の成分を使用しないで植物成分と粘土鉱物のみによっても機能膜が得られ、優れた不燃性と紫外線吸収能に加えて透湿性・ガス透過性・プロトン伝導性を付与し得る。   The present invention can provide a lignin clay composite film having excellent nonflammability and ultraviolet absorption characteristics while maintaining translucency. A functional membrane can be obtained only by plant components and clay minerals without using petroleum-derived components, and can impart moisture permeability, gas permeability, and proton conductivity in addition to excellent nonflammability and ultraviolet absorption ability.

本発明のリグニン粘土複合膜は、リグニンと粘土鉱物とを含み、400nmで90%以上の紫外線吸収特性を有する。   The lignin clay composite film of the present invention contains lignin and a clay mineral and has an ultraviolet absorption property of 90% or more at 400 nm.

リグニンとしては、アルカリ性ニトロベンゼン酸化反応により得られる芳香族化合物単量体の収率が15%以上である低変性リグニンが用いられる。例えばリグニンが針葉樹由来のものである場合は、ニトロベンゼン酸化分解率は、例えば、15%以上、18%以上、20%以上、22%以上、25%以上又は27%以上であってよい。リグニンが広葉樹由来のものである場合は、ニトロベンゼン酸化分解率は、例えば、15%以上、18%以上、20%以上、22%以上、25%以上、27%以上、30%以上、35%以上、40%以上、45%又は50%以上であってよい。   As the lignin, low-modified lignin is used in which the yield of the aromatic compound monomer obtained by the alkaline nitrobenzene oxidation reaction is 15% or more. For example, when lignin is derived from a conifer, the nitrobenzene oxidative degradation rate may be, for example, 15% or more, 18% or more, 20% or more, 22% or more, 25% or more, or 27% or more. When lignin is derived from hardwood, the nitrobenzene oxidative degradation rate is, for example, 15% or more, 18% or more, 20% or more, 22% or more, 25% or more, 27% or more, 30% or more, 35% or more , 40% or more, 45% or 50% or more.

リグニンの原料となる植物系原料は、特に限定されるものではなく、細胞壁成分としてセルロース、ヘミセルロースおよびリグニンを含む植物系のバイオマスであり、たとえばスギ、ヒノキ等の針葉樹材、カバ、ミズナラ等の広葉樹材、あるいは、稲わら、バガス、タケ等の草本類が用いられる。   The plant-based raw material used as the raw material for lignin is not particularly limited, and is a plant-based biomass containing cellulose, hemicellulose and lignin as cell wall components. Wood or herbs such as rice straw, bagasse and bamboo are used.

これらの植物系原料は糖化酵素の存在下に湿式粉砕(すなわち糖化粉砕)されるのが好適であり、湿式粉砕の前に、予め5mm以下に粗粉砕しておくのが好ましい。粗粉砕は、カッターミル、チッパー、ロータリーカッター等の公知の粉砕機を用い得る。   These plant-based materials are preferably wet pulverized (ie, saccharified pulverized) in the presence of a saccharifying enzyme, and are preferably coarsely pulverized to 5 mm or less in advance before wet pulverization. For the coarse pulverization, a known pulverizer such as a cutter mill, a chipper, or a rotary cutter can be used.

糖化酵素は、植物系原料の細胞壁に含まれるセルロースやヘミセルロース等を糖化する酵素であり、セルラーゼ、ヘミセルラーゼ、ペクチナーゼを挙げることができる。セルラーゼ及びヘミセルラーゼを組み合わせて用いることが好ましい。湿式粉砕時に用いられる糖化酵素の量は特に限定されず、用いる植物原料の量等に応じて適宜設定することができる。   The saccharifying enzyme is an enzyme that saccharifies cellulose, hemicellulose and the like contained in the cell wall of the plant-based raw material, and examples thereof include cellulase, hemicellulase, and pectinase. It is preferable to use cellulase and hemicellulase in combination. The amount of saccharifying enzyme used at the time of wet pulverization is not particularly limited, and can be appropriately set according to the amount of plant raw material used.

セルラーゼは、β-1,4-グルカンのグルコシド結合を加水分解する酵素のことで、セルロースの分子内部から切断するエンドグルカナーゼ及びセルロースの還元末端もしくは非還元末端から分解しセロビオースを遊離するエキソグルカナーゼ、さらにはセロビオースのグルコシド結合を切断しグルコースへと変換するβ-グルコシダーゼを含む酵素である。また、ヘミセルラーゼは、植物体の細胞壁を構成する多糖類のうちセルロース、ペクチン以外の多糖類を分解する酵素であり、ペクチナーゼは、ペクチンを分解する触媒機能を持つポリガラクツロナーゼ、ペクチンリアーゼ、ペクチンエステラーゼ、ペクチンメチルエステラーゼなどの酵素である。湿式粉砕時には、糖化酵素の他に、例えば、タンパク質分解酵素等の酵素を併せて用いてもよい。   Cellulase is an enzyme that hydrolyzes the glucoside bond of β-1,4-glucan, an endoglucanase that cleaves from the inside of the cellulose molecule and an exoglucanase that breaks down from the reducing or non-reducing end of cellulose to release cellobiose, Furthermore, it is an enzyme containing β-glucosidase that cleaves the glucoside bond of cellobiose and converts it into glucose. Hemicellulase is an enzyme that degrades polysaccharides other than cellulose and pectin among the polysaccharides that constitute the cell wall of the plant body. Pectinase is a polygalacturonase, pectin lyase having a catalytic function for degrading pectin, Enzymes such as pectin esterase and pectin methyl esterase. At the time of wet pulverization, for example, an enzyme such as a proteolytic enzyme may be used in addition to the saccharifying enzyme.

湿式粉砕は、粉砕対象物を液体中に懸濁させたスラリー状態で粉砕するものであり、たとえばボールミルやビーズミルを用いることができる。   The wet pulverization is pulverization in a slurry state in which an object to be pulverized is suspended in a liquid. For example, a ball mill or a bead mill can be used.

湿式粉砕に用いる液体としては、糖化酵素を失活させることなく粉砕対象物をスラリー状態で保持できるものであれば制限されず、好適には水、およびアルコール等の有機溶媒が挙げられる。   The liquid used for the wet pulverization is not limited as long as it can hold the object to be pulverized in a slurry state without inactivating the saccharifying enzyme, and preferably includes water and an organic solvent such as alcohol.

湿式粉砕する条件は、媒体pH2.0〜11.0、媒体と粉砕対象物の質量比1:1〜100:1、粉砕機のビーズ径0.1〜20mm、ビーズ周速0.3〜50m/sec、スラリー流速0.1〜10L/min、ベッセル内温度0〜100℃程度の範囲内で適宜選択し得、経時的に粉砕物の粒度及びスラリー粘度を測定しながら、たとえば好ましくは平均粒度1μm以下となった時点で終了し得る。   The conditions for wet pulverization are as follows: medium pH 2.0 to 11.0, mass ratio of medium to pulverized object 1: 1 to 100: 1, pulverizer bead diameter 0.1 to 20 mm, bead peripheral speed 0.3 to 50 m / sec, slurry flow rate 0.1 ~ 10L / min, vessel temperature can be selected as appropriate within the range of 0-100 ° C, and measure the particle size and slurry viscosity of the pulverized material over time, for example, preferably when the average particle size is 1μm or less Can do.

湿式粉砕終了後、得られた粉砕物を遠心分離等の固液分離手段により、糖類を含む液状成分と低変性リグニンを含む固形成分とに固液分離される。得られた液状成分に溶出した糖類の量をたとえばソモギーネルソン法など公知の方法により測定し、糖化度が十分でない場合は必要に応じて固形成分に緩衝液と酵素を添加し、任意の温度で攪拌することによりさらに糖化を促進してもよい。   After completion of the wet pulverization, the obtained pulverized product is solid-liquid separated into a liquid component containing saccharide and a solid component containing low-denatured lignin by solid-liquid separation means such as centrifugation. The amount of saccharide eluted in the obtained liquid component is measured by a known method such as the Somogy Nelson method. If the degree of saccharification is not sufficient, a buffer solution and an enzyme are added to the solid component as required, The saccharification may be further promoted by stirring the mixture.

固液分離により得られる固形成分は、水で洗浄し、乾燥させることにより低変性リグニンを得ることができる。得られる低変性リグニンは、既存の抽出法によって得られるリグニンと比較して、β-エーテル結合が良好に保持され、縮合型の炭素-炭素結合が少ないことから、アルカリ性ニトロベンゼン酸化のような物理化学的リグニン分解反応を行うことにより良好に低分子化され、バニリン、バニリン酸、シリンガアルデヒド、シリンガ酸などの芳香族化合物単量体を高効率に得ることができる。   The solid component obtained by solid-liquid separation can be washed with water and dried to obtain low-denatured lignin. The resulting low-denatured lignin retains better β-ether bonds and has fewer condensed carbon-carbon bonds than lignin obtained by existing extraction methods. It is possible to obtain a low molecular weight satisfactorily by performing a selective lignin decomposition reaction, and to obtain an aromatic compound monomer such as vanillin, vanillic acid, syringaldehyde, or syringic acid with high efficiency.

アルカリ性ニトロベンゼン酸化は、1939年にドイツのフロイデンベルグが提案した分解方法であり、針葉樹リグニンから20〜28%、広葉樹リグニンからは多くて50%程度の単量体芳香族化合物を得ることができる分解方法である。予め水酸化ナトリウムなどの試薬によりアルカリ性にした水溶液中に木粉もしくはリグニンを添加し、そこにニトロベンゼンをリグニンの0.1〜2.0倍量相当添加し、オートクレーブにて100〜200℃の任意の温度で1〜3時間攪拌しながら加熱する分解法である。   Alkaline nitrobenzene oxidation is a decomposition method proposed by Freudenberg, Germany, in 1939. Decomposition can yield about 20 to 28% monomeric aromatic compounds from coniferous lignin and about 50% at most from hardwood lignin. Is the method. Add wood flour or lignin to an aqueous solution previously made alkaline with a reagent such as sodium hydroxide, add nitrobenzene in an amount equivalent to 0.1 to 2.0 times the amount of lignin, and add 1 at an arbitrary temperature of 100 to 200 ° C in an autoclave. It is a decomposition method of heating with stirring for 3 hours.

本発明において、低変性リグニンは、上記のように植物系原料の細胞壁に含まれるセルロースおよびヘミセルロースを糖化酵素で糖化して得られる固形成分から得られ、後述する実施例に記載する条件でアルカリ性ニトロベンゼン酸化反応により得られる芳香族化合物単量体の収率が15%以上であるものをいう。   In the present invention, the low-denatured lignin is obtained from a solid component obtained by saccharifying cellulose and hemicellulose contained in a cell wall of a plant-based raw material with a saccharifying enzyme as described above, and is subjected to alkaline nitrobenzene under the conditions described in Examples described later. The aromatic compound monomer obtained by the oxidation reaction has a yield of 15% or more.

固形成分分散液と粘土鉱物を混合した後に、得られた均一分散液を支持体上に塗布し、乾燥後に支持体から剥離させて、低変性リグニンと粘土鉱物を含み、垂直燃焼試験UL94 V−0相当の不燃性と400nmで90%以上の紫外線吸収特性を有するリグニン粘土複合膜を製造することができる。分散媒としては水が好適に使用される。得られるリグニン粘土複合膜は、支持体から剥離しても自立膜として振舞う。   After mixing the solid component dispersion and the clay mineral, the obtained uniform dispersion was applied onto the support, dried and peeled off from the support, and contained low-modified lignin and clay mineral, and the vertical combustion test UL94 V- A lignin clay composite film having non-combustibility equivalent to 0 and ultraviolet absorption characteristics of 90% or more at 400 nm can be produced. Water is preferably used as the dispersion medium. The obtained lignin clay composite film behaves as a free-standing film even if it is peeled off from the support.

粘土鉱物としては、天然あるいは合成物、好適には、例えば、ベントナイト、雲母、バーミキュライト、モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、マガディアイト、アイラライト、カネマイト、イライト、セリサイト、それらの混合物が挙げられる。これらの粘土鉱物は、その層間イオンをリチウムイオン、プロトン、アンモニウムイオンなどに交換することによってより好適に用いられる。   As clay minerals, natural or synthetic materials, preferably, for example, bentonite, mica, vermiculite, montmorillonite, beidellite, saponite, hectorite, stevensite, magadiite, illite, kanemite, illite, sericite, and mixtures thereof Is mentioned. These clay minerals are more preferably used by exchanging the interlayer ions with lithium ions, protons, ammonium ions, or the like.

リグニンと粘土鉱物の質量比は、好適には、5質量部:95質量部〜40質量部:60質量部から選ばれる。   The mass ratio of lignin and clay mineral is preferably selected from 5 parts by mass: 95 parts by mass to 40 parts by mass: 60 parts by mass.

リグニン、粘土鉱物からなる混合液は強制的に撹拌させ、均一な分散液を作製することが好適である。均一な分散液を得る方法としては、激しく撹拌できる方法であれば特に限定されるものではなく、攪拌翼を備えた攪拌装置、振とう攪拌装置、ホモジナイザー等を用いる方法があり、特に、小さなダマをなくすためには、分散の最終段階でホモジナイザーを用いる方法が好ましい。ダマが分散液に残存している場合、分散液を濾器により濾すことより均一分散液とすることができる。次に、分散液を必要に応じて脱気処理する。脱気処理の方法としては、例えば、真空引き、加熱、遠心などによるがあるが、真空引きを含む方法がより好ましい。分散、濾し、脱泡の工程は1回でも複数回繰り返してもよい。   It is preferable to forcibly stir the mixed liquid composed of lignin and clay mineral to produce a uniform dispersion. The method for obtaining a uniform dispersion is not particularly limited as long as it can vigorously stir, and includes a stirrer equipped with a stirrer, a shaker stirrer, a homogenizer, and the like. In order to eliminate this, a method using a homogenizer at the final stage of dispersion is preferable. When lumps remain in the dispersion, it can be made a uniform dispersion by filtering the dispersion with a filter. Next, the dispersion is degassed as necessary. Examples of the deaeration process include evacuation, heating, and centrifugation, but a method including evacuation is more preferable. The steps of dispersing, filtering and defoaming may be repeated once or a plurality of times.

次に、上記分散液を支持体表面に一定厚みで塗布する。塗布は、キャスティング、ベーカーアプリケーション等によることができる。ついで、分散媒をゆっくりと蒸発させ、残部を膜状に成形する。支持体としては、フッ素樹脂、ポリエチレンテレフタレート樹脂、ガラスなどが好適に用いられる。このようにして形成された膜状固形物は、好適には、たとえば、真空乾燥、凍結真空乾燥及び加熱蒸発法の何れか、あるいはこれらの方法を組み合わせて乾燥される。   Next, the dispersion is applied to the support surface with a constant thickness. Application can be by casting, baker application, and the like. Next, the dispersion medium is slowly evaporated, and the remainder is formed into a film. As the support, fluororesin, polyethylene terephthalate resin, glass and the like are preferably used. The film-like solid thus formed is preferably dried by, for example, any one of vacuum drying, freeze vacuum drying and heat evaporation, or a combination of these methods.

さらに、得られた膜状固形物を加熱することにより、耐水性が付与され、半透明(たとえば全光線透過率56%)を示し得る。この加熱は、通常100〜200℃で、30分〜3時間程度で行われる。   Furthermore, by heating the obtained membranous solid, water resistance is imparted and translucent (for example, total light transmittance of 56%) can be exhibited. This heating is usually performed at 100 to 200 ° C. for about 30 minutes to 3 hours.

本発明のリグニン粘土複合膜の膜厚は、用途により選択され得るが、通常3〜100μm、好適には10〜50μmである。   The film thickness of the lignin clay composite film of the present invention can be selected depending on the application, but is usually 3 to 100 μm, preferably 10 to 50 μm.

本発明のリグニン粘土複合膜は、支持体から分離した自立膜として用いることが可能であり、はさみ、カッター等で、容易に任意の大きさ、形状に、切り取ることができる。   The lignin clay composite membrane of the present invention can be used as a self-supporting membrane separated from a support, and can be easily cut into an arbitrary size and shape with scissors, a cutter or the like.

また、本発明のリグニン粘土複合膜は、低変性リグニンである植物由来芳香族系高分子と粘土鉱物とから成る機能膜であり、優れた紫外線吸収能に加えて、不燃性を有し、耐水性を有しながらも多孔構造を有するため高い透湿性・酸素ガス透過性を有する。また、自由水を10重量%以上保持し、粘土に由来するイオンを持つためプロトン伝導性も持ち合わせる。   The lignin clay composite film of the present invention is a functional film composed of a plant-derived aromatic polymer, which is a low-denatured lignin, and a clay mineral. In addition to excellent ultraviolet absorbing ability, it has nonflammability and water resistance. It has high moisture permeability and oxygen gas permeability because it has a porous structure. In addition, it retains 10% by weight or more of free water and has proton conductivity because it has ions derived from clay.

次に、実施例により本発明をさらに具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these Examples.

参考例
<低変性リグニンの調製>
スギないし稲わらをカッターミルまたはジェットミルにより0.02 〜 5 mm程度に粉砕し、植物粉を得た。植物粉500 gを4.5 Lの100 mMリン酸緩衝液 (pH = 5.0) に一晩浸した後、湿式粉砕装置LMZ4 (アシザワファインテック社製) に緩衝液とともに投入し、デュポンジェネンコア社製のセルラーゼ・ヘミセルラーゼ混合液 (OptimashXL及びOptimashBGそれぞれ50 mL) を添加し、50 ℃に保ちながら、湿式粉砕を開始した。LMZ4に用いるビーズはジルコニア金属製の0.5 mm径のものを用いた。植物粉をLMZ4に投入した後、木粉の粒度を測定して平均粒度が10 μmとなった時点でビーズを0.1 mm径に交換し、湿式粉砕を合計4時間行った。湿式粉砕を進めるにつれ植物粉懸濁液の粘度は減少した。得られた粉末の平均一次粒径は30 〜 40 nmであった。
Reference example <Preparation of low-denatured lignin>
Cedar or rice straw was pulverized to about 0.02 to 5 mm by a cutter mill or a jet mill to obtain a plant powder. Immerse 500 g of plant flour in 4.5 L of 100 mM phosphate buffer (pH = 5.0) overnight, and then add it to the wet pulverizer LMZ4 (Ashizawa Finetech) together with the buffer solution. The cellulase / hemicellulase mixture solution (OptimashXL and OptimashBG, 50 mL each) was added, and wet grinding was started while maintaining the temperature at 50 ° C. The beads used for LMZ4 were 0.5 mm diameter made of zirconia metal. After the plant powder was put into LMZ4, the particle size of the wood flour was measured, and when the average particle size reached 10 μm, the beads were replaced with a 0.1 mm diameter, and wet grinding was performed for a total of 4 hours. As the wet milling proceeded, the viscosity of the vegetable powder suspension decreased. The average primary particle size of the obtained powder was 30 to 40 nm.

粉砕終了後、遠心分離により上清と残渣とを分離した。上清中の糖をソモギーネルソン法により定量した。残渣を水で洗浄した後、残渣に再度セルラーゼ・ヘミセルラーゼ混合液及びリン酸緩衝液1 Lを添加し、50 ℃で12時間攪拌することにより糖化反応を行った。反応終了後、遠心分離により上清と残渣に分離し、残渣としてリグニン (低変性リグニン) を得た。得られた上清について、同様に糖量を定量した。得られた上清中の糖の合計量は約83%であった。植物粉に含まれるセルロース・ヘミセルロースの約83%は分解され、糖として上清に溶出していることが確認された。   After completion of the pulverization, the supernatant and the residue were separated by centrifugation. The sugar in the supernatant was quantified by the Somogie Nelson method. After the residue was washed with water, a saccharification reaction was performed by adding a cellulase / hemicellulase mixture and 1 L of phosphate buffer to the residue and stirring at 50 ° C. for 12 hours. After completion of the reaction, the supernatant and the residue were separated by centrifugation, and lignin (low-denatured lignin) was obtained as the residue. The amount of sugar was quantified in the same manner for the obtained supernatant. The total amount of sugar in the obtained supernatant was about 83%. It was confirmed that about 83% of cellulose and hemicellulose contained in the plant powder were decomposed and eluted into the supernatant as sugar.

<ニトロベンゼン酸化分解率の測定>
風乾した低変性リグニン粉末100 mg、1 N NaOH溶液7 mL、及びニトロベンゼン0.4 mLを10 mL容のステンレスオートクレーブに投入し、170 ℃で攪拌しながら2.5時間反応させた。反応終了後、内部標準としてp-ヒドロキシ安息香酸を15 mg添加した。等量のジエチルエーテルで3回抽出しニトロベンゼンと副反応物であるアニリン、アゾベンゼンを除去した。残った水層に塩酸を添加し、pH 1.0に調製した後、再度等量のジエチルエーテルで3回抽出した。得られた抽出液を減圧下で乾燥し、低変性リグニンから生成した芳香族化合物を得た。得られた芳香族化合物を、10%アセトニトリルを含む10 mMリン酸溶液に溶解し、高速液体クロマトグラフィーにより、生成した芳香族化合物の定性及び定量を行った。芳香族化合物としてバニリンが20.926 mg、バニリン酸が1.72 mg、シリンガアルデヒドが1.87 mg得られ、用いた低変性リグニンから24.5%の割合で単量体の芳香族化合物が得られた。すなわち低変性リグニンのニトロベンゼン酸化分解率は、24.5%であった。一方、従来のパルプ製造過程で得られるサルファイトリグニン及びクラフトリグニンについて同様にニトロベンゼン酸化分解率を測定すると、7 〜 11%であった。
<Measurement of nitrobenzene oxidative degradation rate>
100 mg of air-dried low-denatured lignin powder, 7 mL of 1 N NaOH solution, and 0.4 mL of nitrobenzene were placed in a 10 mL stainless steel autoclave and reacted at 170 ° C. with stirring for 2.5 hours. After completion of the reaction, 15 mg of p-hydroxybenzoic acid was added as an internal standard. Extraction was performed three times with an equal amount of diethyl ether to remove nitrobenzene and side reactions aniline and azobenzene. Hydrochloric acid was added to the remaining aqueous layer to adjust to pH 1.0, and then extracted again with an equal amount of diethyl ether three times. The obtained extract was dried under reduced pressure to obtain an aromatic compound produced from low-denatured lignin. The obtained aromatic compound was dissolved in a 10 mM phosphoric acid solution containing 10% acetonitrile, and the produced aromatic compound was qualitatively and quantitatively analyzed by high performance liquid chromatography. As an aromatic compound, 20.926 mg of vanillin, 1.72 mg of vanillic acid, and 1.87 mg of syringaldehyde were obtained, and a monomeric aromatic compound was obtained in a proportion of 24.5% from the low-denatured lignin used. That is, the nitrobenzene oxidative degradation rate of the low-denatured lignin was 24.5%. On the other hand, when sulfite lignin and kraft lignin obtained in the conventional pulp production process were similarly measured for the nitrobenzene oxidative degradation rate, they were 7 to 11%.

<低変性リグニン超純水分散液の調製>
上述の方法で得られた低変性リグニンについて、緩衝剤・酵素などの不純物を除去するため、以下の工程で洗浄した。低変性リグニンを含む同時酵素糖化粉砕残渣について、21000 × g、90分の条件の遠心分離処理により1〜2回上清の除去と超純水への分散を繰り返し、低変性リグニン超純水分散液を得た。低変性リグニン超純水分散液は7〜10重量%で冷蔵状態にて半年間は沈降を起こさない均一な分散液であった。乾燥状態のスギ由来リグニンないし稲わら由来リグニンについてRigaku社製TG-8120を用いて熱質量分析をおこなったところ、200 ℃までの加熱で質量減少が11重量%ないし13重量%であり、これは付着した水の脱着に由来するものと考えられた。
<Preparation of low-denatured lignin ultrapure water dispersion>
The low-denatured lignin obtained by the above method was washed in the following steps in order to remove impurities such as buffers and enzymes. About the simultaneous enzymatic saccharification and grinding residue containing low-denatured lignin, the supernatant was removed and dispersed in ultrapure water one or two times by centrifugation at 21000 xg for 90 minutes, and low-denatured lignin ultrapure water dispersion A liquid was obtained. The low-denatured lignin ultrapure water dispersion was 7 to 10% by weight and was a uniform dispersion that did not settle for half a year in a refrigerated state. Thermal mass spectrometry of dried cedar-derived lignin or rice straw-derived lignin using TG-8120 made by Rigaku showed a mass loss of 11% to 13% by heating up to 200 ° C. It was thought to be derived from desorption of attached water.

実施例1 <粘土鉱物―低変性リグニン複合膜の調製>
リチウム交換型精製ベントナイト(「クニピアM」:クニミネ工業株式会社)のゲル状分散液 (20 重量%;40 g) に超純水 (105.4 g) を加え、ホモジナイザーにて6000 rpm 15分の条件で混合した。混合後スギ由来低変性リグニン超純水分散液 (3.5 重量%;57.1 g) を加え、ホモジナイザーにて6000 rpm 25分の条件で混合した。混合後、30分の静置で空冷し、自転公転ミキサーにて混合モード2000 rpm 5分の条件で混合した。その後得られた分散液を目開き53μmの篩に通し、自転公転ミキサーにて混合モード2000 rpm 2分の条件で混合した。更に自転公転ミキサーにて脱泡モード2200 rpm 10分の条件で混合した。最終的に得られた分散液をPET (ポリエチレンテレフタレート) シート上に乗せ、キャスティングナイフを用いて延伸した。この際キャスティングナイフのクリアランスは0.6 mmであった。延伸した分散液を室温で乾燥した。乾燥後PETシートから膜を分離し、電気炉で150 ℃2時間加熱した。この加熱処理により、膜厚は24μmの粘土鉱物―低変性リグニン複合膜を得た。複合膜中の「クニピアM」とスギ由来低変性リグニンの割合は、「クニピアM」:低変性リグニン=80重量%:20重量%であった。
Example 1 <Preparation of Clay Mineral-Low-Modified Lignin Composite Film>
Add ultrapure water (105.4 g) to a gel-like dispersion (20 wt%; 40 g) of lithium exchange-type purified bentonite (“Kunipia M”: Kunimine Kogyo Co., Ltd.) and use a homogenizer at 6000 rpm for 15 minutes. Mixed. After mixing, a cedar-derived low-denatured lignin ultrapure water dispersion (3.5 wt%; 57.1 g) was added, and the mixture was mixed with a homogenizer at 6000 rpm for 25 minutes. After mixing, the mixture was air-cooled by standing for 30 minutes, and mixed in a rotating / revolving mixer under a mixing mode of 2000 rpm for 5 minutes. Thereafter, the obtained dispersion was passed through a sieve having an opening of 53 μm, and mixed in a rotating / revolving mixer under a mixing mode of 2000 rpm for 2 minutes. Further, the mixture was mixed in a defoaming mode at 2200 rpm for 10 minutes with a rotating and rotating mixer. The finally obtained dispersion was placed on a PET (polyethylene terephthalate) sheet and stretched using a casting knife. At this time, the clearance of the casting knife was 0.6 mm. The stretched dispersion was dried at room temperature. After drying, the membrane was separated from the PET sheet and heated in an electric furnace at 150 ° C. for 2 hours. By this heat treatment, a clay mineral-low-modified lignin composite film having a film thickness of 24 μm was obtained. The ratio of “Kunipia M” and cedar-derived low-denatured lignin in the composite membrane was “Kunipia M”: Low-denatured lignin = 80 wt%: 20 wt%.

得られた膜は、加熱前の形態を保持しており、柔軟性とハンドリング性を有する膜であった。日本電色工業社製HAZE METER (NDH5000) にて粘土鉱物―スギ由来低変性リグニン複合膜の全光線透過率およびヘイズ値を評価したところそれぞれ56%、41%であった。   The obtained film retained the form before heating, and was a film having flexibility and handling properties. When the total light transmittance and haze value of the clay mineral-cedar-derived low-modified lignin composite film were evaluated by Nippon Denshoku Industries HAZE METER (NDH5000), they were 56% and 41%, respectively.

得られた膜について分光光度計 (HITACHI U-2910) により紫外可視吸収スペクトルを測定し、波長ごとの透過率を評価したところ、400 nmにおける透過率が9.6%であり、それ以下の紫外線領域 (400 nm以下) においても10%以下であった。リグニンが持つ芳香族網目構造に由来するπ共役が紫外波長領域の光を吸収していると考えられた。   The resulting film was measured for ultraviolet-visible absorption spectrum with a spectrophotometer (HITACHI U-2910), and the transmittance for each wavelength was evaluated. The transmittance at 400 nm was 9.6%, and the ultraviolet region below that ( Even at 400 nm or less, it was 10% or less. The π-conjugate derived from the aromatic network structure of lignin is considered to absorb light in the ultraviolet wavelength region.

得られた膜についてRigaku社製TG-8120を用いて熱質量分析をおこなったところ、200 ℃までの加熱で質量減少が8.7重量%であり、これは付着した水の脱着に由来するものと考えられた。   When the obtained film was subjected to thermal mass spectrometry using TG-8120 manufactured by Rigaku, the mass loss by heating up to 200 ° C was 8.7% by weight, which is considered to be derived from desorption of adhering water. It was.

また、得られた膜について水蒸気透過度をカップ法 (防湿包装材料の透湿度試験法; JIS K 8123) にて測定した。測定時間24時間での透過度は873 g/m2/dayであった。 Further, the water vapor permeability of the obtained film was measured by a cup method (moisture permeability test method for moisture-proof packaging material; JIS K 8123). The permeability at a measurement time of 24 hours was 873 g / m 2 / day.

加えて、得られた膜についてMocon法 (プラスティック−フィルム及びシート−ガス透過度試験方法−第2部:等圧法; JIS K 7126-2 : 2006) による酸素透過度評価をおこなった。電界センサ法による酸素ガス透過度の試験法に従い、クーロメトリック酸素透過率測定装置 (MOCON社製OX-TRAN 2/22L) にて温度40 ℃、相対湿度90%、酸素ガス濃度5%、透過面積5 cm2という条件で測定したところ、測定時間24時間での酸素透過度は406 cc/m2/day/atmであった。 In addition, the membrane obtained was evaluated for oxygen permeability by the Mocon method (plastic-film and sheet-gas permeability test method-part 2: isobarometric method; JIS K 7126-2: 2006). According to the oxygen gas permeability test method using the electric field sensor method, a coulometric oxygen permeability measurement device (OX-TRAN 2 / 22L manufactured by MOCON) has a temperature of 40 ° C, a relative humidity of 90%, an oxygen gas concentration of 5%, and a permeation area. When measured under the condition of 5 cm 2 , the oxygen permeability at a measurement time of 24 hours was 406 cc / m 2 / day / atm.

また、得られた膜について力学強度を引っ張り破断試験にて評価した。JTT LSC-005/30型の引張試験器にて一軸延長試験をおこなったところ、ヤング率は1.29 GPa、引っ張り破断強度は0.49 GPa、引っ張り破断ひずみは0.06 mm/mmであった。   Further, the mechanical strength of the obtained film was evaluated by a tensile breaking test. When a uniaxial extension test was performed using a JTT LSC-005 / 30 type tensile tester, the Young's modulus was 1.29 GPa, the tensile strength at break was 0.49 GPa, and the tensile strain at break was 0.06 mm / mm.

得られた膜について東陽テクニカ膜抵抗測定システム (MTS740型) により、プロトン伝導度を測定した。10 MHz 〜 10 Hz、OVDC 20 mVの条件で、プロトン伝導度は80 ℃湿度90%で10-5 S/cmオーダー、25 ℃湿度20%で10-7 S/cmオーダーであった。 The proton conductivity of the obtained membrane was measured with a Toyo Technica membrane resistance measurement system (MTS740 type). Under the conditions of 10 MHz to 10 Hz and OVDC 20 mV, proton conductivity was on the order of 10 −5 S / cm at 80 ° C. and 90% humidity, and on the order of 10 −7 S / cm at 25 ° C. and 20% humidity.

また、得られた膜について難燃性試験UL94 (垂直燃焼試験) に基づく難燃性を評価した。20 mm垂直燃焼試験 (IEC60695-11-10 B法, ASTM D3801) に基づき125 ± 5 mm × 13.0 ± 0.5 mm×24 μmの短冊試料をクランプに垂直に取付け、20 mm炎による10秒間接炎を2回行い、その燃焼挙動により難燃性を分類したところ、粘土鉱物―スギ由来低変性リグニン複合膜はV−0に適合する難燃性を示した。   Moreover, the flame retardance based on the flame retardance test UL94 (vertical combustion test) was evaluated about the obtained film | membrane. Based on the 20 mm vertical combustion test (IEC60695-11-10 Method B, ASTM D3801), a strip sample of 125 ± 5 mm × 13.0 ± 0.5 mm × 24 μm was mounted vertically on the clamp, and a 10-second indirect flame with a 20 mm flame was applied. When the flame retardancy was classified by the combustion behavior twice, the clay mineral-cedar-derived low-modified lignin composite film showed flame retardancy compatible with V-0.

実施例2 <粘土鉱物―低変性リグニン複合膜の調製>
稲わら由来低変性リグニン超純水分散液を用いて、実施例1と同様の分散液を調製し、PETシートに同様の条件で延伸し、室温で乾燥をおこなった。乾燥後PETシートから膜を分離し、電気炉で150 ℃、2時間加熱した。この加熱処理により、膜厚は26 μmの粘土鉱物―低変性リグニン複合膜を得た。複合膜中の「クニピアM」と稲わら由来低変性リグニンの割合は、「クニピアM」:低変性リグニン = 80重量%:20重量%であった。
Example 2 <Preparation of clay mineral-low-modified lignin composite film>
A dispersion similar to that of Example 1 was prepared using a rice straw-derived low-denatured lignin ultrapure water dispersion, stretched on a PET sheet under the same conditions, and dried at room temperature. After drying, the membrane was separated from the PET sheet and heated in an electric furnace at 150 ° C. for 2 hours. By this heat treatment, a clay mineral-low-modified lignin composite film having a film thickness of 26 μm was obtained. The ratio of “Kunipia M” and low denatured lignin derived from rice straw in the composite membrane was “Kunipia M”: Low denatured lignin = 80 wt%: 20 wt%.

得られた膜は、加熱前の形態を保持しており、柔軟性とハンドリング性を有する膜であった。日本電色工業社製HAZE METER (NDH5000) にて粘土鉱物―稲わら由来低変性リグニン複合膜の全光線透過率およびヘイズ値を評価したところそれぞれ56%、57%であった。   The obtained film retained the form before heating, and was a film having flexibility and handling properties. The total light transmittance and haze value of the clay mineral-rice straw-derived low-modified lignin composite film were evaluated by HADEN METER (NDH5000) manufactured by Nippon Denshoku Industries Co., Ltd., and were 56% and 57%, respectively.

得られた膜について分光光度計 (HITACHI U-2910) により紫外可視吸収スペクトルを測定し、波長ごとの透過率を評価したところ、400 nmにおける透過率が5.6%であり、それ以下の紫外線領域 (400 nm以下) においても10%以下であった。リグニンが持つ芳香族網目構造に由来するπ共役が紫外波長領域の光を吸収していると考えられた。またスギ由来の低変性リグニンに比べ稲わら由来の低変性リグニンは架橋構造を数多く作るシリンギル構造を有するため、π共役がより広がり紫外線吸収能が高いと予想される。   The resulting film was measured for ultraviolet-visible absorption spectrum with a spectrophotometer (HITACHI U-2910), and the transmittance for each wavelength was evaluated. The transmittance at 400 nm was 5.6%, and the ultraviolet region below that ( Even at 400 nm or less, it was 10% or less. The π-conjugate derived from the aromatic network structure of lignin is considered to absorb light in the ultraviolet wavelength region. Compared with the low-denatured lignin derived from cedar, the low-denatured lignin derived from rice straw has a syringyl structure that creates a number of cross-linked structures.

得られた膜についてRigaku社製TG-8120を用いて熱質量分析をおこなったところ、200 ℃までの加熱で質量減少が13重量%であり、これは付着した水の脱着に由来するものと考えられた。   When the obtained film was subjected to thermal mass spectrometry using TG-8120 manufactured by Rigaku, the mass loss by heating up to 200 ° C was 13% by weight, which is considered to be derived from desorption of adhering water. It was.

また、得られた膜について水蒸気透過度をカップ法 (防湿包装材料の透湿度試験法; JIS K 8123) にて測定した。測定時間24時間での透過度は1092 g/m2/dayであった。スギ由来リグニンに比して稲わら由来リグニンの含水率が高いため水蒸気透過度が比較的高いと見込まれる。 Further, the water vapor permeability of the obtained film was measured by a cup method (moisture permeability test method for moisture-proof packaging material; JIS K 8123). The permeability at a measurement time of 24 hours was 1092 g / m 2 / day. Compared to cedar-derived lignin, the water content of rice straw-derived lignin is high, so water vapor permeability is expected to be relatively high.

加えて、得られた膜についてMocon法 (プラスティック−フィルム及びシート−ガス透過度試験方法−第2部:等圧法; JIS K 7126-2 : 2006) による酸素透過度評価をおこなった。電界センサ法による酸素ガス透過度の試験法に従い、クーロメトリック酸素透過率測定装置 (MOCON社製OX-TRAN 2/22L) にて温度40 ℃、相対湿度90%、酸素ガス濃度5%、透過面積5 cm2という条件で測定したところ、測定時間24時間での酸素透過度は52.8 cc/m2/day/atmであった。スギ由来リグニンに比して稲わら由来リグニンの含水率が高いためガス透過が阻害され、酸素透過度が比較的低いと見込まれる。 In addition, the membrane obtained was evaluated for oxygen permeability by the Mocon method (plastic-film and sheet-gas permeability test method-part 2: isobarometric method; JIS K 7126-2: 2006). According to the oxygen gas permeability test method using the electric field sensor method, a coulometric oxygen permeability measurement device (OX-TRAN 2 / 22L manufactured by MOCON) has a temperature of 40 ° C, a relative humidity of 90%, an oxygen gas concentration of 5%, and a permeation area. When measured under the condition of 5 cm 2 , the oxygen permeability at a measurement time of 24 hours was 52.8 cc / m 2 / day / atm. The water content of rice straw-derived lignin is higher than that of cedar-derived lignin, so gas permeation is inhibited and oxygen permeability is expected to be relatively low.

また、得られた膜について力学強度を引っ張り破断試験にて評価した。JTT LSC-005/30型の引張試験器にて一軸延長試験をおこなったところ、ヤング率は0.77 GPaであった。また歪0 〜 0.5 mm/mmの範囲で明確な破断点は確認されなかった。   Further, the mechanical strength of the obtained film was evaluated by a tensile breaking test. When a uniaxial extension test was conducted using a JTT LSC-005 / 30 type tensile tester, the Young's modulus was 0.77 GPa. In addition, a clear break point was not confirmed in the strain range of 0 to 0.5 mm / mm.

得られた膜について東陽テクニカ膜抵抗測定システム (MTS740型) により、プロトン伝導度を測定した。10 MHz 〜10 Hz、OVDC 20 mVの条件で、プロトン伝導度は80 ℃湿度90%で10-5 S/cmオーダー、25 ℃湿度20%で10-7 S/cmオーダーであった。 The proton conductivity of the obtained membrane was measured with a Toyo Technica membrane resistance measurement system (MTS740 type). Under the conditions of 10 MHz to 10 Hz and OVDC 20 mV, proton conductivity was on the order of 10 −5 S / cm at 80 ° C. and 90% humidity, and on the order of 10 −7 S / cm at 25 ° C. and 20% humidity.

また、得られた膜についてUL94(垂直燃焼試験) に基づく難燃性を評価した。20 mm垂直燃焼試験 (IEC60695-11-10 B法, ASTM D3801) に基づき125 ± 5 mm × 13.0 ± 0.5 mm×24 μmの短冊試料をクランプに垂直に取付け、20 mm炎による10秒間接炎を2回行い、その燃焼挙動により難燃性を分類したところ、粘土鉱物―稲わら由来低変性リグニン複合膜はV−0に適合する難燃性を示した。
実施例3 <粘土鉱物―低変性リグニン複合膜の調製>
実施例1と同様の条件により、「クニピアM」と稲わら由来低変性リグニンの比率がそれぞれ90重量%:10重量%、70重量%:30重量%の複合膜を作成した。膜厚は約30 μmであった。得られた膜の全光線透過率およびヘイズ値はそれぞれ50%、76% (90重量%:10重量%) ないし37%、63% (70重量%:30重量%) であった。400 nmにおける透過率は4.2% (90重量%:10重量%) ないし2.4% (70重量%:30重量%) であった。
Moreover, the flame retardance based on UL94 (vertical combustion test) was evaluated about the obtained film | membrane. Based on the 20 mm vertical combustion test (IEC60695-11-10 Method B, ASTM D3801), a strip sample of 125 ± 5 mm × 13.0 ± 0.5 mm × 24 μm was mounted vertically on the clamp, and a 10-second indirect flame with a 20 mm flame was applied. When the flame retardancy was classified by the combustion behavior twice, the clay mineral-rice straw-derived low-modified lignin composite film showed flame retardancy suitable for V-0.
Example 3 <Preparation of clay mineral-low-modified lignin composite film>
Under the same conditions as in Example 1, composite membranes were prepared in which the ratios of “Kunipia M” and rice straw-derived low-modified lignin were 90 wt%: 10 wt% and 70 wt%: 30 wt%, respectively. The film thickness was about 30 μm. The total light transmittance and haze value of the obtained film were 50%, 76% (90% by weight: 10% by weight) to 37%, 63% (70% by weight: 30% by weight), respectively. The transmittance at 400 nm was 4.2% (90% by weight: 10% by weight) to 2.4% (70% by weight: 30% by weight).

実施例4 <粘土鉱物―低変性リグニン複合膜の調製>
実施例1と同様の条件により、Li-スティーブンサイトとスギ由来低変性リグニンの比率が80重量%:20重量%の複合膜を作成した。膜厚は約20 μmであった。得られた膜の全光線透過率およびヘイズ値はそれぞれ65%、12%であった。また200 ℃までの加熱で質量減少が13重量%であり、これは付着した水の脱着に由来するものと考えられた。
Example 4 <Preparation of clay mineral-low-modified lignin composite film>
Under the same conditions as in Example 1, a composite membrane in which the ratio of Li-Stevensite and cedar-derived low-modified lignin was 80% by weight: 20% by weight was prepared. The film thickness was about 20 μm. The total light transmittance and haze value of the obtained film were 65% and 12%, respectively. In addition, the mass loss upon heating up to 200 ° C. was 13% by weight, which was considered to originate from the desorption of adhering water.

本発明のリグニン粘土複合膜は、植物由来芳香族系高分子と粘土鉱物から成る機能膜であり、優れた紫外線吸収能、不燃性、さらには透湿性、ガス透過性、プロトン伝導性を有し得るので、建築用/自動車用ウィンドウフィルム、防水/遮水シート、電池用セパレーター等の幅広い用途で利用可能である。   The lignin clay composite membrane of the present invention is a functional membrane composed of a plant-derived aromatic polymer and clay mineral, and has excellent ultraviolet absorbing ability, nonflammability, moisture permeability, gas permeability, and proton conductivity. Therefore, it can be used in a wide range of applications such as architectural / automotive window films, waterproof / waterproof sheets, battery separators, and the like.

Claims (7)

アルカリ性ニトロベンゼン酸化反応により得られる芳香族化合物単量体の収率が15%以上である低変性リグニンと粘土鉱物とを含み、垂直燃焼性試験UL94 V−0相当の不燃性と400nmで90%以上の紫外線吸収特性とを有するリグニン粘土複合膜。   It includes a low-modified lignin and a clay mineral whose yield of aromatic compound monomer obtained by alkaline nitrobenzene oxidation reaction is 15% or more, nonflammability equivalent to vertical flammability test UL94 V-0, and 90% or more at 400 nm. Lignin clay composite film having the ultraviolet absorption characteristics of 膜厚が3〜100μmである請求項1に記載のリグニン粘土複合膜。   The lignin clay composite film according to claim 1, wherein the film thickness is 3 to 100 μm. 低変性リグニンと粘土鉱物の質量比が、5質量部:95質量部〜40質量部:60質量部である請求項1または2に記載のリグニン粘土複合膜。   The lignin clay composite film according to claim 1 or 2, wherein a mass ratio of the low-modified lignin and the clay mineral is 5 parts by mass: 95 parts by mass to 40 parts by mass: 60 parts by mass. セルロース、ヘミセルロースおよびリグニンを含有する植物系原料をセルロースおよびヘミセルロースの糖化酵素の存在下に湿式粉砕して粉砕物を得、該粉砕物を、糖類を含む液状成分とアルカリ性ニトロベンゼン酸化反応により得られる芳香族化合物単量体の収率が15%以上である低変性リグニンを含む固形成分とに固液分離し、ついで該固形成分分散液と粘土鉱物を混合した後に、支持体上に塗布して乾燥することにより、低変性リグニンと粘土鉱物とを含み、垂直燃焼試験UL94 V−0相当の不燃性と400nmで90%以上の紫外線吸収特性とを有するリグニン粘土複合膜を製造することを特徴とするリグニン粘土複合膜の製造方法。   A plant raw material containing cellulose, hemicellulose and lignin is wet pulverized in the presence of cellulose and hemicellulose saccharifying enzyme to obtain a pulverized product, and the pulverized product is obtained by an nitrobenzene oxidation reaction with a liquid component containing a saccharide. The solid component is separated into a solid component containing a low-modified lignin having a yield of 15% or more of the group compound monomer, and then the solid component dispersion and the clay mineral are mixed and then coated on the support and dried. To produce a lignin clay composite film containing a low-modified lignin and a clay mineral and having an incombustibility equivalent to the vertical combustion test UL94 V-0 and an ultraviolet absorption property of 90% or more at 400 nm. A method for producing a lignin clay composite film. 膜厚が3〜100μmである請求項4に記載のリグニン粘土複合膜の製造方法。   The method for producing a lignin clay composite film according to claim 4, wherein the film thickness is 3 to 100 μm. 低変性リグニンと粘土鉱物の質量比が、5質量部:95質量部〜40質量部:60質量部である請求項4または5に記載のリグニン粘土複合膜の製造方法。   The method for producing a lignin clay composite film according to claim 4 or 5, wherein the mass ratio of the low-modified lignin and the clay mineral is 5 parts by mass: 95 parts by mass to 40 parts by mass: 60 parts by mass. リグニン粘土複合膜を100〜200℃で加熱処理して耐水化する請求項4〜6のいずれか1項に記載のリグニン粘土複合膜の製造方法。   The manufacturing method of the lignin clay composite film of any one of Claims 4-6 which heat-processes a lignin clay composite film at 100-200 degreeC, and makes it water resistance.
JP2018035611A 2018-02-28 2018-02-28 Lignin clay composite membrane and its manufacturing method Active JP6964881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018035611A JP6964881B2 (en) 2018-02-28 2018-02-28 Lignin clay composite membrane and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018035611A JP6964881B2 (en) 2018-02-28 2018-02-28 Lignin clay composite membrane and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019151681A true JP2019151681A (en) 2019-09-12
JP6964881B2 JP6964881B2 (en) 2021-11-10

Family

ID=67948233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018035611A Active JP6964881B2 (en) 2018-02-28 2018-02-28 Lignin clay composite membrane and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6964881B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019154381A (en) * 2018-03-15 2019-09-19 国立研究開発法人産業技術総合研究所 Radical scavenger, spin trap agent, and active oxygen remover
JP2021029497A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029561A (en) * 2019-08-23 2021-03-01 株式会社三洋物産 Game machine
JP2021029494A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029491A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029560A (en) * 2019-08-23 2021-03-01 株式会社三洋物産 Game machine
JP2021029498A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029496A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029495A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029493A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
CN115385349A (en) * 2022-08-08 2022-11-25 句容康泰膨润土有限公司 Load modified cellulose-bentonite and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433986A (en) * 1990-05-29 1992-02-05 Norin Suisansyo Shinrin Sogo Kenkyusho Ultraviolet light absorbing lignocellulosic film
JPH07246677A (en) * 1994-01-24 1995-09-26 Sumitomo Chem Co Ltd Ultraviolet blocking laminated film
JP2001089646A (en) * 1999-09-24 2001-04-03 Toyota Central Res & Dev Lab Inc Biodegradable resin composition
JP2007277078A (en) * 2006-03-11 2007-10-25 National Institute Of Advanced Industrial & Technology Film using denatured clay
JP2011092151A (en) * 2009-11-02 2011-05-12 Forestry & Forest Products Research Institute Method of processing vegetable raw material
JP2011219725A (en) * 2010-02-10 2011-11-04 Hitachi Chem Co Ltd Ligneous film
JP2015006997A (en) * 2013-06-24 2015-01-15 花王株式会社 Ultraviolet absorber
JP2017105991A (en) * 2015-11-27 2017-06-15 国立研究開発法人産業技術総合研究所 Heat-resistant gas barrier film and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433986A (en) * 1990-05-29 1992-02-05 Norin Suisansyo Shinrin Sogo Kenkyusho Ultraviolet light absorbing lignocellulosic film
JPH07246677A (en) * 1994-01-24 1995-09-26 Sumitomo Chem Co Ltd Ultraviolet blocking laminated film
JP2001089646A (en) * 1999-09-24 2001-04-03 Toyota Central Res & Dev Lab Inc Biodegradable resin composition
JP2007277078A (en) * 2006-03-11 2007-10-25 National Institute Of Advanced Industrial & Technology Film using denatured clay
JP2011092151A (en) * 2009-11-02 2011-05-12 Forestry & Forest Products Research Institute Method of processing vegetable raw material
JP2011219725A (en) * 2010-02-10 2011-11-04 Hitachi Chem Co Ltd Ligneous film
JP2015006997A (en) * 2013-06-24 2015-01-15 花王株式会社 Ultraviolet absorber
JP2017105991A (en) * 2015-11-27 2017-06-15 国立研究開発法人産業技術総合研究所 Heat-resistant gas barrier film and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019154381A (en) * 2018-03-15 2019-09-19 国立研究開発法人産業技術総合研究所 Radical scavenger, spin trap agent, and active oxygen remover
JP2021029497A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029494A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029491A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029498A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029496A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029495A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029493A (en) * 2019-08-22 2021-03-01 株式会社三洋物産 Game machine
JP2021029561A (en) * 2019-08-23 2021-03-01 株式会社三洋物産 Game machine
JP2021029560A (en) * 2019-08-23 2021-03-01 株式会社三洋物産 Game machine
CN115385349A (en) * 2022-08-08 2022-11-25 句容康泰膨润土有限公司 Load modified cellulose-bentonite and preparation method thereof

Also Published As

Publication number Publication date
JP6964881B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
JP6964881B2 (en) Lignin clay composite membrane and its manufacturing method
Sun et al. Effect of lignin content on enzymatic hydrolysis of furfural residues
Kim et al. Preparation of nanocellulose from a kenaf core using E-beam irradiation and acid hydrolysis
CN102470647B (en) Barrier layer for a packaging laminate and packaging laminate comprising such barrier layer
Sukhbaatar et al. Optimization of hot-compressed water pretreatment of bagasse and characterization of extracted hemicelluloses
Cordeiro et al. Polymer biocomposites and nanobiocomposites obtained from mango seeds
WO2013094398A1 (en) Method for producing lignin degradation product
US20180016355A1 (en) Solvent-based processes for producing nanocellulose, and compositions and products produced therefrom
Huang et al. Nacre-inspired hemicelluloses paper with fire retardant and gas barrier properties by self-assembly with bentonite nanosheets
Xie et al. New ternary deep eutectic solvents with cycle performance for efficient pretreated radiata pine forming to lignin containing cellulose nanofibrils
KR102063545B1 (en) Extraction method of cellulose nanocrystals using electron beam irradiation and cellulose nanocrystals powder
JP2011092151A (en) Method of processing vegetable raw material
EP3710460A1 (en) Methods of making specialized cellulose and other products from biomass
US20180179435A1 (en) Nanofibrillated cellulose for use in fluids for enhanced oil recovery
Grande et al. Microfibrillated cellulose from sugarcane bagasse as a biorefinery product for ethanol production
Beyene et al. A biorefinery strategy that introduces hydrothermal treatment prior to acid hydrolysis for co-generation of furfural and cellulose nanocrystals
Xing et al. Pretreatment of furfural residues with alkaline peroxide to improve cellulose hydrolysis and characterization of isolated lignin
Nguyen et al. Understanding the effects of cellulose fibers from various pre-treated barley straw on properties of aerogels
Poddar et al. Synthesis of nanocellulose from rubberwood fibers via ultrasonication combined with enzymatic and chemical pretreatments
Abdel-Hakim et al. Nanocellulose and its polymer composites: preparation, characterization, and applications
Ali et al. Alkali pretreatment and acid hydrolysis of coconut pulp and empty fruit bunch to produce glucose
US20160024227A1 (en) Method for breaking down lignocellulosic biomass
Li et al. Mild synthesis of benzylated bamboo in LiCl/DMSO solution
Noorshamsiana et al. Integrated production of prebiotic xylooligosaccharides and high value cellulose from oil palm biomass
JP2016061002A (en) Cellulose nanofiber production process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R150 Certificate of patent or registration of utility model

Ref document number: 6964881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150