JP2011218395A - Hybrid plasma welding method, hybrid plasma torch, and hybrid welding apparatus - Google Patents

Hybrid plasma welding method, hybrid plasma torch, and hybrid welding apparatus Download PDF

Info

Publication number
JP2011218395A
JP2011218395A JP2010089308A JP2010089308A JP2011218395A JP 2011218395 A JP2011218395 A JP 2011218395A JP 2010089308 A JP2010089308 A JP 2010089308A JP 2010089308 A JP2010089308 A JP 2010089308A JP 2011218395 A JP2011218395 A JP 2011218395A
Authority
JP
Japan
Prior art keywords
welding
plasma
torch
hybrid
target material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010089308A
Other languages
Japanese (ja)
Other versions
JP5454916B2 (en
Inventor
Tadashi Hoshino
野 忠 星
Kenji Okuyama
山 健 二 奥
Shigeru Sato
藤 茂 佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2010089308A priority Critical patent/JP5454916B2/en
Publication of JP2011218395A publication Critical patent/JP2011218395A/en
Application granted granted Critical
Publication of JP5454916B2 publication Critical patent/JP5454916B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve high-speed welding capable of obtaining a weld bead having a smooth surface even by application of a laser beam of relatively low power.SOLUTION: An object to be welded is subjected to the plasma arc welding by the plasma arc between each of a plurality of plasma discharge electrodes 8a, 8b which are inclined on the torch fore end side so as to be closer to the torch center line CL and are arranged on the upstream and downstream sides in the welding direction y with respect to the torch center line and the object 12 to be welded. The laser beam 13 to be converged toward the torch fore end around the center line CL is applied to a molten pool by the plasma arc of the plasma discharge electrode 8b on the upstream side in the welding direction to deepen penetration in the backside direction. A raise in the surface side direction of a weld part by applying the laser beam is smoothed by the plasma arc welding using the plasma discharge electrode 8a on the downstream side.

Description

本発明は、プラズマ溶接とレーザ溶接の組合せであるハイブリッドプラズマ溶接方法,それに用いるハイブリッドプラズマ溶接トーチおよびハイブリッドプラズマ溶接装置に関する。   The present invention relates to a hybrid plasma welding method that is a combination of plasma welding and laser welding, a hybrid plasma welding torch and a hybrid plasma welding apparatus used therefor.

レーザを用いる、2.0mm厚以下の薄板突合せ溶接では、溶接に伴って図8に示すように、溶接の前方で溶接対象材12に、突合せを引き離す方向の力が発生する。突合せギャップが0.2〜0.3mm以上であると突合せ溶接部に融合不良が発生する。したがって油圧クランプで溶接対象材12を強力に抑える必要があり、設備および作業量が増える。突合せ端部をレーザ溶接に先立って仮付けすることも行われるが、この場合はタクトタイムが長くなる。   In thin plate butt welding using a laser and having a thickness of 2.0 mm or less, as shown in FIG. 8, a force in the direction of separating the butt is generated on the welding target material 12 in front of the welding. If the butt gap is 0.2 to 0.3 mm or more, poor fusion occurs in the butt weld. Therefore, it is necessary to strongly suppress the welding target material 12 with a hydraulic clamp, which increases equipment and work amount. The butt end portion is also temporarily attached prior to laser welding, but in this case, the tact time becomes long.

図9の(a)に示すように、レーザ溶接のレーザ照射点に溶接ワイヤを送給する態様では、ワイヤの溶滴により突合せギャップが埋められるが、レーザのビーム径に対しワイヤが太く、僅かなワイヤずれでワイヤが溶けなくなるので融合不良が発生する。また、図9の(b)に示すように、重ね溶接で上下溶接対象材間のギャップが大きいと、図9の(c)に示すように、溶接が進行するが、ワイヤを溶かすのに多くのレーザエネルギーが消費されて溶込みが浅くなり、上下ギャップに溶融プールが沈むので、図9の(d)に示すように、凹ビードになって咽厚が薄くなり、強度が低下する。これを防ぐためにワイヤ供給量を多くすると、レーザの貫通力が低下するので、溶接不良となる。逆に、上下ギャップがゼロになると、図9の(e)に示すような凸ビードとなる。   As shown in FIG. 9 (a), in the aspect in which the welding wire is fed to the laser irradiation point of laser welding, the butt gap is filled with the droplet of the wire, but the wire is thicker than the laser beam diameter. Since the wire is not melted by a slight wire shift, poor fusion occurs. Further, as shown in FIG. 9B, when the gap between the upper and lower welding target materials is large in the lap welding, the welding proceeds as shown in FIG. 9C, but much to melt the wire. Since the laser energy is consumed and the penetration becomes shallow and the molten pool sinks in the upper and lower gaps, as shown in FIG. 9 (d), it becomes a concave bead, the throat thickness becomes thin, and the strength decreases. If the wire supply amount is increased in order to prevent this, the laser penetrating force decreases, resulting in poor welding. Conversely, when the vertical gap becomes zero, a convex bead as shown in FIG.

特許文献1には、溶接トーチにより突合せ部を溶融するとともに溶融プールにレーザを照射するハイブリッド溶接、ならびに、レーザ光路の汚染を防ぐエアーカーテンの形成が記載されている。しかしハイブリッド溶接では、溶接トーチにより図7の(b)に示すように突合せ表面部を溶接しその溶融プールの中央にレーザを照射するので、高速溶接の溶接ビードは、図7の(c)に示すように、中央部で突出し縁部にはアンダーカットを生ずるものとなる。溶接速度を低くすると、あるいは、レーザパワーを高くすると、中央部の突出が低くアンダーカットのない滑らかな溶接ビードが得られるが、溶接作業能率が低下する。あるいは、高価な高パワーレーザ装置を用いなければならなくなる。   Patent Document 1 describes hybrid welding in which a butt portion is melted by a welding torch and a laser is irradiated to a molten pool, and formation of an air curtain that prevents contamination of a laser beam path. However, in hybrid welding, the butt surface is welded with a welding torch and the center of the molten pool is irradiated with a laser as shown in FIG. 7 (b). As shown, it projects at the center and undercuts at the edge. When the welding speed is lowered or the laser power is increased, a smooth weld bead with a low protrusion at the center and no undercut can be obtained, but the welding work efficiency is lowered. Alternatively, an expensive high power laser device must be used.

特表2004−512965号公報Special table 2004-512965 gazette

本発明は、比較的に低パワーのレーザ投射によっても、表面が滑らかな溶接ビードが得られる高速溶接を可能にすることを目的とする。   An object of the present invention is to enable high-speed welding in which a weld bead with a smooth surface can be obtained even by relatively low power laser projection.

(1)トーチ先端側でトーチ中心軸(CL)に近づくように傾斜して該トーチ中心軸に関して溶接方向(y)の上流側と下流側に配置した複数のプラズマ放電電極(8a,8b)のそれぞれと溶接対象材(12)との間のプラズマアークで溶接対象材(12)をプラズマアーク溶接するとともに、前記トーチ中心軸(CL)を中心としトーチ先端に向けて収束するレーザビーム(13)を、溶接方向(y)で上流側のプラズマ放電電極(8b)のプラズマアークによる溶融プールに投射して裏方向への溶込みを深くし、該レーザビーム投射による溶接部の表方向の盛上りを、下流側のプラズマ放電電極(8a)によるプラズマアーク溶接で平滑化する、ハイブリッドプラズマ溶接方法。   (1) A plurality of plasma discharge electrodes (8a, 8b) which are inclined to approach the torch center axis (CL) on the torch tip side and are arranged upstream and downstream in the welding direction (y) with respect to the torch center axis. Laser beam (13) that converges toward the tip of the torch with the plasma arc welding of the material to be welded (12) by plasma arc between each and the material to be welded (12), and centering on the torch center axis (CL) In the welding direction (y) to the molten pool by the plasma arc of the upstream plasma discharge electrode (8b) to deepen the penetration in the back direction, and the rise in the front direction of the weld by the laser beam projection Which is smoothed by plasma arc welding with a plasma discharge electrode (8a) on the downstream side.

なお、理解を容易にするために括弧内には、図面に示し後述する実施例の対応要素の符号を、参考までに付記した。以下も同様である。   For ease of understanding, reference numerals of corresponding elements in the examples shown in the drawings and described later are added in parentheses for reference. The same applies to the following.

例えば図6に示すように、1対のプラズマ放電電極8a,8bのそれぞれと溶接対象材12の間にプラズマアークを形成し、電極8a,8bの中間にプラズマビーム13を投射し、溶接方向を図に示すy方向とすると、すなわち電極8bを先行電極、電極8aを後行電極とすると、従来は先行電極(1個のみ)のプラズマアークであるところ、本発明では、先行電極8bおよび後行電極8aのプラズマアークが溶接対象材12に入熱するので熱量が多く、高速溶接が可能である。高速溶接では、先行電極8bによるプラズマアーク溶接により、図6上に矢印で示す方向の、開先合せ面を密着させる力が溶接対象材12に作用する。これは、先行電極8bによるアーク熱源(プラズマアーク)が溶接対象材12の熱伝導速度よりも速く(先行して)移動すると、アーク熱源より後方の鋼材の伸びが前方の伸びよりも大きくなるからである。これによって突合せ面のギャップが狭くなる。   For example, as shown in FIG. 6, a plasma arc is formed between each of the pair of plasma discharge electrodes 8a and 8b and the welding target material 12, a plasma beam 13 is projected between the electrodes 8a and 8b, and the welding direction is set. If the y direction shown in the drawing is taken, that is, if the electrode 8b is the leading electrode and the electrode 8a is the trailing electrode, the plasma arc of the leading electrode (only one) is conventional, but in the present invention, the leading electrode 8b and the trailing electrode are used. Since the plasma arc of the electrode 8a heats the welding object material 12, the amount of heat is large and high speed welding is possible. In the high-speed welding, a force that closely contacts the groove joining surface in the direction indicated by an arrow on FIG. 6 acts on the welding target material 12 by plasma arc welding using the leading electrode 8b. This is because when the arc heat source (plasma arc) by the leading electrode 8b moves faster (precedingly) than the heat conduction speed of the welding target material 12, the elongation of the steel material behind the arc heat source becomes larger than the front elongation. It is. This narrows the gap between the butted surfaces.

先行電極8bのプラズマアークが溶接対象材12の表面を溶かすので、図7の(a)に示すような突合せギャップを、図7の(b)に示すように橋渡しする溶融プールができる。この溶融プールをレーザビームが垂直に貫通し効率よく入熱する。この入熱は高密度であるが領域は狭くピンポイントであるので、これによる溶接ビードは図7の(c)に示すように、レーザ入射部が突出しアンダーカットを生じやすい。レーザビームを強力にしてビーム径を広げることにより突出を平坦化しアンダーカットをなくすことは可能であるが、そのようなレーザ装置はかなり高価になる。   Since the plasma arc of the leading electrode 8b melts the surface of the material 12 to be welded, a molten pool is formed that bridges the butt gap as shown in FIG. 7 (a) as shown in FIG. 7 (b). A laser beam vertically penetrates the molten pool to efficiently input heat. Since this heat input is high density but the region is narrow and pinpointed, the weld bead thus formed is prone to undercut as the laser incident portion protrudes as shown in FIG. Although it is possible to make the laser beam stronger and broaden the beam diameter, it is possible to flatten the protrusion and eliminate the undercut, but such a laser device is quite expensive.

しかし本発明によれば、レーザ投射した溶接部に更に後行電極8aのプラズマアークが入熱するので、ビード表面が平滑化しアンダーカットを生じない。すなわち、溶接ビードは図7の(d)に示すように平滑化したものとなる。このように本発明によれば、比較的に低パワーのレーザ投射によっても、表面が滑らかな溶接ビードが得られる高速溶接が可能になる。   However, according to the present invention, since the plasma arc of the succeeding electrode 8a further enters the laser-projected weld, the bead surface is smoothed and no undercut occurs. That is, the weld bead is smoothed as shown in FIG. As described above, according to the present invention, it is possible to perform high-speed welding in which a weld bead having a smooth surface can be obtained even by laser projection with relatively low power.

本発明のハイブリッドプラズマ溶接装置の一実施例を示し、レーザヘッド1およびプラズマトーチ3は、縦断面を示す。One Example of the hybrid plasma welding apparatus of this invention is shown, The laser head 1 and the plasma torch 3 show a longitudinal cross-section. 図1に示すプラズマトーチ3の、II−II線で見下ろした横断面図である。It is the cross-sectional view of the plasma torch 3 shown in FIG. 図1に示すプラズマトーチ3の、図2に示すIII−III線での縦断面図である。FIG. 3 is a longitudinal sectional view of the plasma torch 3 shown in FIG. 1 taken along the line III-III shown in FIG. 図1に示すプラズマトーチ3の、図2に示すIV−IV線での縦断面図である。FIG. 4 is a longitudinal sectional view of the plasma torch 3 shown in FIG. 1 taken along the line IV-IV shown in FIG. 2. 図1に示すプラズマトーチ3の下端部分の拡大図である。It is an enlarged view of the lower end part of the plasma torch 3 shown in FIG. 図1示すプラズマトーチ3を用いるハイブリッドプラズマ溶接時の、溶接対象材12の平面図である。It is a top view of the welding target material 12 at the time of hybrid plasma welding using the plasma torch 3 shown in FIG. 図6に示すハイブリッドプラズマ溶接時の、溶接方向の各位置での、溶接対象材の横断面拡大図である。It is a cross-sectional enlarged view of the welding object material in each position of the welding direction at the time of hybrid plasma welding shown in FIG. 従来の、レーザ投射による突合せ溶接時の溶接対象材の突合せギャップの拡大を示す平面図である。It is a top view which shows expansion of the butt gap of the welding object material at the time of the butt welding by the conventional laser projection. (a)は、従来の、溶接ワイヤを送給する重合せレーザ溶接時の溶接対象材の平面図、(b)は側面図、(c)溶接ビードの縦断面図、(d)および(e)は溶接ビードの横断面図である。(A) is a plan view of a material to be welded at the time of conventional superposition laser welding for feeding a welding wire, (b) is a side view, (c) a longitudinal sectional view of a weld bead, (d) and (e) ) Is a cross-sectional view of a weld bead.

(2)溶接対象材(12)と各プラズマ放電電極(8a,8b)との間に、溶接対象材側が正で電極側が負の電流を通電して、前記複数のプラズマ放電電極(8a,8b)のそれぞれと溶接対象材との間にプラズマアークを生成する、上記(1)に記載のハイブリッドプラズマ溶接方法。   (2) Between the welding object material (12) and each plasma discharge electrode (8a, 8b), a current that is positive on the welding object material side and negative on the electrode side is energized, and the plurality of plasma discharge electrodes (8a, 8b ) And a welding target material, a plasma arc is generated. The hybrid plasma welding method according to (1) above.

(3)溶接方向(y)で上流となるプラズマ放電電極(8b)の先端直下に溶接ワイヤ(18)を送給する、上記(1)又は(2)に記載のハイブリッドプラズマ溶接方法。   (3) The hybrid plasma welding method according to the above (1) or (2), wherein the welding wire (18) is fed directly under the tip of the plasma discharge electrode (8b) upstream in the welding direction (y).

(4)溶接対象材(12)と前記溶接ワイヤ(18)との間に、溶接対象材側が正で溶接ワイヤ側が負の電流を通電して前記溶接ワイヤ(18)を加熱する、上記(3)に記載のハイブリッドプラズマ溶接方法。   (4) Heating the welding wire (18) by passing a current between the welding target material (12) and the welding wire (18) with a positive current on the welding target material side and a negative welding wire side. ) Hybrid plasma welding method.

(5)トーチ先端側でトーチ中心軸(CL)に近づくように傾斜して該トーチ中心軸に関して溶接方向の上流側と下流側に配置された複数のプラズマ放電電極(8a,8b);および、
前記トーチ中心軸(CL)を軸心としてトーチ後端から先端に貫通したレーザ透過孔(24):を備えるハイブリッドプラズマトーチ(3)。
(5) a plurality of plasma discharge electrodes (8a, 8b) that are inclined so as to approach the torch center axis (CL) on the torch tip side and are arranged upstream and downstream in the welding direction with respect to the torch center axis;
A hybrid plasma torch (3) comprising: a laser transmission hole (24) penetrating from the rear end of the torch to the tip with the torch center axis (CL) as an axis.

(6)前記複数のプラズマ放電電極(8a,8b)は、前記トーチ中心軸(CL)に関して対称な姿勢である、上記(5)に記載のハイブリッドプラズマトーチ(3)。   (6) The hybrid plasma torch (3) according to (5), wherein the plurality of plasma discharge electrodes (8a, 8b) are symmetrical with respect to the torch center axis (CL).

(7)上記(5)又は(6)に記載のハイブリッドプラズマトーチ(3);および、前記レーザ透過孔(24)にトーチ先端に向けて収束するレーザビームを投射するレーザヘッド(1);を備えるハイブリッドプラズマ溶接装置。   (7) The hybrid plasma torch (3) according to (5) or (6) above; and a laser head (1) that projects a laser beam that converges toward the tip of the torch at the laser transmission hole (24). A hybrid plasma welding apparatus provided.

(8)溶接対象材(12)と各プラズマ放電電極(8a,8b)との間に、溶接対象材側が正で電極側が負の電流を通電するプラズマ溶接電源(22a,22b);を備える上記(6)に記載のハイブリッドプラズマ溶接装置。   (8) A plasma welding power source (22a, 22b) for passing a current that is positive on the welding target material side and negative on the electrode side between the welding target material (12) and each plasma discharge electrode (8a, 8b). The hybrid plasma welding apparatus according to (6).

(9)さらに、溶接方向(y)で上流となるプラズマ放電電極(8b)の先端直下に溶接ワイヤ(18)を案内するワイヤガイド(21);を備える上記(7)又は(8)に記載のハイブリッドプラズマ溶接装置;
(10)さらに、溶接対象材(12)と前記溶接ワイヤ(18)との間に、溶接対象材側が正で溶接ワイヤ側が負の電流を通電するホットワイヤ用電源(23);を備える上記(9)に記載のハイブリッドプラズマ溶接装置。
(9) The above (7) or (8), further comprising a wire guide (21) for guiding the welding wire (18) immediately below the tip of the plasma discharge electrode (8b) upstream in the welding direction (y). Hybrid plasma welding equipment;
(10) The above further includes a hot wire power source (23) between the material to be welded (12) and the welding wire (18) for supplying a current that is positive on the material to be welded side and negative on the side of the welding wire. The hybrid plasma welding apparatus according to 9).

本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。   Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

図1に、本発明の1実施例のハイブリッドプラズマ溶接装置の概要を示す。ハイブリッドプラズマトーチ3には、中心軸を軸心とするレーザ透過孔24があり、トーチ後端(レーザヘッド1側)からトーチ先端のインサートチップ7まで延びている。レーザ透過孔24は、トーチ後端の電極台4a,4bの間の絶縁空間であるが、絶縁台5では段付き筒状、そして絶縁台6およびインサートチップでは裁頭円錐形である。トーチ3の中心軸CLに関して対称に、プラズマ放電電極8a,8bが配置されており、電極8a,8bはトーチ後端側からインサートチップ7に向かうに連れて中心軸CLに近づくように、中心軸に対して傾斜している。電極8a,8bが通る空間に、プラズマガス供給口11a,11bから送り込まれるプラズマガスが流入し、インサートチップ7の先端のノズルから溶接対象材12に向けて噴出する。シールドガスは、図2および図3に示すシールドガス流路14に供給されて、シールドキャップ10の内部に流れて、シールドキャップ10の下開口から溶接対象材12に向けて噴出する。レーザシールドガスは、図2および図3に示すレーザシールドガス流路15に供給されて、絶縁台5の流路を経てレーザ透過孔24に出てインサートチップ7のレーザ投射口から流出する。トーチ後端側へのレーザシールドガスの流失は保護ガラス9で遮断される。レーザビーム13は保護ガラス9を透過する。冷却水は、図2および図4に示す各給水路16に流入して電極台4a,4bおよび絶縁台5,6を経てインサートチップ7に至り、そこで別流路に折り返して絶縁台5,6および電極台4a,4bを経て各排水路17から流出する。   FIG. 1 shows an outline of a hybrid plasma welding apparatus according to one embodiment of the present invention. The hybrid plasma torch 3 has a laser transmission hole 24 centered on the central axis, and extends from the rear end of the torch (laser head 1 side) to the insert tip 7 at the front end of the torch. The laser transmitting hole 24 is an insulating space between the electrode bases 4a and 4b at the rear end of the torch, but has a stepped cylindrical shape in the insulating base 5 and a truncated cone shape in the insulating base 6 and the insert tip. The plasma discharge electrodes 8a and 8b are arranged symmetrically with respect to the central axis CL of the torch 3, and the electrodes 8a and 8b are arranged so as to approach the central axis CL from the rear end side of the torch toward the insert tip 7. It is inclined with respect to. Plasma gas fed from the plasma gas supply ports 11a and 11b flows into the space through which the electrodes 8a and 8b pass, and is ejected from the nozzle at the tip of the insert tip 7 toward the welding target material 12. The shield gas is supplied to the shield gas passage 14 shown in FIGS. 2 and 3, flows into the shield cap 10, and is ejected from the lower opening of the shield cap 10 toward the welding target material 12. The laser shield gas is supplied to the laser shield gas channel 15 shown in FIGS. 2 and 3, passes through the channel of the insulating table 5, exits the laser transmission hole 24, and flows out from the laser projection port of the insert chip 7. The flow of the laser shield gas to the rear end side of the torch is blocked by the protective glass 9. The laser beam 13 passes through the protective glass 9. The cooling water flows into each water supply channel 16 shown in FIGS. 2 and 4 and reaches the insert tip 7 through the electrode bases 4a and 4b and the insulating bases 5 and 6, where it is folded back to another flow path and becomes the insulating bases 5 and 6. And it flows out from each drainage channel 17 through electrode stand 4a, 4b.

図1を再度参照する。ハイブリッドプラズマトーチ3は、連結部材2でレーザヘッドに連結されており、レーザヘッドがレーザ透過孔24にレーザビーム13を収束投射し、このレーザビーム13が溶接対象材12上に収束する。電極4a,4bには、プラズマ電源22a,22bが、溶接対象材12側が正で電極4a,4b側が負の電流を通電する。なお、これらの電源22a,22bによるプラズマアークを起動するパイロット電源もあるが、これらの図示は省略した。図1に示す実施例では、先行電極8bによる先行溶接の溶融金属を多くするために、先行電極8b直下にワイヤガイド21を通して溶接ワイヤ21を送給し、しかも、溶接入熱を大きくして溶接速度を高速にするために、溶接ワイヤ18には、ホットワイヤ用電源23が、溶接対象材12側が正で溶接ワイヤ18側が負の電流を通電する。   Please refer to FIG. 1 again. The hybrid plasma torch 3 is connected to the laser head by the connecting member 2, and the laser head converges and projects the laser beam 13 to the laser transmission hole 24, and the laser beam 13 converges on the welding target material 12. The plasma power sources 22a and 22b pass through the electrodes 4a and 4b with a current that is positive on the welding object 12 side and negative on the electrodes 4a and 4b side. There is a pilot power source for starting a plasma arc by these power sources 22a and 22b, but these are not shown. In the embodiment shown in FIG. 1, in order to increase the amount of molten metal in the preceding welding by the preceding electrode 8b, the welding wire 21 is fed through the wire guide 21 directly below the preceding electrode 8b, and the welding heat input is increased to perform welding. In order to increase the speed, the hot wire power supply 23 is supplied to the welding wire 18 with a positive current on the welding object 12 side and a negative current on the welding wire 18 side.

図5に、図1に示すハイブリッドプラズマ溶接装置の、重ね溶接時のトーチ先端部を拡大して示す。各電極8a,8bと溶接対象材12の間に、電極側が負で溶接対象材側が正のプラズマアークが発生すると、プラズマアーク電流が各電極と溶接対象材5の間に流れて、1プール2アーク溶接が実現する。のインサートチップ7の中の各電極8a,8bと溶接対象材12との間を流れる各アーク電流には、それぞれが誘起する磁束の合成磁束との間に、フレミングの左手の法則で表されるピンチ力が作用し、各電極のプラズマアークがトーチの並び方向yに絞られて溶接対象材5に対する熱収束効果(エネルギー密度)が高く、しかも作用位置がふらつくことが無いプラズマの安定性が高い。   FIG. 5 shows an enlarged view of the tip of the torch during lap welding of the hybrid plasma welding apparatus shown in FIG. When a plasma arc is generated between each electrode 8a, 8b and the welding target material 12 and the electrode side is negative and the welding target material side is positive, a plasma arc current flows between each electrode and the welding target material 5 and 1 pool 2 Arc welding is realized. Each arc current flowing between the electrodes 8a and 8b in the insert tip 7 and the welding target material 12 is expressed by Fleming's left-hand rule between the combined magnetic fluxes induced by the respective arc currents. A pinch force acts, the plasma arc of each electrode is narrowed in the torch alignment direction y, the heat convergence effect (energy density) on the material to be welded 5 is high, and the plasma does not fluctuate and the stability of the plasma is high. .

先行電極8b,溶接ワイヤ18および後行電極8aのプラズマアークが溶接対象材12に入熱するので熱量が多く、高速溶接が可能である。先行電極8bのプラズマアークが溶接ワイヤ18および溶接対象材12の表面を溶かすので、溶融金属が多くこれを、図5に示すように、レーザビーム13が垂直に貫通し効率よく入熱する。この入熱は高密度であるが領域は狭くピンポイントであるので、これによる溶接ビードは、レーザ入射部が突出しアンダーカットを生じやすい。しかし、レーザ投射した溶接部に更に後行電極8aのプラズマアークが入熱するので、ビード表面が平滑化しアンダーカットを生じない。すなわち、溶接ビードは表面が平滑化したものとなる。このように本実施例によれば、比較的に低パワーのレーザ投射によっても、表面が滑らかな溶接ビードが得られる高速溶接が可能になる。   Since the plasma arc of the leading electrode 8b, the welding wire 18 and the trailing electrode 8a heats the welding object material 12, the amount of heat is large and high-speed welding is possible. Since the plasma arc of the leading electrode 8b melts the surface of the welding wire 18 and the welding target material 12, a large amount of molten metal penetrates the laser beam 13 vertically as shown in FIG. Since this heat input is high density, but the region is narrow and pinpointed, the weld bead thus produced tends to cause an undercut due to the projection of the laser incident portion. However, since the plasma arc of the succeeding electrode 8a further enters the laser-projected weld, the bead surface is smoothed and undercut does not occur. That is, the weld bead has a smooth surface. As described above, according to the present embodiment, high-speed welding is possible in which a weld bead having a smooth surface can be obtained even by relatively low power laser projection.

1:レーザ照射ヘッド
2:連結部材
3:ハイブリッドプラズマトーチ
4a,4b:電極台
5,6:絶縁台
7:インサートチップ
8a,8b:電極
9:保護ガラス
10:シールドキャップ
11a,11b:プラズマガス供給口
12:溶接対象材
13:レーザ
14:シールドガス流路
15:レーザシールドガス流路
16:給水路
17:排水路
18:溶接ワイヤ
19:先行プラズマアークによる溶融金属
20:後行プラズマアークによる溶融金属
21:ワイヤガイド
22a,22b:プラズマ電源
23:ホットワイヤ電源
24:レーザ透過孔
CL:中心軸
1: Laser irradiation head 2: Connecting member 3: Hybrid plasma torch 4a, 4b: Electrode base 5, 6: Insulating base 7: Insert tip 8a, 8b: Electrode 9: Protective glass 10: Shield cap 11a, 11b: Plasma gas supply Port 12: Material to be welded 13: Laser 14: Shield gas channel 15: Laser shield gas channel 16: Water supply channel 17: Drainage channel 18: Welding wire 19: Molten metal by preceding plasma arc 20: Melting by subsequent plasma arc Metal 21: Wire guides 22a, 22b: Plasma power source 23: Hot wire power source 24: Laser transmission hole CL: Center axis

Claims (10)

トーチ先端側でトーチ中心軸に近づくように傾斜して該トーチ中心軸に関して溶接方向の上流側と下流側に配置した複数のプラズマ放電電極のそれぞれと溶接対象材との間のプラズマアークで溶接対象材をプラズマアーク溶接するとともに、前記トーチ中心軸を中心としトーチ先端に向けて収束するレーザビームを、溶接方向で上流側のプラズマ放電電極のプラズマアークによる溶融プールに投射して裏方向への溶込みを深くし、該レーザビーム投射による溶接部の表方向の盛上りを、下流側のプラズマ放電電極によるプラズマアーク溶接で平滑化する、ハイブリッドプラズマ溶接方法。   A target to be welded by a plasma arc between each of a plurality of plasma discharge electrodes disposed on the upstream side and the downstream side in the welding direction with respect to the central axis of the torch and inclined to approach the central axis of the torch at the tip of the torch. In addition to plasma arc welding of the material, a laser beam that converges toward the tip of the torch centering on the center axis of the torch is projected onto the molten pool by the plasma arc of the plasma discharge electrode on the upstream side in the welding direction to melt in the reverse direction. A hybrid plasma welding method for deepening the depth and smoothing the bulge in the front direction of the welded portion by the laser beam projection by plasma arc welding with a plasma discharge electrode on the downstream side. 溶接対象材と各プラズマ放電電極との間に、溶接対象材側が正で電極側が負の電流を通電して、前記複数のプラズマ放電電極のそれぞれと溶接対象材との間にプラズマアークを生成する、請求項1に記載のハイブリッドプラズマ溶接方法。   A current that is positive on the welding target material side and negative on the electrode side is passed between the welding target material and each plasma discharge electrode, and a plasma arc is generated between each of the plurality of plasma discharge electrodes and the welding target material. The hybrid plasma welding method according to claim 1. 溶接方向で上流となるプラズマ放電電極の先端直下に溶接ワイヤを送給する、請求項1又は2に記載のハイブリッドプラズマ溶接方法。   The hybrid plasma welding method according to claim 1 or 2, wherein a welding wire is fed immediately below the tip of the plasma discharge electrode that is upstream in the welding direction. 溶接対象材と前記溶接ワイヤとの間に、溶接対象材側が正で溶接ワイヤ側が負の電流を通電して前記溶接ワイヤを加熱する、請求項3に記載のハイブリッドプラズマ溶接方法。   4. The hybrid plasma welding method according to claim 3, wherein the welding wire is heated by passing a current that is positive on the welding target material side and negative on the welding wire side between the welding target material and the welding wire. トーチ先端側でトーチ中心軸に近づくように傾斜して該トーチ中心軸に関して溶接方向の上流側と下流側に配置された複数のプラズマ放電電極;および、
前記トーチ中心軸を軸心としてトーチ後端から先端に貫通したレーザ透過孔:を備えるハイブリッドプラズマトーチ。
A plurality of plasma discharge electrodes disposed on the upstream side and the downstream side in the welding direction with respect to the torch center axis, inclined to approach the torch center axis on the torch tip side; and
A hybrid plasma torch comprising: a laser transmission hole penetrating from the rear end of the torch to the front end with the torch central axis as an axis.
前記複数のプラズマ放電電極は、前記トーチ中心軸に関して対称な姿勢である、請求項5に記載のハイブリッドプラズマトーチ。   The hybrid plasma torch according to claim 5, wherein the plurality of plasma discharge electrodes are symmetrical with respect to the central axis of the torch. 請求項5又は6に記載のハイブリッドプラズマトーチ;および、前記レーザ透過孔にトーチ先端に向けて収束するレーザビームを投射するレーザヘッド;を備えるハイブリッドプラズマ溶接装置。   A hybrid plasma welding apparatus comprising: the hybrid plasma torch according to claim 5; and a laser head that projects a laser beam that converges toward the tip of the torch to the laser transmission hole. 溶接対象材と各プラズマ放電電極との間に、溶接対象材側が正で電極側が負の電流を通電するプラズマ溶接電源;を備える請求項6に記載のハイブリッドプラズマ溶接装置。   The hybrid plasma welding apparatus according to claim 6, further comprising: a plasma welding power source for passing a current that is positive on the welding target material side and negative on the electrode side between the welding target material and each plasma discharge electrode. さらに、溶接方向で上流となるプラズマ放電電極の先端直下に溶接ワイヤを案内するワイヤガイド;を備える請求項7又は8に記載のハイブリッドプラズマ溶接装置。   Furthermore, the hybrid plasma welding apparatus of Claim 7 or 8 provided with the wire guide which guides a welding wire just under the front-end | tip of the plasma discharge electrode upstream in a welding direction. さらに、溶接対象材と前記溶接ワイヤとの間に、溶接対象材側が正で溶接ワイヤ側が負の電流を通電するホットワイヤ用電源;を備える請求項9に記載のハイブリッドプラズマ溶接装置。   The hybrid plasma welding apparatus according to claim 9, further comprising: a hot-wire power source that conducts a positive current between the welding target material and the welding wire, the welding target material side being positive and the welding wire side being negative.
JP2010089308A 2010-04-08 2010-04-08 Hybrid plasma welding method, hybrid plasma torch and hybrid welding apparatus Expired - Fee Related JP5454916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089308A JP5454916B2 (en) 2010-04-08 2010-04-08 Hybrid plasma welding method, hybrid plasma torch and hybrid welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089308A JP5454916B2 (en) 2010-04-08 2010-04-08 Hybrid plasma welding method, hybrid plasma torch and hybrid welding apparatus

Publications (2)

Publication Number Publication Date
JP2011218395A true JP2011218395A (en) 2011-11-04
JP5454916B2 JP5454916B2 (en) 2014-03-26

Family

ID=45036035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089308A Expired - Fee Related JP5454916B2 (en) 2010-04-08 2010-04-08 Hybrid plasma welding method, hybrid plasma torch and hybrid welding apparatus

Country Status (1)

Country Link
JP (1) JP5454916B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2759366A1 (en) * 2013-01-25 2014-07-30 Siemens Aktiengesellschaft Method for securing the melt pool for remelting of through thickness cracks
WO2020063366A1 (en) * 2018-09-29 2020-04-02 沈阳富创精密设备有限公司 Laser-plasma arc hybrid welding process for large aluminum alloy cavity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233084A (en) * 1985-08-01 1987-02-13 Kobe Steel Ltd Production for metallic pipe having big spring back
JPH07246484A (en) * 1994-03-10 1995-09-26 Toyota Auto Body Co Ltd Laser beam welding method
JP2003504213A (en) * 1999-07-15 2003-02-04 プラズマ レーザー テクノロジーズ リミテッド Composite laser and plasma arc machining torch and method
JP2006519103A (en) * 2002-11-12 2006-08-24 プラズマ レーザー テクノロジーズ リミテッド System for welding and method of use thereof
JP2008518784A (en) * 2004-11-05 2008-06-05 ジーケイエヌ ドライヴライン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Plasma tap hole welding of hardenable steel
JP2008161899A (en) * 2006-12-27 2008-07-17 Jfe Steel Kk Plasma arc hybrid welding method for improving fatigue strength of lap fillet welding joint

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233084A (en) * 1985-08-01 1987-02-13 Kobe Steel Ltd Production for metallic pipe having big spring back
JPH07246484A (en) * 1994-03-10 1995-09-26 Toyota Auto Body Co Ltd Laser beam welding method
JP2003504213A (en) * 1999-07-15 2003-02-04 プラズマ レーザー テクノロジーズ リミテッド Composite laser and plasma arc machining torch and method
JP2006519103A (en) * 2002-11-12 2006-08-24 プラズマ レーザー テクノロジーズ リミテッド System for welding and method of use thereof
JP2008518784A (en) * 2004-11-05 2008-06-05 ジーケイエヌ ドライヴライン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Plasma tap hole welding of hardenable steel
JP2008161899A (en) * 2006-12-27 2008-07-17 Jfe Steel Kk Plasma arc hybrid welding method for improving fatigue strength of lap fillet welding joint

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2759366A1 (en) * 2013-01-25 2014-07-30 Siemens Aktiengesellschaft Method for securing the melt pool for remelting of through thickness cracks
WO2014114581A1 (en) * 2013-01-25 2014-07-31 Siemens Aktiengesellschaft Method for supporting a weld bead for re-melting continuous cracks
WO2020063366A1 (en) * 2018-09-29 2020-04-02 沈阳富创精密设备有限公司 Laser-plasma arc hybrid welding process for large aluminum alloy cavity

Also Published As

Publication number Publication date
JP5454916B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
US8546720B2 (en) Hybrid welding apparatus and system and method of welding
EP0098306B1 (en) Welding method using laser beam
US9221118B2 (en) Adaptive control hybrid welding system and methods of controlling
WO2013001934A1 (en) Hybrid welding method for t-joint using laser beam welding and arc welding
US20220234139A1 (en) Laser welding for corner joins of workpiece parts
JP2004223543A (en) Compound welding method of laser beam and arc, and groove shape of welded joint used for the same
JP2014004603A (en) Laser-arc composite welding method
US20140263191A1 (en) System and method of welding stainless steel to copper
US11786989B2 (en) Method for splash-free welding, in particular using a solid-state laser
CN108581201A (en) A kind of laser filling wire welding device and method
JP5812527B2 (en) Hot wire laser welding method and apparatus
JP2015223605A (en) Narrow groove gas-shield arc-welding method
JP5318543B2 (en) Laser-arc combined welding method
CN107570874A (en) Laser-arc hybrid welding process
JP6482820B2 (en) Laser welding apparatus and laser welding method
JP5416422B2 (en) Laser-arc combined welding method
JP5454916B2 (en) Hybrid plasma welding method, hybrid plasma torch and hybrid welding apparatus
JP4026452B2 (en) Laser and arc combined welding method and groove shape of welded joint used therefor
JP5414571B2 (en) Transfer type plasma torch assembly, plasma welding apparatus, and plasma welding method
JP2014079783A (en) Laser and arc hybrid welding method, hybrid welding head and hybrid welding apparatus
JP4627384B2 (en) Laser / arc combined welding method
WO1994022630A1 (en) Plasma arc welding method and apparatus for practising the same
TWI409119B (en) Insert-chip, plasma torch and plasma processing device
JP2012020292A (en) Laser welding technique
Jokinen Novel ways of using Nd: YAG laser for welding thick section austenitic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5454916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees