JP5904541B2 - Insert tip, plasma torch and plasma processing equipment - Google Patents

Insert tip, plasma torch and plasma processing equipment Download PDF

Info

Publication number
JP5904541B2
JP5904541B2 JP2012124070A JP2012124070A JP5904541B2 JP 5904541 B2 JP5904541 B2 JP 5904541B2 JP 2012124070 A JP2012124070 A JP 2012124070A JP 2012124070 A JP2012124070 A JP 2012124070A JP 5904541 B2 JP5904541 B2 JP 5904541B2
Authority
JP
Japan
Prior art keywords
plasma
nozzle member
tip
wire
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012124070A
Other languages
Japanese (ja)
Other versions
JP2013248631A (en
Inventor
藤 茂 佐
藤 茂 佐
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2012124070A priority Critical patent/JP5904541B2/en
Publication of JP2013248631A publication Critical patent/JP2013248631A/en
Application granted granted Critical
Publication of JP5904541B2 publication Critical patent/JP5904541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プラズマトーチのインサートチップ,該インサートチップを用いるプラズマトーチ、および、該プラズマトーチを用いるプラズマ加工装置、に関する。   The present invention relates to an insert tip of a plasma torch, a plasma torch using the insert tip, and a plasma processing apparatus using the plasma torch.

プラズマトーチには、溶接,肉盛り,切断などの高熱加工の種類に応じて各種形態がある。特許文献1に記載のプラズマ加工装置は、該高熱加工のプラズマエネルギを大きくして加工能率を高くするために、インサートチップの中央に溶加材(溶接ワイヤ,粉体),キーホールガス,切断ガス等の加工作用手段を通す中央孔(通し穴)を開けるとともに、該中央孔の中心軸を中心とする円周上に等角度ピッチで複数の電極配置空間を設けて、各電極配置空間に各ノズルを連通にして、各ノズルから噴射するプラズマアークを、中央孔から出て加工対象材に当てる。   There are various types of plasma torches depending on the type of high heat processing such as welding, overlaying and cutting. The plasma processing apparatus described in Patent Document 1 has a filler metal (welding wire, powder), keyhole gas, cutting at the center of the insert tip in order to increase the plasma energy of the high heat processing and increase the processing efficiency. Open a central hole (through hole) through which processing means such as gas is passed, and provide a plurality of electrode arrangement spaces at equiangular pitches on the circumference centered on the central axis of the central hole. With each nozzle in communication, a plasma arc ejected from each nozzle exits from the central hole and strikes the workpiece.

特開2011−31252号公報Japanese Unexamined Patent Publication No. 2011-3152

しかし1個のインサートチップで2以上のプラズマアークを噴射するのでインサートチップの熱負荷が大きくなる。よってインサートチップの冷却能力の向上を図っているが、インサートチップのノズル部分が高熱により変形あるいは溶損しやすい。ノズル部分が変形あるいは溶損すると、インサートチップを交換するのでメンテナンスコストが高くつく。   However, since two or more plasma arcs are injected by one insert tip, the thermal load of the insert tip increases. Therefore, although the cooling capacity of the insert tip is improved, the nozzle portion of the insert tip is easily deformed or melted by high heat. When the nozzle portion is deformed or melted, the insert tip is replaced, which increases the maintenance cost.

本発明は、インサートチップのメンテナンスコストを下げること、すなわちプラズマ加工コストの上昇を抑制すること、を目的とする。   An object of the present invention is to reduce the maintenance cost of an insert chip, that is, to suppress an increase in plasma processing cost.

(1)加工対象材に供給する加工作用手段を通す穴である中央孔(5),該中央孔(5)の周りに分布する複数のノズル部材挿入穴(18a,18b)、および、各ノズル部材挿入穴(18a,18b)に挿入された各ノズル部材の外周を冷却する冷媒が通流する複数の冷媒流路(1f,1g)、があるチップ基体(1);
電極配置空間(1a,1b),該電極配置空間(1a,1b)に連通するノズル(4a,4b),該ノズル(4a,4b)が開いた笠部(21a,21b)および該笠部に連続する幹部(22a,22b)があって、内部に前記電極配置空間(2a,2b)がある、それぞれの前記幹部が各ノズル部材挿入穴(18a,18b)に挿入され前記笠部が前記ノズル部材挿入穴の下開口を塞ぐ、前記チップ基体(1)とは別体の、複数のノズル部材(20a,20b);
前記幹部(22a,22b)の、前記笠部(21a,21b)がある先端部とは反対側の後端部にある雄ねじ(24a,24b)、および、前記ノズル部材挿入穴(18a,18b)に挿通したノズル部材の前記雄ねじ(24a,24b)に螺合してノズル部材と協働してチップ基体を挟んで締め付けてノズル部材を前記チップ基体(1)に一体に固定するナット(25a,25b)、を含む結合手段(24a,25a、24b,25b);および
前記チップ基体(1)に対して前記ノズル部材(20a,20b)の、中心軸を中心とする回転を阻止する係合手段(26a,26b,1c);
を備えるインサートチップ(図2)
(1) A central hole (5) which is a hole through which the processing means to be supplied to the material to be processed passes, a plurality of nozzle member insertion holes (18a, 18b) distributed around the central hole (5), and each nozzle A chip base (1) having a plurality of refrigerant flow paths (1f, 1g) through which a refrigerant for cooling the outer periphery of each nozzle member inserted in the member insertion holes (18a, 18b) flows;
An electrode arrangement space (1a, 1b), a nozzle (4a, 4b) communicating with the electrode arrangement space (1a, 1b), a cap portion (21a, 21b) in which the nozzle (4a, 4b) is opened, and the cap portion There are continuous stems (22a, 22b), and the electrode arrangement space (2a, 2b) is inside, each of the stems is inserted into each nozzle member insertion hole (18a, 18b), and the cap is the nozzle A plurality of nozzle members (20a, 20b) which are separate from the chip base (1) and block the lower opening of the member insertion hole ;
A male screw (24a, 24b) at a rear end portion of the trunk portion (22a, 22b) opposite to a tip portion having the cap portion (21a, 21b), and the nozzle member insertion hole (18a, 18b) The nut (25a, 24a, 24b) of the nozzle member inserted through the nut (25a, 24b) is fixed to the tip base (1) integrally by tightening the tip base by clamping the tip base in cooperation with the nozzle member. 25b), a coupling means comprising (24a, 25a, 24b, 25b); and
Engaging means (26a, 26b, 1c) for preventing the nozzle member (20a, 20b) from rotating about the central axis with respect to the chip base (1);
Insert chip comprising (FIG. 2) .

なお、理解を容易にするために括弧内には、図面に示し後述する実施例の対応又は相当要素の記号もしくは対応事項を、例示として参考までに付記した。以下も同様である。   In addition, in order to facilitate understanding, in parentheses, the correspondence of the examples shown in the drawings and described later, or the symbols or corresponding matters of corresponding elements are added for reference. The same applies to the following.

各ノズル部材の外周を冷却する冷媒が通流する複数の冷媒流路(1f,1g)があるので、チップ基体(1)のみならず各ノズル部材(20a,20b)の冷却能力が高い。高熱によりノズル部材のノズル部分が変形又は溶損したときは、前記ナット(25a,25b)を緩めて前記雄ねじ(24a,24b)から外し、ノズル部材(20a,20b)を前記ノズル部材挿入穴(18a,18b)から引き抜き、そして新たなノズル部材をノズル部材挿入穴に雄ねじ部から挿入して該雄ねじ部にナットをねじ合わせして締め付ける。これによって傷んだノズル部材の交換ができる。チップ基体はそのまま使用して、メンテナンスコストを安くすることができる。 Since there are a plurality of coolant channels (1f, 1g) through which the coolant that cools the outer periphery of each nozzle member flows, the cooling capacity of each nozzle member (20a, 20b) as well as the chip base (1) is high. When the nozzle portion of the nozzle member is deformed or melted due to high heat, the nuts (25a, 25b) are loosened and removed from the male screws (24a, 24b), and the nozzle members (20a, 20b) are inserted into the nozzle member insertion holes ( 18a and 18b), and a new nozzle member is inserted into the nozzle member insertion hole from the male screw portion, and a nut is screwed onto the male screw portion and tightened. As a result, the damaged nozzle member can be replaced. The chip base can be used as it is, and the maintenance cost can be reduced.

このノズル部材の交換のとき、ノズル部材に対してナットを緩め,締め廻しするが、係合手段(26a,26b,1c)がチップ基体に対するノズル部材の回転を阻止するので、緩め,締め廻しが簡易にできノズル部材の交換作業が容易である。また、例えば図2に示すようにノズル形態が異なる複数のノズル部材を併設する場合、どのノズル部材をチップ基体のどの位置に配置するかを規制することができる。When this nozzle member is replaced, the nut is loosened and tightened with respect to the nozzle member, but the engaging means (26a, 26b, 1c) prevent the nozzle member from rotating with respect to the chip base, so that the loosening and tightening are not performed. The nozzle member can be easily exchanged. Further, for example, when a plurality of nozzle members having different nozzle forms are provided as shown in FIG. 2, it is possible to regulate which nozzle member is disposed at which position of the chip base.

本発明の第1実施例のプラズマ加工装置のブロック図であり、プラズマトーチは縦断面図を示す。It is a block diagram of the plasma processing apparatus of 1st Example of this invention, and a plasma torch shows a longitudinal cross-sectional view. 本発明のインサートチップの第1実施例である、図1に示すプラズマトーチのインサートチップ、を拡大して示し、(a)は縦断面図、(b)はインサートチップの下端(下面)を上に見上げた底面図、(c)は(a)上のIIc−IIc線の横断面図である。1 is an enlarged view of the insert tip of the plasma torch shown in FIG. 1, which is a first embodiment of the insert tip of the present invention, wherein (a) is a longitudinal sectional view, and (b) is the upper end (lower surface) of the insert tip. (C) is a cross-sectional view taken along line IIc-IIc in (a). 図2に示すインサートチップの、チップ基体のみの縦断面図、(b)は底面図、(c)はノズル部材の縦断面図、(d)はノズル部材の底面図である。2 is a longitudinal sectional view of only the chip base of the insert chip shown in FIG. 2, (b) is a bottom view, (c) is a longitudinal sectional view of the nozzle member, and (d) is a bottom view of the nozzle member. 本発明のインサートチップの第2実施例を示し、(a)は底面図、(b)はノズル部材20a,20bを取り外したチップ基体の底面図である。The 2nd Example of the insert chip | tip of this invention is shown, (a) is a bottom view, (b) is a bottom view of the chip | tip base | substrate which removed the nozzle members 20a and 20b. 図4に示すノズル部材20a,20bの縦断面図、(b)は底面図である。FIG. 4 is a longitudinal sectional view of the nozzle members 20a and 20b shown in FIG. 4, and FIG. 本発明の第2実施例のプラズマ加工装置のブロック図であり、プラズマトーチは縦断面図を示す。It is a block diagram of the plasma processing apparatus of 2nd Example of this invention, and a plasma torch shows a longitudinal cross-sectional view. 本発明の第3実施例のプラズマ加工装置のブロック図であり、プラズマトーチは縦断面図を示す。It is a block diagram of the plasma processing apparatus of 3rd Example of this invention, and a plasma torch shows a longitudinal cross-sectional view. 本発明の第4実施例のプラズマ加工装置のブロック図であり、プラズマトーチは縦断面図を示す。It is a block diagram of the plasma processing apparatus of 4th Example of this invention, and a plasma torch shows a longitudinal cross-sectional view. 本発明の第5実施例のプラズマ加工装置のブロック図であり、プラズマトーチは縦断面図を示す。It is a block diagram of the plasma processing apparatus of 5th Example of this invention, and a plasma torch shows a longitudinal cross-sectional view. 本発明の第6実施例のプラズマ加工装置のブロック図であり、プラズマトーチは縦断面図を示す。It is a block diagram of the plasma processing apparatus of 6th Example of this invention, and a plasma torch shows a longitudinal cross-sectional view. 本発明の第7実施例のプラズマ加工装置のブロック図であり、プラズマトーチは縦断面図を示す。It is a block diagram of the plasma processing apparatus of 7th Example of this invention, and a plasma torch shows a longitudinal cross-sectional view.

)前記係合手段は、前記ノズル部材(20a,20b)の前記笠部(21a,21b)の側面を一部削除した切欠面(26a,26b)、および、前記チップ基体(1)の、隣り合うノズル部材挿入穴(18a,18b)の間にあって前記切欠面(26a,26b)が当接する係止面がある先端突起(1c)、でなる;上記()に記載のインサートチップ(図3,図4)。 ( 2 ) The engaging means includes notch surfaces (26a, 26b) in which side surfaces of the cap portions (21a, 21b) of the nozzle member (20a, 20b) are partially deleted, and the tip base (1). The tip insert (1c) between the adjacent nozzle member insertion holes (18a, 18b) and having a locking surface with which the notch surfaces (26a, 26b) come into contact; the insert tip according to ( 1 ) above 3 and 4).

)各ノズル部材(20a,20b)には、前記切欠面(26a,26b)とは別の、前記笠部(21a,21b)の側面を一部切除した追加の切欠面(27a,27b)があり;前記チップ基体には、該追加の切欠面(27a,27b)が当接する追加の対向突起(1m,1n)がある;上記()に記載のインサートチップ(図4,図5)。 ( 3 ) Each nozzle member (20a, 20b) has an additional cut-out surface (27a, 27b) partially cut away from the side surface of the cap portion (21a, 21b) separate from the cut-out surface (26a, 26b). The chip base has an additional opposing protrusion (1m, 1n) against which the additional cut surface (27a, 27b) abuts; the insert chip according to ( 2 ) above (FIGS. 4 and 5) ).

)前記切欠面(26a,26b)と追加の切欠面(27a,27b)の笠部円周方向の分布は、チップ基体へのノズル部材の装着位置エラーを防止するために、ノズル部材間で異なったパターンである;上記()に記載のインサートチップ(図4,図5)。 ( 4 ) The distribution of the notched surfaces (26a, 26b) and the additional notched surfaces (27a, 27b) in the circumferential direction of the cap portion is determined between the nozzle members in order to prevent an error in the mounting position of the nozzle members on the chip base. The insert chip according to ( 3 ) above (FIGS. 4 and 5).

)前記冷媒流路(1f,1g)の下端は前記笠部がチップ基体の先端平面(1d,1e)に当接することにより閉じられ、前記チップ基体には、冷媒受穴(1h),冷媒出穴(1i),前記複数の冷媒流路(1f,1g)をつなぐ冷媒還流路(1j),前記冷媒流路の一つ(1f)を前記冷媒受穴につなぐ冷媒通し穴(1k)、および、前記冷媒流路の他の一つ(1g)を前記冷媒出穴につなぐ冷媒通し穴(1l)、がある;上記()に記載のインサートチップ(図2)。 ( 5 ) The lower end of the coolant channel (1f, 1g) is closed by the cap portion coming into contact with the tip flat surface (1d, 1e) of the chip base, and the chip base has a coolant receiving hole (1h), Refrigerant outlet hole (1i), refrigerant recirculation path (1j) connecting the plurality of refrigerant flow paths (1f, 1g), refrigerant through hole (1k) connecting one of the refrigerant flow paths (1f) to the refrigerant receiving hole And a refrigerant through hole (1l) that connects the other one (1g) of the refrigerant flow path to the refrigerant outlet hole; the insert chip according to ( 1 ) above (FIG. 2).

これによれば、チップ基体(1)の冷媒流路(1f,1g)において各ノズル部材(20a,20b)の幹部(22a,22b)の外周面の周りを冷媒(冷却水)が流れるので、各ノズル部材(20a,20b)の冷却能力が高い。また、チップ基体(1)において、冷媒受穴(1h),それに冷媒流路の一つ(1f)をつなぐ冷媒通し穴(1k),隣り合う冷媒流路をつなぐ冷媒通し穴(1j),他の冷媒流路(1g)を冷媒出穴(1i)につなぐ冷媒通し穴(1l)を冷媒が流れるので、チップ基体(1)の冷却能力も高い。よって、溶接電力を大きくしてより高速に溶接を行うことができる。仮に高熱によりノズル部材の下端のノズル部分が変形又は熔損したときは、該ノズル部材を新品と取り替えて、チップ基体はそのまま使用して、メンテナンスコストを安くすることができる。   According to this, refrigerant (cooling water) flows around the outer peripheral surface of the trunk portion (22a, 22b) of each nozzle member (20a, 20b) in the refrigerant flow path (1f, 1g) of the chip base (1). The cooling capacity of each nozzle member (20a, 20b) is high. In addition, in the chip base (1), a refrigerant receiving hole (1h), a refrigerant through hole (1k) connecting one of the refrigerant flow paths (1f), a refrigerant through hole (1j) connecting adjacent refrigerant flow paths, etc. Since the refrigerant flows through the refrigerant passage hole (1l) connecting the refrigerant flow path (1g) to the refrigerant outlet hole (1i), the cooling capacity of the chip substrate (1) is also high. Therefore, welding can be performed at higher speed by increasing the welding power. If the nozzle portion at the lower end of the nozzle member is deformed or damaged due to high heat, the nozzle member can be replaced with a new one, and the chip base can be used as it is, thereby reducing the maintenance cost.

)上記(1)に記載のインサートチップ(1)と、該インサートチップ(1)の前記中央孔(5)にワイヤ(15)を案内するワイヤガイド(13,6)と、前記インサートチップ(1)の各電極配置空間(1a,1b)に先端部を挿入した複数の電極(2a,2b)と、を備えるプラズマトーチ(図1)。 ( 6 ) The insert tip (1) described in (1) above, the wire guide (13, 6) for guiding the wire (15) to the central hole (5) of the insert tip (1), and the insert tip A plasma torch (FIG. 1) comprising a plurality of electrodes (2a, 2b) having tip portions inserted into the electrode arrangement spaces (1a, 1b) of (1).

)上記()に記載のプラズマトーチと、前記複数の電極(2a,2b)と加工対象材(16)の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源(17,18)と、を備えるプラズマ溶接装置(図1)。 ( 7 ) A power source for passing a plasma arc current between the plasma torch described in ( 6 ) above and the plurality of electrodes (2a, 2b) and the workpiece (16) with a negative electrode side and a positive workpiece arc side. (17, 18) and a plasma welding apparatus (FIG. 1).

)更に、前記ワイヤ(15)と加工対象材(16)との間に、ワイヤ側が負で加工対象材側が正の電流を流すホットワイヤ電源(21)を備える、上記()に記載の、ホットワイヤ形態のプラズマ溶接装置(図6)。 (8) Further, between the wire (15) and the processing target member (16) comprises a hot wire power wire side processing target material side is negative shed a positive current (21), according to the above (7) The plasma welding apparatus of a hot wire form (FIG. 6).

)上記()に記載のプラズマトーチと、前記複数の電極(2a,2b)と加工対象材(16)の間に、電極側が正で加工対象材側が負のプラズマアーク電流を流す電源(17,18)と、前記ワイヤ(15)と加工対象材(16)との間に、ワイヤ側が正で加工対象材側が負の電流を流すMIG溶接電源(22)を備える、プラズマMIG溶接装置(図7)。 ( 9 ) A power source for passing a plasma arc current between the plasma torch described in ( 6 ) above and the plurality of electrodes (2a, 2b) and the workpiece (16) with a positive electrode side and a negative workpiece arc side. A plasma MIG welding apparatus comprising a MIG welding power source (22) between the wires (17, 18) and the wire (15) and the material to be processed (16) for flowing a positive current on the wire side and a negative current on the material to be processed side (FIG. 7).

10)上記()に記載のプラズマトーチと、前記複数の電極(2a,2b)と加工対象材(16)の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源(17,18)と、前記ワイヤ(15)と各電極(2a,2b)との間に、ワイヤ側が正で電極側が負の電流を流すホットワイヤ電源(28,29)を備える、プラズマワイヤ肉盛装置(図8)。 ( 10 ) A power source for supplying a plasma arc current between the plasma torch according to ( 6 ) above and the plurality of electrodes (2a, 2b) and the workpiece (16) with a negative electrode side and a positive workpiece arc side. (17, 18), and a hot wire power source (28, 29) between the wire (15) and each electrode (2a, 2b), and a hot wire power source (28, 29) for passing a positive current on the wire side and a negative current on the electrode side. Assembling device (FIG. 8).

11)上記(1)に記載のインサートチップ(1)と、該インサートチップ(1)の前記中央孔(5)に粉体(23)を案内する粉体ガイド(6)と、前記インサートチップ(1)の各電極配置空間(1a,1b)に先端部を挿入した複数の電極(2a,2b)と、を備えるプラズマ粉体肉盛トーチ(図9)。 ( 11 ) The insert tip (1) described in (1) above, the powder guide (6) for guiding the powder (23) to the central hole (5) of the insert tip (1), and the insert tip A plasma powder build-up torch comprising a plurality of electrodes (2a, 2b) having tip portions inserted into the electrode arrangement spaces (1a, 1b) of (1) (FIG. 9).

12)上記(11)に記載のプラズマ粉体肉盛トーチと、前記複数の電極(2a,2b)と加工対象材(16)の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源(17,18)と、前記粉体ガイド(6)に粉体を送給する手段(24,25)と、を備えるプラズマ粉体肉盛装置(図9)。 ( 12 ) Between the plasma powder build-up torch according to ( 11 ) above and the plurality of electrodes (2a, 2b) and the workpiece (16), a plasma arc in which the electrode side is negative and the workpiece side is positive A plasma powder overlaying apparatus (FIG. 9) comprising a power source (17, 18) for supplying an electric current and means (24, 25) for feeding powder to the powder guide (6).

13)上記(1)に記載のインサートチップ(1)と、該インサートチップ(1)の前記中央孔(5)にキーホールガス(26)を案内するガスガイド(6)と、前記インサートチップ(1)の各電極配置空間(1a,1b)に先端部を挿入した複数の電極(2a,2b)と、を備えるプラズマキーホール溶接トーチ(図10)。 ( 13 ) The insert tip (1) according to (1), a gas guide (6) for guiding a keyhole gas (26) to the central hole (5) of the insert tip (1), and the insert tip A plasma keyhole welding torch comprising a plurality of electrodes (2a, 2b) having tip portions inserted into the electrode arrangement spaces (1a, 1b) of (1) (FIG. 10).

14)上記(13)に記載のプラズマキーホール溶接トーチと、前記複数の電極(2a,2b)と加工対象材(16)の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源(17,18)と、を備えるプラズマキーホール溶接装置(図10)。 ( 14 ) Between the plasma keyhole welding torch according to the above ( 13 ) and the plurality of electrodes (2a, 2b) and the workpiece (16), the plasma arc current is negative on the electrode side and positive on the workpiece side And a plasma keyhole welding device (FIG. 10).

15)上記(1)に記載のインサートチップ(1)と、該インサートチップ(1)の前記中央孔(5)に切断ガス(27)を案内するガスガイド(6)と、前記インサートチップ(1)の各電極配置空間(1a,1b)に先端部を挿入した複数の電極(2a,2b)と、を備えるプラズマ切断トーチ(図11)。 ( 15 ) The insert tip (1) according to the above (1), a gas guide (6) for guiding a cutting gas (27) to the central hole (5) of the insert tip (1), and the insert tip ( A plasma cutting torch (FIG. 11) comprising a plurality of electrodes (2a, 2b) having tips inserted into the electrode arrangement spaces (1a, 1b) of 1).

16)上記(15)に記載のプラズマ切断トーチと、前記複数の電極(2a,2b)と加工対象材(16)の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源(17,18)と、を備えるプラズマ切断装置(図11)。 ( 16 ) Between the plasma cutting torch described in ( 15 ) above and the plurality of electrodes (2a, 2b) and the workpiece material (16), a negative plasma arc current and a positive plasma arc current flow on the workpiece side And a plasma cutting device (FIG. 11).

上記(2)〜(16)のいずれの態様においても、上記(1)の効果、すなわち上記「発明の効果」が得られる。 In any of the above aspects (2) to ( 16 ), the effect (1), that is, the “effect of the invention” can be obtained.

本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。   Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

−第1実施例−
図1に、第1実施例であるプラズマ溶接装置を示し、図2には第1実施例のプラズマ溶接トーチであって図1に示されるプラズマトーチのインサートチップを示し、図3には該インサートチップを構成するチップ基体のみを示す。第1実施例のプラズマ溶接トーチは、プラズマ溶接を行う形態のものである。インサートチップ1は、インサートキャップ7を絶縁台9にねじ締めすることにより、絶縁台9に固定されている。シールドキャップ8は、ねじ締めにより絶縁台9に固定されている。2つ割でx方向に分離した第1電極台11と第2電極台12は、絶縁体の外ケース30の内部にある。第1電極台11と第2電極台12との間の空間を、絶縁本体14の中空円筒状のステムが通って、該ステムの先端部の、図示を省略した雄ねじが、絶縁台9の中心の、図示を省略した雌ねじ穴にねじこまれ、これにより、電極台11,12が縦方向に圧縮するように締め付けられて、絶縁台9,電極台11,12および絶縁本体14が一体に結合している。
-1st Example-
FIG. 1 shows a plasma welding apparatus according to the first embodiment, FIG. 2 shows a plasma welding torch according to the first embodiment and an insert tip of the plasma torch shown in FIG. 1, and FIG. Only the chip base constituting the chip is shown. The plasma welding torch according to the first embodiment is configured to perform plasma welding. The insert chip 1 is fixed to the insulating base 9 by screwing the insert cap 7 to the insulating base 9. The shield cap 8 is fixed to the insulating table 9 by screwing. The first electrode table 11 and the second electrode table 12 separated in the x direction by being divided into two are inside an outer case 30 made of an insulator. The space between the first electrode base 11 and the second electrode base 12 is passed through the hollow cylindrical stem of the insulating body 14, and the male screw (not shown) at the tip of the stem is the center of the insulating base 9. The electrode bases 11 and 12 are tightened so as to be compressed in the vertical direction, and the insulating base 9, the electrode bases 11 and 12 and the insulating main body 14 are integrally coupled. doing.

インサートチップ1の軸心に中央孔5があり、絶縁台9および絶縁本体14の軸心には、中央孔5と同軸のガイド穴(本実施例ではワイヤガイド穴)がある。インサートチップ1の中央孔5にはワイヤガイド6が挿入されており、絶縁本体14の軸心のガイド穴にもワイヤガイド13が挿入されている。絶縁本体14の頭部に挿入された溶接ワイヤ15は、ワイヤガイド13および6を通してインサートチップ1に送り込まれる。   There is a central hole 5 in the axial center of the insert chip 1, and there are guide holes (wire guide holes in this embodiment) coaxial with the central hole 5 in the axial centers of the insulating base 9 and the insulating body 14. A wire guide 6 is inserted into the central hole 5 of the insert chip 1, and a wire guide 13 is also inserted into a guide hole in the axial center of the insulating body 14. The welding wire 15 inserted into the head of the insulating body 14 is fed into the insert tip 1 through the wire guides 13 and 6.

インサートチップ1には、中央孔5の中心軸を中心とする円周上に等角度ピッチである180度で分布し中央孔5と平行に位置する2個のノズル部材20a,20b(図2)があり、各ノズル部材20a,20bに、絶縁台9を貫通し各電極台11,12にねじ10a,10bで固定された第1電極2a,第2電極2bの先端部が挿入されて、各電極配置空間の軸心位置に、センタリングストーン3で位置決めされている(図1)。インサートチップ1の、溶接対象材16に対向する先端面には、ノズル部材20a,20bのノズル4a,4bが開いている(図2)。   The insert chip 1 has two nozzle members 20a and 20b (FIG. 2) distributed at an equal angular pitch of 180 degrees on the circumference centered on the central axis of the central hole 5 and positioned parallel to the central hole 5. The tip portions of the first electrode 2a and the second electrode 2b that pass through the insulating base 9 and are fixed to the electrode bases 11 and 12 with screws 10a and 10b are inserted into the nozzle members 20a and 20b, respectively. The centering stone 3 is positioned at the axial center position of the electrode arrangement space (FIG. 1). The nozzles 4a and 4b of the nozzle members 20a and 20b are open on the tip surface of the insert tip 1 facing the material 16 to be welded (FIG. 2).

各ノズル部材20a,20bには、中央にノズル4a,4bが開いた笠部21a,21b,該笠部に連続する幹部22a,22bおよび該幹部に連続する雄ねじ部24a,24bがあって、前記幹部と雄ねじ部の間にシール材であるOリング23a,23bがあり、内部に前記ノズル4a,4bに連通する電極配置空間1a,1bがある(図2,図3)。この実施例では、図2の(a)に示すように、ノズル部材20a,20bの雄ねじ部24a,24bにナット25a,25bをねじ結合してチップ基体1に締め付けることにより、ノズル部材20a,20bをチップ基体1に結合している。   Each nozzle member 20a, 20b has a cap portion 21a, 21b in which the nozzles 4a, 4b are opened at the center, trunk portions 22a, 22b continuing to the cap portion, and male screw portions 24a, 24b continuing to the trunk portion. There are O-rings 23a and 23b, which are sealing materials, between the trunk and the male screw, and there are electrode arrangement spaces 1a and 1b communicating with the nozzles 4a and 4b (FIGS. 2 and 3). In this embodiment, as shown in FIG. 2A, the nut members 25a and 25b are screwed to the male screw portions 24a and 24b of the nozzle members 20a and 20b and fastened to the chip base 1 to thereby fix the nozzle members 20a and 20b. Are bonded to the chip substrate 1.

チップ基体1には、各ノズル部材の前記雄ねじ部から幹部までが挿通する各ノズル部材挿入穴18a,18b,各ノズル部材挿入穴に挿通した各ノズル部材の笠部が先端平面1d,1eに当接することにより閉じられる、ノズル部材挿入穴の一部をなし幹部との間に冷媒通流空間を形成する冷媒流路1f,1g,冷媒受穴1h,冷媒出穴1i,冷媒流路1f,1gをつなぐ冷媒還流路1j,前記冷媒流路の一つ1fを前記冷媒受穴1hにつなぐ冷媒通し穴1k、および、前記冷媒流路の他の一つ1gを前記冷媒出穴につなぐ冷媒通し穴1l、がある(図2)。   In the chip base 1, the nozzle member insertion holes 18a and 18b through which the male threaded portion to the trunk portion of the nozzle members are inserted, and the cap portions of the nozzle members inserted through the nozzle member insertion holes contact the tip planes 1d and 1e. Refrigerant flow paths 1f, 1g, refrigerant receiving holes 1h, refrigerant outlet holes 1i, refrigerant flow paths 1f, 1g forming part of the nozzle member insertion holes that are closed by contact and forming a refrigerant flow space with the trunk. A refrigerant return path 1j for connecting the refrigerant, a refrigerant through hole 1k for connecting one of the refrigerant flow paths to the refrigerant receiving hole 1h, and a refrigerant through hole for connecting the other one 1g of the refrigerant flow path to the refrigerant outlet hole. 1l (Fig. 2).

図2の(a)を参照すると、ノズル部材20a,20bは、中央孔5の中心軸(z)と直交する同一直径線(y)に分布し、該中心軸から等距離にあって中心軸(z)に平行に延びる。ノズル部材20a,20bの、電極配置空間1a,1bに連続するノズル4a,4bは、この実施例では、電極配置空間2a,2bの中心軸に対して中央孔5の中心軸(図1の溶接ワイヤ15)に向かう方向に傾斜しており、ノズル4a,4bの中心軸は、中央孔5の中心軸上の同一点(同一z位置)で交わる。これらのノズル4a,4bも、本実施例では、中央孔5の中心軸(z)と直交する同一直径線(y)上に分布し、該中心軸から等距離にある。   Referring to FIG. 2A, the nozzle members 20a and 20b are distributed on the same diameter line (y) orthogonal to the central axis (z) of the central hole 5, and are equidistant from the central axis and are centered. It extends parallel to (z). In this embodiment, the nozzles 4a and 4b of the nozzle members 20a and 20b, which are continuous with the electrode arrangement spaces 1a and 1b, are connected to the central axis of the central hole 5 (welding in FIG. 1) with respect to the central axis of the electrode arrangement spaces 2a and 2b. Inclined in the direction toward the wire 15), the central axes of the nozzles 4 a and 4 b intersect at the same point (same z position) on the central axis of the central hole 5. In the present embodiment, these nozzles 4a and 4b are also distributed on the same diameter line (y) orthogonal to the central axis (z) of the central hole 5, and are equidistant from the central axis.

チップ基体1の先端の中央部には、y方向に延びる先端突起1cがあり、この先端突起1cのチップ中心位置を、中央孔5がz方向に貫通している。先端突起1cの両側に、ノズル部材20a,20bの笠21a,21bの裏面をうける先端平面1d,1eがある。先端平面1d,1eは、x方向でチップ基体1の外周の手前で途切れ(図2の(b))、これによりチップ基体1から対向突起1m,1nが下方に突出している(図2の(a))。   A tip projection 1c extending in the y direction is provided at the center of the tip of the chip base 1, and a center hole 5 penetrates the tip center position of the tip projection 1c in the z direction. On both sides of the tip projection 1c, there are tip planes 1d and 1e that receive the back surfaces of the caps 21a and 21b of the nozzle members 20a and 20b. The front end planes 1d and 1e are interrupted in front of the outer periphery of the chip base 1 in the x direction (FIG. 2B), whereby the opposing protrusions 1m and 1n protrude downward from the chip base 1 (FIG. a)).

ノズル部材挿入穴18aに挿入されたノズル部材20aの笠部21aの、円弧の一部を直線状に削除した切欠面26a(図3の(d))が、先端突起1cの右側面である係止面にぴったり係合し、また、笠部21aの円周面が対向突起1mの左側面である阻止面にぴったり係合する。これによりチップ基体1に対する先行ノズル部材20aの、中心軸を中心とする回転が阻止される。これらの係合は、先行ノズル部材20aをチップ基体1に挿入してナット25aでねじ締め付けして固定するときのノズル部材20aの廻り止め、および、ノズル部材20aをチップ基体1から取り外すためにナット25aを緩め廻しするときのノズル部材20aの廻り止め、として機能する。これらの係合は更に、ノズル軸がチップ基体中心軸(z)に対して傾斜したノズル部材20aの該ノズル軸の傾斜方向をx方向に固定(設定)する機能もある。   The notch surface 26a ((d) in FIG. 3) of the cap portion 21a of the nozzle member 20a inserted into the nozzle member insertion hole 18a, in which a part of the arc is linearly deleted, is the right side surface of the tip protrusion 1c. It closely engages with the stop surface, and the circumferential surface of the cap portion 21a closely engages with the blocking surface that is the left side surface of the opposing protrusion 1m. Thereby, the rotation of the preceding nozzle member 20a with respect to the chip base 1 around the central axis is prevented. These engagements are achieved by preventing the nozzle member 20a from rotating when the preceding nozzle member 20a is inserted into the chip base 1 and screwed and fixed by the nut 25a, and a nut for removing the nozzle member 20a from the chip base 1. It functions as a stop for the nozzle member 20a when the 25a is loosened. These engagements also have a function of fixing (setting) the inclination direction of the nozzle axis of the nozzle member 20a in which the nozzle axis is inclined with respect to the chip base center axis (z) in the x direction.

ノズル部材20aをチップ基体1に挿入してナット25aでねじ締め付けして固定するとき、チップ基体1に対して切欠面26aの一端を支点(中心)に回動させようとする振り力がノズル部材20aに作用するが、対向突起1mがこの回動を阻止する。このように、係合手段である切欠面26a,先端突起1cによりノズル部材20aの回転を阻止し、しかも軸振れ防止手段である対向突起1mによってノズル部材20aの軸振れを防止するので、ノズル4aから出るプラズマアークの指向方向がずれることがなくなる。   When the nozzle member 20a is inserted into the chip base 1 and fixed by screwing with the nut 25a, a swinging force that attempts to rotate one end of the notch surface 26a with respect to the chip base 1 to a fulcrum (center) is the nozzle member. Although acting on 20a, the opposing protrusion 1m prevents this rotation. In this way, the nozzle member 20a is prevented from rotating by the notch surface 26a and the tip protrusion 1c as the engaging means, and the axial protrusion of the nozzle member 20a is prevented by the opposing protrusion 1m as the shaft shake preventing means. The direction of the direction of the plasma arc coming out of the camera will not shift.

この実施例では、ノズル部材20bは、ノズル部材20aと同一仕様であり、ノズル部材20aと同様な結合態様でチップ基体に装着されている(図2)。   In this embodiment, the nozzle member 20b has the same specifications as the nozzle member 20a, and is mounted on the chip base in the same coupling manner as the nozzle member 20a (FIG. 2).

図2の(c)に示すチップ基体1の、冷媒受穴1hはトーチ本体の冷媒供給管(図示略)に、冷媒出穴1iはトーチ本体の冷媒排出管(図示略)に連通している。冷媒供給管に注入された冷却水は、電極台11および絶縁台9の冷媒流路を通ってチップ基体1の冷媒受穴1hに入って穴底に至り、そこから冷媒通し穴1kを通って、冷媒流路1fに入り、冷媒還流穴1jを通って、冷媒流路1gに入り、つぎに冷媒通し穴1lを通って冷媒出穴1iに入りそしてトーチ本体の冷媒排出管(図示略)に流れ、そしてトーチ外部に流出する。   In the chip base 1 shown in FIG. 2C, the refrigerant receiving hole 1h communicates with the refrigerant supply pipe (not shown) of the torch body, and the refrigerant outlet hole 1i communicates with the refrigerant discharge pipe (not shown) of the torch body. . The cooling water injected into the refrigerant supply pipe passes through the refrigerant passages of the electrode base 11 and the insulating base 9, enters the refrigerant receiving hole 1h of the chip base 1, reaches the hole bottom, and then passes through the refrigerant through hole 1k. , Enters the refrigerant flow path 1f, passes through the refrigerant return hole 1j, enters the refrigerant flow path 1g, then passes through the refrigerant through hole 11 and enters the refrigerant outlet hole 1i, and enters the refrigerant discharge pipe (not shown) of the torch body. Flows and flows out of the torch.

冷却水が、上記冷媒受け穴1hから冷媒出穴1iに至る流路ならびに該受け穴ihおよび出穴1iを流れている間に、チップ基体1が冷却されかつ、ノズル部材20a,20bの幹部22a,22bの外周面が冷媒流路1f,1gに流れる冷却水で効果的に冷却されるので、インサートチップの冷却能力が高い。溶接時にはノズル部材20a,20bが最も加熱されるが、その外周面が直接に冷却水に触れて冷却されるので、ノズル部材20a,20bの使用寿命が長い。   While the coolant flows through the flow path from the refrigerant receiving hole 1h to the refrigerant outlet hole 1i and the receiving hole ih and outlet hole 1i, the chip base 1 is cooled and the trunk portion 22a of the nozzle members 20a and 20b. , 22b is effectively cooled by the cooling water flowing in the refrigerant flow paths 1f, 1g, so that the insert chip has a high cooling capacity. The nozzle members 20a and 20b are most heated during welding, but the outer peripheral surfaces of the nozzle members 20a and 20b are cooled by direct contact with cooling water, so that the service life of the nozzle members 20a and 20b is long.

図1を再度参照すると、パイロットガスは、トーチ本体のパイロットガス管(図示略)および電極挿入空間(図示略)を通ってノズル部材20a,20bの電極配置空間1a,1bに入り、電極2a,2bの先端部でプラズマとなってノズル4a,4bを通ってトーチの先端面から噴出する。シールドガスは、トーチ本体のシールドガス管(図示略)を通って、インサートキャップ7とシールドキャップ8との間の円筒状の空間に入り、そしてトーチの先端から溶接対象材16に向けて噴出する。   Referring to FIG. 1 again, the pilot gas passes through the pilot gas pipe (not shown) and the electrode insertion space (not shown) of the torch body and enters the electrode arrangement spaces 1a and 1b of the nozzle members 20a and 20b. Plasma is generated at the tip of 2b and is ejected from the tip of the torch through nozzles 4a and 4b. The shield gas passes through a shield gas pipe (not shown) of the torch main body, enters a cylindrical space between the insert cap 7 and the shield cap 8, and is ejected from the tip of the torch toward the welding target material 16. .

電極2a,2b(電極台11,12)と溶接対象材16の間に、電極側が負で溶接対象材側が正のプラズマアーク電流を流すプラズマ電源17,18により、電極2a,2bにアークを発生すると、プラズマアーク電流が各電極2a,2bと溶接対象材16の間に流れる。プラズマアーク19にワイヤ15が送給され、ワイヤ15に対して各電極2a,2bおよびノズル4(4a,4b)が対称に位置するので、ワイヤ15に対してプラズマが安定する。すなわち、電極配置空間1a,1bに挿入された各電極2a,2bと溶接対象材16との間を、各ノズル4a,4bを通って流れる各アーク電流には、それぞれが誘起する磁束Ma,Mbとの間に、フレミングの左手の法則で表される上向き(又は下向き:z)の力が作用し、同一方向であり、しかもノズル4a,4bの、中央孔5の中心軸を中心とする円周上に等角度ピッチの分布により、各力が同じく中央孔5の中心軸を中心とする円周上に等角度ピッチで分布するので、磁気的にバランスがとれ、プラズマの安定性が高い。つまり、磁気吹きによるアークのふらつきを生じない。溶接対象材16の近傍では、各アーク電流が同一方向の加算となり合成磁束Mcを誘起するので、アークを絞る磁気的ピンチ力が強く、溶接対象材16に対する熱収束効果(エネルギー密度)が高く、しかも作用位置がふらつくことが無い。尚かつ、ワイヤ15は、プラズマアーク19の上端部より入り、溶融プール20に至る迄の間アークより熱を受けることになり、有効な予熱効果として働き、ワイヤの溶着効率がアップし、高速溶接や高能率溶接ができる。従来の、側方からのワイヤ送給の場合は、ワイヤはプラズマアークに対してほぼ直角に入るため、プラズマアークに入った僅かな距離で溶融プールに熔け落ちるようにしなければならず、ほとんどワイヤの予熱効果は無い。このため溶着効率は低く、溶接速度も遅い。   An arc is generated between the electrodes 2a and 2b (electrode bases 11 and 12) and the material to be welded 16 by plasma power sources 17 and 18 that cause a plasma arc current to flow negative on the electrode side and positive on the material to be welded side. Then, a plasma arc current flows between each electrode 2a, 2b and the welding target material 16. Since the wire 15 is fed to the plasma arc 19 and the electrodes 2a and 2b and the nozzles 4 (4a and 4b) are positioned symmetrically with respect to the wire 15, the plasma is stabilized with respect to the wire 15. That is, the magnetic fluxes Ma and Mb induced by the respective arc currents flowing through the nozzles 4a and 4b between the electrodes 2a and 2b inserted in the electrode arrangement spaces 1a and 1b and the welding target material 16 respectively. The upward (or downward: z) force expressed by Fleming's left-hand rule acts in the same direction and is a circle centering on the central axis of the central hole 5 of the nozzles 4a and 4b. Due to the distribution of equiangular pitches on the circumference, each force is also distributed at equiangular pitches on the circumference centered on the central axis of the central hole 5, so that magnetic balance is achieved and plasma stability is high. That is, no arc wobbling due to magnetic blowing occurs. In the vicinity of the material to be welded 16, each arc current is added in the same direction to induce the composite magnetic flux Mc, so that the magnetic pinch force for constricting the arc is strong, and the heat convergence effect (energy density) on the material to be welded 16 is high, Moreover, the operating position does not fluctuate. In addition, the wire 15 receives heat from the arc until it enters from the upper end of the plasma arc 19 and reaches the molten pool 20, which acts as an effective preheating effect, increases the welding efficiency of the wire, and high-speed welding. And high-efficiency welding. In the case of the conventional wire feeding from the side, since the wire enters almost at right angles to the plasma arc, it must be melted into the molten pool at a short distance from the plasma arc. There is no preheating effect. For this reason, the welding efficiency is low and the welding speed is also slow.

また第1実施例によれば、ワイヤ15が中央より挿入されるため、ワイヤの挿入方向性が無く、曲線溶接でもトーチを回転させる制御が不要である。従来は、ワイヤはトーチ進行方向より挿入することから、曲線溶接時には、トーチ又はワイヤを曲線に相対して回転制御する装置が必要であった。   Further, according to the first embodiment, since the wire 15 is inserted from the center, there is no insertion direction of the wire, and control for rotating the torch is not necessary even in curve welding. Conventionally, since the wire is inserted from the direction of travel of the torch, a device for controlling the rotation of the torch or the wire relative to the curve is necessary during curve welding.

図6〜図11に示すプラズマトーチも、上述の、図1〜図3に示した第1実施例のインサートチップを用いるものであるが、それに代替して用いることができる第2実施例のインサートチップを、図4および図5に示す。   The plasma torch shown in FIGS. 6 to 11 also uses the insert tip of the first embodiment shown in FIGS. 1 to 3 as described above, but the insert of the second embodiment that can be used instead. The chip is shown in FIGS.

図4の(a)は、第2実施例のインサートチップの先端を下方から見上げた底面図、図4の(b)はそのチップ基体のみを下方から見上げた底面図、図5の(a)はノズル部材20a,20bの縦断面図、図5の(b)はノズル部材20a,20bの笠部21a,21bを下方から見上げた底面図である。第2実施例のインサートチップでは、ノズル部材20a,20bの笠部21a,21bには、切欠面26a,26bの他に、追加の切欠面27a,27b(図5の(b))がある。先行ノズル部材20aの追加の切欠面27aは、ノズル部材20aの中心軸の位置にあってもとからある切欠面26aに平行な断面で笠部21aを左右に2分割すると、右半分の領域にある(切欠面26aは左半分の領域にある)。しかし、もう1つの追加の切欠面27bは、左半分の領域にある。すなわち、ノズル部材20aの切欠面26aと追加の切欠面27aの、笠部21aにおける分布パターンと、ノズル部材20bの切欠面26bと追加の切欠面27bの、笠部21bにおける分布パターンとは、異なっている。例えば図5の(b)において、ノズル部材20bをその中心軸廻りに180度回転させてそのノズル4bをノズル部材20aのノズル4aに重ねると、切欠面26bは切欠面26aに重なるが、追加の切欠面27aは、追加の切欠面27aには重ならずx軸に関して追加の切欠面27aと対称な位置となって、追加の切欠面27aの円周部の下面が対向突起1mの角1mpに当たるので、ノズル部材20bをノズル部材20aを装着する位置には装着できず、装着位置エラーが防止される。   4A is a bottom view of the tip of the insert chip of the second embodiment as viewed from below, FIG. 4B is a bottom view of only the chip base as viewed from below, and FIG. 5A. FIG. 5B is a bottom view of the cap members 21a and 21b of the nozzle members 20a and 20b as viewed from below. In the insert tip of the second embodiment, the cap portions 21a and 21b of the nozzle members 20a and 20b have additional cutout surfaces 27a and 27b (FIG. 5B) in addition to the cutout surfaces 26a and 26b. The additional cutout surface 27a of the preceding nozzle member 20a is divided into a right-half region when the cap portion 21a is divided into left and right sections in a cross section parallel to the cutout surface 26a even at the center axis position of the nozzle member 20a. There is (notch surface 26a is in the left half region). However, another additional cut-out surface 27b is in the left half region. That is, the distribution pattern in the cap portion 21a of the cutout surface 26a and the additional cutout surface 27a of the nozzle member 20a is different from the distribution pattern in the cap portion 21b of the cutout surface 26b and the additional cutout surface 27b of the nozzle member 20b. ing. For example, in FIG. 5B, when the nozzle member 20b is rotated 180 degrees around its central axis and the nozzle 4b is superimposed on the nozzle 4a of the nozzle member 20a, the notch surface 26b overlaps the notch surface 26a. The notch surface 27a does not overlap with the additional notch surface 27a but is positioned symmetrically with the additional notch surface 27a with respect to the x axis, and the lower surface of the circumferential portion of the additional notch surface 27a hits the corner 1mp of the opposing protrusion 1m. Therefore, the nozzle member 20b cannot be mounted at the position where the nozzle member 20a is mounted, and a mounting position error is prevented.

図4の(b)を参照すると、対向突起1mの左端面には、笠部21aの追加の切欠面27aに当接する角1mpと円周部を受け入れる弧状面1maがある、変形コの字型の彫込みがあり、また、対向突起1nの左端面には、笠部21bの追加の切欠面27bに当接する角1npと円周部を受け入れる弧状面1naがある、変形コの字型の彫込みがある。これらの彫込みが、ノズル部材20aをノズル部材20bの取り付け予定位置に誤装着するのを防止し、ノズル部材20bをノズル部材20aの取り付け予定位置に誤装着するのを防止する。更に、ノズル部材20a,20bの軸ずれ,軸ぶれを防止するために、中央突起1cの右端面と左端面に、笠部21a,21bの切欠面26a,26bに当接する平面部および円周部を受け入れる弧状面がある、略コの字型の彫込み1ca,1cbがある。   Referring to FIG. 4B, the left end face of the opposing protrusion 1m has a corner 1mp that abuts against the additional cutout surface 27a of the cap portion 21a and an arcuate surface 1ma that receives the circumferential portion. In addition, the left end surface of the opposing protrusion 1n has a corner 1np that abuts the additional cutout surface 27b of the cap portion 21b and an arcuate surface 1na that accepts the circumferential portion. It is complicated. These engravings prevent the nozzle member 20a from being erroneously mounted at the planned mounting position of the nozzle member 20b, and prevent the nozzle member 20b from being erroneously mounted at the planned mounting position of the nozzle member 20a. Furthermore, in order to prevent the axial displacement and the axial blurring of the nozzle members 20a and 20b, the right and left end surfaces of the central projection 1c are flat and circumferential portions that are in contact with the notched surfaces 26a and 26b of the cap portions 21a and 21b. There are generally U-shaped engravings 1ca and 1cb with an arcuate surface for accepting.

ノズル部材20a,20bをチップ基体1に挿入してナット25a,25bでねじ締め付けして固定するとき、チップ基体1に対して切欠面26a,26bの一端を支点(中心)に回動させようとする振り力がノズル部材20a,20bに作用するが、追加の切欠面27a,27bの回動を、対向突起1m,1nの角1mp,1npが阻止する。すなわち、ノズル部材20a,20bの軸振れを防止する。第2実施例のインサートチップのその他の構造および機能は、第1実施例のものと同様であり、第2実施例のインサートチップも、図1および図6〜図11に示すプラズマトーチに、第1実施例のインサートチップと置き替えて装備することができる。   When the nozzle members 20a and 20b are inserted into the chip base 1 and fixed by screwing with the nuts 25a and 25b, one end of the notch surfaces 26a and 26b is rotated with respect to the chip base 1 to a fulcrum (center). The swinging force acting on the nozzle members 20a and 20b acts on the nozzle members 20a and 20b, but the corners 1mp and 1np of the opposing protrusions 1m and 1n prevent the rotation of the additional cutout surfaces 27a and 27b. That is, the axial runout of the nozzle members 20a and 20b is prevented. Other structures and functions of the insert tip of the second embodiment are the same as those of the first embodiment, and the insert tip of the second embodiment is the same as that of the plasma torch shown in FIG. 1 and FIGS. It can be equipped by replacing the insert tip of one embodiment.

−第2実施例−
図6に、第2実施例のプラズマ加工装置である、ホットワイヤ形態のプラズマ溶接装置を示す。図6上のプラズマトーチは、第1実施例(図1)のものと同様な構造の、ホットワイヤ形態のプラズマ溶接トーチであり、インサートチップ1は、図2,図3に示す第1実施例のものと同一構成である。本実施例では図6に示すように、電極2a,2bと溶接対象材16の間に、電極側が負で溶接対象材側が正のプラズマアーク電流を流すプラズマ電源17,18を備える。この点は第1実施例(図1)と同様であるが、更には、ワイヤ15と溶接対象材16との間に、ワイヤ側が負で溶接対象材側が正の電流を流すホットワイヤ電源21を備える。ホットワイヤ電源21からの電流は、トーチ内ガイド13を通り、ガイド13先端部近傍よりワイヤに通電し、絶縁ガイド6内ではワイヤをジュール熱で加熱し、プラズマ19で、電極2a,2bよりのプラズマアークと合流し、溶接対象材16に流入する。このとき、ホットワイヤ電流のジュール熱がプラズマ領域内で最大になる(集中する)ので、溶接入熱量が多く、高溶着量,高能率溶接となり、高速溶接が可能である。しかも、ホットワイヤ電流と電極2a,2bよりのプラズマアーク電流とは対称および同軸であることから、磁気的バランスがとれ、磁気吹きによるアークのふらつきが発生しない。その他の機能および作用効果は、第1実施例と同様である。
-Second Example-
FIG. 6 shows a plasma welding apparatus in the form of a hot wire, which is the plasma processing apparatus of the second embodiment. The plasma torch on FIG. 6 is a hot wire type plasma welding torch having the same structure as that of the first embodiment (FIG. 1), and the insert tip 1 is the first embodiment shown in FIGS. It is the same composition as the one. In the present embodiment, as shown in FIG. 6, plasma power sources 17 and 18 are provided between the electrodes 2 a and 2 b and the welding target material 16 to flow a plasma arc current that is negative on the electrode side and positive on the welding target material side. This point is the same as that of the first embodiment (FIG. 1), but further, a hot wire power source 21 is provided between the wire 15 and the welding target material 16 so that the wire side is negative and the welding target material side supplies a positive current. Prepare. The electric current from the hot wire power source 21 passes through the guide 13 in the torch, energizes the wire from the vicinity of the tip of the guide 13, heats the wire with Joule heat in the insulating guide 6, and plasma 19 generates the current from the electrodes 2 a and 2 b. It merges with the plasma arc and flows into the welding object material 16. At this time, since the Joule heat of the hot wire current is maximized (concentrated) in the plasma region, the welding heat input is large, the welding amount is high, the efficiency is high, and high-speed welding is possible. In addition, since the hot wire current and the plasma arc current from the electrodes 2a and 2b are symmetrical and coaxial, the magnetic balance is achieved and no arc wobbling due to magnetic blowing occurs. Other functions and operational effects are the same as in the first embodiment.

−第3実施例−
図7に、第3実施例のプラズマ加工装置である、プラズマMIG溶接装置を示す。プラズマトーチは、第1実施例のものと同様な構造のプラズマMIG溶接トーチであり、インサートチップ1も、図2,図3に示す第1実施例のものと同一構成である。本実施例では図7に示すように、電極2a,2bと溶接対象材16の間に、第1実施例の場合とは逆に、電極側が正で溶接対象材側が負のプラズマアーク電流を流すプラズマ電源17,18を備える。更には、ワイヤ15と溶接対象材16との間に、ワイヤ側が正で溶接対象材側が負の溶接電流を流すMIG溶接電源(定電圧溶接電源)22を備える。シールドガスは、Ar又はAr+CO又はCO又はAr+Hである。このプラズマMIG溶接装置は、MIGの特徴である高能率,深溶込みの特性を持ち尚かつ、スパッタ無し溶接が可能である。さらにAr雰囲気で溶接が可能で、溶接金属中の酸化物の生成も極めて少なく、高重量高張力材に適する。また、アルミ溶接でのスタート部の溶着不良防止又は溶着不良の修復が可能である。その他の機能および作用効果は、第1実施例と同様である。
-Third Example-
FIG. 7 shows a plasma MIG welding apparatus which is the plasma processing apparatus of the third embodiment. The plasma torch is a plasma MIG welding torch having the same structure as that of the first embodiment, and the insert tip 1 has the same configuration as that of the first embodiment shown in FIGS. In this embodiment, as shown in FIG. 7, a plasma arc current is passed between the electrodes 2 a and 2 b and the welding target material 16, contrary to the case of the first embodiment, the electrode side is positive and the welding target material side is negative. Plasma power sources 17 and 18 are provided. Furthermore, a MIG welding power source (constant voltage welding power source) 22 is provided between the wire 15 and the welding target material 16 to flow a welding current positive on the wire side and negative on the welding target material side. The shielding gas is Ar or Ar + CO 2 or CO 2 or Ar + H 2 . This plasma MIG welding apparatus has the characteristics of high efficiency and deep penetration that are the characteristics of MIG, and is capable of welding without sputtering. Furthermore, welding is possible in an Ar atmosphere, and the generation of oxides in the weld metal is extremely small, making it suitable for high weight and high tension materials. In addition, it is possible to prevent a welding failure at the start portion in aluminum welding or repair a welding failure. Other functions and operational effects are the same as in the first embodiment.

−第4実施例−
図8に、第4実施例のプラズマ加工装置である、プラズマワイヤ肉盛装置を示す。プラズマトーチは、第1実施例のものと同様な構造のプラズマワイヤ肉盛りトーチであり、インサートチップ1も、図2,図3に示す第1実施例のものと同一構成である。本実施例では図8に示すように、電極2a,2bと溶接対象材16の間に、電極側が負で溶接対象材側が正のプラズマアーク電流を流すプラズマ電源17,18と、ワイヤ15と各電極2a,2bとの間に、ワイヤ側が正で電極側が負の電流を流すホットワイヤ電源28,29を備える。ワイヤ15はホットワイヤ電源28,29からの電流のジュール熱で加熱されるが、溶接対象材16にはワイヤ電流が流れないので、溶接対象材16が溶ける量が少なく、低希釈の肉盛溶接ができる。溶接対象材16に垂直にワイヤ15が送り込まれるので、オシレート運動しながらの肉盛溶接でも方向性なく肉盛量が安定する。また、垂直面あるいは傾斜面に対する肉盛溶接も可能である。太径ワイヤを用いる高溶着を安定した肉盛量で行うこともできる。ホットワイヤ電流は、電極2a,2bよりノズル4a,4bを通り、ワイヤ15に流入するので、プラズマ電流と同様、トーチ軸心に対して対称となり、磁気的にバランスすることから、アークのふらつきや磁気吹き現象が発生しない安定した肉盛り溶接ができる。その他の機能および作用効果は、第1実施例と同様である。
-Fourth embodiment-
FIG. 8 shows a plasma wire overlaying apparatus that is the plasma processing apparatus of the fourth embodiment. The plasma torch is a plasma wire build-up torch having the same structure as that of the first embodiment, and the insert tip 1 has the same configuration as that of the first embodiment shown in FIGS. In this embodiment, as shown in FIG. 8, between the electrodes 2a and 2b and the welding target material 16, plasma power sources 17 and 18 for passing a plasma arc current that is negative on the electrode side and positive on the welding target material side, the wire 15, Hot wire power supplies 28 and 29 are provided between the electrodes 2a and 2b to allow a current to flow positive on the wire side and negative on the electrode side. Although the wire 15 is heated by the Joule heat of the current from the hot wire power supplies 28 and 29, since the wire current does not flow through the welding target material 16, the amount of the welding target material 16 is small and low dilution overlay welding is performed. Can do. Since the wire 15 is fed perpendicularly to the material 16 to be welded, the build-up amount is stabilized without directivity even in the build-up welding while oscillating. Further, overlay welding on a vertical surface or an inclined surface is also possible. High welding using a thick wire can be performed with a stable build-up amount. Since the hot wire current flows from the electrodes 2a and 2b through the nozzles 4a and 4b and flows into the wire 15, the hot wire current is symmetrical with respect to the torch axis and is magnetically balanced in the same way as the plasma current. Stable build-up welding without magnetic blowing phenomenon can be achieved. Other functions and operational effects are the same as in the first embodiment.

−第5実施例−
図9に、第5実施例のプラズマ加工装置である、プラズマ粉体肉盛装置を示す。プラズマトーチは、ワイヤガイドに代えて粉体ガイド6を装備したプラズマ粉体肉盛トーチである。その他の構造は、第1実施例のものと同様であり、インサートチップ1も、図2,図3に示す第1実施例のものと同様な構成である。粉体ガイド6には、粉体送給機25が、粉体槽24にある粉体を定速度で送り込む。プラズマ電源17,18が、電極2a,2bと溶接対象材16の間に、電極側が負で溶接対象材側が正のプラズマアーク電流を流す。溶接対象材に対して粉体流を垂直に送給するので、側方からプラズマアークに粉体を送給する従来例よりも、粉体の歩留まりがよく、粉体がノズルに付着しにくく、また、トーチ内の粉体通路を太くでき、直線であることから、送給性の悪い切裁粉を使用することも出来る。溶接対象材16の真上で対称なプラズマアークが合流し衝突し合う為、溶接対象材16への下向きプラズマ流が弱くなるので、低希釈の粉体肉盛が可能である。その他の機能および作用効果は、第1実施例と同様である。
-Fifth embodiment-
FIG. 9 shows a plasma powder overlaying apparatus that is the plasma processing apparatus of the fifth embodiment. The plasma torch is a plasma powder build-up torch equipped with a powder guide 6 instead of a wire guide. The other structure is the same as that of the first embodiment, and the insert tip 1 has the same configuration as that of the first embodiment shown in FIGS. A powder feeder 25 feeds the powder in the powder tank 24 to the powder guide 6 at a constant speed. The plasma power sources 17 and 18 cause a plasma arc current to flow between the electrodes 2a and 2b and the welding target material 16 with a negative electrode side and a positive welding target material side. Since the powder flow is fed vertically to the material to be welded, the yield of the powder is better than the conventional example in which the powder is fed to the plasma arc from the side, and the powder is less likely to adhere to the nozzle. In addition, since the powder passage in the torch can be thickened and straight, cutting powder with poor feedability can be used. Since the symmetrical plasma arcs join and collide with each other directly above the welding target material 16, the downward plasma flow to the welding target material 16 becomes weak, so that low-dilution powder overlaying is possible. Other functions and operational effects are the same as in the first embodiment.

−第6実施例−
図10に、第6実施例のプラズマ加工装置である、プラズマキーホール溶接装置を示す。プラズマトーチは、ワイヤガイドに代えてキーホールガスガイド6を装備したプラズマキーホール溶接トーチである。その他の構造は、第1実施例のものと同様であり、インサートチップ1も、図2,図3に示す第1実施例のものと同様な構成である。第1実施例の場合と同様に、プラズマ電源17,18が、電極2a,2bと溶接対象材16の間に、電極側が負で溶接対象材側が正のプラズマアーク電流を流す。キーホールガスは、Ar又はHe又はAr+H又はAr+O又はAr+Heである。キーホールガスガイド6により、キーホール用小径高速ガス流を噴射することにより、厚板のキーホール溶接や低入熱深溶込み溶接をすることができる。キーホール用ガスは、電極2a,2bを通るパイロットガス(プラズマガス)とは別ルートの為、電極を酸化消耗させることがないので、キーホール用ガスに酸化性ガスを用いることができる。又、キーホール用ガス噴射孔は、プラズマ電流の大小に関係なく小径にできることから、キーホール穴も小さくでき、厚板溶接ができる。その他の機能および作用効果は、第1実施例と同様である。
-Sixth Example-
FIG. 10 shows a plasma keyhole welding apparatus which is the plasma processing apparatus of the sixth embodiment. The plasma torch is a plasma keyhole welding torch equipped with a keyhole gas guide 6 instead of a wire guide. The other structure is the same as that of the first embodiment, and the insert tip 1 has the same configuration as that of the first embodiment shown in FIGS. As in the case of the first embodiment, the plasma power sources 17 and 18 cause a plasma arc current to flow between the electrodes 2a and 2b and the welding target material 16 with a negative electrode side and a positive welding target material side. The keyhole gas is Ar or He or Ar + H 2 or Ar + O 2 or Ar + He. By injecting a small-diameter high-speed gas flow for the keyhole by the keyhole gas guide 6, it is possible to perform keyhole welding of a thick plate or low heat input deep penetration welding. Since the keyhole gas is a different route from the pilot gas (plasma gas) passing through the electrodes 2a and 2b, the electrode is not oxidized and consumed, so that an oxidizing gas can be used as the keyhole gas. Further, since the gas injection hole for the keyhole can be made small regardless of the magnitude of the plasma current, the keyhole hole can be made small and thick plate welding can be performed. Other functions and operational effects are the same as in the first embodiment.

−第7実施例−
図11に、第7実施例のプラズマ加工装置であるプラズマ切断装置を示す。プラズマトーチは、ワイヤガイドに代えて切断ガスガイド6を装備したプラズマ切断トーチである。その他の構造は、第1実施例のものと同様であり、インサートチップ1も、図2,図3に示す第1実施例のものと同様な構成である。第1実施例の場合と同様に、プラズマ電源17,18が、電極2a,2bと溶接対象材16の間に、電極側が負で溶接対象材側が正のプラズマアーク電流を流す。切断ガスは、Ar又はO又はN又はAr+Hである。切断ガスガイド6により、切断小径高速ガス流を噴射することにより、細幅切断をすることができる。電極2a,2bをタングステン電極とすれば、高価なハフニュウム電極を用いずとも、Oを切断ガスとする強力なプラズマ切断をすることができる。その他の機能および作用効果は、第1実施例と同様である。
-Seventh Example-
FIG. 11 shows a plasma cutting apparatus which is a plasma processing apparatus according to the seventh embodiment. The plasma torch is a plasma cutting torch equipped with a cutting gas guide 6 instead of the wire guide. The other structure is the same as that of the first embodiment, and the insert tip 1 has the same configuration as that of the first embodiment shown in FIGS. As in the case of the first embodiment, the plasma power sources 17 and 18 cause a plasma arc current to flow between the electrodes 2a and 2b and the welding target material 16 with a negative electrode side and a positive welding target material side. The cutting gas is Ar or O 2 or N 2 or Ar + H 2 . A narrow cut can be made by injecting a cutting small-diameter high-speed gas flow with the cutting gas guide 6. If the electrodes 2a and 2b are tungsten electrodes, powerful plasma cutting using O 2 as a cutting gas can be performed without using an expensive hafnium electrode. Other functions and operational effects are the same as in the first embodiment.

1:インサートチップ
1a,1b:電極配置空間
1c:中央突起
1d,1e:先端平面
1m,1n:対向突起
1mp,1np:角
1ma,1na:弧状面
1ca,1cb:彫込み
2(2a,2b):電極
2a:第1電極
2b:第2電極
3:センタリングストーン
4(4a,4b):ノズル
5:中央孔
6:ガイド
7:インサートキャップ
8:シールドキャップ
9:絶縁台
10(10a,10b):電極固定ねじ
11:第1電極台
12:第2電極台
13:ガイド
14:絶縁本体
15:ワイヤ
16:溶接対象材
17,18:電源
19:プラズマ
20:プール
21:ホットワイヤ電源
22:MIG溶接電源
24:粉体槽
25:粉体送給機
26:キーホールガス
27:切断ガス
28,29:ホットワイヤ電源
30:外ケース
1: Insert tip 1a, 1b: Electrode arrangement space 1c: Center protrusion 1d, 1e: Tip plane 1m, 1n: Opposing protrusion 1mp, 1np: Corner 1ma, 1na: Arc-shaped surface 1ca, 1cb: Engraving 2 (2a, 2b) : Electrode 2a: 1st electrode 2b: 2nd electrode 3: Centering stone 4 (4a, 4b): Nozzle 5: Center hole 6: Guide 7: Insert cap 8: Shield cap 9: Insulation base 10 (10a, 10b): Electrode fixing screw 11: First electrode base 12: Second electrode base 13: Guide 14: Insulation body 15: Wire 16: Material to be welded 17, 18: Power source 19: Plasma 20: Pool 21: Hot wire power source 22: MIG welding Power supply 24: Powder tank 25: Powder feeder 26: Keyhole gas 27: Cutting gas 28, 29: Hot wire power supply 30: Outer case

Claims (16)

加工対象材に供給する加工作用手段を通す穴である中央孔,該中央孔の周りに分布する複数のノズル部材挿入穴、および、各ノズル部材挿入穴に挿入された各ノズル部材の外周を冷却する冷媒が通流する複数の冷媒流路、があるチップ基体;
電極配置空間,該電極配置空間に連通するノズル,該ノズルが開いた笠部および該笠部に連続する幹部があって、内部に前記電極配置空間がある、それぞれの前記幹部が各ノズル部材挿入穴に挿入され前記笠部が前記ノズル部材挿入穴の下開口を塞ぐ、前記チップ基体とは別体の、複数のノズル部材;
前記幹部の、前記笠部がある先端部とは反対側の後端部にある雄ねじ、および、前記ノズル部材挿入穴に挿通したノズル部材の前記雄ねじに螺合してノズル部材と協働してチップ基体を挟んで締め付けてノズル部材を前記チップ基体に一体に固定するナット、を含む結合手段;および
前記チップ基体に対して前記ノズル部材の、中心軸を中心とする回転を阻止する係合手段;
を備えるインサートチップ。
Cools the outer periphery of each nozzle member inserted into each nozzle member insertion hole and a central hole that is a hole through which the processing means to be supplied to the workpiece is passed, a plurality of nozzle member insertion holes distributed around the central hole A chip substrate having a plurality of refrigerant flow paths through which refrigerant to flow;
There are an electrode arrangement space, a nozzle communicating with the electrode arrangement space, a cap portion where the nozzle is open, and a trunk portion continuous to the cap portion, and the electrode arrangement space is inside, and each of the stem portions is inserted into each nozzle member A plurality of nozzle members separate from the chip base, wherein the cap portion is inserted into a hole and closes a lower opening of the nozzle member insertion hole ;
In cooperation with the nozzle member by screwing into the male screw at the rear end portion of the trunk portion opposite to the tip portion where the cap portion is located, and the male screw of the nozzle member inserted through the nozzle member insertion hole A coupling means comprising: a nut that clamps and clamps the tip base to integrally fix the nozzle member to the tip base ;
Engagement means for preventing rotation of the nozzle member around the central axis with respect to the chip base;
Insert chip comprising.
前記係合手段は、前記ノズル部材の前記笠部の側面を一部削除した切欠面、および、前記チップ基体の、隣り合うノズル部材挿入穴の間にあって前記切欠面が当接する係止面がある先端突起、でなる;請求項に記載のインサートチップ。 The engaging means includes a notch surface in which a side surface of the cap portion of the nozzle member is partially deleted, and a locking surface between the adjacent nozzle member insertion holes of the chip base and in contact with the notch surface. projecting end, consisting of; insert chip of claim 1. 各ノズル部材には、前記切欠面とは別の、前記笠部の側面を一部切除した追加の切欠面があり;前記チップ基体には、該追加の切欠面が当接する追加の対向突起がある;請求項に記載のインサートチップ。 Each nozzle member has an additional notch surface that is different from the notch surface and is partially cut away from the side surface of the cap portion; the tip base has an additional opposing protrusion with which the additional notch surface abuts. The insert tip according to claim 2 . 前記切欠面と追加の切欠面の笠部円周方向の分布は、チップ基体へのノズル部材の装着位置エラーを防止するために、ノズル部材間で異なったパターンである;請求項に記載のインサートチップ。 The cap portion of the circumferential distribution of cut-away surface of the Add the cut surface, in order to prevent the mounting position error of the nozzle member to the chip substrate, is different patterns between the nozzle member; of claim 3 Insert tip. 前記冷媒流路の下端は前記笠部がチップ基体の先端平面に当接することにより閉じられ、前記チップ基体には、冷媒受穴,冷媒出穴,前記複数の冷媒流路をつなぐ冷媒還流路,前記冷媒流路の一つを前記冷媒受穴につなぐ冷媒通し穴、および、前記冷媒流路の他の一つを前記冷媒出穴につなぐ冷媒通し穴、がある;請求項に記載のインサートチップ。 The lower end of the refrigerant flow path is closed by the cap portion coming into contact with the tip flat surface of the chip base, and the chip base has a refrigerant receiving hole, a refrigerant outlet hole, a refrigerant return path connecting the plurality of refrigerant flow paths, refrigerant through hole connecting one of said coolant flow path to said refrigerant receiving hole, and a refrigerant through hole connecting the other one of the refrigerant flow path in the refrigerant Deana, there; insert according to claim 1 Chip. 請求項1に記載のインサートチップと、該インサートチップの前記中央孔にワイヤを案内するワイヤガイドと、前記インサートチップの各電極配置空間に先端部を挿入した複数の電極と、を備えるプラズマトーチ。   A plasma torch comprising: the insert tip according to claim 1; a wire guide that guides a wire into the central hole of the insert tip; and a plurality of electrodes having tip portions inserted into respective electrode arrangement spaces of the insert tip. 請求項に記載のプラズマトーチと、前記複数の電極と加工対象材の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源と、を備えるプラズマ溶接装置。 A plasma welding apparatus comprising: the plasma torch according to claim 6; and a power source for passing a plasma arc current that is negative on the electrode side and positive on the workpiece side between the plurality of electrodes and the workpiece. 更に、前記ワイヤと加工対象材との間に、ワイヤ側が負で加工対象材側が正の電流を流すホットワイヤ電源を備える、請求項に記載の、ホットワイヤ形態のプラズマ溶接装置。 Furthermore, the hot-wire type plasma welding apparatus of Claim 7 provided with the hot wire power supply which sends a positive electric current between the said wire and a material to be processed in which the wire side is negative and the material to be processed is positive. 請求項に記載のプラズマトーチと、前記複数の電極と加工対象材の間に、電極側が正で加工対象材側が負のプラズマアーク電流を流す電源と、前記ワイヤと加工対象材との間に、ワイヤ側が正で加工対象材側が負の電流を流すMIG溶接電源を備える、プラズマMIG溶接装置。 The plasma torch according to claim 6 , a power source for passing a plasma arc current that is positive on the electrode side and negative on the workpiece side between the plurality of electrodes and the workpiece material, and between the wire and the workpiece material A plasma MIG welding apparatus comprising a MIG welding power source for passing a positive current on the wire side and a negative current on the workpiece side. 請求項に記載のプラズマトーチと、前記複数の電極と加工対象材の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源と、前記ワイヤと各電極との間に、ワイヤ側が正で電極側が負の電流を流すホットワイヤ電源を備える、プラズマワイヤ肉盛装置。 Between the plasma torch according to claim 6 , between the plurality of electrodes and the workpiece material, a power source for passing a plasma arc current that is negative on the electrode side and positive on the workpiece side, and between the wire and each electrode, A plasma wire build-up device comprising a hot wire power source for flowing a positive current on the wire side and a negative current on the electrode side. 請求項1に記載のインサートチップと、該インサートチップの前記中央孔に粉体を案内する粉体ガイドと、前記インサートチップの各電極配置空間に先端部を挿入した複数の電極と、を備えるプラズマ粉体肉盛トーチ。   A plasma comprising: the insert tip according to claim 1; a powder guide for guiding powder to the central hole of the insert tip; and a plurality of electrodes having tip portions inserted into respective electrode arrangement spaces of the insert tip. Powder overlay torch. 請求項11に記載のプラズマ粉体肉盛トーチと、前記複数の電極と加工対象材の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源と、前記粉体ガイドに粉体を送給する手段と、を備えるプラズマ粉体肉盛装置。 12. A plasma powder build-up torch according to claim 11 , a power source for passing a plasma arc current that is negative on the electrode side and positive on the workpiece side, between the plurality of electrodes and the workpiece material; And a means for feeding the body. 請求項1に記載のインサートチップと、該インサートチップの前記中央孔にキーホールガスを案内するガスガイドと、前記インサートチップの各電極配置空間に先端部を挿入した複数の電極と、を備えるプラズマキーホール溶接トーチ。   A plasma comprising: the insert tip according to claim 1; a gas guide for guiding a keyhole gas into the central hole of the insert tip; and a plurality of electrodes having tips inserted into the electrode arrangement spaces of the insert tip. Keyhole welding torch. 請求項13に記載のプラズマキーホール溶接トーチと、前記複数の電極と加工対象材の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源と、を備えるプラズマキーホール溶接装置。 A plasma keyhole welding apparatus comprising: the plasma keyhole welding torch according to claim 13; and a power source for passing a plasma arc current that is negative on the electrode side and positive on the workpiece side between the plurality of electrodes and the workpiece material. . 請求項1に記載のインサートチップと、該インサートチップの前記中央孔に切断ガスを案内するガスガイドと、前記インサートチップの各電極配置空間に先端部を挿入した複数の電極と、を備えるプラズマ切断トーチ。   A plasma cutting comprising: the insert tip according to claim 1; a gas guide that guides a cutting gas into the central hole of the insert tip; and a plurality of electrodes having tip portions inserted into respective electrode arrangement spaces of the insert tip. torch. 請求項15に記載のプラズマ切断トーチと、前記複数の電極と加工対象材の間に、電極側が負で加工対象材側が正のプラズマアーク電流を流す電源と、を備えるプラズマ切断装置。 16. A plasma cutting device comprising: the plasma cutting torch according to claim 15; and a power source for passing a plasma arc current that is negative on the electrode side and positive on the workpiece side between the plurality of electrodes and the workpiece.
JP2012124070A 2012-05-31 2012-05-31 Insert tip, plasma torch and plasma processing equipment Active JP5904541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012124070A JP5904541B2 (en) 2012-05-31 2012-05-31 Insert tip, plasma torch and plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124070A JP5904541B2 (en) 2012-05-31 2012-05-31 Insert tip, plasma torch and plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2013248631A JP2013248631A (en) 2013-12-12
JP5904541B2 true JP5904541B2 (en) 2016-04-13

Family

ID=49847835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124070A Active JP5904541B2 (en) 2012-05-31 2012-05-31 Insert tip, plasma torch and plasma processing equipment

Country Status (1)

Country Link
JP (1) JP5904541B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105171214A (en) * 2015-10-16 2015-12-23 吴忠仪表有限责任公司 PTA central tungsten electrode powder-feeding device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118028A (en) * 1994-10-18 1996-05-14 Mitsubishi Materials Corp Welding torch and build up welding equipment
JP4707108B2 (en) * 2006-01-16 2011-06-22 日鐵住金溶接工業株式会社 Plasma torch
US7989727B2 (en) * 2006-09-13 2011-08-02 Hypertherm, Inc. High visibility plasma arc torch
JP2008212969A (en) * 2007-03-02 2008-09-18 Nippon Steel & Sumikin Welding Co Ltd Plasma torch
US20100258534A1 (en) * 2009-04-08 2010-10-14 Russell Vernon Hughes Method of converting a gas tungsten arc welding system to a plasma welding system
JP5441156B2 (en) * 2009-07-30 2014-03-12 日鐵住金溶接工業株式会社 Insert tip, plasma torch and plasma processing equipment

Also Published As

Publication number Publication date
JP2013248631A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
US20060289394A1 (en) TIG welding or braze welding with metal transfer via a liquid bridge
CN102407399B (en) Nozzle characteristic is used to regulate plasma arc cutting torch and the method for cutting torch flow
JP4726038B2 (en) System for welding and method of use thereof
US6469277B1 (en) Method and apparatus for hybrid welding under shielding gas
CA2240219C (en) Tig welding method and welding apparatus
US20090107958A1 (en) Torch and Contact Tip for Gas Metal Arc Welding
CN110114179B (en) Field former for welding applications
KR20080066590A (en) Apparatus and method for deep groove welding
CN1158156C (en) Magnetically controlled mixed gas protected consumable-electrode weld (MAG) with high deposition coefficient and its special equipment
CN102848085A (en) Laser-single power double-wire pulse arc hybrid welding system and use method for same
CN102069305B (en) Laser twin-electric arc compound welding system
JP2011050982A (en) Insert chip, plasma torch, and plasma machining apparatus
TWI409119B (en) Insert-chip, plasma torch and plasma processing device
JP5904541B2 (en) Insert tip, plasma torch and plasma processing equipment
JP5441156B2 (en) Insert tip, plasma torch and plasma processing equipment
US20090071942A1 (en) Method and apparatus of welding with electrical stickout
JPS58181472A (en) Tig welding method of narrow groove
JP6913715B2 (en) TIG welding method
WO2020017222A1 (en) Tig welding torch
JP3061268B1 (en) Melt processing equipment using laser light and arc
JP2020534160A (en) Torch body for thermal bonding
JP5472931B2 (en) Plasma welding equipment
JP2010234409A (en) Narrow gloove welding torch, and tandem arc welding apparatus having the same
KR102301650B1 (en) Overlay welding system for steel plate
KR101304694B1 (en) Tandem Electro Gas Arc Welding Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160309

R150 Certificate of patent or registration of utility model

Ref document number: 5904541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250