JP2008212969A - Plasma torch - Google Patents

Plasma torch Download PDF

Info

Publication number
JP2008212969A
JP2008212969A JP2007052686A JP2007052686A JP2008212969A JP 2008212969 A JP2008212969 A JP 2008212969A JP 2007052686 A JP2007052686 A JP 2007052686A JP 2007052686 A JP2007052686 A JP 2007052686A JP 2008212969 A JP2008212969 A JP 2008212969A
Authority
JP
Japan
Prior art keywords
nozzle
tip
nozzle tip
screw
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007052686A
Other languages
Japanese (ja)
Inventor
Fumihiko Sakuno
野 文 彦 作
Tadashi Hoshino
野 忠 星
Katsura Kobayashi
林 桂 小
Shigeru Sato
藤 茂 佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2007052686A priority Critical patent/JP2008212969A/en
Publication of JP2008212969A publication Critical patent/JP2008212969A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a plasma torch to use a large current by increasing the cooling capacity of an indirect water cooling system nozzle tip. <P>SOLUTION: The plasma torch provided with a nozzle tip 14 having an electrode rod 11, double cylindrical nozzle rests 5, 6 arranged with the electrode rod in a central position, and a nozzle 15 facing the pointed end of the electrode rod and a cooling medium flow passage for making a cooling medium flow in the front end side of the nozzle rest is provided with the nozzle tip 14 having a tapered male screw in an outer peripheral surface and tightened and coupled to the nozzle rest by the tapered male screw of the outer peripheral surface screwed into the female screw at the front end of the nozzle rest. There is a silver plating on the screw surface of at least either of the tapered male screw of the nozzle tip and the female screw at the front end of the nozzle rest. An inner tube 5 of the nozzle rest has a projected rim which bisects the circular cylindrical space for flowing of the cooling medium up to an annular space w2 of a nozzle tip coupling section of cooling medium flow passages 19-w1 to w4-20 to a lateral supply channel w1 and a drainage canal w3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プラズマトーチに関し、特に、トーチ先端のノズルチップの装着構造に関する。   The present invention relates to a plasma torch, and more particularly to a mounting structure for a nozzle tip at the tip of a torch.

実開昭57−176180号公報Japanese Utility Model Publication No. 57-176180 特開平 1−143776号公報Japanese Patent Laid-Open No. 1-143776 実開昭55− 28032号公報。Japanese Utility Model Publication No. 55-28032.

筒状のノズル台に棒状のタングステン電極を通しノズル台の下端にノズルチップを装着したプラズマトーチは、ノズル台の、タングステン電極が通った空間に供給されるプラズマガスをタングステン電極の先端に発生するアークで電離したプラズマをノズルチップのノズル(噴気口)から噴射するとともに、ノズル台の外周面とシールドキャップの間の空間に供給されるシールドガスをノズルチップの外側面に沿って、前方(加工対象材)に噴射する。プラズマアークをノズルチップのノズルで冷却狭搾するため、ノズル台の内部の流路に冷却水を供給してノズル台およびノズルチップを冷却する。   A plasma torch in which a rod-shaped tungsten electrode is passed through a cylindrical nozzle base and a nozzle tip is attached to the lower end of the nozzle base generates plasma gas supplied to the space of the nozzle base through which the tungsten electrode passes at the tip of the tungsten electrode. Plasma ionized by arc is sprayed from the nozzle (nozzle port) of the nozzle tip, and the shield gas supplied to the space between the outer peripheral surface of the nozzle base and the shield cap is forward (processed) along the outer surface of the nozzle tip. The target material is injected. In order to cool and squeeze the plasma arc with the nozzle of the nozzle tip, cooling water is supplied to the flow path inside the nozzle stand to cool the nozzle stand and the nozzle tip.

冷却方式には、特許文献1に記載のように、ノズル台のみに冷却水を通流する間接冷却方式と、特許文献2および3に記載のように、ノズル台を通してノズルチップに冷却水を通流する直接冷却方式とがある。さらに、ノズルチップの冷却能力を高くするために特許文献3に記載のプラズマ溶接トーチは、ノズルチップの冷却水流路にそれを左右に2分割する仕切り壁を設けて、冷却水をノズルチップの先端で折り返す構造を採用している。   As described in Patent Document 1, the cooling method includes an indirect cooling method in which cooling water is allowed to flow only through the nozzle table, and as described in Patent Documents 2 and 3, the cooling water is passed through the nozzle table through the nozzle tip. There is a direct cooling system that flows. Furthermore, in order to increase the cooling capability of the nozzle tip, the plasma welding torch described in Patent Document 3 is provided with a partition wall that divides the nozzle tip into two parts on the left and right sides in the cooling water flow path of the nozzle tip so The structure that is folded back is adopted.

ノズルチップの冷却効果は、直接冷却方式よりも間接冷却方式の方が劣る。このため間接冷却方式のプラズマトーチを用いるプラズマ溶接では、使用可能な最大電流は通常150A程度であり、大電流使用はノズルチップが損傷(ノズル溶損)するので不可能であった。また、ノズルチップの冷却不足から、アークのサーマルピンチ効果も弱く、直接水冷方式に比べてアーク径が広く、熱集中が劣る。一方、直接冷却方式では、ノズル台とノズルチップの間に冷却水流路があるので、ノズルチップをノズル台から外すと、内部の冷却水が外部に流出し、トーチが水濡れする。したがって溶接現場での、ノズルチップを外す交換,点検,清掃などのメンテナンスが難しい。   The cooling effect of the nozzle tip is inferior to the indirect cooling method than the direct cooling method. Therefore, in plasma welding using an indirect cooling plasma torch, the maximum current that can be used is usually about 150 A, and use of a large current is impossible because the nozzle tip is damaged (nozzle melting). In addition, due to insufficient cooling of the nozzle tip, the thermal pinch effect of the arc is weak, the arc diameter is wider and the heat concentration is inferior than the direct water cooling method. On the other hand, in the direct cooling method, since there is a cooling water flow path between the nozzle base and the nozzle tip, when the nozzle tip is removed from the nozzle base, the internal cooling water flows out and the torch gets wet. Therefore, it is difficult to perform maintenance such as replacement, inspection and cleaning by removing the nozzle tip at the welding site.

間接水冷方式のプラズマトーチでは、ノズル台とノズルチップとの接触面を介する伝熱により、ノズルチップの熱をノズル台に伝え、そして冷却水で吸熱するが、該接触面の伝熱能力が低い。ノズル台にノズルチップをねじ結合すると、当接の場合よりも接触がよいが、従来は平行ねじでの螺合であるので、微視的には接触が不十分である。すなわち、平行ねじでは、締め込んだ時にはねじ込み側のねじ山片面に面圧がかかり密着するが、ねじ山の反対面は接触しないため、伝熱面積が少ない。ノズルチップを傘型にして傘下面をノズル台の先端面に圧接するようにねじ締め付けする態様(たとえば特許文献1)でも、接触平面の微視的な凹凸(荒れ)やゴミなどを潰すほどの面圧は加わらないので、接触平面部の伝熱効果は低い。ノズル台の先端を円錐穴面としそこにノズルチップの傘下面の円錐面をはめ合わせる斜面接触の場合も、同様でありしかも、両部材の円錐面のテーパ誤差により、接触が不完全となる可能性が高い。   In an indirect water-cooled plasma torch, the heat of the nozzle tip is transferred to the nozzle base by heat transfer through the contact surface between the nozzle base and the nozzle tip and is absorbed by the cooling water, but the heat transfer capacity of the contact surface is low. . When the nozzle tip is screw-coupled to the nozzle base, the contact is better than in the case of contact, but conventionally, the contact is inadequate microscopically because it is screwed with a parallel screw. That is, when a parallel screw is tightened, a surface pressure is applied to one side of the screw thread on the screwing side, but the surface is in close contact with each other, but the opposite surface of the screw thread is not in contact, and therefore the heat transfer area is small. Even in a mode in which the nozzle tip is made into an umbrella shape and screwed so that the lower surface of the umbrella is pressed against the tip surface of the nozzle base (for example, Patent Document 1), microscopic unevenness (roughness) of the contact plane, dust, etc. are crushed. Since the surface pressure is not applied, the heat transfer effect of the contact plane portion is low. The same applies to the case of inclined surface contact where the tip of the nozzle base is a conical hole surface and the conical surface of the lower surface of the nozzle tip is fitted to the conical surface, and the contact may be incomplete due to the taper error of the conical surfaces of both members. High nature.

本発明は、間接水冷方式のノズルチップの冷却能力を高くして、大電流使用を可能にすることを目的とする。   An object of the present invention is to increase the cooling capacity of an indirect water-cooled nozzle tip to enable use of a large current.

(1)電極棒(11),該電極棒(11)を中心位置に配置した2重筒状ノズル台(5,6),前記電極棒(11)の尖端に対向するノズル(15)を持つ、前記2重筒状ノズル台(5,6)の先端に装着されたノズルチップ(14)、および、前記2重筒状ノズル台(5,6)の先端側内部に冷却媒体を通流させる冷却媒体流路(19-w1〜w4-20)、を備えるプラズマトーチにおいて、
外周面にテーパ雄ねじを持ち、該外周面のテーパ雄ねじが前記2重筒状ノズル台(5,6)の先端部の雌ねじへねじ込まれて前記2重筒状ノズル台(5,6)に締め付け結合されたノズルチップ(14)、を備えることを特徴とするプラズマトーチ。
(1) It has an electrode rod (11), a double cylindrical nozzle base (5, 6) with the electrode rod (11) arranged at the center, and a nozzle (15) facing the tip of the electrode rod (11). The cooling medium is passed through the nozzle tip (14) mounted at the tip of the double cylindrical nozzle base (5, 6) and the tip side inside the double cylindrical nozzle base (5, 6). In a plasma torch comprising a cooling medium flow path (19-w1 to w4-20),
A taper male screw is provided on the outer peripheral surface, and the taper male screw on the outer peripheral surface is screwed into the female screw at the tip of the double cylindrical nozzle base (5, 6) and tightened to the double cylindrical nozzle base (5, 6). A plasma torch comprising a combined nozzle tip (14).

なお、理解を容易にするために括弧内には、図面に示し後述する実施例の対応要素又は相当要素の記号を、例示として参考までに付記した。以下も同様である。   In addition, in order to make an understanding easy, the code | symbol of the corresponding element or the equivalent element of the Example which is shown in drawing and mentions later in parentheses is attached for reference by reference. The same applies to the following.

テーパねじは、ねじ山全体(両斜面)が面圧をうけ、微視的な凹凸は潰して接触するので、接触面積が増えしかも接触圧が高い。ノズルチップとノズル台の間の接触面の伝熱能力のばらつきや劣化が少ない。ノズルチップからノズル台への伝熱が向上する。これにより大電流の溶接が可能になる。   In the taper screw, the entire screw thread (both slopes) is subjected to surface pressure, and the microscopic irregularities are crushed and contacted. There is little variation or deterioration in the heat transfer capacity of the contact surface between the nozzle tip and the nozzle base. Heat transfer from the nozzle tip to the nozzle base is improved. This enables welding with a large current.

(2)前記ノズルチップ(14)のテーパ雄ねじと前記2重筒状ノズル台(5,6)の先端部の雌ねじの少なくとも一方のねじ表面に銀メッキがある、上記(1)に記載のプラズマトーチ。   (2) The plasma according to (1) above, wherein the surface of at least one of the taper male screw of the nozzle tip (14) and the female screw at the tip of the double cylindrical nozzle base (5, 6) has silver plating. torch.

銀は熱伝導性が高くやわらかく、微細な凹凸を埋めて密着度を高くするので、ノズルチップとノズル台の間の接触部に銀メッキを施すことで、接触ねじ部の密着性が増し、熱伝導が向上する。銅同士の螺合では、一方が他方をかじりやすく、表面を傷つけたり、外れにくくなったりする。銀は密着接合ししかも銅部分に傷を与えずすべり性を高くするので熱伝導が向上し、しかも外すことも容易になる。   Silver has a high thermal conductivity and is soft and fills fine irregularities to increase the adhesion, so by applying silver plating to the contact part between the nozzle tip and the nozzle base, the adhesion of the contact screw part increases, Conduction is improved. In the screwing of copper, one side is easy to bite the other, and the surface is damaged or it is difficult to come off. Silver adheres tightly and does not damage the copper part and improves the sliding property, so that heat conduction is improved and it is easy to remove.

(3)前記2重筒状ノズル台(5,6)の内筒(5)が、前記冷却媒体流路(19-w1〜w4-20)の、前記ノズルチップ(14)結合部のリング状空間(w2)に至るまでの円筒状の冷却媒体通流用空間を、左右の給水路(w1)と排水路(w3)に2区分する半径方向の突出部を持つ、上記(1)又は(2)に記載のプラズマトーチ。給水路(w1)に進入した冷却水は、ノズルチップ(14)結合部のリング状空間(w2)に入ってノズルチップ(14)結合部の外側を半周してから排水路(w3)に入って排水管に向かう。冷却水がノズルチップ(14)結合部の外側を半周するので、ノズル台(5,6)の、ノズルチップ(14)装着部での抜熱効果が高い。すなわちノズルチップ(14)の冷却効果が高い。   (3) The inner cylinder (5) of the double cylindrical nozzle base (5, 6) is a ring shape of the nozzle tip (14) coupling portion of the cooling medium flow path (19-w1 to w4-20). The above-mentioned (1) or (2) has a protruding portion in the radial direction that divides the cylindrical cooling medium flow space up to the space (w2) into a right and left water supply channel (w1) and a drainage channel (w3). The plasma torch described in). The cooling water that has entered the water supply channel (w1) enters the ring-shaped space (w2) of the nozzle tip (14) coupling part, enters the drainage channel (w3) after making a half turn around the outside of the nozzle chip (14) coupling part. Head to the drain. Since the cooling water makes a half turn around the outside of the nozzle tip (14) connecting portion, the heat removal effect at the nozzle tip (14) mounting portion of the nozzle base (5, 6) is high. That is, the cooling effect of the nozzle tip (14) is high.

本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。   Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

図1に本発明の1実施例の縦断面を示す。プラズマトーチ基体1の円筒状内空間には、陰極台2,絶縁ブッシュ3および陽極台4が挿入され、これらが基体1に一体に固着されている。陽極台4の内部には、ノズル台内筒5およびノズル台6が挿入されている。ノズル台6の下端(先端)にはノズルチップ14が装着されている。ノズル台6には連結筒7が固着されており、連結筒7に、その雄ねじを受け入れた雌ねじ付きのシールドキャップ8が螺合しており、シールドキャップ8をねじ込み方向に廻すことによって、シールドキャップ8の端面が基体1の端面に締め付けられている。   FIG. 1 shows a longitudinal section of one embodiment of the present invention. A cathode base 2, an insulating bush 3 and an anode base 4 are inserted into the cylindrical inner space of the plasma torch base 1, and these are integrally fixed to the base 1. A nozzle table inner cylinder 5 and a nozzle table 6 are inserted into the anode table 4. A nozzle tip 14 is attached to the lower end (tip) of the nozzle base 6. A connecting cylinder 7 is fixed to the nozzle base 6, and a shield cap 8 with a female thread that accepts the male screw is screwed into the connecting cylinder 7, and the shield cap 8 is rotated in the screwing direction, whereby a shield cap is provided. The end face 8 is fastened to the end face of the base 1.

ノズル台内筒5の内部には電極ホルダ9があり、その内部に導電チャック10がある。導電チャック10をタングステン電極11が貫通している。導電チャック10の割り溝が切り込まれた先端がタングステン電極11の中心に向かう方向に圧搾されてタングステン電極11を挟持している。これにより、タングステン電極11が、導電チャック10および締付けチャック12を介して電極ホルダ9に固定されている。タングステン電極11はセンタリングストーン13を貫通して、ノズルチップ14のノズル15に対向している。   There is an electrode holder 9 inside the nozzle base inner cylinder 5 and a conductive chuck 10 inside. A tungsten electrode 11 passes through the conductive chuck 10. The tip of the conductive chuck 10 where the split groove is cut is squeezed in a direction toward the center of the tungsten electrode 11 to sandwich the tungsten electrode 11. Thereby, the tungsten electrode 11 is fixed to the electrode holder 9 via the conductive chuck 10 and the fastening chuck 12. The tungsten electrode 11 passes through the centering stone 13 and faces the nozzle 15 of the nozzle tip 14.

陰極台2には電極ホルダ9および導電チャック10が挿入されており、タングステン電極11は、導電チャック10,トーチキャップ16及び陰極台2を介して、パイロット電源21およびメイン電源22に電気的に接続される。   An electrode holder 9 and a conductive chuck 10 are inserted in the cathode base 2, and the tungsten electrode 11 is electrically connected to the pilot power source 21 and the main power source 22 via the conductive chuck 10, the torch cap 16 and the cathode base 2. Is done.

基体1のアームにあるプラズマガス管17から、電極ホルダ9の内空間にプラズマガスが供給され、センタリングストーン13の中心穴空間に至り、タングステン電極11の先端のアークで電離されてプラズマとなって、ノズル15から噴出する。基体1のアームにあるシールドガス管18から、ノズル台6と基体1の間に送給されたシールドガスは、連結筒7の通気孔を通って、シールドキャップ8の内空間に至り、キャップ8からトーチ前方に噴出する。   Plasma gas is supplied from the plasma gas tube 17 on the arm of the substrate 1 to the inner space of the electrode holder 9, reaches the center hole space of the centering stone 13, and is ionized by an arc at the tip of the tungsten electrode 11 to become plasma. , Ejected from the nozzle 15. The shield gas fed between the nozzle base 6 and the substrate 1 from the shield gas pipe 18 on the arm of the substrate 1 passes through the vent hole of the connecting cylinder 7 and reaches the inner space of the shield cap 8. Erupts forward from the torch.

導電性の給水管である陽極パイプ19は基体1のアームを通して陽極台4に繋がっており、すなわち電気的に接続されており、陽極パイプ19に供給される冷却水(実線矢印)は、陽極台4に入り、そしてノズル台6とノズル台内筒5との間の給水路w1を通って、ノズルチップ装着部を周回するリング状空間w2を通り、さらに排水路w3を通って絶縁ブッシュ3の内空間であるリング状空間w4を通って、導電性の排水管である陰極パイプ20に出る。陰極パイプ20は基体1のアームを通して陰極台2に繋がっている。すなわち電気的に接続されている。   The anode pipe 19, which is a conductive water supply pipe, is connected to the anode base 4 through the arm of the base 1, that is, is electrically connected, and the cooling water (solid arrow) supplied to the anode pipe 19 is the anode base. 4 and through the water supply path w1 between the nozzle base 6 and the nozzle base inner cylinder 5, through the ring-shaped space w2 that goes around the nozzle tip mounting portion, and further through the drainage path w3, the insulating bush 3 It passes through the ring-shaped space w4 that is the inner space and exits to the cathode pipe 20 that is a conductive drainage pipe. The cathode pipe 20 is connected to the cathode table 2 through the arm of the base 1. That is, they are electrically connected.

ノズル台内筒5の、半径方向xに突出し軸方向zに延びる突条(図示せず)によって筒状空間が縦割りに半円筒状空間w1,w3に2区分されており、一方の半円筒状空間が給水路w1、他方の半円筒状空間が排水路w3である。   A cylindrical space is vertically divided into two semi-cylindrical spaces w1 and w3 by a protrusion (not shown) of the nozzle base inner cylinder 5 protruding in the radial direction x and extending in the axial direction z. The space is the water supply channel w1, and the other semi-cylindrical space is the drainage channel w3.

ノズル台6の先端は裁頭円錐形状であって、しかもフランジ6f付きのスリーブ6sがあって2重筒状になっている。該スリーブ6sの元部すなわちノズル台6の先端部にはテーパ雌ねじ6fsがあり、そこにノズルチップ14の外周のテーパ雄ねじ14msがねじ込まれている。   The tip of the nozzle base 6 has a truncated conical shape, and further has a sleeve 6s with a flange 6f and has a double cylindrical shape. A taper female screw 6fs is provided at the base portion of the sleeve 6s, that is, at the tip of the nozzle base 6, and a taper male screw 14ms on the outer periphery of the nozzle tip 14 is screwed therein.

図2に、ノズル台6のフランジ6f部の横断面(図1上の2A−2A線断面)を示す。ノズル台6のフランジ6fも、前述の給水路w1および排水路w3に連続した給水入り口および排水出口を区画するように、x方向に突出した形状である。前述の、ノズル台内筒5の半径方向xに突出し軸方向zに延びる突条の横断面形状も、フランジ6fの図2に示す横断面形状と同等のものである。フランジ6fの下方空間すなわちノズル15側の空間は、リング状の空間w2であるので、給水路w1の冷却水は空間w2に入ると二手にわかれて、ノズルチップ14のテーパ雄ねじ14msの外側をそれぞれ半周回するようにリング状の空間w2を流れて排水路w3に入る。したがってノズル台6の先端すなわちノズルチップ14のテーパ雄ねじ14msの外側部の冷却効果が高い。   In FIG. 2, the cross section (2A-2A line cross section on FIG. 1) of the flange 6f part of the nozzle stand 6 is shown. The flange 6f of the nozzle base 6 also has a shape protruding in the x direction so as to define a water supply inlet and a water discharge outlet continuous with the water supply path w1 and the water discharge path w3. The cross-sectional shape of the protrusion protruding in the radial direction x of the nozzle base inner cylinder 5 and extending in the axial direction z is also the same as the cross-sectional shape of the flange 6f shown in FIG. Since the space below the flange 6f, that is, the space on the nozzle 15 side is a ring-shaped space w2, the cooling water in the water supply channel w1 is split into two when it enters the space w2, and the outside of the taper male screw 14ms of the nozzle tip 14 is respectively separated. It flows through the ring-shaped space w2 so as to make a half turn and enters the drainage channel w3. Therefore, the cooling effect on the tip of the nozzle base 6, that is, the outer portion of the taper male screw 14ms of the nozzle tip 14 is high.

図3の(a)に、テーパ雌ねじとテーパ雄ねじとの接触ねじ部の縦断面を示す。テーパねじは、ねじ込むことでねじ山全体(ねじ山の斜面両面およびねじ山の上面R部,下面R部)が面圧をうけ、良好な密着(ミクロン台の凹凸も潰して接触)をする。したがってノズル台6のテーパ雌ねじ6fsとノズルチップ14のテーパ雄ねじ14msの間の接触ねじ部の密着性が高く、熱伝導性が高い。なお、従来の平行ねじを用いる接触ねじ部は、図3の(b)に示すように、締めきったときには、ねじ込み側のねじ山片面のみに面圧がかかり密着するが、ねじ山の反対側の面は接触しないため、伝熱面積は半減し熱伝導性が低い。また、加工具によるミクロン台の凹凸を潰すほどの面圧強度がないので、接触面積が少ない。   FIG. 3A shows a longitudinal section of the contact thread portion between the taper female thread and the taper male thread. When the taper screw is screwed in, the entire screw thread (both sloped surfaces of the screw thread and the upper surface R portion and the lower surface R portion of the screw thread) are subjected to surface pressure, and are in good contact (the ruggedness on the micron scale is also crushed and contacted). Therefore, the adhesiveness of the contact screw part between the taper female screw 6fs of the nozzle base 6 and the taper male screw 14ms of the nozzle tip 14 is high, and the thermal conductivity is high. As shown in FIG. 3 (b), the contact thread portion using a conventional parallel screw, when tightened, is subjected to surface pressure only on one side of the thread on the screwing side, but is in close contact with the screw thread. Since the surface of this is not in contact, the heat transfer area is halved and the thermal conductivity is low. In addition, the contact area is small because there is not enough surface pressure strength to crush the unevenness on the micron level by the processing tool.

図1に示す本実施例では、さらに熱伝導性を高くするために、ノズルチップ14の外周面部すなわちテーパ雄ねじ14msには銀メッキを施している。この銀メッキが、熱伝導性が高くやわらかく、微細な凹凸を埋めて密着度を高くするので、ノズル台6のテーパ雌ねじ6fsとノズルチップ14のテーパ雄ねじ14msの間の接触ねじ部の密着性が増し、熱伝導が向上する。銅同士の螺合では、一方が他方をかじりやすく、表面を傷つけたり、外れにくくなったりする。銀は密着接合ししかも銅部分に傷を与えずすべり性を高くするので熱伝導が向上し、しかも外すことも容易である。   In the present embodiment shown in FIG. 1, silver plating is applied to the outer peripheral surface portion of the nozzle tip 14, that is, the tapered male screw 14 ms, in order to further increase the thermal conductivity. Since this silver plating has high thermal conductivity and is soft and fills fine irregularities to increase the adhesion, the adhesion of the contact thread portion between the taper female screw 6fs of the nozzle base 6 and the taper male screw 14ms of the nozzle tip 14 is improved. And heat conduction is improved. In the screwing of copper, one side is easy to bite the other, and the surface is damaged or it is difficult to come off. Silver adheres tightly, and does not damage the copper part and increases the slipperiness, so that the heat conduction is improved and can be easily removed.

次に熱伝導性の実験結果を説明する。本発明のサンプル(一実施例)は、図1に示すプラズマトーチではあるが、ノズル台6およびノズルチップ14のいずれにもメッキは施さないものであり、ノズルチップ周りの寸法(単位はmm)は、図4の(a)に示すものである。テーパねじは、JIS規格のR(PT) 1/4である。   Next, the experimental results of thermal conductivity will be described. The sample of the present invention (one example) is the plasma torch shown in FIG. 1, but neither the nozzle base 6 nor the nozzle tip 14 is plated, and the dimensions around the nozzle tip (unit is mm). Is shown in FIG. The taper screw is JIS standard R (PT) 1/4.

図4の(b)に示す、水平接触面を持つ傘型ノズルチップ14p1を平行ねじでノズル台6p1に結合した参考例1および、図4の(c)に示す円錐接触面のノズルチップ14p2を平行ねじでノズル台6p2に結合した参考例2、を比較例とした。参考例1および2の平行ねじは、JIS規格のM10xP1である。なお、図4に示す本発明のサンプル(a)、ならびに、参考例1(b)および参考例2(c)のいずれでも、ノズル台に対するノズルチップの締め込みトルクは同一で、10 N・m である。   Reference Example 1 shown in FIG. 4B in which an umbrella-shaped nozzle tip 14p1 having a horizontal contact surface is coupled to the nozzle base 6p1 with a parallel screw and a nozzle tip 14p2 having a conical contact surface shown in FIG. Reference Example 2 coupled to the nozzle base 6p2 with a parallel screw was used as a comparative example. The parallel screws of Reference Examples 1 and 2 are JIS standard M10xP1. Note that the tightening torque of the nozzle tip with respect to the nozzle base is the same in both the sample (a) of the present invention shown in FIG. 4 and Reference Example 1 (b) and Reference Example 2 (c). It is.

図5には、図4の(a)に示す本発明のサンプルの、ノズル台6のテーパ雌ねじ6fsおよびノズルチップ14のテーパ雄ねじ14msの、JIS規格 R(PT) 1/4 のねじ寸法(単位はmm)を示す。   FIG. 5 shows the screw dimensions (unit: JIS standard R (PT) 1/4) of the taper female screw 6fs of the nozzle base 6 and the taper male screw 14ms of the nozzle tip 14 of the sample of the present invention shown in FIG. Indicates mm).

図6には、熱伝導性の実験結果を示す。図6の(d)に示す参考例4は、特許文献2に記載の直接冷却方式のものである。図6上の温度差Δtは、プラズマトーチに対して冷却水を給排する冷却水循環装置(図示せず)での、排水(戻水)温度と給水(入水)温度との差(°C)であり、熱量は、プラズマトーチからの吸熱量でありその大部分が、ノズルチップからの吸熱量である。該熱量は、
熱量(kcal/h)=温度差Δt(°C)×流量(リットル/min)×60
で算出したものである。
FIG. 6 shows the results of thermal conductivity experiments. Reference Example 4 shown in FIG. 6D is of the direct cooling method described in Patent Document 2. The temperature difference Δt in FIG. 6 is the difference (° C.) between the drainage (return water) temperature and the supply water (incoming water) temperature in a cooling water circulation device (not shown) for supplying and discharging cooling water to and from the plasma torch. The amount of heat is the amount of heat absorbed from the plasma torch, and most of it is the amount of heat absorbed from the nozzle tip. The amount of heat is
Amount of heat (kcal / h) = temperature difference Δt (° C.) × flow rate (liter / min) × 60
It was calculated by.

図7には、図6に示す実験結果の、溶接電流と熱量(冷却量)との関係をグラフにして示す。図7において、参考例1および2を、200A以降で熱量を下げて示しているのは、溶接電流200A程度まででノズルチップ14p1,14p2のチップ穴が、溶損して使用不可となったため、実験を中止した結果である。本発明のサンプル(一実施例:図4の(a))は、図7のグラフから、間接水冷方式ではあるが、直接水冷方式の参考例3の冷却特性に近い冷却特性を示し、高電流の溶接が可能であることがわかる。   FIG. 7 is a graph showing the relationship between the welding current and the amount of heat (cooling amount) in the experimental results shown in FIG. In FIG. 7, reference examples 1 and 2 are shown with the heat amount reduced after 200A because the tip holes of the nozzle tips 14p1 and 14p2 are melted and become unusable up to a welding current of about 200A. It is the result of canceling. The sample of the present invention (one example: FIG. 4 (a)) shows a cooling characteristic close to the cooling characteristic of Reference Example 3 of the direct water cooling system, although it is an indirect water cooling system, and has a high current. It can be seen that welding is possible.

図8には、図4の(a),(b)および(c)に示す3タイプのノズルチップ装着構造につき、図8上に示す同一の実験条件でアークを発生したときの評価を示す。本発明のプラズマトーチ(実施例(a))の場合は、300A程度まで、ノズルチップ14のノズル15に、溶損による変形は見られなかった。したがって従来間接水冷方式で一般的な150A程度よりも高い300A程度まで溶接電流を高くして使用できる。参考例1および2では、150A程度まで、ノズルチップのノズルに溶損による変形は見られなかったが、200A程度では、ノズルに溶損による変形が起こるので、150A程度以下で使用しなければならない。   FIG. 8 shows the evaluation when an arc is generated under the same experimental conditions shown in FIG. 8 for the three types of nozzle tip mounting structures shown in FIGS. 4 (a), 4 (b) and 4 (c). In the case of the plasma torch of the present invention (Example (a)), the nozzle 15 of the nozzle tip 14 was not deformed by melting damage up to about 300A. Accordingly, the welding current can be increased to about 300 A, which is higher than about 150 A, which is generally used in the conventional indirect water cooling method. In Reference Examples 1 and 2, the nozzle tip nozzle was not deformed due to melt damage up to about 150A, but at about 200A, the nozzle was deformed due to melt damage, so it must be used at about 150A or less. .

図1に示す実施例では、ノズルチップ14のテーパ雄ねじ部14msに銀メッキを施しているが、ノズル台6の雌ねじ穴に銀メッキを施しても良く、ノズルチップ14のテーパ雄ねじ部とノズル台6の雌ねじ穴に共に銀メッキを施しても良い。実用的には、図1に示す実施例のごとく、ノズルチップ14のテーパ雄ねじ部14msに銀メッキを施すのが実益が高く経済的である。しかし、ノズルチップ14ではなくノズル台6の雌ねじ穴に銀メッキを施すばあいは、ノズルチップの交換を繰り返す間に、銀メッキが磨耗して伝熱寄与が低くなるので、図1に示す実施例のごとく、ノズルチップ14のテーパ雄ねじ部14msに銀メッキを施すのが良い。   In the embodiment shown in FIG. 1, the taper male thread portion 14ms of the nozzle tip 14 is silver-plated, but the female screw hole of the nozzle base 6 may be silver-plated, and the taper male thread portion of the nozzle tip 14 and the nozzle base Both of the female screw holes 6 may be plated with silver. Practically, it is practical and economical to apply silver plating to the tapered male thread portion 14ms of the nozzle tip 14 as in the embodiment shown in FIG. However, when silver plating is applied to the female screw hole of the nozzle base 6 instead of the nozzle tip 14, the silver plating is worn and the heat transfer contribution is reduced during repeated replacement of the nozzle tip. As an example, silver plating may be applied to the taper male thread portion 14 ms of the nozzle tip 14.

本発明によれば、ノズル台6のテーパ雌ねじ6fsおよびノズルチップ14のテーパ雄ねじ14msを、テーパ角度0.5°〜45°,ねじ部の長さL=4〜45mm,ねじピッチP=0.4〜4mm、の範囲内とすることにより、平行ねじを採用する場合に対して冷却能力を高くすることができる。また、テーパねじは三角山形状のみならず、台形形状でも、平行ねじを採用する場合に対して冷却能力が高いので、ねじ山形状は三角山形状に限らない。ノズルチップ14の雄ねじおよび又はノズル台の雌ねじ穴に銀メッキを施す場合は、ねじ山が台形形状でも、ねじ結合部の隙間を銀メッキが埋めるので、冷却能力が高い。   According to the present invention, the taper female screw 6fs of the nozzle base 6 and the taper male screw 14ms of the nozzle tip 14 are provided with a taper angle of 0.5 ° to 45 °, a thread length L = 4 to 45 mm, and a screw pitch P = 0. By setting it within the range of 4 to 4 mm, the cooling capacity can be increased as compared with the case where parallel screws are employed. In addition, the taper screw is not limited to the triangular mountain shape, but the trapezoidal shape is not limited to the triangular mountain shape because the cooling capability is higher than when the parallel screw is used. When silver plating is applied to the male screw of the nozzle tip 14 and / or the female screw hole of the nozzle base, even if the screw thread is trapezoidal, the silver plating fills the gap between the screw coupling portions, so that the cooling capability is high.

更には、ノズル台6の、ノズルチップ14のテーパ雄ねじを受ける雌ねじは、テーパねじに限らず平行ねじにしても、両者共に平行ねじの場合よりも冷却能力が高いので、ノズル台6の雌ねじは、テーパ雌のみならず、平行雌ねじを採用することができる。ノズルチップ14の雄ねじおよび又はノズル台の雌ねじ穴に銀メッキを施す場合は、雌ねじ穴が平行ねじでも、ねじ結合部の隙間を銀メッキが埋めるので、冷却能力が高い。   Further, the internal thread of the nozzle base 6 that receives the taper male thread of the nozzle tip 14 is not limited to the taper thread, and even if it is a parallel thread, both have higher cooling capacity than the parallel thread. In addition to a taper female, a parallel female screw can be employed. When silver plating is applied to the male screw of the nozzle tip 14 and / or the female screw hole of the nozzle base, even if the female screw hole is a parallel screw, the silver plating fills the gap in the screw coupling portion, so that the cooling capability is high.

本発明の1実施例の縦断面図である。It is a longitudinal cross-sectional view of one Example of this invention. 図1の2A−2A線での横断面図である。It is a cross-sectional view in the 2A-2A line of FIG. (a)は、図1に示すノズル台6とノズルチップ14とのテーパねじ結合部を拡大して示す拡大縦断面図である。(b)従来の平行ねじのねじ結合部を拡大して示す拡大縦断面図である。(A) is an enlarged longitudinal cross-sectional view which expands and shows the taper screw coupling | bond part of the nozzle stand 6 and the nozzle tip 14 shown in FIG. (B) It is an expanded longitudinal cross-sectional view which expands and shows the screw coupling | bond part of the conventional parallel screw. (a)本発明の実験サンプルの、ノズル台6とノズルチップ14との結合部の寸法を示す拡大縦断面図である。(b)および(c)は比較例のノズル台6p1,6p2とノズルチップ14p1,14p2との結合部の寸法を示す拡大縦断面図である。(A) It is an expanded longitudinal cross-sectional view which shows the dimension of the coupling | bond part of the nozzle stand 6 and the nozzle tip 14 of the experimental sample of this invention. (B) And (c) is an expanded longitudinal cross-sectional view which shows the dimension of the coupling | bond part of the nozzle stand 6p1, 6p2 of the comparative example, and nozzle tip 14p1, 14p2. 図1に示すノズル台6とノズルチップ14のテーパねじの寸法を示す拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing dimensions of taper screws of a nozzle base 6 and a nozzle tip 14 shown in FIG. 1. 図4に示す、ノズル台とノズルチップの各結合構造と、直接水冷方式のノズルチップ冷却構造の、抜熱熱量実験結果を示す図表である。FIG. 5 is a chart showing a heat removal calorific value experimental result of each nozzle base / nozzle tip coupling structure and direct water cooling type nozzle tip cooling structure shown in FIG. 4. FIG. 図6に示す実験結果をグラフ化したグラフである。It is the graph which graphed the experimental result shown in FIG. 図4に示す、ノズル台とノズルチップの各結合構造の、耐用アーク電流実験結果の評価を示す図表である。FIG. 5 is a chart showing an evaluation of the results of a durable arc current experiment for each nozzle base / nozzle tip coupling structure shown in FIG. 4. FIG.

符号の説明Explanation of symbols

1:基体
2:陰極台
3:絶縁ブッシュ
4:陽極台
5:ノズル台内筒
6:ノズル台
6s:スリーブ
6f:フランジ
6fs:テーパ雌ねじ
7:連結筒
8:シールドキャップ
9:電極ホルダ
10:導電チャック
11:タングステン電極
13:センタリングストーン
14:ノズルチップ
14ms:テーパ雄ねじ
15:ノズル
16:トーチキャップ
17:プラズマガス管
18:シールドガス管
19:陽極パイプ(給水管)
20:陰極パイプ(排水管)
21:パイロット電源
22:メイン電源
23:溶接材
w1:給水路
w2:リング状空間
w3:排水路
w4:リング状空間
1: Base body 2: Cathode base 3: Insulating bush 4: Anode base 5: Nozzle base inner cylinder 6: Nozzle base 6s: Sleeve 6f: Flange 6fs: Tapered female screw 7: Connecting cylinder 8: Shield cap 9: Electrode holder 10: Conductive Chuck 11: Tungsten electrode 13: Centering stone 14: Nozzle tip 14ms: Taper male screw 15: Nozzle 16: Torch cap 17: Plasma gas pipe 18: Shield gas pipe 19: Anode pipe (water supply pipe)
20: Cathode pipe (drain pipe)
21: Pilot power source 22: Main power source 23: Welding material w1: Water supply channel w2: Ring-shaped space w3: Drainage channel w4: Ring-shaped space

Claims (3)

電極棒,該電極棒を中心位置に配置した2重筒状ノズル台,前記電極棒の尖端に対向するノズルを持つ、前記2重筒状ノズル台の先端に装着されたノズルチップ、および、前記2重筒状ノズル台の先端側内部に冷却媒体を通流させる冷却媒体流路、を備えるプラズマトーチにおいて、
外周面にテーパ雄ねじを持ち、該外周面のテーパ雄ねじが前記2重筒状ノズル台の先端部の雌ねじへねじ込まれて前記2重筒状ノズル台に締め付け結合されたノズルチップ、を備えることを特徴とするプラズマトーチ。
An electrode rod, a double cylindrical nozzle base having the electrode bar disposed at a central position, a nozzle tip attached to the tip of the double cylindrical nozzle base, having a nozzle facing the tip of the electrode bar; and In a plasma torch comprising a cooling medium flow channel for allowing a cooling medium to flow inside the tip side of the double cylindrical nozzle base,
A nozzle tip having a taper male screw on the outer peripheral surface, and the taper male screw on the outer peripheral surface is screwed into the female screw at the tip of the double cylindrical nozzle base and is fastened to the double cylindrical nozzle base. A characteristic plasma torch.
前記ノズルチップのテーパ雄ねじと前記2重筒状ノズル台の先端部の雌ねじの少なくとも一方のねじ表面に銀メッキがある、請求項1に記載のプラズマトーチ。   2. The plasma torch according to claim 1, wherein at least one screw surface of the taper male screw of the nozzle tip and the female screw at the tip of the double cylindrical nozzle base has silver plating. 前記2重筒状ノズル台の内筒が、前記冷却媒体流路の、前記ノズルチップ結合部のリング状空間に至るまでの円筒状の冷却媒体通流用空間を、左右の給水路と排水路に2区分する半径方向の突出部を持つ、請求項1又は2に記載のプラズマトーチ。   Cylindrical cooling medium flow space from the inner cylinder of the double cylindrical nozzle base to the ring-shaped space of the nozzle chip coupling portion of the cooling medium flow path is used as a left and right water supply channel and drainage channel. The plasma torch according to claim 1, wherein the plasma torch has a radially protruding portion that is divided into two.
JP2007052686A 2007-03-02 2007-03-02 Plasma torch Withdrawn JP2008212969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052686A JP2008212969A (en) 2007-03-02 2007-03-02 Plasma torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052686A JP2008212969A (en) 2007-03-02 2007-03-02 Plasma torch

Publications (1)

Publication Number Publication Date
JP2008212969A true JP2008212969A (en) 2008-09-18

Family

ID=39833638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052686A Withdrawn JP2008212969A (en) 2007-03-02 2007-03-02 Plasma torch

Country Status (1)

Country Link
JP (1) JP2008212969A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137266A (en) * 2008-12-14 2010-06-24 Nippon Steel & Sumikin Welding Co Ltd Insert chip and plasma torch
CN101945528A (en) * 2009-07-03 2011-01-12 日铁住金溶接工业株式会社 Insert chip and plasma torch pipe
JP2011014460A (en) * 2009-07-03 2011-01-20 Nippon Steel & Sumikin Welding Co Ltd Plasma torch
JP2011014459A (en) * 2009-07-03 2011-01-20 Nippon Steel & Sumikin Welding Co Ltd Insert chip and plasma torch
JP2011060688A (en) * 2009-09-14 2011-03-24 Kasuga Electric Works Ltd Plasma surface treatment device
CN102825370A (en) * 2012-09-29 2012-12-19 伊达新技术电源(昆山)有限公司 Welding gun contact tube
CN103404237A (en) * 2011-02-28 2013-11-20 热动力公司 Plasma cutting tip with advanced cooling passageways
JP2013248631A (en) * 2012-05-31 2013-12-12 Nippon Steel & Sumikin Welding Co Ltd Insert chip, plasma torch and plasma machining device
JP2015062912A (en) * 2013-09-24 2015-04-09 株式会社ダイヘン Plasma arc welding system
CN106252191A (en) * 2016-08-02 2016-12-21 中国科学院长春光学精密机械与物理研究所 Exchangeable nozzle ICP generating means in plasma chemistry etching apparatus
JP2017119297A (en) * 2015-12-28 2017-07-06 大陽日酸株式会社 Plasma arc torch
JP2022070060A (en) * 2020-10-26 2022-05-12 株式会社ムラタ溶研 Tig welding torch with narrow nozzle for spot welding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137266A (en) * 2008-12-14 2010-06-24 Nippon Steel & Sumikin Welding Co Ltd Insert chip and plasma torch
CN101945528A (en) * 2009-07-03 2011-01-12 日铁住金溶接工业株式会社 Insert chip and plasma torch pipe
JP2011014460A (en) * 2009-07-03 2011-01-20 Nippon Steel & Sumikin Welding Co Ltd Plasma torch
JP2011014459A (en) * 2009-07-03 2011-01-20 Nippon Steel & Sumikin Welding Co Ltd Insert chip and plasma torch
JP2011060688A (en) * 2009-09-14 2011-03-24 Kasuga Electric Works Ltd Plasma surface treatment device
CN103404237A (en) * 2011-02-28 2013-11-20 热动力公司 Plasma cutting tip with advanced cooling passageways
JP2013248631A (en) * 2012-05-31 2013-12-12 Nippon Steel & Sumikin Welding Co Ltd Insert chip, plasma torch and plasma machining device
CN102825370A (en) * 2012-09-29 2012-12-19 伊达新技术电源(昆山)有限公司 Welding gun contact tube
JP2015062912A (en) * 2013-09-24 2015-04-09 株式会社ダイヘン Plasma arc welding system
JP2017119297A (en) * 2015-12-28 2017-07-06 大陽日酸株式会社 Plasma arc torch
CN106252191A (en) * 2016-08-02 2016-12-21 中国科学院长春光学精密机械与物理研究所 Exchangeable nozzle ICP generating means in plasma chemistry etching apparatus
JP2022070060A (en) * 2020-10-26 2022-05-12 株式会社ムラタ溶研 Tig welding torch with narrow nozzle for spot welding
JP7176780B2 (en) 2020-10-26 2022-11-22 株式会社ムラタ溶研 TIG welding torch with narrow nozzle for spot welding

Similar Documents

Publication Publication Date Title
JP2008212969A (en) Plasma torch
US7605340B2 (en) Apparatus for cooling plasma arc torch nozzles
US8575510B2 (en) Nozzle for a liquid-cooled plasma burner, arrangement thereof with a nozzle cap, and liquid-cooled plasma burner comprising such an arrangement
JP4707108B2 (en) Plasma torch
CA2765449C (en) Nozzle for a liquid-cooled plasma torch and plasma torch head having the same
KR101497460B1 (en) contact Tip of gas welding torch
CA2734986A1 (en) Nozzle for a liquid-cooled plasma torch and plasma torch head comprising the same
CN107442914B (en) High-power plasma cutting torch for cutting stainless steel with thickness of 100-160 mm
US7265313B2 (en) Method and apparatus for improved cooling of resistance welding cap
JP6073475B2 (en) Tungsten inert gas welding
US20020144982A1 (en) Cathode assembly for an electric arc spray apparatus
US9073141B2 (en) Electrode for plasma cutting torches and use of same
FR2910224A1 (en) PLASMA CUTTING TORCH WITH ADAPTIVE PLUNGER TUBE COOLING CIRCUIT
JP6955585B2 (en) Welding torch
JP7350267B2 (en) electrode device
US11498149B2 (en) Electrode unit for inert gas welding with non-consumable electrode
JP2007167889A (en) Holder for gouging
JP5841342B2 (en) Nozzle and plasma torch for plasma cutting device
JP2012192443A (en) Nozzle for plasma cutting device, and plasma torch
JP4391847B2 (en) Plasma welding torch
RU2627133C1 (en) Device for cooling electrode of contact point welding (cpw)
CN218103618U (en) Cathode head for plasma torch
JPH08294779A (en) Nozzle for plasma torch
CN209439576U (en) Welding/cutter device
KR20090006501A (en) The carbon welding tip for weld

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511