JP2012020292A - Laser welding technique - Google Patents

Laser welding technique Download PDF

Info

Publication number
JP2012020292A
JP2012020292A JP2010157934A JP2010157934A JP2012020292A JP 2012020292 A JP2012020292 A JP 2012020292A JP 2010157934 A JP2010157934 A JP 2010157934A JP 2010157934 A JP2010157934 A JP 2010157934A JP 2012020292 A JP2012020292 A JP 2012020292A
Authority
JP
Japan
Prior art keywords
welding
laser beam
base material
molten pool
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010157934A
Other languages
Japanese (ja)
Other versions
JP5600838B2 (en
Inventor
Kenji Shinozaki
賢二 篠崎
Motomichi Yamamoto
元道 山本
Toshiji Nagashima
利治 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Mitsubishi Power Industries Ltd
Original Assignee
Hiroshima University NUC
Bab Hitachi Industrial Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Bab Hitachi Industrial Co filed Critical Hiroshima University NUC
Priority to JP2010157934A priority Critical patent/JP5600838B2/en
Publication of JP2012020292A publication Critical patent/JP2012020292A/en
Application granted granted Critical
Publication of JP5600838B2 publication Critical patent/JP5600838B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a laser welding technique which has a high capacity of fusing a base material without using a laser beam machine of high output and which has high efficiency and high quality.SOLUTION: The laser welding technique combines a laser beam 1 and a hot wire 2, inserts the laser beam 1 into a leading part and the hot wire 2 into a following with respect to the welding advancing direction. The technique irradiates a surface of the base material 3 to be welded with the laser beam 1, wherein the laser beam 1 is defocused, and a direction of a reflecting beam 1' of the laser beam 1 on a surface of a molten pool 5 formed by the irradiation and fusion of the hot wire is defined as a front of the molten pool 5 and the welding is carried out while always forming a leading molten pool 5a.

Description

本発明はレーザ溶接とホットワイヤ溶接とを組合せた溶接方法に係わり、特に鋼板あるいは鋼管の突合せ溶接を高品質、高能率に行うのに好適なレーザ溶接方法に関する。   The present invention relates to a welding method in which laser welding and hot wire welding are combined, and more particularly, to a laser welding method suitable for performing butt welding of steel plates or steel pipes with high quality and high efficiency.

レーザ溶接は高いエネルギーのレーザ光を用い、レーザ光をレンズにより集光してより高いエネルギー密度として、被溶接部である鋼板等の母材に当てることにより母材を溶融するため、通常のアークを熱源とするアーク溶接に比べて前記母材の肉厚方向において深い溶込みが得られること、母材の溶融速度が早いことから高速溶接が可能であること、母材の溶融部の外側に生じる溶接熱影響部の範囲が狭くて溶接変形が少なく低歪みの溶接施工が行えること、などの特徴を有する溶接方法である。また、高能率溶接方法である電子ビーム溶接のように被溶接部を真空環境にする必要がないので、高能率溶接法として各方面で使用されるようになってきている。   Laser welding uses a high-energy laser beam, and the laser beam is condensed by a lens and applied to a base material such as a steel plate, which is the welded part, with a higher energy density. Compared with arc welding using a heat source as a heat source, deep penetration in the thickness direction of the base metal is obtained, high speed welding is possible because the base material has a high melting speed, This is a welding method having features such that the range of the weld heat affected zone is narrow, welding deformation is small, and low distortion welding can be performed. In addition, unlike the electron beam welding which is a high-efficiency welding method, it is not necessary to place the welded part in a vacuum environment, so that it has come to be used in various fields as a high-efficiency welding method.

一般的なレーザ溶接方法について説明する。説明を簡略化するため板上にビード置きを行うビードオンプレート溶接の例で説明する。一般的に知られているのは次の2種類である。まず1つは深溶け込み型レーザ溶接方法(キーホール溶接方法とも称することがある)であり、図6、図9に示す。図6において図示しないレーザ光源と被溶接部である母材3との間に置かれた集光レンズ15により前記レーザ光源からのレーザ光1は集光されて焦点14を形成する。さらにこの溶接方法では図9に示すように前記焦点14の位置が母材3の表面に来るように設定することで、該母材3の表面に非常に高いエネルギー密度のレーザ光が供給されるため、母材3の表面は急速に溶融、蒸発して金属蒸気となる。この金属蒸発の反力により母材3の肉厚方向にはキーホール16と呼ばれる空隙が形成され、母材3に対してレーザ光1を溶接方向に移動させることにより前記キーホール16が連続的に形成される。前記キーホール16の後方には溶融池5が連続的に形成されることから幅が狭く深い溶込みの溶接ビード4が得られる。得られたビード4の断面形状を図10に示す。図10において溶接ビード4の断面は母材3の肉厚方向に細く縦長の形状になる。なお、本明細書では説明の都合により、母材3または母材3および図示しない溶加材(ワイヤなど)とが溶融している状態を溶融池5とし、冷却により凝固した状態のものを溶接ビード4または溶接金属と呼称することにする。   A general laser welding method will be described. In order to simplify the description, an example of bead-on-plate welding in which a bead is placed on a plate will be described. The following two types are generally known. One is a deep penetration type laser welding method (sometimes referred to as a keyhole welding method), which is shown in FIGS. In FIG. 6, the laser light 1 from the laser light source is condensed by a condensing lens 15 placed between a laser light source (not shown) and the base material 3 that is a welded part, thereby forming a focal point 14. Further, in this welding method, as shown in FIG. 9, the laser beam having a very high energy density is supplied to the surface of the base material 3 by setting the position of the focal point 14 to be on the surface of the base material 3. Therefore, the surface of the base material 3 is rapidly melted and evaporated to become a metal vapor. Due to the reaction force of the metal evaporation, a gap called a keyhole 16 is formed in the thickness direction of the base material 3, and the keyhole 16 is continuously moved by moving the laser beam 1 in the welding direction with respect to the base material 3. Formed. Since the molten pool 5 is continuously formed behind the keyhole 16, the weld bead 4 having a narrow width and a deep penetration can be obtained. The cross-sectional shape of the obtained bead 4 is shown in FIG. In FIG. 10, the cross section of the weld bead 4 is thin and vertically long in the thickness direction of the base material 3. In the present specification, for convenience of explanation, the molten state of the base material 3 or the base material 3 and a filler material (not shown) such as a wire is referred to as a molten pool 5, and the solidified state by cooling is welded. It will be called bead 4 or weld metal.

次に、もう一つは熱伝導型レーザ溶接方法であり、図6、図7に示す。図6において図示しないレーザ光源と被溶接部である母材3との間に置かれた集光レンズ15により前記レーザ光源からのレーザ光1は集光されて焦点14を形成する。さらにこの溶接方法では、図6に示すようにレーザ光1の焦点14の位置が母材3の表面よりレーザ光1の光源側に来るように設定すること(これを「焦点外し距離をプラスにする」ということがある)で、母材3の表面に前記焦点14を合わせる場合よりも低いエネルギー密度のレーザ光1を照射して熱伝導により母材3を溶融する方法であり、前記図9に示すキーホール16を形成する溶接方法に比べて母材3の肉厚方向に浅く幅の広い溶融池5が形成される。図7に示すように母材3に対してレーザ光1を溶接方向に移動させることにより溶接方向の後方には前記溶融池5が連続的に形成され、冷却して溶接ビード4が得られる。得られた溶接ビード4の断面形状を図8に示す。図8に示すように溶接ビード4の断面形状において、母材の溶け込みは母材3の肉厚方向に凸の半円形状になる。   Next, the other is a heat conduction type laser welding method, which is shown in FIGS. In FIG. 6, the laser light 1 from the laser light source is condensed by a condensing lens 15 placed between a laser light source (not shown) and the base material 3 that is a welded part, thereby forming a focal point 14. Furthermore, in this welding method, as shown in FIG. 6, the position of the focal point 14 of the laser beam 1 is set so as to be closer to the light source side of the laser beam 1 than the surface of the base material 3 (this is referred to as “adding the defocus distance plus”). 9), a method of melting the base material 3 by heat conduction by irradiating the surface of the base material 3 with the laser beam 1 having a lower energy density than the case where the focal point 14 is focused. Compared with the welding method for forming the keyhole 16 shown in FIG. 1, the molten pool 5 is formed shallower and wider in the thickness direction of the base material 3. As shown in FIG. 7, by moving the laser beam 1 in the welding direction with respect to the base material 3, the molten pool 5 is continuously formed behind the welding direction and cooled to obtain the weld bead 4. The cross-sectional shape of the obtained weld bead 4 is shown in FIG. As shown in FIG. 8, in the cross-sectional shape of the weld bead 4, the base material melts into a semicircular shape that is convex in the thickness direction of the base material 3.

