JP5441156B2 - Insert tip, plasma torch and plasma processing equipment - Google Patents

Insert tip, plasma torch and plasma processing equipment Download PDF

Info

Publication number
JP5441156B2
JP5441156B2 JP2009177371A JP2009177371A JP5441156B2 JP 5441156 B2 JP5441156 B2 JP 5441156B2 JP 2009177371 A JP2009177371 A JP 2009177371A JP 2009177371 A JP2009177371 A JP 2009177371A JP 5441156 B2 JP5441156 B2 JP 5441156B2
Authority
JP
Japan
Prior art keywords
plasma
wire
insert tip
workpiece
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009177371A
Other languages
Japanese (ja)
Other versions
JP2011031252A (en
Inventor
藤 茂 佐
野 忠 星
山 健 二 奥
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2009177371A priority Critical patent/JP5441156B2/en
Priority to TW099118661A priority patent/TWI409119B/en
Priority to CN201010231689.0A priority patent/CN101987391B/en
Priority to KR1020100072898A priority patent/KR101242823B1/en
Publication of JP2011031252A publication Critical patent/JP2011031252A/en
Application granted granted Critical
Publication of JP5441156B2 publication Critical patent/JP5441156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、プラズマトーチのインサートチップ,該インサートチップを用いるプラズマトーチ、および、該プラズマトーチを用いるプラズマ加工装置、に関する。   The present invention relates to an insert tip of a plasma torch, a plasma torch using the insert tip, and a plasma processing apparatus using the plasma torch.

プラズマトーチには、溶接,肉盛り,切断などの高熱加工の種類に応じて各種形態がある。特許文献1には、電極棒10の先端直下に側方からワイヤ16を送り込んで、電極棒先端の下方にある母材(加工対象材)を、プラズマ溶接,ホットワイヤ形態のプラズマ溶接,プラズマMIG溶接あるいはプラズマワイヤ肉盛をする方法が記載されている。特許文献2には、インサートチップ111の中央のワイヤ送通孔から下方の母材に垂直にワイヤ153を送り出し、該ワイヤの側方にワイヤと平行に配置された電極棒126によって、チップ111の下部の、該ワイヤ送通孔が開いたプラズマ孔113にプラズマを噴射してワイヤ先端を溶かすプラズマMIG溶接トーチが記載されている。特許文献3には、中心位置に電極棒を配置したインサートチップ1のプラズマノズルの下方に、側方からワイヤ3を送り込むホットワイヤ形態のプラズマ溶接方法およびプラズマワイヤ肉盛方法が記載されている。特許文献4には、インサートチップ33の中心位置に電極棒を配置したプラズマトーチのプラズマが形成したプールに向けて、該プラズマトーチの側方から消耗電極であるワイヤ39を送給するプラズマMIG溶接が記載されている。特許文献5には、インサートチップ9のプラズマ噴射ノズルの上方かつ中心に配置した有底筒状のプラズマ電極8の、中心穴である底穴と、その下方のノズルプラズマ噴射ノズルを通して下方の母材に垂直にワイヤを送給し、該ワイヤをプラズマ電極8が生成するプラズマで溶かすプラズマMIG溶接方法が記載されている。   There are various types of plasma torches depending on the type of high heat processing such as welding, overlaying and cutting. In Patent Document 1, a wire 16 is fed from the side just below the tip of the electrode rod 10, and the base material (material to be processed) below the tip of the electrode rod is plasma welded, plasma welding in the form of a hot wire, or plasma MIG. A method of welding or plasma wire overlaying is described. In Patent Document 2, a wire 153 is fed vertically from a central wire feed hole of an insert tip 111 to a lower base material, and an electrode rod 126 arranged in parallel to the wire on the side of the wire, A plasma MIG welding torch is described in which plasma is injected into a plasma hole 113 at the bottom where the wire passage hole is opened to melt the wire tip. Patent Document 3 describes a hot-wire-type plasma welding method and a plasma wire build-up method in which a wire 3 is fed from the side below a plasma nozzle of an insert tip 1 in which an electrode rod is arranged at the center position. In Patent Document 4, plasma MIG welding in which a wire 39 as a consumable electrode is fed from the side of the plasma torch toward a pool formed by plasma of a plasma torch in which an electrode rod is disposed at the center position of the insert tip 33. Is described. In Patent Document 5, a bottom base material that is a center hole of a bottomed cylindrical plasma electrode 8 disposed above and in the center of a plasma injection nozzle of an insert tip 9 and a lower base material through a nozzle plasma injection nozzle below the center hole. Describes a plasma MIG welding method in which a wire is fed perpendicularly and the wire is melted by plasma generated by a plasma electrode 8.

特公昭39− 15267号公報Japanese Examined Patent Publication No. 39-15267 特開昭52−138038号公報JP 52-138038 A 特開昭53− 31544号公報JP-A-53-31544 特表2006−519103号公報JP-T-2006-519103 特開2008−229641号公報。JP 2008-229641 A.

特許文献1〜4のいずれの溶接方法およびプラズマトーチも、1個の電極棒と一本のワイヤを用いて、該電極棒が母材との間に形成したプラズマ流に、電極棒/母材間の側方からワイヤを送給し、通電するので、ワイヤ電流で発生した磁束とプラズマ電流で発生する磁束との相互作用で磁気的アンバランスが発生する。すなわち、ワイヤよりも上側(インサートチップ側)とワイヤよりも下側(母材側)でプラズマアーク状態が異なり、ワイヤの上側のプラズマはワイヤから離れる方向にアーク力を受け、ワイヤの下側のプラズマはワイヤに近づく方向にアーク力を受ける。ワイヤ先端の溶融の動揺に伴い、母材に対するプラズマの作用位置が動揺するので、プラズマアークが不安定である。特許文献5では、有底筒状のプラズマ電極8の底穴の円周エツジにアークが集中し、集中点が周方向に移動するので、やはりプラズマが動揺し、プラズマ電極8の底穴の円周エツジ及びインサートチップ9のノズル縁の損耗および溶融ワイヤのプラズマ電極8やプラズマノズル9への付着が激しく、長時間安定した溶接作業を維持できない。   In any of the welding methods and plasma torches of Patent Documents 1 to 4, an electrode rod / base material is formed into a plasma flow formed between the electrode rod and a base material using one electrode bar and a single wire. Since the wires are fed and energized from the sides between them, magnetic imbalance occurs due to the interaction between the magnetic flux generated by the wire current and the magnetic flux generated by the plasma current. That is, the plasma arc state is different between the upper side of the wire (insert chip side) and the lower side of the wire (base metal side), and the plasma on the upper side of the wire receives an arc force in a direction away from the wire, The plasma receives an arc force in a direction approaching the wire. The plasma arc is unstable because the plasma action position on the base material fluctuates as the wire tip melts. In Patent Document 5, since the arc concentrates on the circumferential edge of the bottom hole of the bottomed cylindrical plasma electrode 8 and the concentration point moves in the circumferential direction, the plasma is still shaken, and the bottom hole of the plasma electrode 8 is circled. The peripheral edge and the nozzle edge of the insert tip 9 are worn and the molten wire adheres to the plasma electrode 8 and the plasma nozzle 9 so that stable welding cannot be maintained for a long time.

本発明は、プラズマアークと同軸中央部へ溶材を供給することで高能率で作業性が良く、ワイヤに通電する方法においても、磁気吹きによるアーク乱れを発生しない安定性が高いインサートチップを提供することを第1の目的とし、プラズマの安定性が高いプラズマトーチおよびプラズマ加工装置を提供することを第2の目的とする。   The present invention provides an insert tip having high stability that does not cause arc turbulence due to magnetic blowing even in a method of supplying electricity to a wire by supplying a molten material to a plasma arc and a coaxial central portion with high efficiency and good workability. The second object is to provide a plasma torch and a plasma processing apparatus with high plasma stability.

(1)通し穴である中央孔(5)と、該中央孔(5)と平行に又はある傾斜角をもって該中央孔の中心軸を中心とする円周上に等角度ピッチで分布しプラズマガスが供給される複数の電極配置空間(1a,1b)と、各電極配置空間(1a,1b)に連通し、前記中心軸を中心とする円周上に等角度ピッチで分布する複数のノズル(4a,4b)と、を備えるインサートチップであって、
前記複数のノズル(4a,4b)の各ノズルが、前記中央孔(5)の中心軸に対して、前記電極配置空間(1a,1b)に挿入された各電極(2a,2b)と加工対象材(16)との間を前記複数のノズル(4a,4b)を通して流れる各プラズマアーク電流が該インサートチップの前記加工対象材(16)に対向する先端面の前後で合流する角度に傾斜した、インサートチップ(1)。
(1) A central hole (5), which is a through hole, and a plasma gas distributed at an equiangular pitch parallel to the central hole (5) or on a circumference centered on the central axis of the central hole with a certain inclination angle There plurality of electrodes disposed space (1a, 1b) that will be supplied, communicates with the electrode arrangement space (1a, 1b), a plurality of nozzles which are distributed at equal angular pitch on a circumference around the central axis ( 4a, 4b), and an insert tip comprising:
Each nozzle of the plurality of nozzles (4a, 4b) is processed with each electrode (2a, 2b) inserted into the electrode arrangement space (1a, 1b) with respect to the central axis of the central hole (5) Each plasma arc current flowing between the material (16) through the plurality of nozzles (4a, 4b) is inclined at an angle at which the insert tip joins before and after the tip surface facing the workpiece (16). Insert tip (1).

なお、理解を容易にするために括弧内には、図面に示し後述する実施例の対応要素又は相当要素の記号を、例示として参考までに付記した。以下も同様である。   In addition, in order to make an understanding easy, the code | symbol of the corresponding element or the equivalent element of the Example which is shown in drawing and mentions later in parentheses is attached for reference by reference. The same applies to the following.

これによれば、各ノズル(4a,4b:図5)を通って、電極配置空間(1a,1b)に挿入された各電極(2a,2b)と加工対象材(16)との間を流れる各アーク電流には、それぞれが誘起する磁束Ma,Mbの上部分は互いに打ち消すので、下部分が作用してフレミングの左手の法則で表される上向きの力が作用し、アーク同士が互いに引き合って、上方に多少曲がった形で対称形となる。しかもノズル(4a,4b)の、中央孔(5)の中心軸を中心とする円周上に等角度ピッチの分布により、各力が同じく中央孔(5)の中心軸を中心とする円周上に等角度ピッチで分布するので、プラズマの安定性が高い。すなわち、磁気吹きによるアークのふらつきを生じない。加工対象材(16)の近傍では、各アーク電流が同一方向の加算となり、合成磁束Mcを誘起するので、アークを絞る磁気的ピンチ力が強く、加工対象材(16)に対する熱収束効果(エネルギー密度)が高く、しかも作用位置がふらつくことが無い。   According to this, it passes between each electrode (2a, 2b) inserted in electrode arrangement space (1a, 1b) and a workpiece (16) through each nozzle (4a, 4b: FIG. 5). Since the upper portions of the magnetic fluxes Ma and Mb induced by each arc current cancel each other, the lower portion acts and an upward force expressed by Fleming's left-hand rule acts, and the arcs attract each other. It becomes a symmetric shape with a slightly bent shape upward. Moreover, due to the equiangular pitch distribution on the circumference of the nozzle (4a, 4b) centered on the central axis of the central hole (5), each force is also a circumference centered on the central axis of the central hole (5). Since it is distributed at an equiangular pitch, the stability of the plasma is high. That is, no arc wobbling due to magnetic blowing occurs. In the vicinity of the material to be processed (16), each arc current is added in the same direction and induces the composite magnetic flux Mc, so that the magnetic pinch force for constricting the arc is strong and the heat convergence effect (energy) on the material to be processed (16) Density) and the working position does not fluctuate.

本発明の第1実施例のプラズマトーチの、縦断面図である。It is a longitudinal cross-sectional view of the plasma torch of the first embodiment of the present invention. (a)は図1のプラズマトーチのみを示す縦断面図、(b)はプラズマ噴射端部側から見た底面図である。(A) is a longitudinal cross-sectional view which shows only the plasma torch of FIG. 1, (b) is the bottom view seen from the plasma injection end part side. 図1に示すインサートチップ1を拡大して示し、(a)は正面図、(b)は(c)上の2b−2b線での縦断面図、(c)は底面図である。1 is an enlarged view of the insert chip 1 shown in FIG. 1, wherein (a) is a front view, (b) is a longitudinal sectional view taken along line 2b-2b in (c), and (c) is a bottom view. 図1に示すプラズマトーチの、冷却水路9w,パイロットガス路9pおよびシールドガス路9sを示し、(a)は冷却水路9wを示す縦断面図、(b)はパイロットガス路9pを示す縦断面図であって(c)上の4b−4b線の縦断面図、(c)は(b)上の4c−4c線の横断面図、(d)はシールドガス路9sを示す縦断面図であって(e)上の4d−4d線の縦断面図、(e)は(d)上の4e−4e線の横断面図である。1 shows a cooling water passage 9w, a pilot gas passage 9p, and a shield gas passage 9s of the plasma torch shown in FIG. 1, wherein (a) is a longitudinal sectional view showing the cooling water passage 9w, and (b) is a longitudinal sectional view showing the pilot gas passage 9p. (C) is a longitudinal sectional view taken along line 4b-4b, (c) is a transverse sectional view taken along line 4c-4c, and (d) is a longitudinal sectional view showing shield gas passage 9s. (E) is a longitudinal sectional view taken along line 4d-4d, and (e) is a transverse sectional view taken along line 4e-4e in (d). 図3の(b)相当の、インサートチップ1の拡大縦断面図であり、第1電極2aと第2電極2bが発生する各アークによって誘起される各磁束MaとMb、および、合成磁束Mcを示す。FIG. 4 is an enlarged longitudinal sectional view of the insert tip 1 corresponding to FIG. 3B, and shows magnetic fluxes Ma and Mb and composite magnetic flux Mc induced by arcs generated by the first electrode 2 a and the second electrode 2 b. Show. 本発明の第2実施例のプラズマトーチの、縦断面図である。It is a longitudinal cross-sectional view of the plasma torch of the second embodiment of the present invention. 本発明の第3実施例のプラズマトーチの、縦断面図である。It is a longitudinal cross-sectional view of the plasma torch of the 3rd example of the present invention. 本発明の第4実施例のプラズマトーチの、縦断面図である。It is a longitudinal cross-sectional view of the plasma torch of the 4th example of the present invention. 本発明の第5実施例のプラズマトーチの、縦断面図である。It is a longitudinal cross-sectional view of the plasma torch of 5th Example of this invention. 本発明の第6実施例のプラズマトーチの、縦断面図である。It is a longitudinal cross-sectional view of the plasma torch of 6th Example of this invention. 本発明の第7実施例のプラズマトーチの、縦断面図である。It is a longitudinal cross-sectional view of the plasma torch of the seventh embodiment of the present invention.

(2)インサートチップ(1)は更に、前記中央口(5)に連続して前記先端面に開き前記中央口(5)よりも大径の先広がりの円錐形状の拡大口(1d)、を備え、前記ノズル(4a,4b)は、前記先端面よりも内側で前記拡大口(1d)に開いた、請求項1に記載のインサートチップ。 (2) insert the chip (1) further, the central opening (5) to continuously open to the front end face the central opening (5) larger port cone shape flared diameter larger than (1d), the The insert tip according to claim 1, wherein the nozzle (4a, 4b) is open to the enlarged opening (1d) inside the tip end surface.

これによれば、電極配置空間(1a,1b)に挿入された各電極(2a,2b)と加工対象材(16)との間を流れる各アーク電流が、インサートチップの先端面(拡大口1dの母材対向開口)の前後で合流するので、プラズマアーク同士は最短に近い距離で合流できるため、互いの磁気干渉によるアーク曲がり変化を小さくでき、安定したアークで、加工精度が向上する。   According to this, each arc current flowing between each electrode (2a, 2b) inserted into the electrode arrangement space (1a, 1b) and the material to be processed (16) becomes the tip surface of the insert tip (expansion port 1d). Since the plasma arcs can be joined at a distance close to the shortest distance, the change in arc bending due to mutual magnetic interference can be reduced, and the machining accuracy is improved with a stable arc.

(3)上記(1)又は(2)に記載のインサートチップ(1)と、該インサートチップ(1)の前記中央孔(5)にワイヤ(15)を案内するワイヤガイド(13,6)と、前記インサートチップ(1)の各電極配置空間(1a,1b)に先端部を挿入した複数の電極(2a,2b)と、前記インサートチップ(1)を冷却するための冷却水流路(9w)と、各電極配置空間(1a,1b)にパイロットガスを供給するためのパイロットガス流路(9p)と、を備えるプラズマトーチ(図2)。   (3) The insert tip (1) according to (1) or (2) above, and a wire guide (13, 6) for guiding the wire (15) into the central hole (5) of the insert tip (1) A plurality of electrodes (2a, 2b) having tips inserted into the electrode arrangement spaces (1a, 1b) of the insert tip (1), and a cooling water channel (9w) for cooling the insert tip (1) And a pilot gas channel (9p) for supplying pilot gas to each electrode arrangement space (1a, 1b) (FIG. 2).

(4)上記(3)に記載のプラズマトーチと、前記複数の電極(2a,2b)と加工対象材(16)の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源(17,18)と、を備えるプラズマ溶接装置(図1)。   (4) A power source for passing a plasma arc current between the plasma torch described in (3) above and the plurality of electrodes (2a, 2b) and the workpiece (16) with a negative electrode side and a positive workpiece arc side (17, 18) and a plasma welding apparatus (FIG. 1).

(5)更に、前記ワイヤ(15)と加工対象材(16)との間に、ワイヤ側が負で加工対象材側が正の電流を流すホットワイヤ電源(21)を備える、上記(4)に記載の、ホットワイヤ形態のプラズマ溶接装置(図6)。   (5) Furthermore, a hot wire power source (21) is provided between the wire (15) and the material to be processed (16), and the wire side is negative and the material to be processed side supplies a positive current. The plasma welding apparatus of a hot wire form (FIG. 6).

(6)上記(3)に記載のプラズマトーチと、前記複数の電極(2a,2b)と加工対象材(16)の間に、電極側が正で加工対象材側が負のプラズマアーク電流を流す電源(17,18)と、前記ワイヤ(15)と加工対象材(16)との間に、ワイヤ側が正で加工対象材側が負の電流を流すMIG溶接電源(22)を備える、プラズマMIG溶接装置(図7)。   (6) A power supply for passing a plasma arc current between the plasma torch described in (3) above and the plurality of electrodes (2a, 2b) and the workpiece (16) with a positive electrode side and a negative workpiece side A plasma MIG welding apparatus comprising a MIG welding power source (22) between the wires (17, 18) and the wire (15) and the material to be processed (16) for flowing a positive current on the wire side and a negative current on the material to be processed side (FIG. 7).

(7)上記(3)に記載のプラズマトーチと、前記複数の電極(2a,2b)と加工対象材(16)の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源(17,18)と、前記ワイヤ(15)と各電極(2a,2b)との間に、ワイヤ側が正で電極側が負の電流を流すホットワイヤ電源(21a,21b)を備える、プラズマワイヤ肉盛装置(図8)。   (7) A power source for passing a plasma arc current between the plasma torch described in (3) above and the plurality of electrodes (2a, 2b) and the workpiece (16) with a negative electrode side and a positive workpiece arc side (17, 18), and a hot wire power source (21a, 21b) for passing a current that is positive on the wire side and negative on the electrode side, between the wire (15) and each electrode (2a, 2b). Assembling device (FIG. 8).

(8)上記(1)又は(2)に記載のインサートチップ(1)と、該インサートチップ(1)の前記中央孔(5)に粉体(23)を案内する粉体ガイド(6)と、前記インサートチップ(1)の各電極配置空間(1a,1b)に先端部を挿入した複数の電極(2a,2b)と、前記インサートチップ(1)を冷却するための冷却水流路(9w)と、各電極配置空間(1a,1b)にパイロットガスを供給するためのパイロットガス流路(9p)と、を備えるプラズマ粉体肉盛トーチ(図9)。   (8) The insert tip (1) according to (1) or (2) above, and a powder guide (6) for guiding the powder (23) to the central hole (5) of the insert tip (1) A plurality of electrodes (2a, 2b) having tips inserted into the electrode arrangement spaces (1a, 1b) of the insert tip (1), and a cooling water channel (9w) for cooling the insert tip (1) And a pilot gas flow path (9p) for supplying pilot gas to each electrode arrangement space (1a, 1b) (FIG. 9).

(9)上記(8)に記載のプラズマ粉体肉盛トーチと、前記複数の電極(2a,2b)と加工対象材(16)の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源(17,18)と、前記粉体ガイド(6)に粉体を送給する手段(24,25)と、を備えるプラズマ粉体肉盛装置(図9)。   (9) The plasma powder build-up torch according to (8) above and a plasma arc between the plurality of electrodes (2a, 2b) and the workpiece (16) having a negative electrode side and a positive workpiece side A plasma powder overlaying apparatus (FIG. 9) comprising a power source (17, 18) for supplying an electric current and means (24, 25) for feeding powder to the powder guide (6).

(10)上記(1)又は(2)に記載のインサートチップ(1)と、該インサートチップ(1)の前記中央孔(5)にキーホールガス(26)を案内するガスガイド(6)と、前記インサートチップ(1)の各電極配置空間(1a,1b)に先端部を挿入した複数の電極(2a,2b)と、前記インサートチップ(1)を冷却するための冷却水流路(9w)と、各電極配置空間(1a,1b)にパイロットガスを供給するためのパイロットガス流路(9p)と、を備えるプラズマキーホール溶接トーチ(図10)。   (10) The insert tip (1) according to (1) or (2) above, and a gas guide (6) for guiding the keyhole gas (26) to the central hole (5) of the insert tip (1) A plurality of electrodes (2a, 2b) having tips inserted into the electrode arrangement spaces (1a, 1b) of the insert tip (1), and a cooling water channel (9w) for cooling the insert tip (1) And a pilot gas flow path (9p) for supplying pilot gas to each electrode arrangement space (1a, 1b) (FIG. 10).

(11)上記(10)に記載のプラズマキーホール溶接トーチと、前記複数の電極(2a,2b)と加工対象材(16)の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源(17,18)と、を備えるプラズマキーホール溶接装置(図10)。   (11) Between the plasma keyhole welding torch according to (10) above and the plurality of electrodes (2a, 2b) and the workpiece (16), the plasma arc current is negative on the electrode side and positive on the workpiece side And a plasma keyhole welding device (FIG. 10).

(12)上記(1)又は(2)に記載のインサートチップ(1)と、該インサートチップ(1)の前記中央孔(5)に切断ガス(27)を案内するガスガイド(6)と、前記インサートチップ(1)の各電極配置空間(1a,1b)に先端部を挿入した複数の電極(2a,2b)と、前記インサートチップ(1)を冷却するための冷却水流路(9w)と、各電極配置空間(1a,1b)にパイロットガスを供給するためのパイロットガス流路(9p)と、を備えるプラズマ切断トーチ(図11)。   (12) The insert tip (1) according to (1) or (2) above, a gas guide (6) for guiding the cutting gas (27) to the central hole (5) of the insert tip (1), A plurality of electrodes (2a, 2b) having tips inserted into each electrode arrangement space (1a, 1b) of the insert tip (1), and a cooling water flow path (9w) for cooling the insert tip (1) A plasma cutting torch (FIG. 11) comprising a pilot gas flow path (9p) for supplying pilot gas to each electrode arrangement space (1a, 1b).

(13)上記(12)に記載のプラズマ切断トーチと、前記複数の電極(2a,2b)と加工対象材(16)の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源(17,18)と、を備えるプラズマ切断装置(図11)。   (13) Between the plasma cutting torch according to (12) above and the plurality of electrodes (2a, 2b) and the workpiece (16), a negative plasma arc current and a positive plasma arc current on the workpiece side are passed. And a plasma cutting device (FIG. 11).

上記(3)〜(13)のいずれの態様においても、上記(1)の効果、すなわち上記「発明の効果」が得られる。   In any of the above aspects (3) to (13), the effect (1), that is, the “effect of the invention” can be obtained.

本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。   Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

−第1実施例−
図1に、第1実施例であるプラズマ溶接装置を示し、図2の(a)には図1に示すプラズマトーチすなわち第1実施例のプラズマ溶接トーチのみを示し、図2の(b)にはトーチの先端面を示す。第1実施例のプラズマ溶接トーチは、プラズマ溶接を行う形態のものである。インサートチップ1は、インサートキャップ7を絶縁台9にねじ締めすることにより、絶縁台9に固定されている。シールドキャップ8はねじ締めにより絶縁台9に固定されている。2つ割でx方向に分離した第1電極11と第2電極12(図4の(c),(e))は、絶縁体の外ケース30の内部にある。第1電極11と第2電極12との間の空間を、絶縁本体14の中空円筒状のステムが通って、該ステムの先端部の、図示を省略した雄ねじが、絶縁台9の中心の、図示を省略した雌ねじ穴にねじこまれ、これにより、電極台11,12が縦方向に圧縮するように締め付けられて、絶縁台9,電極台11,12および絶縁本体14が一体に結合している。
-1st Example-
FIG. 1 shows a plasma welding apparatus according to the first embodiment, FIG. 2 (a) shows only the plasma torch shown in FIG. 1, ie, the plasma welding torch of the first embodiment, and FIG. Indicates the tip of the torch. The plasma welding torch according to the first embodiment is configured to perform plasma welding. The insert chip 1 is fixed to the insulating base 9 by screwing the insert cap 7 to the insulating base 9. The shield cap 8 is fixed to the insulating table 9 by screwing. The first electrode 11 and the second electrode 12 ((c) and (e) of FIG. 4) separated in the x direction by being divided into two are inside an outer case 30 made of an insulator. The space between the first electrode 11 and the second electrode 12 is passed through the hollow cylindrical stem of the insulating body 14, and the male screw (not shown) at the tip of the stem is at the center of the insulating base 9. Screwed into a female screw hole (not shown), the electrode bases 11 and 12 are tightened so as to be compressed in the vertical direction, and the insulating base 9, the electrode bases 11 and 12 and the insulating main body 14 are integrally coupled. Yes.

インサートチップ1の軸心に中央孔5があり、絶縁台9および絶縁本体14の軸心には、中央孔5と同軸のガイド穴(本実施例ではワイヤガイド穴)がある。インサートチップ1の中央孔5にはワイヤガイド6が挿入されており、絶縁本体14の軸心のガイド穴にもワイヤガイド13が挿入されている。絶縁本体14の頭部に挿入された溶接ワイヤ15は、ワイヤガイド13および6を通してインサートチップ1に送り込まれる。   There is a central hole 5 in the axial center of the insert chip 1, and there are guide holes (wire guide holes in this embodiment) coaxial with the central hole 5 in the axial centers of the insulating base 9 and the insulating body 14. A wire guide 6 is inserted into the central hole 5 of the insert chip 1, and a wire guide 13 is also inserted into a guide hole in the axial center of the insulating body 14. The welding wire 15 inserted into the head of the insulating body 14 is fed into the insert tip 1 through the wire guides 13 and 6.

インサートチップ1には、中央孔5の中心軸を中心とする円周上に等角度ピッチである180度で分布し中央孔5と平行に位置する2個の電極配置空間1a,1bがあり、各電極配置空間に、絶縁台9を貫通し各電極台11,12にねじ10a,10bで固定された第1電極2a,第2電極2bの先端部が挿入されて、各電極配置空間の軸心位置に、センタリングストーン3で位置決めされている。インサートチップ1の、母材16に対向する先端面には、中央孔5と同心であるが、中央孔5よりも大径の拡大口1dがあり、各電極配置空間1a,1bにつながったノズル4(4a,4b)が、大径口1dに開いている。   The insert chip 1 has two electrode arrangement spaces 1a and 1b that are distributed at an equiangular pitch of 180 degrees on the circumference centered on the central axis of the central hole 5 and are positioned parallel to the central hole 5. The tip portions of the first electrode 2a and the second electrode 2b that pass through the insulating table 9 and are fixed to the electrode tables 11 and 12 with screws 10a and 10b are inserted into the electrode arrangement spaces, respectively. The centering stone 3 is positioned at the center position. The tip of the insert tip 1 facing the base material 16 is concentric with the central hole 5 but has an enlarged opening 1d having a diameter larger than that of the central hole 5 and connected to the electrode arrangement spaces 1a and 1b. 4 (4a, 4b) is open to the large-diameter opening 1d.

図3に、インサートチップ1を拡大して示す。本実施例のインサートチップ1には、通し穴である中央孔5と、該中央孔5に連続して母材16に対向する先端面に開いた中央孔5よりも大径の拡大口1dと、中央孔5の中心軸を中心とする円周上に180度ピッチで分布する、中央孔5と平行に位置する2個の電極配置空間1a,1bと、各電極配置空間1a,1bに連通し拡大口1dに開いた、中央孔5の中心軸を中心とする円周上に180度ピッチで分布する2個のノズル4a,4bと、を備え、しかも、ノズル4a,4bは、インサートチップ1の、母材16に対向する先端面よりも内側で、拡大口1dに開いている。   FIG. 3 shows the insert chip 1 in an enlarged manner. The insert tip 1 of the present embodiment includes a central hole 5 that is a through-hole, and an enlarged opening 1d that has a diameter larger than that of the central hole 5 that is continuous with the central hole 5 and that is open at the front end surface facing the base material 16. The two electrode arrangement spaces 1a and 1b, which are distributed at a pitch of 180 degrees on the circumference centered on the central axis of the central hole 5 and are located in parallel with the central hole 5, and communicate with the electrode arrangement spaces 1a and 1b. And two nozzles 4a and 4b distributed at a pitch of 180 degrees on the circumference centered on the central axis of the central hole 5 opened to the enlarged opening 1d, and the nozzles 4a and 4b are insert tips. 1 is open to the enlargement port 1d on the inner side of the tip surface facing the base material 16.

なお、本実施例では、1対(2個)の電極2a,2bを装備するプラズマトーチのインサートチップであるが、3本又は4本など、複数の電極を用いるプラズマトーチのインサートチップでは、中央孔5の中心軸を中心とする円周上に等角度度ピッチで分布する、中央孔5と平行に位置する複数の電極配置空間と、各電極配置空間に連通し拡大口1dに開いた、中央孔5の中心軸を中心とする円周上に等角度ピッチで分布する複数のノズルを備える。例えば3本の電極を備えるプラズマトーチのインサートチップは、中央孔5の中心軸を中心とする円周上に120度ピッチで分布する、中央孔5と平行に位置する3個の電極配置空間と、各電極配置空間に連通し拡大口1dに開いた、中央孔5の中心軸を中心とする円周上に120度ピッチで分布する3個のノズルを備える。また、4本の電極を備えるプラズマトーチのインサートチップは、中央孔5の中心軸を中心とする円周上に90度ピッチで分布する、中央孔5と平行に位置する4個の電極配置空間と、各電極配置空間に連通し拡大口1dに開いた、中央孔5の中心軸を中心とする円周上に90度ピッチで分布する4個のノズルを備える。   In this embodiment, the insert tip of the plasma torch equipped with a pair (two) of electrodes 2a and 2b is used. However, in the insert tip of the plasma torch using a plurality of electrodes such as three or four, A plurality of electrode arrangement spaces distributed in equiangular pitches on the circumference centered on the central axis of the hole 5 and located parallel to the central hole 5; A plurality of nozzles distributed at equiangular pitches on a circumference centered on the central axis of the central hole 5 are provided. For example, an insert tip of a plasma torch having three electrodes has three electrode arrangement spaces that are distributed in parallel with the central hole 5 and distributed at a pitch of 120 degrees on the circumference centered on the central axis of the central hole 5. Three nozzles distributed at a 120-degree pitch are provided on the circumference centering on the central axis of the central hole 5 that communicates with each electrode arrangement space and opens at the expansion port 1d. In addition, the insert tip of the plasma torch having four electrodes is distributed on the circumference centered on the central axis of the central hole 5 at a 90-degree pitch, and four electrode arrangement spaces located in parallel with the central hole 5. And four nozzles distributed in a 90-degree pitch on the circumference centered on the central axis of the central hole 5 that communicates with each electrode arrangement space and opens in the expansion port 1d.

また、拡大口1dは省略し、中央孔5およびノズルノズル4a,4bの下端開口をチップ1のフラットな下端面とすることができる。また、電極配置空間1a,1b(およびそこに装備する電極2a,2b)は、中央孔5と平行のみならず、中央孔5に対してある傾斜角を持つ斜め姿勢にすることも出来る。   Moreover, the enlarged opening 1d can be omitted, and the lower end opening of the center hole 5 and the nozzle nozzles 4a and 4b can be used as the flat lower end surface of the chip 1. In addition, the electrode arrangement spaces 1 a and 1 b (and the electrodes 2 a and 2 b provided therein) can be not only parallel to the central hole 5 but also in an oblique posture with a certain inclination angle with respect to the central hole 5.

図4に、図2に示すプラズマトーチの、冷却水流路9w,パイロットガス流路9pおよびシールドガス流路9sを示す。冷却水は、図4の(a)に示す冷却水給水流路9wiを通って、インサートチップ1の外周面とインサートキャップ7の内周面との間の空間に入り、そこから冷却水排水流路9woを通ってトーチ外に出る。一方のパイロットガスは、図4の(b)および(c)に示すガス流路9paおよび電極挿入空間を通って電極配置空間1aに入り、電極先端部でプラズマとなってノズル4aを通りそして拡大口1dを通ってトーチの先端面から噴出する。他方のパイロットガスは、ガス流路9pbおよび電極挿入空間を通って電極配置空間1bに入り、電極先端部でプラズマとなってノズル4bを通りそして拡大口1dを通ってトーチの先端面から噴出する。シールドガスは、図4の(d)および(e)に示すシールドガス流路9sを通って、インサートキャップ7とシールドキャップ8との間の円筒状の空間に入り、そしてトーチの先端から噴出する。   FIG. 4 shows a cooling water passage 9w, a pilot gas passage 9p, and a shield gas passage 9s of the plasma torch shown in FIG. The cooling water enters the space between the outer peripheral surface of the insert tip 1 and the inner peripheral surface of the insert cap 7 through the cooling water supply channel 9wi shown in FIG. Go out of the torch through road 9wo. One pilot gas enters the electrode arrangement space 1a through the gas flow path 9pa and the electrode insertion space shown in FIGS. 4B and 4C, becomes plasma at the tip of the electrode, passes through the nozzle 4a, and expands. It ejects from the front end surface of the torch through the mouth 1d. The other pilot gas enters the electrode arrangement space 1b through the gas flow path 9pb and the electrode insertion space, becomes plasma at the electrode tip, passes through the nozzle 4b, and is ejected from the tip of the torch through the expansion port 1d. . The shield gas enters the cylindrical space between the insert cap 7 and the shield cap 8 through the shield gas flow path 9s shown in FIGS. 4D and 4E, and is ejected from the tip of the torch. .

図1に示すように、電極2a,2bと母材16の間に、電極側が負で母材側が正のプラズマアーク電流を流すプラズマ電源17,18により、電極2a,2bにアークを発生すると、プラズマアーク電流が各電極2a,2bと母材16の間に流れて、1プール2アーク溶接が実現する。プラズマアーク19にワイヤ15が送給され、ワイヤ15に対して各電極2a,2bおよびノズル4(4a,4b)が対称に位置するので、ワイヤ15に対してプラズマが安定する。すなわち、図5を参照すると、電極配置空間1a,1bに挿入された各電極2a,2bと母材16との間を、各ノズル4a,4bを通って流れる各アーク電流には、それぞれが誘起する磁束Ma,Mbとの間に、フレミングの左手の法則で表される上向き(又は下向き:z)の力が作用し、同一方向であり、しかもノズル4a,4bの、中央孔5の中心軸を中心とする円周上に等角度ピッチの分布により、各力が同じく中央孔5の中心軸を中心とする円周上に等角度ピッチで分布するので、磁気的にバランスがとれ、プラズマの安定性が高い。つまり、磁気吹きによるアークのふらつきを生じない。母材16の近傍では、各アーク電流が同一方向の加算となり合成磁束Mcを誘起するので、アークを絞る磁気的ピンチ力が強く、母材16に対する熱収束効果(エネルギー密度)が高く、しかも作用位置がふらつくことが無い。尚かつ、ワイヤ15は、プラズマアーク19の上端部より入り、溶融プール20に至る迄の間アークより熱を受けることになり、有効な予熱効果として働き、ワイヤの溶着効率がアップし、高速溶接や高能率溶接ができる。従来の、側方からのワイヤ送給の場合は、ワイヤはプラズマアークに対してほぼ直角に入るため、プラズマアークに入った僅かな距離で溶融プールに熔け落ちるようにしなければならず、ほとんどワイヤの予熱効果は無い。このため溶着効率は低く、溶接速度も遅い。   As shown in FIG. 1, when an arc is generated between the electrodes 2a, 2b and the base material 16 by the plasma power sources 17, 18 that flow a plasma arc current that is negative on the electrode side and positive on the base material side, A plasma arc current flows between each electrode 2a, 2b and the base material 16, and 1 pool 2 arc welding is implement | achieved. Since the wire 15 is fed to the plasma arc 19 and the electrodes 2a and 2b and the nozzles 4 (4a and 4b) are positioned symmetrically with respect to the wire 15, the plasma is stabilized with respect to the wire 15. That is, referring to FIG. 5, each arc current flowing through each nozzle 4a, 4b is induced between each electrode 2a, 2b inserted in the electrode arrangement space 1a, 1b and the base material 16, respectively. The upward (or downward: z) force expressed by Fleming's left-hand rule acts between the magnetic fluxes Ma and Mb, and they are in the same direction, and the central axis of the central hole 5 of the nozzles 4a and 4b. Due to the distribution of equiangular pitches on the circumference centered at the center, each force is also distributed at equiangular pitches on the circumference centered on the central axis of the central hole 5, so that the magnetic balance is achieved, High stability. That is, no arc wobbling due to magnetic blowing occurs. In the vicinity of the base material 16, each arc current is added in the same direction to induce the composite magnetic flux Mc, so that the magnetic pinch force for constricting the arc is strong, the heat convergence effect (energy density) on the base material 16 is high, and the action The position does not fluctuate. In addition, the wire 15 receives heat from the arc until it enters from the upper end of the plasma arc 19 and reaches the molten pool 20, which acts as an effective preheating effect, increases the welding efficiency of the wire, and high-speed welding. And high-efficiency welding. In the case of the conventional wire feeding from the side, since the wire enters almost at right angles to the plasma arc, it must be melted into the molten pool at a short distance from the plasma arc. There is no preheating effect. For this reason, the welding efficiency is low and the welding speed is also slow.

また第1実施例によれば、ワイヤが中央より挿入されるため、ワイヤの挿入方向性が無く、曲線溶接でもトーチを回転させる制御が不要である。従来は、ワイヤはトーチ進行方向より挿入することから、曲線溶接時には、トーチ又はワイヤを曲線に相対して回転制御する装置が必要であった。   In addition, according to the first embodiment, since the wire is inserted from the center, there is no insertion directionality of the wire, and control for rotating the torch is not necessary even in curve welding. Conventionally, since the wire is inserted from the direction of travel of the torch, a device for controlling the rotation of the torch or the wire relative to the curve is necessary during curve welding.

−第2実施例−
図6に、第2実施例である、ホットワイヤ形態のプラズマ溶接装置を示す。プラズマトーチは、第1実施例のものと同様な構造の、ホットワイヤ形態のプラズマ溶接トーチであり、インサートチップ1は、図3に示す第1実施例のものと同一構成である。本実施例では図6に示すように、電極2a,2bと母材16の間に、電極側が負で母材側が正のプラズマアーク電流を流すプラズマ電源17,18を備える。この点は第1実施例と同様であるが、更には、ワイヤ15と母材16との間に、ワイヤ側が負で母材側が正の電流を流すホットワイヤ電源21を備える。ホットワイヤ電源21からの電流は、トーチ内ガイド13をとおり、ガイド13先端部近傍よりワイヤに通電し、絶縁ガイド6内ではワイヤをジュール熱で加熱し、プラズマ19で、電極2a,2bよりのプラズマアークと合流し、母材16に流入する。このとき、ホットワイヤ電流のジュール熱がプラズマ領域内で最大になる(集中する)ので、溶接入熱量が多く、高溶着量,高能率溶接となり、高速溶接が可能である。しかも、ホットワイヤ電流と電極2a,2bよりのプラズマアーク電流とは対称および同軸であることから、磁気的バランスがとれ、磁気吹きによるアークのふらつきが発生しない。その他の機能および作用効果は、第1実施例と同様である。
-Second Example-
FIG. 6 shows a plasma welding apparatus in the form of a hot wire, which is a second embodiment. The plasma torch is a hot wire type plasma welding torch having the same structure as that of the first embodiment, and the insert tip 1 has the same configuration as that of the first embodiment shown in FIG. In this embodiment, as shown in FIG. 6, plasma power sources 17 and 18 are provided between the electrodes 2 a and 2 b and the base material 16 to flow a plasma arc current that is negative on the electrode side and positive on the base material side. Although this point is the same as that of the first embodiment, a hot wire power source 21 is further provided between the wire 15 and the base material 16 to flow a current that is negative on the wire side and positive on the base material side. The electric current from the hot wire power source 21 passes through the guide 13 in the torch, and the wire is energized from the vicinity of the tip of the guide 13, the wire is heated by Joule heat in the insulating guide 6, and the plasma 19 generates the current from the electrodes 2 a and 2 b. It merges with the plasma arc and flows into the base material 16. At this time, since the Joule heat of the hot wire current is maximized (concentrated) in the plasma region, the welding heat input is large, the welding amount is high, the efficiency is high, and high-speed welding is possible. In addition, since the hot wire current and the plasma arc current from the electrodes 2a and 2b are symmetrical and coaxial, the magnetic balance is achieved and no arc wobbling due to magnetic blowing occurs. Other functions and operational effects are the same as in the first embodiment.

−第3実施例−
図7に、第3実施例である、プラズマMIG溶接装置を示す。プラズマトーチは、第1実施例のものと同様な構造のプラズマMIG溶接トーチであり、インサートチップ1も、図3に示す第1実施例のものと同一構成である。本実施例では図7に示すように、電極2a,2bと母材16の間に、第1実施例の場合とは逆に、電極側が正で母材側が負のプラズマアーク電流を流すプラズマ電源17,18を備える。更には、ワイヤ15と母材16との間に、ワイヤ側が正で母材側が負の溶接電流を流すMIG溶接電源(定電圧溶接電源)22を備える。シールドガスは、Ar又はAr+CO又はCO又はAr+Hである。このプラズマMIG溶接装置は、MIGの特徴である高能率,深溶込みの特性を持ち尚かつ、スパッタ無し溶接が可能である。さらにAr雰囲気で溶接が可能で、溶接金属中の酸化物の生成も極めて少なく、高重量高張力材に適する。また、アルミ溶接でのスタート部の溶着不良防止又は溶着不良の修復が可能である。その他の機能および作用効果は、第1実施例と同様である。
-Third Example-
FIG. 7 shows a plasma MIG welding apparatus according to the third embodiment. The plasma torch is a plasma MIG welding torch having the same structure as that of the first embodiment, and the insert tip 1 has the same configuration as that of the first embodiment shown in FIG. In this embodiment, as shown in FIG. 7, a plasma power source for passing a plasma arc current between the electrodes 2 a and 2 b and the base material 16, contrary to the case of the first embodiment, the electrode side is positive and the base material side is negative. 17 and 18 are provided. Further, an MIG welding power source (constant voltage welding power source) 22 is provided between the wire 15 and the base material 16 to flow a welding current positive on the wire side and negative on the base material side. The shielding gas is Ar or Ar + CO 2 or CO 2 or Ar + H 2 . This plasma MIG welding apparatus has the characteristics of high efficiency and deep penetration that are the characteristics of MIG, and is capable of welding without sputtering. Furthermore, welding is possible in an Ar atmosphere, and the generation of oxides in the weld metal is extremely small, making it suitable for high weight and high tension materials. In addition, it is possible to prevent a welding failure at the start portion in aluminum welding or repair a welding failure. Other functions and operational effects are the same as in the first embodiment.

−第4実施例−
図8に、第4実施例である、プラズマワイヤ肉盛装置を示す。プラズマトーチは、第1実施例のものと同様な構造のプラズマワイヤ肉盛りトーチであり、インサートチップ1も、図3に示す第1実施例のものと同一構成である。本実施例では図8に示すように、電極2a,2bと母材16の間に、電極側が負で母材側が正のプラズマアーク電流を流すプラズマ電源17,18と、ワイヤ15と各電極2a,2bとの間に、ワイヤ側が正で電極側が負の電流を流すホットワイヤ電源21a,21bを備える。ワイヤ15はホットワイヤ電源21a,21bからの電流のジュール熱で加熱されるが、母材16にはワイヤ電流が流れないので、母材16が溶ける量が少なく、低希釈の肉盛溶接ができる。母材16に垂直にワイヤ15が送り込まれるので、オシレート運動しながらの肉盛溶接でも方向性なく肉盛量が安定する。また、垂直面あるいは傾斜面に対する肉盛溶接も可能である。太径ワイヤを用いる高溶着を安定した肉盛量で行うこともできる。ホットワイヤ電流は、電極2a,2bよりノズル4a,4bを通り、ワイヤ15に流入するので、プラズマ電流と同様、トーチ軸心に対して対称となり、磁気的にバランスすることから、アークのふらつきや磁気吹き現象が発生しない安定した肉盛り溶接ができる。その他の機能および作用効果は、第1実施例と同様である。
-Fourth embodiment-
FIG. 8 shows a plasma wire cladding apparatus according to the fourth embodiment. The plasma torch is a plasma wire build-up torch having the same structure as that of the first embodiment, and the insert tip 1 has the same configuration as that of the first embodiment shown in FIG. In this embodiment, as shown in FIG. 8, between the electrodes 2a and 2b and the base material 16, plasma power sources 17 and 18 for passing a plasma arc current that is negative on the electrode side and positive on the base material side, the wire 15, and each electrode 2a , 2b are provided with hot wire power supplies 21a, 21b for flowing a positive current on the wire side and a negative current on the electrode side. Although the wire 15 is heated by the Joule heat of the current from the hot wire power supplies 21a and 21b, since the wire current does not flow through the base material 16, the amount of the base material 16 to be melted is small and low dilution overlay welding can be performed. . Since the wire 15 is fed perpendicularly to the base material 16, the build-up amount is stabilized without directivity even in the build-up welding while oscillating. Further, overlay welding on a vertical surface or an inclined surface is also possible. High welding using a thick wire can be performed with a stable build-up amount. Since the hot wire current flows from the electrodes 2a and 2b through the nozzles 4a and 4b and flows into the wire 15, the hot wire current is symmetrical with respect to the torch axis and is magnetically balanced in the same way as the plasma current. Stable build-up welding without magnetic blowing phenomenon can be achieved. Other functions and operational effects are the same as in the first embodiment.

−第5実施例−
図9に、第5実施例である、プラズマ粉体肉盛装置を示す。プラズマトーチは、ワイヤガイドに代えて粉体ガイド6を装備したプラズマ粉体肉盛トーチである。その他の構造は、第1実施例のものと同様であり、インサートチップ1も、図3に示す第1実施例のものと同様な構成である。粉体ガイド6には、粉体送給機25が、粉体槽24にある粉体を定速度で送り込む。プラズマ電源17,18が、電極2a,2bと母材16の間に、電極側が負で母材側が正のプラズマアーク電流を流す。母材に対して粉体流を垂直に送給するので、側方からプラズマアークに粉体を送給する従来例よりも、粉体の歩留まりがよく、粉体がノズルに付着しにくく、また、トーチ内の粉体通路を太くでき、直線であることから、送給性の悪い切裁粉を使用することも出来る。母材16の真上で対称なプラズマアークが合流し衝突し合う為、母材16への下向きプラズマ流が弱くなるので、低希釈の粉体肉盛が可能である。その他の機能および作用効果は、第1実施例と同様である。
-Fifth embodiment-
FIG. 9 shows a plasma powder cladding apparatus according to the fifth embodiment. The plasma torch is a plasma powder build-up torch equipped with a powder guide 6 instead of a wire guide. Other structures are the same as those of the first embodiment, and the insert tip 1 has the same configuration as that of the first embodiment shown in FIG. A powder feeder 25 feeds the powder in the powder tank 24 to the powder guide 6 at a constant speed. The plasma power sources 17 and 18 cause a plasma arc current to flow between the electrodes 2a and 2b and the base material 16 with a negative electrode side and a positive base material side. Since the powder flow is fed vertically to the base material, the yield of the powder is better than the conventional example in which the powder is fed from the side to the plasma arc, and the powder is less likely to adhere to the nozzle. Since the powder passage in the torch can be made thick and straight, it is possible to use cutting powder with poor feedability. Since symmetric plasma arcs join and collide with each other directly above the base material 16, the downward plasma flow to the base material 16 becomes weak, so that low-dilution powder overlaying is possible. Other functions and operational effects are the same as in the first embodiment.

−第6実施例−
図10に、第6実施例である、プラズマキーホール溶接装置を示す。プラズマトーチは、ワイヤガイドに代えてキーホールガスガイド6を装備したプラズマキーホール溶接トーチである。その他の構造は、第1実施例のものと同様であり、インサートチップ1も、図3に示す第1実施例のものと同様な構成である。第1実施例の場合と同様に、プラズマ電源17,18が、電極2a,2bと母材16の間に、電極側が負で母材側が正のプラズマアーク電流を流す。キーホールガスは、Ar又はHe又はAr+H又はAr+O又はAr+Heである。キーホールガスガイド6により、キーホール用小径高速ガス流を噴射することにより、厚板のキーホール溶接や低入熱深溶込み溶接をすることができる。キーホール用ガスは、電極2a,2bを通るパイロットガス(プラズマガス)とは別ルートの為、電極を酸化消耗させることがないので、キーホール用ガスに酸化性ガスを用いることができる。又、キーホール用ガス噴射孔は、プラズマ電流の大小に関係なく小径にできることから、キーホール穴も小さくでき、厚板溶接ができる。その他の機能および作用効果は、第1実施例と同様である。
-Sixth Example-
FIG. 10 shows a plasma keyhole welding apparatus according to the sixth embodiment. The plasma torch is a plasma keyhole welding torch equipped with a keyhole gas guide 6 instead of a wire guide. Other structures are the same as those of the first embodiment, and the insert tip 1 has the same configuration as that of the first embodiment shown in FIG. As in the case of the first embodiment, the plasma power sources 17 and 18 cause a plasma arc current to flow between the electrodes 2a and 2b and the base material 16 with a negative electrode side and a positive base material side. The keyhole gas is Ar or He or Ar + H 2 or Ar + O 2 or Ar + He. By injecting a small-diameter high-speed gas flow for the keyhole by the keyhole gas guide 6, it is possible to perform keyhole welding of a thick plate or low heat input deep penetration welding. Since the keyhole gas is a different route from the pilot gas (plasma gas) passing through the electrodes 2a and 2b, the electrode is not oxidized and consumed, so that an oxidizing gas can be used as the keyhole gas. Further, since the gas injection hole for the keyhole can be made small regardless of the magnitude of the plasma current, the keyhole hole can be made small and thick plate welding can be performed. Other functions and operational effects are the same as in the first embodiment.

−第7実施例−
図11に、第7実施例であるプラズマ切断装置を示す。プラズマトーチは、ワイヤガイドに代えて切断ガスガイド6を装備したプラズマ切断トーチである。その他の構造は、第1実施例のものと同様であり、インサートチップ1も、図3に示す第1実施例のものと同様な構成である。第1実施例の場合と同様に、プラズマ電源17,18が、電極2a,2bと母材16の間に、電極側が負で母材側が正のプラズマアーク電流を流す。切断ガスは、Ar又はO又はN又はAr+Hである。切断ガスガイド6により、切断小径高速ガス流を噴射することにより、細幅切断をすることができる。電極2a,2bをタングステン電極とすれば、高価なハフニュウム電極を用いずとも、Oを切断ガスとする強力なプラズマ切断をすることができる。その他の機能および作用効果は、第1実施例と同様である。
-Seventh Example-
FIG. 11 shows a plasma cutting apparatus according to the seventh embodiment. The plasma torch is a plasma cutting torch equipped with a cutting gas guide 6 instead of the wire guide. Other structures are the same as those of the first embodiment, and the insert tip 1 has the same configuration as that of the first embodiment shown in FIG. As in the case of the first embodiment, the plasma power sources 17 and 18 cause a plasma arc current to flow between the electrodes 2a and 2b and the base material 16 with a negative electrode side and a positive base material side. The cutting gas is Ar or O 2 or N 2 or Ar + H 2 . A narrow cut can be made by injecting a cutting small-diameter high-speed gas flow with the cutting gas guide 6. If the electrodes 2a and 2b are tungsten electrodes, powerful plasma cutting using O 2 as a cutting gas can be performed without using an expensive hafnium electrode. Other functions and operational effects are the same as in the first embodiment.

1:インサートチップ
1a,1b:電極配置空間
1d:拡大口
2(2a,2b):電極
2a:第1電極
2b:第2電極
3:センタリングストーン
4(4a,4b):ノズル
5:中央孔
6:ガイド
7:インサートキャップ
8:シールドキャップ
9:絶縁台
9w:冷却水路
9p:パイロットガス路
9s:シールドガス路
10(10a,10b):電極固定ねじ
11:第1電極台
12:第2電極台
13:ガイド
14:絶縁本体
15:ワイヤ
16:母材
17,18:電源
19:プラズマ
20:プール
Ma:第1アークの誘起磁束
Mb:第2アークの誘起磁束
Mc:合成磁束
21,21a,21b:ホットワイヤ電源
22:MIG溶接電源
24:粉体槽
25:粉体送給機
26:キーホールガス
27:切断ガス
30:外ケース
1: Insert tip 1a, 1b: Electrode arrangement space 1d: Expansion port 2 (2a, 2b): Electrode 2a: First electrode 2b: Second electrode 3: Centering stone 4 (4a, 4b): Nozzle 5: Center hole 6 : Guide 7: Insert cap 8: Shield cap 9: Insulating base 9w: Cooling water passage 9p: Pilot gas passage 9s: Shield gas passage 10 (10a, 10b): Electrode fixing screw 11: First electrode base 12: Second electrode base 13: Guide 14: Insulation body 15: Wire 16: Base material 17, 18: Power source 19: Plasma 20: Pool Ma: Induced magnetic flux Mb of the first arc Mb: Induced magnetic flux Mc of the second arc Mc: Synthetic magnetic flux 21, 21a, 21b : Hot wire power supply 22: MIG welding power supply 24: Powder tank 25: Powder feeder 26: Keyhole gas 27: Cutting gas 30: Outer case

Claims (13)

通し穴である中央孔と、該中央孔と平行に又はある傾斜角をもって該中央孔の中心軸を中心とする円周上に等角度ピッチで分布しプラズマガスが供給される複数の電極配置空間と、各電極配置空間に連通し、前記中心軸を中心とする円周上に等角度ピッチで分布する複数のノズルと、を備えるインサートチップであって、
前記複数のノズルの各ノズルが、前記中央孔の中心軸に対して、前記電極配置空間に挿入された各電極と加工対象材との間を前記複数のノズルを通して流れる各プラズマアーク電流が該インサートチップの前記加工対象材に対向する先端面の前後で合流する角度に傾斜した、インサートチップ。
A central hole is through hole, said central hole parallel to or more electrodes arranged space distributed plasma gas at equal angular pitch on a circumference Ru is supplied around the central axis of the central bore with a certain inclination angle And a plurality of nozzles communicating with each electrode arrangement space and distributed at equiangular pitches on a circumference centered on the central axis ,
Each nozzle of the plurality of nozzles receives each plasma arc current flowing through the plurality of nozzles between the electrode inserted into the electrode arrangement space and the material to be processed with respect to the central axis of the central hole. An insert tip that is inclined at an angle that merges before and after the tip surface of the tip facing the workpiece .
インサートチップは更に、前記中央口に連続して加工対象材に対向する先端面に開き前記中央口よりも大径の先広がりの円錐形状の拡大口、を備え、前記ノズルは、前記先端面よりも内側で前記拡大口に開いた、請求項1に記載のインサートチップ。 The insert tip further includes a conical expansion port that opens to a front end surface that is continuous with the central port and faces the workpiece, and has a larger diameter than the central port, and the nozzle extends from the front surface. The insert tip according to claim 1, which is also open to the enlarged opening inside. 請求項1又は2に記載のインサートチップと、該インサートチップの前記中央孔にワイヤを案内するワイヤガイドと、前記インサートチップの各電極配置空間に先端部を挿入した複数の電極と、前記インサートチップを冷却するための冷却水流路と、各電極配置空間にパイロットガスを供給するためのパイロットガス流路と、を備えるプラズマトーチ。   The insert tip according to claim 1, a wire guide for guiding a wire to the central hole of the insert tip, a plurality of electrodes having tip portions inserted into respective electrode arrangement spaces of the insert tip, and the insert tip A plasma torch comprising: a cooling water channel for cooling the gas; and a pilot gas channel for supplying pilot gas to each electrode arrangement space. 請求項3に記載のプラズマトーチと、前記複数の電極と加工対象材の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源と、を備えるプラズマ溶接装置。   A plasma welding apparatus comprising: the plasma torch according to claim 3; and a power source for passing a plasma arc current that is negative on the electrode side and positive on the workpiece side between the plurality of electrodes and the workpiece. 更に、前記ワイヤと加工対象材との間に、ワイヤ側が負で加工対象材側が正の電流を流すホットワイヤ電源を備える、請求項4に記載の、ホットワイヤ形態のプラズマ溶接装置。   Furthermore, the hot-wire-type plasma welding apparatus of Claim 4 provided with the hot wire power supply which sends a positive electric current between the said wire and a workpiece material negatively on the wire side and a workpiece target side. 請求項3に記載のプラズマトーチと、前記複数の電極と加工対象材の間に、電極側が正で加工対象材側が負のプラズマアーク電流を流す電源と、前記ワイヤと加工対象材との間に、ワイヤ側が正で加工対象材側が負の電流を流すMIG溶接電源を備える、プラズマMIG溶接装置。   The plasma torch according to claim 3, a power source for passing a plasma arc current that is positive on the electrode side and negative on the workpiece side between the plurality of electrodes and the workpiece material, and between the wire and the workpiece material A plasma MIG welding apparatus comprising a MIG welding power source for passing a positive current on the wire side and a negative current on the workpiece side. 請求項3に記載のプラズマトーチと、前記複数の電極と加工対象材の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源と、前記ワイヤと各電極との間に、ワイヤ側が正で電極側が負の電流を流すホットワイヤ電源を備える、プラズマワイヤ肉盛装置。   Between the plasma torch according to claim 3, between the plurality of electrodes and the workpiece, a power source for passing a plasma arc current that is negative on the electrode side and positive on the workpiece side, and between the wire and each electrode, A plasma wire build-up device comprising a hot wire power source for flowing a positive current on the wire side and a negative current on the electrode side. 請求項1又は2に記載のインサートチップと、該インサートチップの前記中央孔に粉体を案内する粉体ガイドと、前記インサートチップの各電極配置空間に先端部を挿入した複数の電極と、前記インサートチップを冷却するための冷却水流路と、各電極配置空間にパイロットガスを供給するためのパイロットガス流路と、を備えるプラズマ粉体肉盛トーチ。   The insert tip according to claim 1, a powder guide for guiding powder to the central hole of the insert tip, a plurality of electrodes having tip portions inserted into each electrode arrangement space of the insert tip, A plasma powder build-up torch comprising a cooling water channel for cooling an insert tip and a pilot gas channel for supplying pilot gas to each electrode arrangement space. 請求項8に記載のプラズマ粉体肉盛トーチと、前記複数の電極と加工対象材の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源と、前記粉体ガイドに粉体を送給する手段と、を備えるプラズマ粉体肉盛装置。   9. A plasma powder build-up torch according to claim 8, a power source for passing a plasma arc current that is negative on the electrode side and positive on the workpiece side, between the plurality of electrodes and the workpiece material; And a means for feeding the body. 請求項1又は2に記載のインサートチップと、該インサートチップの前記中央孔にキーホールガスを案内するガスガイドと、前記インサートチップの各電極配置空間に先端部を挿入した複数の電極と、前記インサートチップを冷却するための冷却水流路と、各電極配置空間にパイロットガスを供給するためのパイロットガス流路と、を備えるプラズマキーホール溶接トーチ。   The insert tip according to claim 1, a gas guide that guides a keyhole gas to the central hole of the insert tip, a plurality of electrodes having tip portions inserted into the electrode arrangement spaces of the insert tip, A plasma keyhole welding torch comprising: a cooling water channel for cooling an insert tip; and a pilot gas channel for supplying pilot gas to each electrode arrangement space. 請求項10に記載のプラズマキーホール溶接トーチと、前記複数の電極と加工対象材の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源と、を備えるプラズマキーホール溶接装置。   A plasma keyhole welding apparatus comprising: the plasma keyhole welding torch according to claim 10; and a power source for passing a plasma arc current that is negative on the electrode side and positive on the workpiece side between the plurality of electrodes and the workpiece. . 請求項1又は2に記載のインサートチップと、該インサートチップの前記中央孔に切断ガスを案内するガスガイドと、前記インサートチップの各電極配置空間に先端部を挿入した複数の電極と、前記インサートチップを冷却するための冷却水流路と、各電極配置空間にパイロットガスを供給するためのパイロットガス流路と、を備えるプラズマ切断トーチ。   The insert tip according to claim 1, a gas guide for guiding a cutting gas to the central hole of the insert tip, a plurality of electrodes having tip portions inserted into respective electrode arrangement spaces of the insert tip, and the insert A plasma cutting torch comprising: a cooling water channel for cooling a chip; and a pilot gas channel for supplying pilot gas to each electrode arrangement space. 請求項12に記載のプラズマ切断トーチと、前記複数の電極と加工対象材の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源と、を備えるプラズマ切断装置。   13. A plasma cutting device comprising: the plasma cutting torch according to claim 12; and a power source for passing a plasma arc current that is negative on the electrode side and positive on the workpiece side between the plurality of electrodes and the workpiece.
JP2009177371A 2009-07-30 2009-07-30 Insert tip, plasma torch and plasma processing equipment Expired - Fee Related JP5441156B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009177371A JP5441156B2 (en) 2009-07-30 2009-07-30 Insert tip, plasma torch and plasma processing equipment
TW099118661A TWI409119B (en) 2009-07-30 2010-06-09 Insert-chip, plasma torch and plasma processing device
CN201010231689.0A CN101987391B (en) 2009-07-30 2010-07-07 Embedded chip, plasma-based torch and plasma-based processing unit (plant)
KR1020100072898A KR101242823B1 (en) 2009-07-30 2010-07-28 Insert-chip, plasma torch and plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177371A JP5441156B2 (en) 2009-07-30 2009-07-30 Insert tip, plasma torch and plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2011031252A JP2011031252A (en) 2011-02-17
JP5441156B2 true JP5441156B2 (en) 2014-03-12

Family

ID=43760848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177371A Expired - Fee Related JP5441156B2 (en) 2009-07-30 2009-07-30 Insert tip, plasma torch and plasma processing equipment

Country Status (1)

Country Link
JP (1) JP5441156B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414571B2 (en) * 2010-02-27 2014-02-12 日鐵住金溶接工業株式会社 Transfer type plasma torch assembly, plasma welding apparatus, and plasma welding method
JP5796847B2 (en) * 2012-03-08 2015-10-21 日鐵住金溶接工業株式会社 Insert tip and plasma torch
JP5904541B2 (en) * 2012-05-31 2016-04-13 日鐵住金溶接工業株式会社 Insert tip, plasma torch and plasma processing equipment
KR101649496B1 (en) * 2014-11-07 2016-08-22 대우조선해양 주식회사 Plasma Nozzle of Plasma-MIG Hybrid Welding Machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230300A (en) * 1985-04-05 1986-10-14 プラズマ技研工業株式会社 Torch for plasma arc
US5008511C1 (en) * 1990-06-26 2001-03-20 Univ British Columbia Plasma torch with axial reactant feed

Also Published As

Publication number Publication date
JP2011031252A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
KR101656556B1 (en) A welding apparatus and a method for welding
JP4726038B2 (en) System for welding and method of use thereof
US20210245290A1 (en) Arc welding head and a welding arrangement
US6469277B1 (en) Method and apparatus for hybrid welding under shielding gas
US20090107958A1 (en) Torch and Contact Tip for Gas Metal Arc Welding
US20140034622A1 (en) Method and system for narrow grove welding using laser and hot-wire system
US20080169336A1 (en) Apparatus and method for deep groove welding
JP2007000933A (en) Tig welding or braze welding with metal transfer via liquid bridge
CN110125518B (en) Parallel three-wire welding system and method
US10730130B2 (en) Field former for use in welding applications
JP5441156B2 (en) Insert tip, plasma torch and plasma processing equipment
CN108788395A (en) A kind of integral type TIG by the double wire feeds of sidewall symmetry welds nozzle and welding gun
CN107186322B (en) Half-split hollow tungsten electrode coaxial wire feeding inert gas shielded welding gun
US20140263250A1 (en) Welding diffuser with debris removal
WO2018145544A1 (en) Welding torch used for laser beam-plasma arc hybrid welding
CN113579429B (en) Restraint type gas metal arc welding process and nozzle structure used by process
KR101242823B1 (en) Insert-chip, plasma torch and plasma processing device
JP5414571B2 (en) Transfer type plasma torch assembly, plasma welding apparatus, and plasma welding method
JP5472931B2 (en) Plasma welding equipment
Ribeiro et al. Metal transfer mechanisms in hot-wire gas metal arc welding
JP2010104996A (en) Plasma electrode and plasma mig welding torch
KR101685133B1 (en) Torch for Welding machine
JP5904541B2 (en) Insert tip, plasma torch and plasma processing equipment
US7297900B2 (en) Bypass weld torch
JP5578920B2 (en) Insert tip, plasma torch and plasma welding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Ref document number: 5441156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees