JP5414571B2 - Transfer type plasma torch assembly, plasma welding apparatus, and plasma welding method - Google Patents

Transfer type plasma torch assembly, plasma welding apparatus, and plasma welding method Download PDF

Info

Publication number
JP5414571B2
JP5414571B2 JP2010043623A JP2010043623A JP5414571B2 JP 5414571 B2 JP5414571 B2 JP 5414571B2 JP 2010043623 A JP2010043623 A JP 2010043623A JP 2010043623 A JP2010043623 A JP 2010043623A JP 5414571 B2 JP5414571 B2 JP 5414571B2
Authority
JP
Japan
Prior art keywords
plasma
welding
wire
welded
torches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010043623A
Other languages
Japanese (ja)
Other versions
JP2011177741A (en
Inventor
樫 政 樹 富
野 忠 星
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2010043623A priority Critical patent/JP5414571B2/en
Publication of JP2011177741A publication Critical patent/JP2011177741A/en
Application granted granted Critical
Publication of JP5414571B2 publication Critical patent/JP5414571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、プラズマ溶接において、複数のアークを重ね合わせて溶接を行う溶接方法および装置に関する。   The present invention relates to a welding method and apparatus for performing welding by overlapping a plurality of arcs in plasma welding.

プラズマ溶接には、溶接,肉盛り,切断などの高熱加工の種類に応じて、各種形態がある。特許文献1には、電極棒の先端直下に側方からワイヤを送り込んで、電極棒先端の下方にある母材(加工対象材)を、プラズマ溶接,ホットワイヤ形態のプラズマ溶接,プラズマMIG溶接あるいはプラズマワイヤ肉盛をする方法が記載されている。特許文献2には、インサートチップの中央のワイヤ送通孔から下方の母材に垂直にワイヤを送り出し、該ワイヤ送通孔が開いたプラズマ孔にプラズマを噴射してワイヤ先端を溶かすプラズマMIG溶接トーチが記載されている。特許文献3には、中心位置に電極棒を配置したインサートチップのプラズマノズルの下方に、側方からワイヤを送り込むホットワイヤ形態のプラズマ溶接方法及びプラズマワイヤ肉盛方法が記載されている。特許文献4には、インサートチップの中心位置に電極棒を配置したプラズマトーチのプラズマが形成したプールに向けて、該プラズマトーチの側方から消耗電極であるワイヤを送給するプラズマMIG溶接が記載されている。特許文献5には、インサートチップのプラズマ噴射ノズルの上方かつ中心に配置した有底筒状のプラズマ電極の、中心孔である底穴と、その下方のノズルプラズマ噴射ノズルを通して下方の母材に垂直にワイヤを送給し、該ワイヤをプラズマ電極が生成するプラズマで溶かすプラズマMIG溶接方法が記載されている。   There are various forms of plasma welding depending on the type of high heat processing such as welding, overlaying and cutting. In Patent Document 1, a wire is fed from the side just below the tip of the electrode rod, and a base material (material to be processed) below the tip of the electrode rod is plasma welded, hot wire plasma welded, plasma MIG welded or A method for plasma wire overlaying is described. Patent Document 2 discloses plasma MIG welding in which a wire is sent vertically from a central wire feed hole of an insert tip to a lower base material, and plasma is injected into a plasma hole in which the wire feed hole is opened to melt the wire tip. A torch is described. Patent Document 3 describes a hot-wire-type plasma welding method and a plasma wire build-up method in which a wire is fed from the side below a plasma nozzle of an insert chip in which an electrode rod is disposed at the center position. Patent Document 4 describes plasma MIG welding in which a wire as a consumable electrode is fed from the side of the plasma torch toward the pool formed by the plasma of the plasma torch in which an electrode rod is arranged at the center position of the insert tip. Has been. Patent Document 5 discloses that a bottomed cylindrical plasma electrode disposed above and in the center of a plasma injection nozzle of an insert tip is perpendicular to a lower base material through a bottom hole as a central hole and a nozzle plasma injection nozzle below the bottom hole. Describes a plasma MIG welding method in which a wire is fed and melted with plasma generated by a plasma electrode.

特公昭39− 15267号公報Japanese Examined Patent Publication No. 39-15267 特開昭52−138038号公報JP 52-138038 A 特開昭53− 31544号公報JP-A-53-31544 特表2006−519103号公報JP-T-2006-519103 特開2008−229641号公報。JP 2008-229641 A.

図9の(a)に示すように、1個のプラズマ溶接トーチ1の電極棒と溶接対象材である母材5との間にプラズマアークを発生させる場合は、プラズマアークは安定しており、電極棒の直下に円形の溶融プール8ができる。しかし、溶接ワイヤ9を用いる特許文献1〜4の溶接方法及びプラズマトーチの場合には図9の(c)に示すように、電極棒が母材5との間に形成したプラズマ流に、電極棒/母材間の側方からワイヤ9を送給し通電するので、ワイヤ電流で発生した磁束とプラズマ電流で発生する磁束との相互作用で磁気的アンバランスが発生する。すなわち、ワイヤよりも上側(インサートチップ側)とワイヤよりも下側(母材側)でプラズマアーク状態が異なり、図9の(d)に示すように、ワイヤの上側のプラズマはワイヤから離れる方向にアークカを受け、ワイヤの下側のプラズマはワイヤに近づく方向にアークカを受ける。母材5上の溶化材(ワイヤの溶滴)は、図9の(e)に示すように、溶接方向yの下流方向に流れる。ワイヤ先端の溶融の動揺に伴い、母材に対するプラズマの作用位置が動揺するので、プラズマアークが不安定である。   As shown to (a) of FIG. 9, when generating a plasma arc between the electrode rod of one plasma welding torch 1 and the base material 5 which is a welding object material, the plasma arc is stable, A circular molten pool 8 is formed immediately below the electrode rod. However, in the case of the welding method and the plasma torch disclosed in Patent Documents 1 to 4 using the welding wire 9, as shown in FIG. 9C, the electrode is formed in the plasma flow formed between the electrode rod and the base material 5. Since the wire 9 is fed and energized from the side between the rod / base material, a magnetic imbalance occurs due to the interaction between the magnetic flux generated by the wire current and the magnetic flux generated by the plasma current. That is, the plasma arc state differs between the upper side of the wire (insert chip side) and the lower side of the wire (base metal side), and the plasma above the wire is away from the wire as shown in FIG. The plasma on the lower side of the wire receives the arc in the direction approaching the wire. The solution material (wire droplets) on the base material 5 flows downstream in the welding direction y as shown in FIG. The plasma arc is unstable because the plasma action position on the base material fluctuates as the wire tip melts.

特許文献5では、有底筒状のプラズマ電極の、底穴の円周エッジにアークが集中し、集中点が周方向に移動するので、やはりプラズマが動揺し、プラズマ電極における底穴の円周エッジとインサートチップにおけるノズル縁の激しい損耗と、溶融ワイヤのプラズマ電極やプラズマノズルへの付着がおこる。よって、長時間安定した溶接作業を維持できない。   In Patent Document 5, since the arc concentrates on the circumferential edge of the bottom hole of the bottomed cylindrical plasma electrode and the concentration point moves in the circumferential direction, the plasma is also shaken, and the circumference of the bottom hole in the plasma electrode Severe wear of the nozzle edge at the edge and insert tip and adhesion of the molten wire to the plasma electrode and plasma nozzle occur. Therefore, stable welding work for a long time cannot be maintained.

また、プラズマアークには、図9の(a)および(b)上に矢印で示すようにチップ孔から母材へ吹き付ける力が働いており、従来の、例えば特許文献3に記載の、側面からワイヤを供給し溶接を行うプラズマ溶接法では、溶滴を外側に吹き飛ばしてしまい、ビード中央部の高さを稼ぎづらい。これは、特に重ね隅肉溶接時の、咽厚を確保したいときに不利である。   In addition, as shown by arrows on FIGS. 9 (a) and 9 (b), the plasma arc has a force that blows from the tip hole to the base material. In the plasma welding method in which a wire is supplied and welding is performed, the droplets are blown outward, making it difficult to increase the height of the bead center. This is disadvantageous when it is desired to secure the throat thickness, particularly during lap fillet welding.

本発明は、アーク安定性が高いプラズマ溶接法および装置を提供することを第1の目的とし、高能率且つ作業性が良く、ワイヤに通電する方法においても、磁気吹きによるアーク乱れを発生しない、安定性が高いプラズマ溶接法および装置を提供することを第2の目的とする。   The first object of the present invention is to provide a plasma welding method and apparatus with high arc stability, high efficiency and good workability, and even in a method of energizing a wire, arc turbulence due to magnetic blowing does not occur. A second object is to provide a plasma welding method and apparatus having high stability.

)複数のプラズマトーチ各先端部が挿入される開口であって溶接対象材(5)の溶接線に垂直な垂直線に対して傾斜して前記溶接線を狙いかつ前記垂直線に関して対称に配置するように、各プラズマトーチを案内し溶接対象材に対向する開口と、各プラズマトーチのインサートチップ(1ac,1bc)の外周まわりにシールドガスを案内するガス流路とがあるシールドカバー(4);
該シールドカバーの前記開口に挿入されてインサートチップの先端部が前記開口より溶接対象材の方向に突出する、複数の移行式プラズマトーチ(1a,1b);および、
前記複数のプラズマトーチ(1a,1b)を一体のものとして前記溶接対象材に対して位置決めするために、前記複数のプラズマトーチ又は前記シールドカバーを保持する支持部材(2,3);を備える移行式プラズマトーチ組体。
(1) symmetrically with respect to a plurality of welded material an opening of the tip of the plasma torch is inserted (5) inclined relative to the vertical perpendicular line to the welding line of aim the weld line and the vertical line shield cover has a gas flow path for guiding the shielding gas around the outer periphery of to place, an opening opposite the welded material to guide the plasma torch, the insert tip of the plasma torch (1ac, 1bc) to (Four);
A plurality of transition type plasma torches (1a, 1b) inserted into the opening of the shield cover and projecting from the opening toward the material to be welded through the opening ; and
A transition member comprising a support member (2, 3) for holding the plurality of plasma torches or the shield cover to position the plurality of plasma torches (1a, 1b) as a single unit with respect to the material to be welded Type plasma torch assembly.

なお、理解を容易にするために括弧内には、図面に示し後述する実施例の対応要素の符号を、参考までに付記した。以下も同様である。   For ease of understanding, reference numerals of corresponding elements in the examples shown in the drawings and described later are added in parentheses for reference. The same applies to the following.

上記(1)に記載の移行式プラズマトーチ組体を用いて、複数のプラズマトーチ(1a,1b)からプラズマアークを、溶接対象材(5)の溶接線に垂直な垂直線に関して対称にかつ該垂直線に対して傾斜して前記溶接線の同一位置に当てることにより、各移行式プラズマアークによりプラズマトーチ(1a,1b)と溶接対象材(5)との間に形成される合成磁界により、図3の(a)に点線で示すような、全プラズマアークを一体として周回する磁束が流れる。該合成磁界と各アーク電流との間には、ローレンツ力すなわち周回磁束の周回中心にアークを収束させる力が発生し、プラズマトーチ(1a,1b)のプラズマアーク(7a,7b)が、図3の(b)に示すように、溶接対象材5の表面近くで強く、プラズマアーク(7a,7b)を相対的に近づける方向に絞られる。そこで、溶接の進行方向をy方向とすると、図3の(c)に示すように、溶融プール8は、溶接方向yと直交するx方向すなわち溶接ビードの幅方向xに収束したものとなり、ビード幅が狭くなる。溶接方向をプラズマトーチの並び方向であるx方向とすると、逆に、溶融プール8は溶接方向xと直交するy方向すなわち溶接ビードの幅方向yに広がったものとなり、ビード幅が広くなる。しかし、溶接方向を、プラズマトーチの並び方向であるx方向の溶接時、図10のごとく溶接対象材5に対してプラズマアーク7a,7bが接する点を重ねない、少し離すようにノズル穴角度あけたインサートチップを用いると、溶接線に対して長細い熱源となり、高速溶接化に理想的な熱源が得られる。 Using the transfer type plasma torch assembly described in (1) above, a plasma arc is generated from a plurality of plasma torches (1a, 1b) symmetrically with respect to a vertical line perpendicular to the weld line of the material to be welded (5) and By inclining with respect to the vertical line and hitting the same position of the weld line, by the combined magnetic field formed between the plasma torch (1a, 1b) and the material to be welded (5) by each transfer type plasma arc, As shown by a dotted line in FIG. 3A, a magnetic flux that circulates all the plasma arcs integrally flows. Between the combined magnetic field and each arc current, a Lorentz force, that is, a force for converging the arc at the orbital center of the orbiting magnetic flux is generated, and the plasma arc (7a and 7b) of the plasma torch (1a and 1b) is shown in FIG. As shown in (b), it is strong near the surface of the material 5 to be welded, and is narrowed in a direction to bring the plasma arcs (7a, 7b) relatively close. Therefore, if the welding direction is the y direction, the molten pool 8 converges in the x direction orthogonal to the welding direction y, that is, the width direction x of the weld bead, as shown in FIG. The width becomes narrower. If the welding direction is the x direction, which is the direction in which the plasma torches are arranged, conversely, the molten pool 8 spreads in the y direction orthogonal to the welding direction x, that is, the width direction y of the weld bead, and the bead width increases. However, at the time of welding in the x direction, which is the direction in which the plasma torches are arranged, the nozzle holes are angled so that the points where the plasma arcs 7a and 7b are in contact with the material to be welded 5 do not overlap as shown in FIG. If the insert tip is used, the heat source becomes long and thin with respect to the weld line, and an ideal heat source for high-speed welding can be obtained.

プラズマトーチのプラズマアーク(7a,7b)間の中間点に溶接ワイヤ(9)を送給し、溶接対象材(5)と溶接ワイヤ(9)との間に電流を通電するホットワイヤ溶接の態様では、各プラズマアーク(7a,7b)と溶接ワイヤ(9)により形成される磁力線は、図7の(a)のようになる。このときワイヤ近傍では、磁力線の向きが互い違いなり打ち消しあうので、ワイヤを側方から供給する従来の方法と違い、磁力的アンバランスを起こさない。これに加えて、ワイヤ供給部を中心軸とする等角度ピッチにプラズマトーチが配置してあることで、すなわちトーチが対称に配置されているので、プラズマアークの指向安定性が高い。このことは、ワイヤを供給しない場合、又は粉体を供給する場合でも、中央上部でアーク同士の磁力線が打ち消し合い、同様の磁場になり、プラズマアークの指向安定性が高い。   A mode of hot wire welding in which a welding wire (9) is fed to an intermediate point between plasma arcs (7a, 7b) of a plasma torch, and a current is passed between the material to be welded (5) and the welding wire (9). Then, the lines of magnetic force formed by the plasma arcs (7a, 7b) and the welding wire (9) are as shown in FIG. At this time, in the vicinity of the wire, the directions of the magnetic lines of force alternate and cancel each other. Therefore, unlike the conventional method in which the wire is supplied from the side, no magnetic imbalance occurs. In addition, since the plasma torches are arranged at an equiangular pitch with the wire supply portion as the central axis, that is, the torches are arranged symmetrically, the directivity stability of the plasma arc is high. This means that even when the wire is not supplied or when the powder is supplied, the magnetic field lines between the arcs cancel each other out at the upper center, resulting in a similar magnetic field, and the directional stability of the plasma arc is high.

溶接対象材の近傍では、各アークが収束するので、電流が同一方向の加算となり、アーク同士の合成磁束が発生する。この磁束は、単一アークの場合より強い磁気的ピンチ効果を得られるので、プラズマ溶接の特徴である熱収束効果がさらに高まる。   Since each arc converges in the vicinity of the material to be welded, the current is added in the same direction, and a combined magnetic flux between the arcs is generated. Since this magnetic flux can obtain a stronger magnetic pinch effect than in the case of a single arc, the heat convergence effect that is characteristic of plasma welding is further enhanced.

また、従来のワイヤを側方から供給する方法では、アークの吹き付け(図9の(a),(b))により、ワイヤ溶滴がビードの外へ押しやられる方向に力が働くが(図9の(c),(d))、本発明の場合、吹き付けの方向が、図3の(c)のようにビード(8対応)の中央向きになる。すると溶滴の流れはビード中央に残りやすい。よって、従来方法と比べ、通常の下向き溶接ではビード中央部の高さ、隅肉溶接では咽厚をより高くでき、より高強度なビードを得る効果がある。   Further, in the conventional method of supplying the wire from the side, a force acts in the direction in which the wire droplet is pushed out of the bead by the arc blowing ((a) and (b) of FIG. 9) (FIG. 9). (C), (d)), in the case of the present invention, the spraying direction is toward the center of the bead (corresponding to 8) as shown in FIG. 3C. Then, the droplet flow tends to remain in the center of the bead. Therefore, compared with the conventional method, the height of the center of the bead can be increased by normal downward welding, and the throat thickness can be increased by fillet welding, which has an effect of obtaining a higher strength bead.

本発明によれば、磁気的アンバランス解消によるアークの安定性向上,強い磁気ピンチカによる高熱収束,ワイヤ挿入方向の改善によって得られる良好なビード形状、を得ることが出来る。更に、相互のアーク照射点を広げて細長形状熱源とすること高速溶接ができる。   According to the present invention, it is possible to obtain an improved arc stability by eliminating magnetic imbalance, high heat convergence by a strong magnetic pincher, and a good bead shape obtained by improving the wire insertion direction. Furthermore, it is possible to perform high-speed welding by expanding the mutual arc irradiation points to form an elongated heat source.

本発明の第1実施例のプラズマ溶接装置の概要を示す平面図である。It is a top view which shows the outline | summary of the plasma welding apparatus of 1st Example of this invention. 図1に示すシールドカバー4の拡大横断面図である。FIG. 2 is an enlarged cross-sectional view of a shield cover 4 shown in FIG. (a)は、図1に示すプラズマトーチ1a,1bのインサートチップ1ac,1bcから出るプラズマアーク7a,7bに作用する電磁力を、(b)は該電磁力により収束したプラズマアーク7a,7bを、(c)は該プラズマアーク7a,7bにより形成される溶融プール8を、それぞれ示す。(A) shows the electromagnetic force acting on the plasma arcs 7a, 7b coming from the insert tips 1ac, 1bc of the plasma torches 1a, 1b shown in FIG. 1, and (b) shows the plasma arcs 7a, 7b converged by the electromagnetic forces. (C) shows the molten pool 8 formed by the plasma arcs 7a and 7b, respectively. 本発明の第2実施例のプラズマ溶接装置の概要を示す平面図である。It is a top view which shows the outline | summary of the plasma welding apparatus of 2nd Example of this invention. 図4に示すシールドカバー4の拡大横断面図である。FIG. 5 is an enlarged cross-sectional view of the shield cover 4 shown in FIG. 4. 本発明の第3実施例のプラズマ溶接装置の概要を示す平面図である。It is a top view which shows the outline | summary of the plasma welding apparatus of 3rd Example of this invention. (a)は、図6に示すプラズマトーチ1a,1bのインサートチップ1ac,1bcから出るプラズマアーク7a,7bが誘起する磁束および溶接ワイヤ9に流れる電流が誘起する磁束を示す正面図、(b)はプラズマアーク7a,7bが誘起する磁束の合成磁束を示す正面図、(c)はプラズマアーク7a,7bにより形成される溶融プール8の平面図である。(A) is a front view showing the magnetic flux induced by the plasma arcs 7a, 7b coming out of the insert tips 1ac, 1bc of the plasma torches 1a, 1b shown in FIG. 6 and the magnetic flux induced by the current flowing through the welding wire 9, (b). Is a front view showing the resultant magnetic flux of the magnetic flux induced by the plasma arcs 7a and 7b, and (c) is a plan view of the molten pool 8 formed by the plasma arcs 7a and 7b. 本発明の第4実施例のプラズマ肉盛溶接装置の概要を示す平面図である。It is a top view which shows the outline | summary of the plasma overlay welding apparatus of 4th Example of this invention. (a)は、一本のプラズマトーチを用いるプラズマ溶接の、プラズマアーク形状を示す正面図、(b)は溶融プール形状とそれにプラズマ吹きつけによって加わる力の向きを矢印で示す平面図である。(c)は溶接ワイヤ8をプラズマアーク7aに供給する場合の磁束を示す正面図、(d)は該磁束によるプラズマアークの動揺を示す正面図、(e)は溶融プールの形状を示す平面図である。(A) is a front view which shows the plasma arc shape of the plasma welding using one plasma torch, (b) is a top view which shows the direction of the force added by a molten pool shape and plasma spraying to it with an arrow. (C) is a front view showing the magnetic flux when supplying the welding wire 8 to the plasma arc 7a, (d) is a front view showing the fluctuation of the plasma arc by the magnetic flux, and (e) is a plan view showing the shape of the molten pool. It is. (a)は本発明の第5実施例のプラズマ溶接の概要を示す縦断面図であり、(b)は溶接対象材5に対する(a)に示すアーク7a,7bの照射点を示す拡大平面図、(c)は1アークのみ例えばアーク7aのみによる溶接でえられる溶接ビートの横断面図、(d)は、(a)および(b)に示す2アーク溶接の場合の先行アーク7aにより形成されるビードと後行アーク7bにより形成されるビードを、模式的に示す横断面図である。(A) is a longitudinal cross-sectional view which shows the outline | summary of the plasma welding of 5th Example of this invention, (b) is an enlarged plan view which shows the irradiation point of arc 7a, 7b shown to (a) with respect to the welding target material 5 , (C) is a transverse cross-sectional view of a welding beat obtained by welding with only one arc, for example, arc 7a only, and (d) is formed by the preceding arc 7a in the case of two arc welding shown in (a) and (b). It is a cross-sectional view which shows typically the bead formed of the bead and the trailing arc 7b.

)更に、前記複数のプラズマトーチのプラズマアーク間の中間点に溶接ワイヤ(9)を案内するワイヤガイド(10);を備える上記(6)に記載の移行式プラズマトーチ組体。 ( 2 ) The transfer type plasma torch assembly according to (6), further comprising a wire guide (10) for guiding the welding wire (9) to an intermediate point between plasma arcs of the plurality of plasma torches.

)更に、前記複数のプラズマトーチのインサートチップのプラズマアーク間の中間点に肉盛り用粉体を案内する粉体ガイド(14);を備える上記()に記載の移行式プラズマトーチ組体。 ( 3 ) The transfer type plasma torch set according to ( 1 ), further comprising: a powder guide (14) for guiding the overlaying powder to an intermediate point between the plasma arcs of the insert tips of the plurality of plasma torches. body.

)上記()乃至()のいずれか1つに記載の移行式プラズマトーチ組体;および、前記溶接対象材と各プラズマトーチの電極との間に、溶接対象材側が正で電極側が負の電流を通電するプラズマ溶接電源(6a,6b);を備えるプラズマ溶接装置。 ( 4 ) The transfer type plasma torch assembly according to any one of the above ( 1 ) to ( 3 ); and the electrode to be welded is positive between the material to be welded and the electrode of each plasma torch. A plasma welding apparatus having a plasma welding power source (6a, 6b);

)上記()に記載の移行式プラズマトーチ組体;前記溶接対象材と各プラズマトーチの電極との間に、溶接対象材側が正で電極側が負の電流を通電するプラズマ溶接電源(6a,6b);および、前記溶接対象材と前記溶接ワイヤとの間に、溶接対象材側が正で溶接ワイヤ側が負の電流を通電するホットワイヤ用電源(12);を備えるプラズマ溶接装置。 ( 5 ) The transfer-type plasma torch assembly according to ( 2 ) above; a plasma welding power source in which a current to be welded is positive and a negative current is applied to the electrode side between the welding target material and the electrode of each plasma torch ( 6a, 6b); and a hot wire power source (12) for passing a current that is positive on the welding target material side and negative on the welding wire side between the welding target material and the welding wire.

上記(1)に記載の移行式プラズマトーチ組体を用いて、前記複数のプラズマトーチ(1a,1b)からプラズマアークを、溶接対象材(5)の溶接線に垂直な垂直線に関して対称にかつ該垂直線に対して傾斜して前記溶接線の同一位置に当てて全プラズマアークに共通に作用する磁気ピンチ力によって前記同一位置にプラズマアークを集中させるとともに、前記複数のプラズマトーチの各インサートチップ(1ac,1bc)の外周まわりからシールドガスを前記溶接対象材(5)に向けて噴出する、プラズマ溶接方法。 ( 6 ) Using the transfer type plasma torch assembly described in (1 ) above, a plasma arc is generated from the plurality of plasma torches (1a, 1b) with respect to a vertical line perpendicular to the weld line of the material to be welded (5). The plasma arc is concentrated at the same position by a magnetic pinch force that is symmetrically and inclined with respect to the vertical line and is applied to the same position of the welding line and acts on all plasma arcs in common. A plasma welding method in which a shielding gas is ejected from the periphery of each insert tip (1ac, 1bc) toward the material to be welded (5).

上記(2)に記載の移行式プラズマトーチ組体を用いて、前記複数のプラズマトーチ(1a,1b)からプラズマアークを、溶接対象材(5)の溶接線に垂直な垂直線に関して対称にかつ該垂直線に対して傾斜して前記溶接線の同一位置に当てて全プラズマアークに共通に作用する磁気ピンチ力によって前記同一位置にプラズマアークを集中させるとともに、前記複数のプラズマトーチの各インサートチップ(1ac,1bc)の外周まわりからシールドガスを前記溶接対象材(5)に向けて噴出し、前記複数のプラズマトーチのプラズマアーク間の中間点に溶接ワイヤ(9)を送給する、プラズマ溶接方法。 ( 7 ) Using the transfer type plasma torch assembly described in (2 ) above, a plasma arc is generated from the plurality of plasma torches (1a, 1b) with respect to a vertical line perpendicular to the weld line of the material to be welded (5). The plasma arc is concentrated at the same position by a magnetic pinch force that is symmetrically and inclined with respect to the vertical line and is applied to the same position of the welding line and acts on all plasma arcs in common. Shield gas is ejected from the periphery of each insert tip (1ac, 1bc) toward the material to be welded (5), and the welding wire (9) is fed to the intermediate point between the plasma arcs of the plurality of plasma torches. that, up plasma welding method.

上記(3)に記載の移行式プラズマトーチ組体を用いて、前記複数のプラズマトーチ(1a,1b)からプラズマアークを、溶接対象材(5)の溶接線に垂直な垂直線に関して対称にかつ該垂直線に対して傾斜して前記溶接線の同一位置に当てて全プラズマアークに共通に作用する磁気ピンチ力によって前記同一位置にプラズマアークを集中させるとともに、前記複数のプラズマトーチの各インサートチップ(1ac,1bc)の外周まわりからシールドガスを前記溶接対象材(5)に向けて噴出し、前記複数のプラズマトーチのプラズマアーク間の中間点に肉盛り用粉体を送給する、プラズマ溶接方法。 ( 8 ) Using the transfer type plasma torch assembly described in (3 ) above, a plasma arc is generated from the plurality of plasma torches (1a, 1b) with respect to a vertical line perpendicular to the weld line of the material to be welded (5). The plasma arc is concentrated at the same position by a magnetic pinch force that is symmetrically and inclined with respect to the vertical line and is applied to the same position of the welding line and acts on all plasma arcs in common. Shield gas is ejected from the periphery of each insert tip (1ac, 1bc) toward the material to be welded (5), and the overlaying powder is fed to the midpoint between the plasma arcs of the plurality of plasma torches. that, up plasma welding method.

更に、前記溶接対象材と各プラズマトーチの電極との間に、溶接対象材側が正で電極側が負の電流を通電するプラズマ溶接電源(6a,6b)を用いて、前記溶接対象材と各プラズマトーチの電極との間に、溶接対象材側が正で電極側が負の電流を通電する、上記()乃至()のいずれか1つに記載のプラズマ溶接方法。 ( 9 ) Further, using a plasma welding power source (6a, 6b) in which a current to be welded is positive and a current to the electrode side is negative between the welding target material and the electrode of each plasma torch, the welding target material is used. The plasma welding method according to any one of ( 6 ) to ( 8 ), wherein a current that is positive on the welding target material side and negative on the electrode side is passed between the electrode and each electrode of the plasma torch.

10更に、前記溶接対象材と各プラズマトーチの電極との間に、溶接対象材側が正で電極側が負の電流を通電するプラズマ溶接電源(6a,6b)、および、前記溶接対象材と前記溶接ワイヤとの間に、溶接対象材側が正で溶接ワイヤ側が負の電流を通電するホットワイヤ用電源(12)、を用いて、前記溶接対象材と各プラズマトーチの電極との間に、溶接対象材側が正で電極側が負の電流を通電し、前記溶接対象材と前記溶接ワイヤとの間に、溶接対象材側が正で溶接ワイヤ側が負の電流を通電する、上記()に記載のプラズマ溶接方法。 ( 10 ) Further, a plasma welding power source (6a, 6b) for passing a current that is positive on the welding target material side and negative on the electrode side between the welding target material and the electrode of each plasma torch, and the welding target material Between the welding wire, using a hot wire power supply (12) that conducts a negative current on the welding target material side and a negative welding wire side , between the welding target material and each plasma torch electrode, welded material side electrode side is energized negative current positive, between the welding wire and the welding object member, welded material side positive welding wire side is energized negative current, according to the above (7) Plasma welding method.

本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。   Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

−第1実施例−
図1に、第1実施例であるプラズマ溶接装置を示し、図2には、図1上のシールドカバー4部の横断面を示す。この実施例では2本の移行式プラズマトーチ1a,1bがそれらのトーチホルダ1ah,1bhの部分で組体アーム2で支持されている。両トーチ1a,1bに共通の1個のシールドカバー4の上端面には、両トーチ1a,1bの先端部が挿入される1対の開口があり、該開口に連なる穴は、カバー4の下端面側で交わり、下端面では略8の字の開口を形成している。これら1対の穴は、溶接対象材5の垂直線z(溶接線に対しても垂直線)に関して対称であり、しかも各穴の中心線は該垂直線z上の同一位置で交わるように傾斜している。すなわち、移行式プラズマトーチ1a,1bは、溶接対象材5の溶接線に垂直な垂直線zに対して傾斜して溶接線を狙いかつ垂直線zに関して対称に配置され、組体アーム2で一組のものとして支持されている。また、シールドカバー4は、組体アーム2に固定された垂直アーム3に固定され、これによっても、プラズマトーチ1a,1bは一組のものとして支持されている。トーチ先端から母材までの距離は、3〜10mmが適当である。各穴に挿入された各トーチ1a,1bのシールドガス流路端は、図2に示すように、シールドカバー4内で各穴に連続し、これにより、各トーチ1a,1bに外部から送り込まれたシールドガスは、各穴から、各トーチ1a,1bのインサートチップ1ac,1bcの外周に沿って、溶接対象材5に向かって噴出する。トーチ先端(下端)から溶接対象材5の溶接線までの距離は、3〜10mmが適当である。
-1st Example-
FIG. 1 shows a plasma welding apparatus according to the first embodiment, and FIG. 2 shows a cross section of a shield cover 4 part in FIG. In this embodiment, two transfer type plasma torches 1a and 1b are supported by the assembly arm 2 at their torch holders 1ah and 1bh. The upper end surface of one shield cover 4 common to both torches 1a and 1b has a pair of openings into which the tip portions of both torches 1a and 1b are inserted. It intersects on the end face side, and forms an approximately 8-shaped opening on the lower end face. The pair of holes are symmetric with respect to the vertical line z of the welding target material 5 (also perpendicular to the welding line), and the center lines of the holes are inclined so as to intersect at the same position on the vertical line z. doing. That is, the transfer type plasma torches 1 a and 1 b are inclined with respect to the vertical line z perpendicular to the welding line of the welding target material 5, aiming at the welding line and symmetrically arranged with respect to the vertical line z. Supported as a pair. Further, the shield cover 4 is fixed to the vertical arm 3 fixed to the assembly arm 2, and the plasma torches 1a and 1b are also supported as a set by this. The distance from the tip of the torch to the base material is suitably 3 to 10 mm. As shown in FIG. 2, the shield gas flow path ends of the torches 1a and 1b inserted into the holes are continuous with the holes in the shield cover 4, thereby being fed into the torches 1a and 1b from the outside. The shield gas is ejected from each hole toward the material to be welded 5 along the outer periphery of the insert tips 1ac and 1bc of the torches 1a and 1b. The distance from the tip of the torch (lower end) to the weld line of the material to be welded 5 is suitably 3 to 10 mm.

本実施例では、1対のプラズマトーチ1a,1b,それらを支持する組体アーム2,両トーチに共通のシールドカバー4および垂直アーム3が、プラズマトーチ組体を構成している。   In this embodiment, the pair of plasma torches 1a and 1b, the assembly arm 2 that supports them, and the shield cover 4 and the vertical arm 3 common to both torches form a plasma torch assembly.

図1に示すように、プラズマトーチ1a,1bの各電極と溶接対象材5の間に、電極側が負で母材側が正のプラズマアーク電流を流すプラズマ電源6a,6bにより、電極にアークを発生すると、プラズマアーク電流が各電極と溶接対象材5の間に流れて、1プール2アーク溶接が実現する。プラズマトーチ1a,1bのインサートチップ1ac,1bcの中の各電極と溶接対象材5との間を流れる各アーク電流には、図3の(a)に示すように、それぞれが誘起する磁束の合成磁束との間に、フレミングの左手の法則で表されるピンチ力が作用し、図3の(b),(c)に示すように、プラズマアーク7a,7bがトーチの並び方向xに絞られて溶接対象材5に対する熱収束効果(エネルギー密度)が高く、しかも作用位置がふらつくことが無いプラズマの安定性が高い。   As shown in FIG. 1, an arc is generated between the electrodes of the plasma torches 1 a and 1 b and the welding target material 5 by plasma power sources 6 a and 6 b that flow a plasma arc current that is negative on the electrode side and positive on the base material side. Then, a plasma arc current flows between each electrode and the welding object material 5, and 1 pool 2 arc welding is implement | achieved. As shown in FIG. 3 (a), each arc current flowing between the electrodes in the insert tips 1ac and 1bc of the plasma torches 1a and 1b and the material to be welded 5 is combined with the magnetic flux induced by each arc current. A pinch force expressed by Fleming's left-hand rule acts between the magnetic fluxes, and as shown in FIGS. 3B and 3C, the plasma arcs 7a and 7b are narrowed in the torch alignment direction x. In addition, the heat convergence effect (energy density) on the material to be welded 5 is high, and the stability of the plasma with no fluctuation of the action position is high.

なお、溶接方向が図3に示すy方向の場合は、上記ピンチ力によるプラズマアークの絞り方向が溶接方向yと直交するx方向となるので、ビード幅が狭い。しかし、溶接方向を図3に示すx方向とすると、上記ピンチ力によるプラズマアークの絞り方向が溶接方向xと直交するy方向となるので、ビード幅は広くなる。   When the welding direction is the y direction shown in FIG. 3, the bead width is narrow because the plasma arc drawing direction by the pinch force is the x direction perpendicular to the welding direction y. However, if the welding direction is the x direction shown in FIG. 3, the bead width is widened because the plasma arc drawing direction by the pinch force is the y direction perpendicular to the welding direction x.

−第2実施例−
図4に、第2実施例であるプラズマ溶接装置を示し、図5には、図4上のシールドカバー4部の横断面を示す。この実施例では、シールドカバー4は、移行式プラズマトーチ1a,1bを挿入する1対の穴の中間に、垂直な中央孔を有しており、中央孔には溶接ワイヤ9を案内するワイヤガイド10が挿入されている。ワイヤ供給部11は、コンジットライナとワイヤカバー挿入部で構成されている。その他の構成は、第1実施例と同様である。
-Second Example-
FIG. 4 shows a plasma welding apparatus according to the second embodiment, and FIG. 5 shows a cross section of the shield cover 4 part in FIG. In this embodiment, the shield cover 4 has a vertical center hole in the middle of a pair of holes into which the transfer type plasma torches 1a and 1b are inserted, and a wire guide for guiding the welding wire 9 in the center hole. 10 is inserted. The wire supply unit 11 includes a conduit liner and a wire cover insertion unit. Other configurations are the same as those of the first embodiment.

移行式プラズマトーチ1a,1b内の各電極と溶接対象材5の間に、電極側が負で母材側が正のプラズマアーク電流を流すプラズマ電源6a,6bにより、電極にアークを発生すると、プラズマアーク電流が各電極と溶接対象材5の間に流れて、1プール2アーク溶接が実現する。プラズマアーク7a,7bに溶接ワイヤ9が送給され、溶接ワイヤ9に対して各電極およびインサートチップ1ac,1bcのノズルが対称に位置するので、溶接ワイヤ9に対してプラズマが安定する。すなわち、各電極と溶接対象材5との間を流れる各アーク電流には、それぞれが誘起する磁束の合成磁束との間に、フレミングの左手の法則で表されるピンチ力が作用し、磁気的にバランスがとれ、プラズマの安定性が高い。つまり、磁気吹きによるアークのふらつきを生じない。ピンチ力が強く、溶接対象材5に対する熱収束効果(エネルギー密度)が高く、しかも作用位置がふらつくことが無い。尚かつ、溶接ワイヤ9は、プラズマアーク7a,7bの上端部より入り、溶融プール8に至る迄の間アークより熱を受けることになり、有効な予熱効果として働き、ワイヤの溶着効率がアップし、高速溶接や高能率溶接ができる。従来の、側方からのワイヤ送給の場合(図9の(c))は、ワイヤ9はプラズマアークに対してほぼ直角に入るため、プラズマアークに入った僅かな距離で溶融プールに熔け落ちるようにしなければならず、ほとんどワイヤ9の予熱効果は無い。このため溶着効率は低く、溶接速度も遅い。 When an arc is generated in the electrodes by the plasma power sources 6a and 6b that flow a negative plasma arc current on the electrode side and a positive side on the base metal side between the electrodes in the transfer type plasma torches 1a and 1b and the welding target material 5, An electric current flows between each electrode and the welding target material 5, and 1 pool 2 arc welding is implement | achieved. The welding wire 9 is fed to the plasma arcs 7a and 7b, and the electrodes and the nozzles of the insert tips 1ac and 1bc are positioned symmetrically with respect to the welding wire 9, so that the plasma is stabilized with respect to the welding wire 9. That is, a pinch force expressed by Fleming's left-hand rule acts on each arc current flowing between each electrode and the material to be welded 5 between the combined magnetic fluxes induced by each of the arc currents. Is balanced and plasma stability is high. That is, no arc wobbling due to magnetic blowing occurs. The pinch force is strong, the heat convergence effect (energy density) on the material to be welded 5 is high, and the working position does not fluctuate. In addition, the welding wire 9 enters from the upper ends of the plasma arcs 7a and 7b and receives heat from the arc until it reaches the molten pool 8, which acts as an effective preheating effect and increases the welding efficiency of the wire. High speed welding and high efficiency welding are possible. In the case of the conventional wire feeding from the side (FIG. 9 (c)), the wire 9 enters almost at right angles to the plasma arc, so that it melts into the molten pool at a short distance from the plasma arc. There is almost no preheating effect of the wire 9. For this reason, the welding efficiency is low and the welding speed is also slow.

また第2実施例によれば、ワイヤ9が中央より垂直に挿入されるため、ワイヤの挿入方向性が無く、曲線溶接でもトーチを回転させる制御が不要である。従来は、ワイヤはトーチ進行方向より挿入することから、曲線溶接時には、トーチ又はワイヤを曲線に相対して回転制御する装置が必要であった。   In addition, according to the second embodiment, since the wire 9 is inserted vertically from the center, there is no insertion direction of the wire, and control for rotating the torch is not necessary even in curve welding. Conventionally, since the wire is inserted from the direction of travel of the torch, a device for controlling the rotation of the torch or the wire relative to the curve is necessary during curve welding.

−第3実施例−
図6に、第3実施例であるプラズマ溶接装置を示す。この実施例では、シールドカバ4は、移行式プラズマトーチ1a,1bを挿入する1対の穴の中間に、垂直な中央孔を有しており、中央孔には溶接ワイヤ9を案内するワイヤガイド10が挿入されている。ワイヤ供給部11は、コンジットライナとワイヤ通電部とワイヤカバー挿入部で構成されている。ここまでの構成は第2実施例と同様であるが、第3実施例ではさらに、溶接ワイヤ9と溶接対象材5との間に、ワイヤ側が負で母材側が正の電流を流すホットワイヤ電源12を備える。この電源12が、ワイヤ9に通電してに余熱を行いワイヤの溶融を容易にする。その他の構成は、第1実施例と同様である。
-Third Example-
FIG. 6 shows a plasma welding apparatus according to the third embodiment. In this embodiment, the shield cover 4 has a vertical central hole in the middle of a pair of holes into which the transfer type plasma torches 1a and 1b are inserted, and a wire guide for guiding the welding wire 9 in the central hole. 10 is inserted. The wire supply unit 11 includes a conduit liner, a wire energization unit, and a wire cover insertion unit. The configuration up to this point is the same as that of the second embodiment, but in the third embodiment, a hot wire power supply that further flows a negative current on the wire side and a positive current on the base material side between the welding wire 9 and the material to be welded 5. 12 is provided. The power source 12 energizes the wire 9 to generate residual heat and facilitate melting of the wire. Other configurations are the same as those of the first embodiment.

ホットワイヤ電源12は、ワイヤ供給部11を通して溶接ワイヤ9に通電し、ワイヤ9をジュール熱で加熱し、プラズマアーク7a,7bで、プラズマトーチ1a,1bのプラズマアークと合流し、溶接対象材5に流入する。このとき、ホットワイヤ電流のジュール熱がプラズマ領域内で最大になる(集中する)ので、溶接入熱量が多く、高溶着量,高能率溶接となり、高速溶接が可能である。しかも、ホットワイヤ電流とプラズマアーク電流とは対称および同軸であることから、磁気的バランスがとれ、磁気吹きによるアークのふらつきが発生しない。その他の機能および作用効果は、第2実施例と同様である。   The hot wire power source 12 energizes the welding wire 9 through the wire supply unit 11, heats the wire 9 with Joule heat, joins the plasma arcs of the plasma torches 1 a and 1 b with the plasma arcs 7 a and 7 b, and welds the material 5 to be welded. Flow into. At this time, since the Joule heat of the hot wire current is maximized (concentrated) in the plasma region, the welding heat input is large, the welding amount is high, the efficiency is high, and high-speed welding is possible. In addition, since the hot wire current and the plasma arc current are symmetrical and coaxial, the magnetic balance is achieved, and no arc wobbling due to magnetic blowing occurs. Other functions and operational effects are the same as in the second embodiment.

−第4実施例−
図8に、第4実施例であるプラズマ溶接装置を示す。この実施例では、シールドカバ4は、移行式プラズマトーチ1a,1bを挿入する1対の穴の中間に、垂直な中央孔を有しており、中央孔には肉盛り用粉体の粉体ガイド14を挿入している。粉体ガイド14の下端の粉体供給口15から、プラズマトーチ1a,1bのプラズマアーク間に粉体が送り込まれる。その他の構造は、第1実施例のものと同様である。粉体ガイド14には、粉体槽13にある粉体が定速度で送り込まれる。
-Fourth embodiment-
FIG. 8 shows a plasma welding apparatus according to the fourth embodiment. In this embodiment, the shield cover 4 has a vertical center hole in the middle of a pair of holes into which the transfer type plasma torches 1a and 1b are inserted. A guide 14 is inserted. Powder is fed from the powder supply port 15 at the lower end of the powder guide 14 between the plasma arcs of the plasma torches 1a and 1b. Other structures are the same as those of the first embodiment. The powder in the powder tank 13 is fed into the powder guide 14 at a constant speed.

プラズマ電源6a,6bが、プラズマトーチ1a,1b内の電極と溶接対象材5の間に、電極側が負で母材側が正のプラズマアーク電流を流す。溶接対象材5に対して粉体流を垂直に送給するので、側方からプラズマアークに粉体を送給する従来例よりも、粉体の歩留りがよく、粉体がインサートチップ1ac,1bcのノズルに付着しにくく、また、粉体ガイドの粉体通路を太くでき、粉体ガイド14が垂直かつ直線であることから、送給性の悪い切裁粉を使用することも出来る。溶接対象材5の真上で対称なプラズマアークが合流し衝突し合う為、溶接対象材5への下向きプラズマ流が弱くなるので、低希釈の粉体肉盛が可能である。その他の機能および作用効果は、第1実施例と同様である。   The plasma power supplies 6a and 6b cause a plasma arc current to flow between the electrodes in the plasma torches 1a and 1b and the material to be welded 5 that is negative on the electrode side and positive on the base material side. Since the powder flow is fed vertically to the material 5 to be welded, the yield of the powder is better than the conventional example in which the powder is fed from the side to the plasma arc, and the powder is inserted into the insert tips 1ac, 1bc. In addition, since the powder passage of the powder guide can be thickened and the powder guide 14 is vertical and straight, it is possible to use cutting powder having poor feedability. Since symmetrical plasma arcs join and collide with each other directly above the welding target material 5, the downward plasma flow to the welding target material 5 becomes weak, so that low-dilution powder overlaying is possible. Other functions and operational effects are the same as in the first embodiment.

−第5実施例−
図10の(a)に、第5実施例であるプラズマ溶接装置を示す。この実施例では、インサートチップ1ac及び1bcに、電極の延長線上に中心がある中央孔を有している。またトーチの位置は、前述のインサートチップ中央孔の角度でのアーク発生時に、アークの照射点間隔が第1実施例に比べ広く、且つ1プールになる位置にある。その他の構成は第1実施例のものと同様である。
-Fifth embodiment-
FIG. 10A shows a plasma welding apparatus according to the fifth embodiment. In this embodiment, the insert tips 1ac and 1bc have a central hole centered on the extension line of the electrode. The position of the torch is such that when the arc is generated at the angle of the center hole of the insert tip described above, the distance between the irradiation points of the arc is wider than that of the first embodiment and becomes one pool. Other configurations are the same as those of the first embodiment.

第1実施例と同様に電流を流すと、図10の(b)のように、アークの照射点が重複しないアークが発生する。このとき溶接方向をX軸方向にすると、通常の溶融プールより、溶接線方向に細長い溶融プールが得られる。従来の高速溶接では、溶融プールがアークの吹き付けと表面張力によってアーク後方に盛り上がっているときに冷却が終了し、アンダーカットが発生しやすかったが、本実施例では、後方側アーク7bで加熱されることから溶融プールも長くなり、プールが重力で平坦になることができ、その後冷却が完了するので、アンダーカットの発生を防止する効果がある。また、従来の1アーク溶接と比較した場合、一本あたりの電流は小さくなることからビード幅が狭くできるので、溶接対象の歪が少ない。   When a current is passed in the same manner as in the first embodiment, an arc is generated in which the arc irradiation points do not overlap as shown in FIG. At this time, when the welding direction is set to the X-axis direction, a molten pool that is longer in the weld line direction than a normal molten pool is obtained. In the conventional high-speed welding, the cooling is finished when the molten pool is raised behind the arc by the spraying of the arc and the surface tension, and the undercut is likely to occur. However, in this embodiment, it is heated by the rear arc 7b. Therefore, the molten pool also becomes longer, the pool can be flattened by gravity, and the cooling is completed thereafter, so that there is an effect of preventing the occurrence of undercut. Further, when compared with the conventional one-arc welding, since the current per one is small, the bead width can be narrowed, so the distortion of the welding object is small.

1a,1b:移行式プラズマトーチ
1ac,1bc:インサートチップ
2:組体アーム
3:垂直アーム
4:シールドカバー
5:溶接対象材
6a,6b:プラズマ電源
7a,7b:プラズマアーク
8:溶融プール
9:溶接ワイヤ
10:ワイヤガイド
11:ワイヤ供給部
12:ホットワイヤ電源
13:粉体槽
14:粉体ガイド
15:粉体供給口
1a, 1b: Transition type plasma torch 1ac, 1bc: Insert tip 2: Assembly arm 3: Vertical arm 4: Shield cover 5: Materials to be welded 6a, 6b: Plasma power sources 7a, 7b: Plasma arc 8: Melting pool 9: Welding wire 10: Wire guide 11: Wire supply unit 12: Hot wire power supply 13: Powder tank 14: Powder guide 15: Powder supply port

Claims (10)

複数のプラズマトーチ各先端部が挿入される開口であって溶接対象材の溶接線に垂直な垂直線に対して傾斜して前記溶接線を狙いかつ前記垂直線に関して対称に配置するように、各プラズマトーチを案内し溶接対象材に対向する開口と、各プラズマトーチのインサートチップの外周まわりにシールドガスを案内するガス流路とがあるシールドカバー;
該シールドカバーの前記開口に挿入されてインサートチップの先端部が前記開口より溶接対象材の方向に突出する、複数の移行式プラズマトーチ;および、
前記複数のプラズマトーチを一体のものとして前記溶接対象材に対して位置決めするために、前記複数のプラズマトーチ又は前記シールドカバーを保持する支持部材;を備える移行式プラズマトーチ組体。
As arranged symmetrically with respect to each of a plurality of tip portions are inclined relative to the vertical perpendicular line to the weld line of the welded material an opening for insertion aim the weld line and the vertical line of the plasma torch, an opening that faces the welded material to guide the plasma torch, the shield cover and the gas flow path for guiding the shielding gas around the outer periphery of the insert tip of the plasma torch, is;
A plurality of transitional plasma torches inserted into the opening of the shield cover and having the tip of the insert tip project in the direction of the material to be welded from the opening ; and
A transitional plasma torch assembly comprising: a support member that holds the plurality of plasma torches or the shield cover in order to position the plurality of plasma torches as a unit with respect to the material to be welded.
更に、前記複数のプラズマトーチのプラズマアーク間の中間点に溶接ワイヤを案内するワイヤガイド;を備える請求項に記載の移行式プラズマトーチ組体。 The transfer plasma torch assembly according to claim 1 , further comprising a wire guide for guiding a welding wire to an intermediate point between plasma arcs of the plurality of plasma torches. 更に、前記複数のプラズマトーチのインサートチップのプラズマアーク間の中間点に肉盛り用粉体を案内する粉体ガイド;を備える上記請求項に記載の移行式プラズマトーチ組体。 The transfer type plasma torch assembly according to claim 1 , further comprising: a powder guide for guiding the overlaying powder to an intermediate point between the plasma arcs of the insert tips of the plurality of plasma torches. 請求項乃至のいずれか1つに記載の移行式プラズマトーチ組体;および、前記溶接対象材と各プラズマトーチの電極との間に、溶接対象材側が正で電極側が負の電流を通電するプラズマ溶接電源;を備えるプラズマ溶接装置。 A transfer type plasma torch assembly according to any one of claims 1 to 3 , and a current that is positive on the welding target material side and negative on the electrode side between the welding target material and an electrode of each plasma torch. A plasma welding power source. 請求項に記載の移行式プラズマトーチ組体;前記溶接対象材と各プラズマトーチの電極との間に、溶接対象材側が正で電極側が負の電流を通電するプラズマ溶接電源;および、前記溶接対象材と前記溶接ワイヤとの間に、溶接対象材側が正で溶接ワイヤ側が負の電流を通電するホットワイヤ用電源;を備えるプラズマ溶接装置。 The plasma- type plasma torch assembly according to claim 2 ; a plasma welding power source in which a current to be welded is positive and a negative current is applied to the electrode side between the welding target material and an electrode of each plasma torch; and the welding A plasma welding apparatus comprising: a hot-wire power source that applies a current between a target material and the welding wire to which a welding target material side is positive and a welding wire side is negative. 請求項1に記載の移行式プラズマトーチ組体を用いて、前記複数のプラズマトーチからプラズマアークを、溶接対象材の溶接線に垂直な垂直線に関して対称にかつ該垂直線に対して傾斜して前記溶接線の同一位置に当てて全プラズマアークに共通に作用する磁気ピンチ力によって前記同一位置にプラズマアークを集中させるとともに、前記複数のプラズマトーチの各インサートチップの外周まわりからシールドガスを前記溶接対象材に向けて噴出する、プラズマ溶接方法。 Using the transfer type plasma torch assembly according to claim 1, a plasma arc is inclined from the plurality of plasma torches symmetrically with respect to a vertical line perpendicular to a weld line of a material to be welded and with respect to the vertical line. The plasma arc is concentrated at the same position by a magnetic pinch force acting on all plasma arcs in common at the same position of the weld line, and a shield gas is welded from around the outer periphery of each insert tip of the plurality of plasma torches. A plasma welding method that ejects toward the target material. 請求項2に記載の移行式プラズマトーチ組体を用いて、前記複数のプラズマトーチからプラズマアークを、溶接対象材の溶接線に垂直な垂直線に関して対称にかつ該垂直線に対して傾斜して前記溶接線の同一位置に当てて全プラズマアークに共通に作用する磁気ピンチ力によって前記同一位置にプラズマアークを集中させるとともに、前記複数のプラズマトーチの各インサートチップの外周まわりからシールドガスを前記溶接対象材に向けて噴出し、前記複数のプラズマトーチのプラズマアーク間の中間点に溶接ワイヤを送給する、プラズマ溶接方法。 Using the transfer type plasma torch assembly according to claim 2, a plasma arc is inclined from the plurality of plasma torches symmetrically with respect to a vertical line perpendicular to a weld line of a material to be welded and with respect to the vertical line. The plasma arc is concentrated at the same position by a magnetic pinch force acting on all plasma arcs in common at the same position of the weld line, and a shield gas is welded from around the outer periphery of each insert tip of the plurality of plasma torches. and ejected toward the target object, that teapot feeding welding wire to an intermediate point between the plasma arc of the plurality of plasma torches, flop plasma welding method. 請求項3に記載の移行式プラズマトーチ組体を用いて、前記複数のプラズマトーチからプラズマアークを、溶接対象材の溶接線に垂直な垂直線に関して対称にかつ該垂直線に対して傾斜して前記溶接線の同一位置に当てて全プラズマアークに共通に作用する磁気ピンチ力によって前記同一位置にプラズマアークを集中させるとともに、前記複数のプラズマトーチの各インサートチップの外周まわりからシールドガスを前記溶接対象材に向けて噴出し、前記複数のプラズマトーチのプラズマアーク間の中間点に肉盛り用粉体を送給する、プラズマ溶接方法。 Using the transfer type plasma torch assembly according to claim 3, a plasma arc is inclined from the plurality of plasma torches symmetrically with respect to a vertical line perpendicular to a weld line of a material to be welded and with respect to the vertical line. The plasma arc is concentrated at the same position by a magnetic pinch force acting on all plasma arcs in common at the same position of the weld line, and a shield gas is welded from around the outer periphery of each insert tip of the plurality of plasma torches. and ejected toward the target object, that teapot send a padding for powder to an intermediate point between the plasma arc of the plurality of plasma torches, flop plasma welding method. 更に、前記溶接対象材と各プラズマトーチの電極との間に、溶接対象材側が正で電極側が負の電流を通電するプラズマ溶接電源を用いて、前記溶接対象材と各プラズマトーチの電極との間に、溶接対象材側が正で電極側が負の電流を通電する、請求項乃至のいずれか1つに記載のプラズマ溶接方法。 Furthermore, between the welding object material and the electrode of each plasma torch , using a plasma welding power source that conducts a current that is positive on the welding object material side and negative on the electrode side, the welding object material and the electrode of each plasma torch The plasma welding method according to any one of claims 6 to 8 , wherein a current to be welded is positive on the electrode side and negative on the electrode side. 更に、前記溶接対象材と各プラズマトーチの電極との間に、溶接対象材側が正で電極側が負の電流を通電するプラズマ溶接電源、および、前記溶接対象材と前記溶接ワイヤとの間に、溶接対象材側が正で溶接ワイヤ側が負の電流を通電するホットワイヤ用電源、を用いて、前記溶接対象材と各プラズマトーチの電極との間に、溶接対象材側が正で電極側が負の電流を通電し、前記溶接対象材と前記溶接ワイヤとの間に、溶接対象材側が正で溶接ワイヤ側が負の電流を通電する、請求項に記載のプラズマ溶接方法。 Furthermore, between the welding target material and the electrode of each plasma torch, a plasma welding power source for passing a current that is positive on the welding target material side and negative on the electrode side, and between the welding target material and the welding wire, Using a hot wire power source that supplies a positive current on the welding object side and a negative current on the welding wire side , the welding object side is positive and the electrode side is negative between the welding object and each plasma torch electrode. The plasma welding method according to claim 7 , wherein a current that is positive on the welding target material side and a negative current on the welding wire side is supplied between the welding target material and the welding wire.
JP2010043623A 2010-02-27 2010-02-27 Transfer type plasma torch assembly, plasma welding apparatus, and plasma welding method Active JP5414571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010043623A JP5414571B2 (en) 2010-02-27 2010-02-27 Transfer type plasma torch assembly, plasma welding apparatus, and plasma welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010043623A JP5414571B2 (en) 2010-02-27 2010-02-27 Transfer type plasma torch assembly, plasma welding apparatus, and plasma welding method

Publications (2)

Publication Number Publication Date
JP2011177741A JP2011177741A (en) 2011-09-15
JP5414571B2 true JP5414571B2 (en) 2014-02-12

Family

ID=44689863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010043623A Active JP5414571B2 (en) 2010-02-27 2010-02-27 Transfer type plasma torch assembly, plasma welding apparatus, and plasma welding method

Country Status (1)

Country Link
JP (1) JP5414571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020001363B3 (en) 2020-02-29 2020-08-06 Bernd Kunze Leaching process for precious metals from spent catalysts

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129151A1 (en) * 2012-02-29 2013-09-06 本田技研工業株式会社 Plasma-mig welding method and welding torch
US9221121B2 (en) * 2013-03-27 2015-12-29 General Electric Company Welding process for welding three elements using two angled energy beams
KR101764032B1 (en) * 2015-12-30 2017-08-02 이정명 Torch for welding
CN114682891B (en) * 2022-01-05 2023-06-13 湘潭大学 Method for matching position of magnetic control plasma arc additive manufacturing arc with position of tail end of wire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517556B1 (en) * 1971-06-04 1976-03-09
JPS52142641A (en) * 1976-05-24 1977-11-28 Hitachi Ltd Arc welding
JPS61230300A (en) * 1985-04-05 1986-10-14 プラズマ技研工業株式会社 Torch for plasma arc
US4982067A (en) * 1988-11-04 1991-01-01 Marantz Daniel Richard Plasma generating apparatus and method
JPH03177514A (en) * 1989-12-06 1991-08-01 Hitachi Ltd Method and apparatus for treating surface of sliding material
JP5322859B2 (en) * 2009-09-01 2013-10-23 日鐵住金溶接工業株式会社 Plasma torch insert tip, plasma torch and plasma welding equipment
JP5441156B2 (en) * 2009-07-30 2014-03-12 日鐵住金溶接工業株式会社 Insert tip, plasma torch and plasma processing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020001363B3 (en) 2020-02-29 2020-08-06 Bernd Kunze Leaching process for precious metals from spent catalysts

Also Published As

Publication number Publication date
JP2011177741A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP3203668U (en) Tandem hot wire system
JP5826057B2 (en) Composite welding method and welding torch for composite welding
CA2942763C (en) Method and system to use ac welding waveform and enhanced consumable to improve welding of galvanized workpiece
US9782850B2 (en) Method and system to start and use combination filler wire feed and high intensity energy source for welding
JP5414571B2 (en) Transfer type plasma torch assembly, plasma welding apparatus, and plasma welding method
US20060289394A1 (en) TIG welding or braze welding with metal transfer via a liquid bridge
WO2014020421A2 (en) Method and system for narrow groove welding using laser and hot-wire system
EP2744619A1 (en) Method and system to start and use combination filler wire feed and high intensity energy source for welding
WO2014009800A2 (en) Method and system to start and use combination filler wire feed and high intensity source for welding
JP2015526295A (en) Hybrid welding system and welding method using a wire feeder arranged between a laser and an electric arc welder
JPWO2012017913A1 (en) Composite welding method and welding torch for composite welding
CN108788395A (en) A kind of integral type TIG by the double wire feeds of sidewall symmetry welds nozzle and welding gun
CN113681116A (en) Double-wire dissimilar or same metal magnetic control swinging arc GTAW narrow gap welding device and method
JP5157006B2 (en) Welding method applied to welding wire control device
JP2007237225A (en) High-speed hot wire multi-electrode tig welding method of thin steel plate
CN109079291A (en) A kind of melt pole electrical arc welder and method based on the shunting of hollow tungsten electrode
KR101242823B1 (en) Insert-chip, plasma torch and plasma processing device
JP5441156B2 (en) Insert tip, plasma torch and plasma processing equipment
JP5346102B1 (en) Two-electrode hot wire MAG welding method
JP5472931B2 (en) Plasma welding equipment
JP7318741B2 (en) Joining method
JPH0675792B2 (en) Plasma arc welding method
JP5454916B2 (en) Hybrid plasma welding method, hybrid plasma torch and hybrid welding apparatus
JP5514634B2 (en) Arc welding method and apparatus
JP3867164B2 (en) Welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

R150 Certificate of patent or registration of utility model

Ref document number: 5414571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250