前記深溶け込み型レーザ溶接方法と熱伝導型レーザ溶接方法とは、前記したようにそれぞれ異なる溶接方法であり、適用箇所により選択されている。前記深溶け込み型レーザ溶接方法では、1パスで得られる溶け込み深さが概ね出力1kW当たり約1mmと熱伝導型レーザ溶接方法よりも大きな溶け込みが得られることから、5mm以下程度の薄板材同士を端面で溶接接合する場合などへの適用では、5kWクラスのレーザ加工機を使用して、1パスでの溶接が可能であり広く普及している。   The deep penetration type laser welding method and the heat conduction type laser welding method are different welding methods as described above, and are selected according to the application location. In the deep penetration type laser welding method, the penetration depth obtained in one pass is approximately 1 mm per 1 kW of output, which is greater than the heat conduction type laser welding method. For example, in the case of welding and joining by using a 5 kW class laser processing machine, welding in one pass is possible and widely used.

板厚が5mmより厚くなると、より出力の大きな10kW出力クラスのレーザ加工機を使用することになるが、10kW出力クラスのレーザ加工機で溶接できる板厚は10mm程度が限界であり、さらに厚い板厚を溶接する方法として特開平7−323386号公報(特許文献1)に記載のレーザ溶接方法が提案されている。この方法は被溶接部に設ける開先として、深溶け込み溶接の限界溶け込み深さをルートフェイスとするY型狭開先とし、ルートフェイス部の1層目を深溶け込みで1パス完全溶込み溶接し、2層目以降は、集光光学系の焦点の位置を、焦点距離の1/20以上の距離だけ前層ビード上から離すことによって、エネルギー密度が低下したレーザ光を開先部に照射し、溶加材のワイヤを加えることにより熱伝導型ビードを形成する溶接方法が用いられる。   When the plate thickness is thicker than 5 mm, a 10 kW output class laser processing machine with a higher output is used. However, the plate thickness that can be welded by the 10 kW output class laser processing machine is about 10 mm, which is a thicker plate. As a method for welding the thickness, a laser welding method described in JP-A-7-323386 (Patent Document 1) has been proposed. This method uses a Y-shaped narrow groove with the root penetration at the critical penetration depth of deep penetration welding as the groove provided in the welded part, and the first layer of the root face part is deeply penetrated and one pass complete penetration welding is performed. For the second and subsequent layers, the groove portion is irradiated with laser light having a reduced energy density by separating the focal point of the condensing optical system from the front layer bead by a distance of 1/20 or more of the focal length. A welding method is used in which a heat conductive bead is formed by adding a wire of filler metal.

また、溶接電源とは別にワイヤ加熱電源よりワイヤに通電するホットワイヤ溶接法を用いることにより効率を向上させたレーザ溶接方法として、特開昭61−232080号公報(特許文献2)には、ワイヤを溶接方向前方から供給して被溶接部前方の母材である未溶接部に接触させて通電による抵抗発熱した後にレーザ光に直接照射させるようにホットワイヤを供給し、溶接する方法が開示され、また特開昭61−232081号公報(特許文献3)には、ワイヤを溶接方向後方から供給して溶融池または溶接金属部に接触して電気抵抗発熱した後にレーザ光に直接照射させるようにホットワイヤを供給し、溶接する方法が開示されている。   In addition, as a laser welding method in which efficiency is improved by using a hot wire welding method in which a wire is energized from a wire heating power source in addition to a welding power source, Japanese Patent Application Laid-Open No. 61-232080 (Patent Document 2) discloses a wire. Is disclosed in which a hot wire is supplied and welded so as to directly irradiate the laser beam after supplying heat from the front in the welding direction and bringing it into contact with the unwelded portion which is the base material in front of the welded portion to generate resistance heat by energization. In JP-A-61-232081 (Patent Document 3), a wire is supplied from the rear in the welding direction so as to contact the molten pool or weld metal part and generate electric resistance, and then directly irradiate the laser beam. A method of supplying and welding hot wire is disclosed.

特開平7−323386号公報JP-A-7-323386 特開昭61−232080号公報JP-A-61-232080 特開昭61−232081号公報JP-A-61-232081

特開平7−323386号公報に記載された従来技術では、被溶接部に設ける開先として、深溶け込み溶接の限界溶け込み深さをルートフェイスとするY型狭開先とし、ルートフェイス部の1層目を深溶け込みで1パス完全溶込み溶接し、2層目以上は、集光光学系の焦点の位置を、焦点距離の1/20以上の距離だけ前層ビード上から離すことによって、エネルギー密度を低下したレーザビームを開先部に照射し、溶加材のワイヤを加えることにより熱伝導型ビードを形成する溶接方法が提案されている。2層目以降ではエネルギー密度を低下したレーザ光により被溶融母材と溶加材のワイヤの両方を溶融する必要があること、熱伝導型ビードの溶接ではキーホール溶接に比較してレーザ光の反射が大きく、レーザエネルギーの損出が大きいことより、効率的に溶接を行うためにレーザ加工機は10kWクラスが用いられる。通常レーザ加工機の値段は1kW約1千万円する。この方法で用いられるレーザ加工機は10kWクラスであり、通常用いられる5kW出力クラスのレーザ加工機比べて、非常に高価である。   In the prior art described in Japanese Patent Application Laid-Open No. 7-323386, the groove provided in the welded portion is a Y-type narrow groove having a root penetration at the limit penetration depth of deep penetration welding, and one layer of the root face portion. The energy density of the second layer and above by separating the focal point of the condensing optical system from the front layer bead by a distance of 1/20 or more of the focal length. There has been proposed a welding method in which a groove portion is irradiated with a laser beam having a reduced resistance and a wire of a filler material is added to form a heat conduction type bead. In the second and subsequent layers, it is necessary to melt both the melted base metal and the filler metal wire with a laser beam having a reduced energy density. Since the reflection is large and the loss of laser energy is large, a laser processing machine of 10 kW class is used for efficient welding. The price of a laser processing machine is usually about 10 million yen per kW. The laser processing machine used in this method is a 10 kW class, which is very expensive as compared with a normally used 5 kW output class laser processing machine.

また、特開昭61−232080号公報及び特開昭61−232081号公報記載の発明はワイヤに通電するホットワイヤとレーザ溶接を併用することで、レーザ光の有する高密度エネルギーをフィラーワイヤの溶融に使用しなくて済むようにして溶接速度と効率を高めることができるというものであるが、前記公報に開示されているものは、I型開先の1パス溶接が対象である。これに対して本発明では溶接開先の形状は特に限定せず、これを1パスで溶接するものであり、前記公報に開示された方法は、特に溶接部の成形や溶接品質維持面での困難性については全く対応できない。
本発明の課題は、溶接母材の肉厚が20mm程度の溶接であっても5kW出力以下のレーザ加工機により高効率、高品質なレーザ溶接方法を提供することである。
Further, the invention described in Japanese Patent Application Laid-Open Nos. 61-2332080 and 61-238201 uses a hot wire that energizes the wire and laser welding, so that the high density energy of the laser beam is melted by the filler wire. Although the welding speed and efficiency can be increased by eliminating the need to use the I-type groove, the one disclosed in the above publication is intended for one-pass welding of an I-type groove. On the other hand, in the present invention, the shape of the welding groove is not particularly limited, and this is welded in one pass, and the method disclosed in the above publication is particularly effective in forming the welded part and maintaining the welding quality. We cannot cope with difficulty at all.
An object of the present invention is to provide a high-efficiency and high-quality laser welding method using a laser processing machine having a power of 5 kW or less even when welding is performed with a welding base material having a thickness of about 20 mm.

上記本発明の課題は次の構成によって解決される。
請求項1記載の発明は、溶加材として溶接ワイヤ(2)を用いて開先加工した被溶接母材(3)を溶接するレーザ溶接方法において、レーザ光(1)を該レーザ光(1)の焦点を外して前記開先加工した被溶接母材(3)に照射して該被溶接母材(3)を溶融すると共に、前記溶接ワイヤ(2)を該溶接ワイヤ(2)と前記被溶接母材(3)間に通電して該ワイヤ(2)の抵抗発熱により加熱するホットワイヤとし、前記レーザ光(1)の後方に前記レーザ光の照射角度と近似した被溶接母材(3)に対する傾斜角度で前記被溶接母材の溶融により形成した溶融池に挿入し、前記被溶接母材(3)の溶融および前記溶接ワイヤ(2)の挿入により形成した溶融池(5)に対して照射したレーザ光(1)の反射光(1’)を前記溶融池(5)の溶接方向前方に照射して溶融しながら溶接することを特徴とするレーザ溶接方法である。
The above-described problems of the present invention are solved by the following configuration.
The invention according to claim 1 is a laser welding method for welding a base material (3) to be welded using a welding wire (2) as a filler material, wherein the laser beam (1) is the laser beam (1). ) Is irradiated to the welded base material (3) subjected to the groove processing to melt the welded base material (3), and the welding wire (2) is connected to the welding wire (2) and the A hot wire heated by resistance heating of the wire (2) by energizing between the base material (3) to be welded, and a base material to be welded (approximate the laser beam irradiation angle behind the laser beam (1)) 3) inserted into a molten pool formed by melting the welded base material at an inclination angle with respect to 3), and into a molten pool (5) formed by melting the welded base material (3) and inserting the welding wire (2). The reflected light (1 ′) of the laser beam (1) irradiated to the molten pool (5) The laser welding method is characterized in that welding is performed while irradiating forward in the tangential direction and melting.

請求項2記載の発明は、前記被溶接母材(3)の溶融および前記溶接ワイヤ(2)の挿入により形成した溶融池(5)に対して照射したレーザ光(1)の反射光(1’)を前記溶融池(5)の溶接方向前方に照射することにより、該溶融池(5)に先行する先行溶融池(5a)を連続的に形成しながら溶接することを特徴とする請求項1記載のレーザ溶接方法である。   The invention described in claim 2 is the reflected light (1) of the laser beam (1) irradiated to the molten pool (5) formed by melting the welded base material (3) and inserting the welding wire (2). The preceding weld pool (5a) preceding the weld pool (5) is welded by continuously irradiating ')) in front of the weld pool (5) in the welding direction. 1. The laser welding method according to 1.

請求項3記載の発明は、被溶接母材(3)の表面に対してレーザ光(1)の照射角度θ1が80〜100°で、溶接ワイヤ(2)の溶融池(5)への挿入角度θ2が被溶接母材(3)の表面に対して90〜120°で、溶接ワイヤ(2)の中心線と被溶接母材(3)表面の交点とレーザ光(1)の中心線と被溶接母材(3)表面の交点との間隔が1〜3mmであることを特徴とする請求項1記載の狭開先多層盛レーザ溶接方法である。   According to the third aspect of the present invention, the irradiation angle θ1 of the laser beam (1) is 80 to 100 ° with respect to the surface of the base material (3) to be welded, and the welding wire (2) is inserted into the molten pool (5). The angle θ2 is 90 to 120 ° with respect to the surface of the base metal (3) to be welded, the intersection of the center line of the welding wire (2) and the surface of the base metal (3) to be welded, and the center line of the laser beam (1) 2. The narrow groove multi-layer laser welding method according to claim 1, wherein the distance from the intersection of the surface of the base material to be welded (3) is 1 to 3 mm.

(作用)
本発明の請求項1、2記載の発明では、まず、レーザ光1をプラス側またはマイナス側に焦点を外した距離で溶融池5の表面に照射させることで、ビード4の断面形状が図10に示すように深くなることを避けることができる。
(Function)
In the first and second aspects of the present invention, first, the surface of the weld pool 5 is irradiated with the laser beam 1 at a distance away from the plus or minus side, so that the cross-sectional shape of the bead 4 is as shown in FIG. It is possible to avoid deepening as shown in.

焦点を外した距離でレーザ光1を溶融池5に照射させる場合に、図4に示すように母材3の表面に対して傾斜角度αの傾斜面を有する溶融池5に向けてレーザ光1を照射する。このように焦点を外した距離でレーザ光1を溶融池5の表面に照射させることで、図8に示すような断面半円形状のビード4が得られる。レーザエネルギーの一部が溶融池5に吸収され、レーザ光1の一部が反射光1’として溶融池5の表面で母材3の表面側に向けて反射し、溶融池5の前方を溶融して先行溶融池5aを連続的に形成することができる。   When the molten pool 5 is irradiated with the laser beam 1 at a distance out of focus, the laser beam 1 is directed toward the molten pool 5 having an inclined surface with an inclination angle α with respect to the surface of the base material 3 as shown in FIG. Irradiate. By irradiating the surface of the molten pool 5 with the laser beam 1 at such a distance out of focus, a bead 4 having a semicircular cross section as shown in FIG. 8 is obtained. A part of the laser energy is absorbed by the molten pool 5, a part of the laser beam 1 is reflected as reflected light 1 ′ on the surface of the molten pool 5 toward the surface of the base material 3, and the front of the molten pool 5 is melted. Thus, the preceding molten pool 5a can be formed continuously.

次に、レーザ光1により溶加材として添加するワイヤ2を直接照射して溶融するのではなく、ワイヤ2に通電して抵抗発熱により加熱するホットワイヤとすることで、ワイヤ2が溶融池5内に挿入される前に融点近くまで加熱するようにする。これにより、レーザ光1のエネルギーは基本的に被溶接母材3のみの溶融に当てることができることから、必要なレーザ光1のエネルギーを半減することが可能になる。具体的には、通常の鋼板溶接では8〜10kWのレーザ加工機が使われるが、本溶接法を用いれば3〜5kWのレーザ加工機で溶接を行うことができるようになる。通常レーザ加工機の値段は1kW約1千万円するので、初期設備費を大幅に低減できる。   Next, instead of directly irradiating and melting the wire 2 added as a filler material with the laser beam 1, the wire 2 is made into a hot wire which is heated by resistance heating by energizing the wire 2. Heat to near melting point before inserting into. Thereby, the energy of the laser beam 1 can basically be applied to the melting of only the base material 3 to be welded, so that the energy of the necessary laser beam 1 can be halved. Specifically, a laser processing machine of 8 to 10 kW is used in normal steel plate welding, but if this welding method is used, welding can be performed with a laser processing machine of 3 to 5 kW. Since the price of a laser processing machine is usually about 10 million yen per kW, the initial equipment cost can be greatly reduced.

また、レーザ光1を溶接進行方向前方から被溶接母材3の被溶接部に形成される溶融池5に照射し、その後方よりホットワイヤ2を溶融池5にレーザ光1の照射角度と近似した角度で立てて挿入することで溶融池5に急傾斜面(図4の傾斜角度αの傾斜面)を形成し、同時にレーザ光1を溶融池5の溶接方向前方の表面に照射し、溶融池5の表面でのレーザ光1の反射光1’が溶融池5近傍であり、溶融池5の斜め前方の母材3の表面に向かう入射角度で溶融池5の表面を照射することで溶融池5の溶接方向前方を溶融して先行溶融池5aを連続的に形成する。前記先行溶融池5aを連続的に形成することが本発明の一つの特徴があり、これにより開先溶接で一番問題になる開先内の溶融能力が向上し融合不良の発生しない安定した溶接を高能率で行うことが可能になる。   Further, the laser beam 1 is applied to the weld pool 5 formed on the welded portion of the base material 3 to be welded from the front in the welding direction, and the hot wire 2 is applied to the weld pool 5 from the rear to approximate the irradiation angle of the laser beam 1. The steeply inclined surface (inclined surface having the inclination angle α in FIG. 4) is formed in the molten pool 5 by being inserted at an angle at the same angle, and at the same time, the surface of the molten pool 5 in the welding direction is irradiated and melted. The reflected light 1 ′ of the laser beam 1 on the surface of the pond 5 is in the vicinity of the molten pool 5 and is melted by irradiating the surface of the molten pool 5 at an incident angle toward the surface of the base material 3 obliquely forward of the molten pool 5. The front of the pond 5 in the welding direction is melted to continuously form the preceding molten pool 5a. It is one feature of the present invention that the preceding molten pool 5a is continuously formed, thereby improving the melting ability in the groove, which is the most problematic in groove welding, and stable welding without causing poor fusion. Can be performed with high efficiency.

表1にレーザ照射角度θ1、ワイヤ挿入角度θ2、ワイヤ送給位置を変化させた場合に正常な溶接ビード4が得られる範囲を示す。ワイヤ挿入角度θ2とワイヤ送給位置をそれぞれ105°、2mmとした場合に、被溶接母材3の表面に対してレーザ光1の照射角度θ1を80〜100°で照射すると溶接ビード4が凹形状となり多層盛溶接に適した形状とすることができた。この範囲から外れる角度で照射すると融合不良が生じた。これは溶融池5の前方から斜め前方にかけてレーザ光1の反射光1’を向けることができないためである。

Figure 2012020292
同じく表1において、レーザ照射角度θ1とワイヤ送給位置をそれぞれ90°、2mmとした場合に、被溶接母材3の表面に対してワイヤ挿入角度θ2を90〜120°で挿入すると溶接ビード4が凹形状となり多層盛溶接に適した形状とすることができた。この範囲から外れる角度でワイヤ2を挿入すると開先の上方に設定するレーザヘッドとワイヤトーチが干渉するか、溶接ビード4が凸状になった。前者は現在の装置の大きさから物理的な制限があるためであり、後者はワイヤ2が溶融池5の温度が低い後方から挿入され、ワイヤ挿入位置で凝固し、中央が盛り上ったビードになる。 Table 1 shows a range in which a normal weld bead 4 can be obtained when the laser irradiation angle θ1, the wire insertion angle θ2, and the wire feeding position are changed. When the wire insertion angle θ2 and the wire feed position are 105 ° and 2 mm, respectively, when the irradiation angle θ1 of the laser beam 1 is applied to the surface of the base material 3 to be welded at 80 to 100 °, the weld bead 4 is recessed. It became a shape and was able to be a shape suitable for multi-layer welding. Irradiation at an angle outside this range resulted in poor fusion. This is because the reflected light 1 ′ of the laser beam 1 cannot be directed from the front of the molten pool 5 to the oblique front.
Figure 2012020292
Similarly, in Table 1, when the laser irradiation angle θ1 and the wire feeding position are 90 ° and 2 mm, respectively, the welding bead 4 is inserted when the wire insertion angle θ2 is inserted at 90 to 120 ° with respect to the surface of the base material 3 to be welded. It became a concave shape and could be a shape suitable for multi-layer welding. When the wire 2 was inserted at an angle outside this range, the laser head set above the groove and the wire torch interfered with each other, or the weld bead 4 became convex. The former is due to physical limitations due to the size of the current device, and the latter is a bead in which the wire 2 is inserted from the rear where the temperature of the molten pool 5 is low, solidifies at the wire insertion position, and the center is raised. become.

同じく表1において、レーザ照射角度θ1とワイヤ挿入角度θ2をそれぞれ90°、105°とした場合に、図5で示すワイヤ送給位置を1〜3mmで照射すると溶接ビード4が凹形状となり多層盛溶接に適した形状とすることができた。この範囲から外れる位置にすると溶接ビード4の形状が凹形状に形成できず、凸凹や凸形状となった。   Similarly, in Table 1, when the laser irradiation angle θ1 and the wire insertion angle θ2 are 90 ° and 105 °, respectively, when the wire feed position shown in FIG. The shape was suitable for welding. When the position is out of this range, the shape of the weld bead 4 cannot be formed into a concave shape, and is uneven or convex.

請求項3記載の発明によれば、さらにホットワイヤ2はレーザ光1より溶接方向に対して後行させることで溶融池5の表面でのレーザ光1の反射の障害にならないようにし、ホットワイヤ2の溶融池5の表面に対する挿入角度θ2を母材3の表面に対して溶接進行方向の後方向側に90度から120度の挿入角度θ2、望ましくは100〜110度の挿入角度θ2で溶融池5の上方から挿入する。前記挿入角度θ2が90度未満であるとレーザ光1とワイヤ2が干渉し、また前記挿入角度θ2が120度を超えるとワイヤ2が溶融池5後方に挿入されることになり溶接ビード4が凸形状になり次層溶接時に開先壁7の溶融が難しくなり融合不良発生の原因になる。   According to the third aspect of the present invention, the hot wire 2 is further moved behind the laser beam 1 in the welding direction so as not to obstruct the reflection of the laser beam 1 on the surface of the molten pool 5. 2 is melted at an insertion angle θ2 of 90 ° to 120 ° on the rear side in the welding progress direction with respect to the surface of the base metal 3, and preferably at an insertion angle θ2 of 100 to 110 °. Insert from above the pond 5. When the insertion angle θ2 is less than 90 degrees, the laser beam 1 and the wire 2 interfere with each other, and when the insertion angle θ2 exceeds 120 degrees, the wire 2 is inserted behind the molten pool 5 and the weld bead 4 is formed. Due to the convex shape, it becomes difficult to melt the groove wall 7 at the time of the next layer welding, which causes a fusion failure.

また、図5に示すワイヤ2の溶融池5への挿入位置も重要なパラメータになり、ワイヤ挿入位置とレーザ光1の中心軸の溶融池5への照射位置との間隔が大き過ぎると溶融池5の端にワイヤ2が挿入されることになりビード4の表面形状が凸形状になり次層溶接時に開先壁7の溶融が難しくなり融合不良発生の原因になる。逆にワイヤ2の溶融池5への挿入位置とレーザ光1の中心軸の溶融池5への照射位置との間隔が小さいとワイヤ2にレーザ光1が当たるようになりワイヤ2がレーザ光1により溶融され、溶断する現象が発生し、溶融池5の表面が波打ち溶接現象が乱れてビード4の形状に凹凸が発生する。ワイヤ2の溶融池5への挿入位置とレーザ光1の中心軸の溶融池5への照射位置との間隔は1〜3mmが最良であった。   Further, the insertion position of the wire 2 in the molten pool 5 shown in FIG. 5 is also an important parameter, and if the distance between the wire insertion position and the irradiation position of the central axis of the laser beam 1 to the molten pool 5 is too large, the molten pool. Since the wire 2 is inserted into the end of 5 and the surface shape of the bead 4 becomes a convex shape, it becomes difficult to melt the groove wall 7 at the time of the next layer welding, which causes fusion failure. On the contrary, if the distance between the insertion position of the wire 2 into the molten pool 5 and the irradiation position of the central axis of the laser beam 1 onto the molten pool 5 is small, the laser beam 1 hits the wire 2, and the wire 2 becomes the laser beam 1. As a result, the melted and melted phenomenon occurs, and the surface of the molten pool 5 is disturbed by the wave welding phenomenon, and the bead 4 is uneven. The optimal distance between the insertion position of the wire 2 into the molten pool 5 and the position of irradiation of the central axis of the laser beam 1 onto the molten pool 5 was 1 to 3 mm.

請求項1記載の発明によれば、ホットワイヤ溶接によりワイヤ2を融点近くまで加熱するため、レーザ光1のエネルギーは基本的に被溶接母材3のみの溶融に当てることができることから、必要なレーザ光1のエネルギーを半減することが可能になる。具体的には、通常の鋼板溶接では8〜10kWのレーザ加工機が使われるが、本溶接法を用いれば3〜5kWのレーザ加工機で溶接を行うことができるようになる。通常レーザ加工機の値段は1kW約1千万円するので、初期設備費を大幅に低減できる。   According to the first aspect of the invention, since the wire 2 is heated to near the melting point by hot wire welding, the energy of the laser beam 1 can basically be applied to the melting of only the base material 3 to be welded. The energy of the laser beam 1 can be halved. Specifically, a laser processing machine of 8 to 10 kW is used in normal steel plate welding, but if this welding method is used, welding can be performed with a laser processing machine of 3 to 5 kW. Since the price of a laser processing machine is usually about 10 million yen per kW, the initial equipment cost can be greatly reduced.

請求項2記載の発明によれば、請求項1記載の効果に加えて先行溶融池5aが形成させるために母材3の前記溶融池5の前方部分を常に先行して溶融されるために溶融池5の通過で完全に被溶接母材3を溶融することができ、溶接がスムーズに進行し、良好な溶接ができる。   According to the invention described in claim 2, in addition to the effect of claim 1, in order to form the preceding molten pool 5a, the front portion of the molten pool 5 of the base material 3 is always melted in advance. The base material 3 to be welded can be completely melted by passing through the pond 5, the welding proceeds smoothly, and good welding can be performed.

また、請求項2記載の発明によれば、前記第1発明の効果に加えて、ホットワイヤ2の溶融池5の表面に対する挿入角度θ2を母材3の表面に対して溶接進行方向の後方向側に挿入角度θ2=90度〜120度、望ましくは100〜110度で溶融池5の上方中央部における溶接進行方向に挿入し(図5参照)、さらに被溶接母材3の表面に対してレーザ光1の照射角度θ1を80〜100°とすることで、レーザ光1とワイヤ2が干渉することがなく、また溶融池5表面の傾斜角度α(図4参照)が小さくならないのでレーザ光1の反射光1’が母材3の表面に向かうことができ、溶接の安定性、溶接欠陥の防止に好結果をもたらす。   According to the second aspect of the invention, in addition to the effect of the first invention, the insertion angle θ2 of the hot wire 2 with respect to the surface of the molten pool 5 is set in the backward direction of the welding progress with respect to the surface of the base material 3. Is inserted in the welding progress direction in the upper central portion of the weld pool 5 at an insertion angle θ2 = 90 ° to 120 °, preferably 100 ° to 110 ° (see FIG. 5), and further to the surface of the base material 3 to be welded By setting the irradiation angle θ1 of the laser light 1 to 80 to 100 °, the laser light 1 and the wire 2 do not interfere with each other, and the inclination angle α (see FIG. 4) of the surface of the molten pool 5 does not become small. 1 reflected light 1 ′ can be directed to the surface of the base material 3, which brings about good results in welding stability and prevention of welding defects.

本発明のレーザ溶接方法の第一の実施形態を説明するための模式図である。It is a schematic diagram for demonstrating 1st embodiment of the laser welding method of this invention. 本発明のレーザ溶接方法の第二の実施形態を説明するための模式図である。It is a schematic diagram for demonstrating 2nd embodiment of the laser welding method of this invention. 本発明のレーザ溶接方法の第三の実施形態を説明するための模式図である。It is a schematic diagram for demonstrating 3rd embodiment of the laser welding method of this invention. 溶融池表面でレーザ光1が反射する現象を説明する模式図である。It is a schematic diagram explaining the phenomenon in which the laser beam 1 reflects on the molten pool surface. レーザ光1照射角度θ1、ワイヤ挿入角度θ2、ワイヤ送給位置を説明するための模式図である。It is a schematic diagram for demonstrating laser beam 1 irradiation angle (theta) 1, wire insertion angle (theta) 2, and a wire feed position. 焦点外し距離を説明する模式図である。It is a schematic diagram explaining a defocusing distance. 熱伝導型レーザ溶接方法を説明するための模式図である。It is a schematic diagram for demonstrating a heat conductive type laser welding method. 熱伝導型レーザ溶接のビード断面形状の模写図である。It is a copy figure of the bead section shape of heat conduction type laser welding. 深溶け込み型レーザ溶接方法を説明するための模式図である。It is a schematic diagram for demonstrating a deep penetration type | mold laser welding method. 深溶け込み型レーザ溶接のビード断面形状の模写図である。It is a copy figure of the bead cross-sectional shape of deep penetration type laser welding.

以下、本発明の具体的実施例を図面により説明する。
図1は本実施例のレーザ溶接方法を説明するための模式図であり、図4は溶融池5表面でレーザ光1が反射する現象を説明する模式図であり、図5はレーザ光1の照射角度θ1、ワイヤ挿入角度θ2及びワイヤ挿入位置を説明するための模式図である。
被溶接物の母材3に開先壁7が対向する空間部にY型開先6を設けて、2層目のV型開先で溶接部を形成させる。レーザ光1は図示していないレーザ加工機の集光レンズにより集光され、焦点からプラスしてずれた距離(「焦点ずらし距離プラス」という)で溶融池5の表面に照射する。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram for explaining the laser welding method of this embodiment, FIG. 4 is a schematic diagram for explaining a phenomenon in which the laser beam 1 is reflected on the surface of the molten pool 5, and FIG. It is a schematic diagram for demonstrating irradiation angle (theta) 1, wire insertion angle (theta) 2, and a wire insertion position.
A Y-shaped groove 6 is provided in a space portion where the groove wall 7 faces the base material 3 of the workpiece, and a welded portion is formed by the second V-shaped groove. The laser beam 1 is collected by a condensing lens of a laser processing machine (not shown), and is irradiated onto the surface of the molten pool 5 at a distance shifted from the focal point (referred to as “focal shift distance plus”).

ワイヤ2はホットワイヤ電源11、給電部12及びセラミックガイド13を用いて、ホットワイヤ電源11より給電部12、ワイヤ2、溶融池5、母材3及びホットワイヤ電源11を順次経由する回路に電流を流し、ワイヤ2を抵抗加熱する。
そして、ワイヤ2を溶融池5内に挿入する前に融点近くまで加熱する。ホットワイヤ溶接によりワイヤ2は融点近くまで加熱するため、レーザ光1のエネルギーは基本的に被溶接母材3のみの溶融に当てることができることから、必要なレーザ光のエネルギーを半減することが可能になる。これにより、厚板溶接では5〜8kWのレーザ加工機が通常使われるが、本溶接法を用いれば3〜5kWのレーザ加工機で厚板溶接を行うことができるようになる。
The wire 2 uses a hot wire power supply 11, a power supply unit 12, and a ceramic guide 13 to supply current from the hot wire power supply 11 to a circuit that sequentially passes through the power supply unit 12, the wire 2, the molten pool 5, the base material 3, and the hot wire power supply 11. The wire 2 is resistance-heated.
Then, the wire 2 is heated to near the melting point before being inserted into the molten pool 5. Since the wire 2 is heated to near the melting point by hot wire welding, the energy of the laser beam 1 can be basically applied to the melting of only the base material 3 to be welded, so that the necessary energy of the laser beam can be halved. become. Accordingly, a laser beam machine of 5 to 8 kW is usually used in thick plate welding, but if this welding method is used, it becomes possible to perform plate welding with a laser beam machine of 3 to 5 kW.

レーザ光1を溶接進行方向の前方から被溶接母材3に照射し、被溶接母材3の溶接進行方向の後方よりホットワイヤ2を溶融池5にレーザ光1の照射角度と近似した角度で立てて挿入することで溶融池5に母材3に対する急傾斜面(図4の傾斜角度αの傾斜面)を形成し、同時にレーザ光1を溶融池5の溶接方向前方の表面に照射し、溶融池5の表面でのレーザ光1の反射光1’が溶融池5の前方(溶融池5の溶接方向の前半部、図4に示す溶融池5のワイヤ2が挿入している右側の傾斜面側で溶融池5の表面に照射する。   The laser beam 1 is irradiated on the welded base material 3 from the front in the welding progress direction, and the hot wire 2 is applied to the molten pool 5 from the rear in the welding progress direction of the welded base material 3 at an angle approximate to the irradiation angle of the laser light 1. A steeply inclined surface with respect to the base material 3 (an inclined surface having an inclination angle α in FIG. 4) is formed in the molten pool 5 by inserting it upright, and at the same time, the laser beam 1 is irradiated to the front surface of the molten pool 5 in the welding direction, The reflected light 1 ′ of the laser beam 1 on the surface of the molten pool 5 is in front of the molten pool 5 (the first half in the welding direction of the molten pool 5, the right slope where the wire 2 of the molten pool 5 shown in FIG. 4 is inserted. Irradiate the surface of the molten pool 5 on the surface side.

レーザ光1の焦点を外した距離で溶融池5にレーザ光1を照射させる場合に、レーザ光1を母材3の表面に対して傾斜角度α(図4)の傾斜面を有する溶融池5に向けてレーザ光1を照射する。このようにレーザ光1を、その焦点を外した距離で溶融池5に照射させることで、レーザエネルギーの一部が溶融池5に吸収され、レーザ光1の一部が溶融池5の表面で母材3の表面側に向けて反射し、母材3の前記溶融池5の前方部分を常に先行して溶融されるために溶融池5の通過で完全に被溶接母材3を溶融することができる。こうして溶接がスムーズに進行し、溶接の安定性、溶接欠陥の防止に好結果をもたらす。   When the laser beam 1 is irradiated to the molten pool 5 at a distance from which the focus of the laser beam 1 is removed, the molten pool 5 has an inclined surface with an inclination angle α (FIG. 4) with respect to the surface of the base material 3. The laser beam 1 is irradiated toward In this way, by irradiating the molten pool 5 with the laser beam 1 at a distance out of focus, a part of the laser energy is absorbed by the molten pool 5 and a part of the laser beam 1 is absorbed on the surface of the molten pool 5. It is reflected toward the surface side of the base material 3 and is melted completely by passing through the molten pool 5 because the front part of the molten pool 5 of the base material 3 is always melted in advance. Can do. In this way, the welding proceeds smoothly, with good results in welding stability and prevention of welding defects.

また、本発明ではレーザ光1をプラス側又はマイナス側に焦点を外した距離で溶融池5の表面に照射する必要がある。これは、溶融池5の表面にレーザ光1の焦点を当てると、ビード4の断面形状が図10に示すように深くなるので、この現象を避けるためである。このようにレーザ光1を焦点を外した距離で溶融池5に照射させることで図8に示すような断面半円形状のビード4が得られる。   In the present invention, it is necessary to irradiate the surface of the molten pool 5 with the laser beam 1 at a distance away from the focus on the plus side or the minus side. This is to avoid this phenomenon because the cross-sectional shape of the bead 4 becomes deep as shown in FIG. 10 when the laser beam 1 is focused on the surface of the molten pool 5. By irradiating the molten pool 5 with the laser beam 1 at a distance out of focus in this way, a bead 4 having a semicircular cross section as shown in FIG. 8 is obtained.

ホットワイヤ2は溶融池5にレーザ光1の母材表面に対する照射角度と同じかまたは近似した角度で立てて挿入することで、母材3の表面に対して溶融池5の表面が急傾斜(図4に示す傾斜角度α)を形成する。ワイヤ2にレーザ光1を当てなくても加熱しているため溶融できる。また、ホットワイヤ2の温度が融点近傍より低いと、溶融池5へのホットワイヤ2の挿入時に溶融池5より熱を奪うため、溶融池5による壁の溶融が不完全になりビード形状が凹形状にならず次層溶接時に融合不良を発生する。   The hot wire 2 is inserted into the molten pool 5 at an angle equal to or close to the irradiation angle of the laser beam 1 with respect to the surface of the base material, so that the surface of the molten pool 5 is steeply inclined with respect to the surface of the base material 3 ( The inclination angle α) shown in FIG. 4 is formed. Since the wire 2 is heated without being irradiated with the laser beam 1, it can be melted. In addition, if the temperature of the hot wire 2 is lower than the vicinity of the melting point, heat is taken away from the molten pool 5 when the hot wire 2 is inserted into the molten pool 5, so that the melting of the wall by the molten pool 5 becomes incomplete and the bead shape is concave. It will not be shaped and will cause poor fusion during next layer welding.

図5に示すように母材3の表面に対して溶接進行方向前側に傾斜させたワイヤ挿入角度θ2を90度〜120度、望ましくは100〜110度で溶融池5の上方中央部に挿入することが必要である。前記ワイヤ挿入角度θ2が90度未満であるとレーザ光1とワイヤ2が干渉し、また前記ワイヤ挿入角度θ2が120度を超えると溶融池5の表面の前記傾斜角度αが小さくなり、レーザ光1の反射光1’を溶融池5の近傍に照射できなくなり、両開先壁7から開先底8の溶融が不完全になり融合不良が発生する。また、ワイヤが溶融池の後方に挿入されるため、挿入と同時に凝固してビードが凸状になる。   As shown in FIG. 5, the wire insertion angle θ2 inclined to the front side in the welding progress direction with respect to the surface of the base material 3 is 90 ° to 120 °, preferably 100 ° to 110 °, and is inserted into the upper central portion of the molten pool 5. It is necessary. When the wire insertion angle θ2 is less than 90 degrees, the laser beam 1 and the wire 2 interfere with each other, and when the wire insertion angle θ2 exceeds 120 degrees, the inclination angle α of the surface of the molten pool 5 decreases, and the laser beam 1 cannot be irradiated to the vicinity of the molten pool 5, the melting of the groove bottom 8 from both the groove walls 7 becomes incomplete, and fusion failure occurs. In addition, since the wire is inserted behind the molten pool, it solidifies simultaneously with the insertion and the bead becomes convex.

また、図5に示すように、溶融池5の表面におけるワイヤ2の挿入位置も重要なパラメータになり、前記ワイヤ2の溶融池5の表面での挿入位置(ワイヤ2の中心軸と母材表面との交点)はレーザ光1の中心軸と溶融池5の表面との交点より1〜3mmだけ溶接進行方向の後側とする。ワイヤ2の溶融池5の表面での挿入位置が3mmより大き過ぎると溶融池5の端にワイヤ2が挿入されることになり、ビード形状が凸形状になって次層の溶接時に開先壁7の溶融が難しくなり、融合不良発生の原因になる。逆にワイヤ2の溶融池5の表面への前記挿入位置が1mmより小さいとワイヤ2にレーザ光1が当たるようになり、ワイヤ2がレーザ光1により溶融されて溶断する現象が発生し、溶融池5の表面が波打ち溶接現象により乱れてビード4の表面に凹凸が発生する。ワイヤ2の前記挿入位置は2mm前後が最良であった。   Further, as shown in FIG. 5, the insertion position of the wire 2 on the surface of the molten pool 5 is also an important parameter, and the insertion position of the wire 2 on the surface of the molten pool 5 (the central axis of the wire 2 and the surface of the base material). The point of intersection with the center axis of the laser beam 1 and the surface of the molten pool 5 is 1 to 3 mm behind the welding progress direction. If the insertion position of the wire 2 on the surface of the molten pool 5 is too larger than 3 mm, the wire 2 will be inserted into the end of the molten pool 5, and the bead shape becomes a convex shape and the groove wall is welded when the next layer is welded. 7 is difficult to melt, causing poor fusion. On the contrary, if the insertion position of the wire 2 on the surface of the molten pool 5 is smaller than 1 mm, the laser beam 1 hits the wire 2, and the phenomenon that the wire 2 is melted by the laser beam 1 and fusing occurs. The surface of the pond 5 is disturbed by the wave welding phenomenon, and irregularities are generated on the surface of the bead 4. The insertion position of the wire 2 was best around 2 mm.

レーザ光1を母材3の表面に対して急斜面を形成した溶融池5に照射すると、図4に示すようにレーザエネルギーの一部が溶融池5に吸収され、レーザ光1の一部が溶融池5の表面で反射し、溶融池5の前方又は両側の開先底8と開先壁7に照射されて一部溶融し、図1又は図2に示す先行溶融池5aを形成し、溶融池5の通過で開先底8と開先壁7を完全に溶融することができる。   When the laser beam 1 is irradiated onto the molten pool 5 that forms a steep slope with respect to the surface of the base material 3, a part of the laser energy is absorbed by the molten pool 5 as shown in FIG. Reflected on the surface of the pond 5 and irradiated to the groove bottom 8 and the groove wall 7 on the front or both sides of the molten pool 5 and partially melted to form the preceding molten pool 5a shown in FIG. 1 or FIG. The groove bottom 8 and the groove wall 7 can be completely melted by passing through the pond 5.

レーザ光1の中心軸の母材3の表面に対して溶接進行方向前側に傾斜させた傾斜角度θ1は80度〜110度が最適で、溶融池5の前記傾斜角度α(パラメータは溶接速度、レーザパワー、ワイヤの送給量、ワイヤの挿入角度θ2)により変更する必要がある。
ステンレス鋼を用いた代表的溶接試験条件は、レーザパワー3kW、溶接速度0.5m/min、ワイヤ径1.2mm、ワイヤ送給速度6m/minで溶接ビードを施工することができた。
The inclination angle θ1 inclined to the front side of the welding progress direction with respect to the surface of the base material 3 of the central axis of the laser beam 1 is optimally 80 degrees to 110 degrees, and the inclination angle α of the molten pool 5 (the parameter is the welding speed, The laser power, the wire feed amount, and the wire insertion angle θ2) need to be changed.
Typical welding test conditions using stainless steel were as follows: a welding bead could be constructed with a laser power of 3 kW, a welding speed of 0.5 m / min, a wire diameter of 1.2 mm, and a wire feed speed of 6 m / min.

こうして、本実施例により、レーザパワー3kWのレーザ加工機でY型開先の2層目のV型開先の施工を安定して行うことができる。通常のレーザ溶接ではレーザ光1で母材3とワイヤ2の両方を溶融するエネルギーを供給する必要があるが、ホットワイヤ2の適用によりレーザエネルギーはほとんどが母材3の溶融に当てられるため、レーザパワーを抑えられ高価なレーザ加工装置の設備費を従来より低減できる。
また、本実施例のレーザ溶接方法では母材3の溶込みが小さく、入熱も小さいことから熱影響部が小さく、得られた溶接材の靭性などの継手品質が向上し、歪の小さい溶接が可能であり、溶接で発生しやすい凝固割れを抑制することができる。
Thus, according to the present embodiment, the construction of the second V-shaped groove of the Y-shaped groove can be stably performed with a laser processing machine having a laser power of 3 kW. In normal laser welding, it is necessary to supply energy for melting both the base material 3 and the wire 2 with the laser beam 1, but most of the laser energy is applied to the melting of the base material 3 by applying the hot wire 2. The laser power can be suppressed, and the equipment cost of an expensive laser processing apparatus can be reduced as compared with the prior art.
Further, in the laser welding method of this embodiment, since the base material 3 has a small penetration and a low heat input, the heat-affected zone is small, the joint quality such as the toughness of the obtained welded material is improved, and welding with low distortion is performed. It is possible to suppress solidification cracks that are likely to occur during welding.

図2には、本発明のレーザ溶接方法の他の実施例の模式図を示す。本実施例はレーザ光1の焦点外し距離をマイナス(レーザ光1の焦点が溶融池5の内部にある)にして照射する。この場合に図1に示すレーザ光1の焦点外し距離をプラスにした場合と同様の効果が得られる。レーザ光1の焦点外し距離をマイナスにすると溶融池5の表面で反射したレーザ光1の範囲が図1に示す焦点外し距離をプラスにした場合より小さく溶融池5に近い位置にレーザ光1が照射されることになる。溶融池5の表面の母材3の表面に対するレーザ光1の傾斜角度θ1、レーザ光1の照射パワーに応じて焦点外し距離をプラスにするかマイナスにするかを選択することができる。   In FIG. 2, the schematic diagram of the other Example of the laser welding method of this invention is shown. In this embodiment, the laser beam 1 is irradiated with the defocusing distance minus (the focal point of the laser beam 1 is inside the molten pool 5). In this case, the same effect as that obtained when the defocus distance of the laser beam 1 shown in FIG. When the defocus distance of the laser beam 1 is negative, the range of the laser beam 1 reflected on the surface of the molten pool 5 is smaller than that when the defocus distance shown in FIG. Will be irradiated. Depending on the inclination angle θ1 of the laser beam 1 with respect to the surface of the base material 3 on the surface of the molten pool 5 and the irradiation power of the laser beam 1, it is possible to select whether the defocusing distance is positive or negative.

肉厚が20mm程度の溶接であってもホットワイヤとレーザを組合せるレーザ溶接法により、5kW以下のレーザ加工機で、高品質で高能率な溶接が可能となる。   Even with a wall thickness of about 20 mm, high-quality and high-efficiency welding can be performed with a laser processing machine of 5 kW or less by a laser welding method combining a hot wire and a laser.

1 レーザ光 2 ワイヤ
3 母材 4 溶接ビード
5 溶融池 5a 先行溶融池
6 開先 7 開先壁
8 開先底 11 ホットワイヤ電源
12 給電部 13 セラミックガイド
14 焦点 15 集光レンズ
16 キーホール
DESCRIPTION OF SYMBOLS 1 Laser beam 2 Wire 3 Base material 4 Weld bead 5 Weld pool 5a Advancing weld pool
6 Groove 7 Groove Wall 8 Groove Bottom 11 Hot Wire Power Supply 12 Power Feed Unit 13 Ceramic Guide 14 Focus 15 Condenser Lens 16 Keyhole

Claims (3)

溶加材として溶接ワイヤ(2)を用いて開先加工した被溶接母材(3)を溶接するレーザ溶接方法において、レーザ光(1)を該レーザ光(1)の焦点を外して前記開先加工した被溶接母材(3)に照射して該被溶接母材(3)を溶融すると共に、前記溶接ワイヤ(2)を該溶接ワイヤ(2)と前記被溶接母材(3)間に通電して該ワイヤ(2)の抵抗発熱により加熱するホットワイヤとし、前記レーザ光(1)の後方に前記レーザ光の照射角度と近似した被溶接母材(3)に対する傾斜角度で前記被溶接母材の溶融により形成した溶融池(5)に挿入し、前記被溶接母材(3)の溶融および前記溶接ワイヤ(2)の挿入により形成した溶融池(5)に対して照射したレーザ光(1)の反射光(1’)を前記溶融池(5)の溶接方向前方に照射して溶融しながら溶接することを特徴とするレーザ溶接方法。   In a laser welding method for welding a base material (3) to be welded using a welding wire (2) as a filler material, a laser beam (1) is defocused from the laser beam (1) and the opening is performed. The pre-worked workpiece base material (3) is irradiated to melt the workpiece base material (3), and the welding wire (2) is connected between the welding wire (2) and the workpiece base material (3). The wire (2) is heated by the resistance heat of the wire (2), and is heated behind the laser beam (1) at an inclination angle with respect to the welding base material (3) approximate to the laser beam irradiation angle. Laser which is inserted into a molten pool (5) formed by melting of a welding base material and irradiated to the molten pool (5) formed by melting of the base material for welding (3) and insertion of the welding wire (2) The reflected light (1 ′) of the light (1) is irradiated forward in the welding direction of the molten pool (5). Laser welding wherein the welding while melted by. 前記被溶接母材(3)の溶融および前記溶接ワイヤ(2)の挿入により形成した溶融池(5)に対して照射したレーザ光(1)の反射光(1’)を前記溶融池(5)の溶接方向前方に照射することにより、該溶融池(5)に先行する先行溶融池(5a)を連続的に形成しながら溶接することを特徴とする請求項1記載のレーザ溶接方法。   The reflected light (1 ′) of the laser beam (1) irradiated to the molten pool (5) formed by melting the welded base material (3) and inserting the welding wire (2) is used as the molten pool (5). 2) The laser welding method according to claim 1, wherein welding is performed while continuously forming the preceding molten pool (5a) preceding the molten pool (5) by irradiating forward in the welding direction. 被溶接母材(3)の表面に対してレーザ光(1)の照射角度θ1が80〜100°で、溶接ワイヤ(2)の溶融池(5)への挿入角度θ2が被溶接母材(3)の表面に対して90〜120°で、溶接ワイヤ(2)の中心線と被溶接母材(3)表面の交点とレーザ光(1)の中心線と被溶接母材(3)表面の交点との間隔が1〜3mmであることを特徴とする請求項1記載の狭開先多層盛レーザ溶接方法。   The irradiation angle θ1 of the laser beam (1) with respect to the surface of the base material (3) to be welded is 80 to 100 °, and the insertion angle θ2 of the welding wire (2) into the molten pool (5) is the base material to be welded ( 90-120 ° with respect to the surface of 3), the intersection of the center line of the welding wire (2) and the base material to be welded (3), the center line of the laser beam (1) and the base material to be welded (3) The narrow gap multi-layer laser welding method according to claim 1, wherein an interval between the crossing points of 1 to 3 mm is 1 to 3 mm.
JP2010157934A 2010-07-12 2010-07-12 Laser welding method Expired - Fee Related JP5600838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157934A JP5600838B2 (en) 2010-07-12 2010-07-12 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157934A JP5600838B2 (en) 2010-07-12 2010-07-12 Laser welding method

Publications (2)

Publication Number Publication Date
JP2012020292A true JP2012020292A (en) 2012-02-02
JP5600838B2 JP5600838B2 (en) 2014-10-08

Family

ID=45775008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157934A Expired - Fee Related JP5600838B2 (en) 2010-07-12 2010-07-12 Laser welding method

Country Status (1)

Country Link
JP (1) JP5600838B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030263A (en) * 2010-08-02 2012-02-16 Panasonic Corp Laser welding method and laser welding equipment
JP2013244498A (en) * 2012-05-24 2013-12-09 Toshiba Corp Device and method for welding
JP2014024078A (en) * 2012-07-25 2014-02-06 Hitachi-Ge Nuclear Energy Ltd Laser welding apparatus
JPWO2014196230A1 (en) * 2013-06-07 2017-02-23 太陽誘電株式会社 Electrochemical devices
CN115029692A (en) * 2022-03-09 2022-09-09 南京辉锐光电科技有限公司 Copper substrate and preparation method of silver coating on surface of copper substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232081A (en) * 1985-04-09 1986-10-16 Nippon Kokan Kk <Nkk> Laser welding method
JPS61235088A (en) * 1985-04-09 1986-10-20 Mitsubishi Electric Corp Laser beam welding method
JPH09182983A (en) * 1995-12-30 1997-07-15 Kawasaki Heavy Ind Ltd Irradiating device for laser beam welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232081A (en) * 1985-04-09 1986-10-16 Nippon Kokan Kk <Nkk> Laser welding method
JPS61235088A (en) * 1985-04-09 1986-10-20 Mitsubishi Electric Corp Laser beam welding method
JPH09182983A (en) * 1995-12-30 1997-07-15 Kawasaki Heavy Ind Ltd Irradiating device for laser beam welding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030263A (en) * 2010-08-02 2012-02-16 Panasonic Corp Laser welding method and laser welding equipment
JP2013244498A (en) * 2012-05-24 2013-12-09 Toshiba Corp Device and method for welding
JP2014024078A (en) * 2012-07-25 2014-02-06 Hitachi-Ge Nuclear Energy Ltd Laser welding apparatus
JPWO2014196230A1 (en) * 2013-06-07 2017-02-23 太陽誘電株式会社 Electrochemical devices
CN115029692A (en) * 2022-03-09 2022-09-09 南京辉锐光电科技有限公司 Copper substrate and preparation method of silver coating on surface of copper substrate

Also Published As

Publication number Publication date
JP5600838B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5600837B2 (en) Narrow groove multi-layer laser welding method
JP5531623B2 (en) Laser lap welding method of galvanized steel sheet
US8546720B2 (en) Hybrid welding apparatus and system and method of welding
JP5024475B1 (en) Laser welded steel pipe manufacturing method
WO2011111634A1 (en) Laser/arc hybrid welding method and method of producing welded member using same
JP5495118B2 (en) Laser lap welding method of galvanized steel sheet
CN105643103B (en) A kind of galvanized steel plain sheet laser lap welding method
CN104384717A (en) Swinging laser and hot wire welding method for implementing butt welding on narrow gap of thick plate
US8890030B2 (en) Hybrid welding apparatuses, systems and methods
CN104907696B (en) A kind of laser-arc hybrid welding in industry method considering welding current value
JPS58119481A (en) Laser beam melting welding method
JP5954009B2 (en) Manufacturing method of welded steel pipe
JP5600838B2 (en) Laser welding method
JP5812527B2 (en) Hot wire laser welding method and apparatus
US11786989B2 (en) Method for splash-free welding, in particular using a solid-state laser
JP5645128B2 (en) Laser narrow groove multilayer welding method and apparatus
JP2011230158A (en) Laser lap welding method for galvanized steel sheet
JP6607050B2 (en) Laser-arc hybrid welding method
JP5866790B2 (en) Laser welded steel pipe manufacturing method
JP2002346777A (en) Method for combined welding with laser beam and arc
JP5803160B2 (en) Laser welded steel pipe manufacturing method
JP3591630B2 (en) Laser-arc combined welding method and welding apparatus
JP4998634B1 (en) Laser welding method
JP6213332B2 (en) Hot wire laser combined welding method for thick steel plate
JP5987305B2 (en) Laser welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5600838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees