JP2011216847A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2011216847A
JP2011216847A JP2010280431A JP2010280431A JP2011216847A JP 2011216847 A JP2011216847 A JP 2011216847A JP 2010280431 A JP2010280431 A JP 2010280431A JP 2010280431 A JP2010280431 A JP 2010280431A JP 2011216847 A JP2011216847 A JP 2011216847A
Authority
JP
Japan
Prior art keywords
region
conductivity type
outer peripheral
column
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010280431A
Other languages
Japanese (ja)
Other versions
JP5718627B2 (en
Inventor
Hisao Inomata
久雄 猪股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2010280431A priority Critical patent/JP5718627B2/en
Priority to US13/045,236 priority patent/US8450800B2/en
Priority to CN201110064091.1A priority patent/CN102194882B/en
Publication of JP2011216847A publication Critical patent/JP2011216847A/en
Application granted granted Critical
Publication of JP5718627B2 publication Critical patent/JP5718627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device of an SJ structure having improved breakdown voltage and breakdown resistance.SOLUTION: The semiconductor device 1 includes a transistor element 200 formed on a semiconductor substrate 101, the transistor element having a parallel structure composed of a first conductive drift region 202 and a second conductive column region 205 and a second conductive base region 203. The parallel structure composed of the first conductive drift region 202 and the second conductive column regions 205 and a second conductive annular diffusion region 303 located on a side of the base region 203 to be separated therefrom are formed in an outer peripheral region 300X outside an element forming region. The annular diffusion region 303 has an innermost end 303A and a portion close thereto that are located on the column region 205, and an outermost end 303B that is located outside the outermost column region 205. A field insulating film 306 covering the annular diffusion region 303 is overlaid on a semiconductor layer 201 of the outer peripheral region 300X.

Description

本発明は、所謂スーパージャンクション構造の半導体装置に関するものである。   The present invention relates to a semiconductor device having a so-called super junction structure.

高耐圧と大電流容量とを実現する代表的な半導体装置として、パワーMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)がある。基板の両面に形成された一対の電極間に電流を流すタイプは縦型パワーMOSFETと呼ばれ、低いオン抵抗を有するスイッチングデバイス等として広く普及している。   There is a power MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) as a typical semiconductor device that realizes a high breakdown voltage and a large current capacity. A type in which a current flows between a pair of electrodes formed on both sides of a substrate is called a vertical power MOSFET, and is widely used as a switching device having a low on-resistance.

縦型パワーMOSFETは、用途に応じて所定の耐圧を持つように設計される。ここで、「所定の耐圧」とは、デバイスのどこかで局所電界が臨界値を超え、ブレークダウンが発生するときのドレイン−ソース間電圧のことである。一般に耐圧とオン抵抗との間にはトレードオフ関係があるため、ある程度の耐圧を得ようとすると、オン抵抗を低減しようにも限界がある。
従来の縦型パワーMOSFETでは、ベース領域とドリフト領域(不純物濃度の低いドレイン領域)間のp/n接合で耐圧が決まるため、理論的に求められる最小オン抵抗の耐圧依存性(Siリミットと称される。)が知られていた。
The vertical power MOSFET is designed to have a predetermined breakdown voltage according to the application. Here, the “predetermined breakdown voltage” is a drain-source voltage when a local electric field exceeds a critical value somewhere in the device and breakdown occurs. In general, since there is a trade-off relationship between breakdown voltage and on-resistance, there is a limit to reducing the on-resistance in order to obtain a certain level of breakdown voltage.
In the conventional vertical power MOSFET, the breakdown voltage is determined by the p / n junction between the base region and the drift region (drain region having a low impurity concentration), and therefore the theoretically required breakdown voltage dependency (referred to as Si limit). Was known).

近年、縦型パワーMOSFETにおけるオン抵抗をSiリミットを越えて低減する技術として、所謂スーパージャンクション構造(SJ構造)が提案されている。図7を参照して、SJ構造を有する縦型パワーMOSFETの基本構成を説明する。図7は要部断面図である。   In recent years, a so-called super junction structure (SJ structure) has been proposed as a technique for reducing the on-resistance in a vertical power MOSFET beyond the Si limit. With reference to FIG. 7, a basic configuration of a vertical power MOSFET having an SJ structure will be described. FIG. 7 is a cross-sectional view of the main part.

図7に示すMOSFET500は、
第1導電型半導体基板501と、
半導体基板501の一方の面(図示上面)に形成された半導体層601と、
半導体層601上に形成された層間絶縁膜610と、
層間絶縁膜610に開孔されたコンタクトホールを介して、半導体層601と電気的に接続されたソース電極611と、
半導体層601の上面から開溝された溝部(トレンチ)内に形成されたゲート絶縁膜606及びゲート電極607と、
半導体基板601の他方の面(図示下面)に形成されたドレイン電極612とを備えている。
The MOSFET 500 shown in FIG.
A first conductivity type semiconductor substrate 501;
A semiconductor layer 601 formed on one surface (illustrated upper surface) of the semiconductor substrate 501;
An interlayer insulating film 610 formed over the semiconductor layer 601;
A source electrode 611 electrically connected to the semiconductor layer 601 through a contact hole opened in the interlayer insulating film 610;
A gate insulating film 606 and a gate electrode 607 formed in a groove (trench) opened from the upper surface of the semiconductor layer 601;
And a drain electrode 612 formed on the other surface (illustrated lower surface) of the semiconductor substrate 601.

半導体層601内には、
第1導電型のドリフト領域602と、
ドリフト領域602の上方に形成された第2導電型のベース領域603と、
ベース領域603の上層部に形成された第1導電型のソース領域604と、
ドリフト領域602内に柱状に形成された第2導電型のコラム領域605とが形成されている。
In the semiconductor layer 601,
A first conductivity type drift region 602;
A base region 603 of the second conductivity type formed above the drift region 602;
A first conductivity type source region 604 formed in an upper layer portion of the base region 603;
A column region 605 of the second conductivity type formed in a columnar shape is formed in the drift region 602.

この例では、半導体基板501はn型、ドリフト領域602はn型、ベース領域603はp型、ソース領域604はn型、コラム領域605はp型である。
半導体層601内には、第1導電型のドリフト領域602と第2導電型のコラム領域605とが基板面方向に並列された並列構造(p/n接合構造)が形成されている。
In this example, the semiconductor substrate 501 is n + type, the drift region 602 is n type, the base region 603 is p type, the source region 604 is n + type, and the column region 605 is p type.
In the semiconductor layer 601, a parallel structure (p / n junction structure) in which a first conductivity type drift region 602 and a second conductivity type column region 605 are arranged in parallel in the substrate surface direction is formed.

SJ構造では、ドリフト領域のドナー不純物量とコラム領域のアクセプタ不純物量とを略同一に設定することにより、ドリフト領域のチャージとコラム領域のチャージとがバランスした状態(チャージバランス条件)となり、耐圧を最大化することができる。かかるチャージバランス条件下では、デバイスのOFF時にドレイン−ソース電極間に逆バイアス電圧がかかると、ドリフト領域とコラム領域間のp/n接合から空乏層が横方向に均等に広がるため、隣接する空乏層同士が互いに接続し易くなる。SJ構造全体が空乏化して単一の空乏層になると、等ポテンシャル面がほぼ等間隔かつほぼ平行となるため、耐圧を最大化することができる。SJ構造の設計では、チャージバランス条件下で(耐圧を最大化した状態で)ドリフト領域の不純物濃度を高濃度化できるため、ドリフト抵抗を低減でき、オン抵抗を低減できる。   In the SJ structure, by setting the donor impurity amount in the drift region and the acceptor impurity amount in the column region to be substantially the same, the charge in the drift region and the charge in the column region are balanced (charge balance condition), and the breakdown voltage is reduced. Can be maximized. Under such a charge balance condition, when a reverse bias voltage is applied between the drain and source electrodes when the device is OFF, the depletion layer spreads laterally evenly from the p / n junction between the drift region and the column region. Layers can be easily connected to each other. When the entire SJ structure is depleted to form a single depletion layer, the equipotential surfaces are substantially equidistant and substantially parallel, so that the withstand voltage can be maximized. In the design of the SJ structure, the impurity concentration in the drift region can be increased under charge balance conditions (with the breakdown voltage maximized), so that the drift resistance can be reduced and the on-resistance can be reduced.

また、パワーMOSFETの半導体チップの設計においては、デバイスに過大な誘導負荷などがかかった場合でも、チップの外周領域にアバランシェ電流が集中してデバイス破壊が起こらないような高い破壊耐量を実現することが重要である。そのためには、少なくとも1つのMOSFETが形成された素子形成領域(セル領域)の耐圧より外側の外周領域の耐圧を高くしておく必要がある。   Also, in the design of power MOSFET semiconductor chips, even when an excessive inductive load is applied to the device, a high breakdown resistance must be realized so that the avalanche current does not concentrate on the outer peripheral region of the chip and the device is destroyed. is important. For this purpose, it is necessary to increase the breakdown voltage of the outer peripheral region outside the breakdown voltage of the element formation region (cell region) where at least one MOSFET is formed.

外周領域の耐圧を高くする手段として、SJ構造の特徴である柱状のp/n接合の繰り返し構造を外周領域にまで延長する構造が提案されている。   As means for increasing the breakdown voltage of the outer peripheral region, a structure in which a columnar p / n junction repeating structure, which is a feature of the SJ structure, is extended to the outer peripheral region has been proposed.

特許文献1及びそれを基礎とする米国出願である特許文献2には、外周領域に素子形成領域と同様の柱状のp/n接合の繰り返し構造を形成して、外周領域の不純物濃度を素子形成領域と同等以下に設定することで、外周領域を素子形成領域と同じかそれ以上に空乏化し易くして耐圧を向上させた構造が記載されている。
特許文献1の図19/特許文献2の図17、図18には、素子形成領域(122)と外周領域(20)に、同じ柱状のp/n接合の繰り返し構造(n型ドリフト領域(20a)/コラム領域(20b)の繰り返し構造)が形成された構造が記載されている。外周領域(20)の素子形成領域(122)側には、素子形成領域(122)を囲むように、コラム領域(20b)よりも不純物濃度の高い環状の浅いp型領域(20c)が形成されている。外周領域(20)の半導体層上には、表面保護及び安定化のためにフィールド絶縁膜(23)が積層されている(段落0041)。コラム領域(20b)は、環状の浅いp型領域(20c)よりも外側の領域(図19の図示左側)にも形成されており、この領域では、コラム領域(20b)の上端がフィールド絶縁膜(23)に接触している。フィールド絶縁膜(23)上に、フィールド電極は設けられていない。
In Patent Document 1 and US Patent Application 2, which is a US application based on the same, a columnar p / n junction repetitive structure similar to the element forming region is formed in the outer peripheral region, and the impurity concentration in the outer peripheral region is defined as the element forming. A structure is described in which the breakdown voltage is improved by setting the outer peripheral region to be equal to or higher than the element formation region by setting it equal to or less than the region.
In FIG. 19 of Patent Document 1 / FIG. 17 and FIG. 18 of Patent Document 2, the same columnar p / n junction repeating structure (n-type drift region (20a) is formed in the element formation region (122) and the outer peripheral region (20). ) / Repeated structure of column region (20b)) is described. An annular shallow p-type region (20c) having an impurity concentration higher than that of the column region (20b) is formed on the element forming region (122) side of the outer peripheral region (20) so as to surround the element forming region (122). ing. On the semiconductor layer in the outer peripheral region (20), a field insulating film (23) is laminated for surface protection and stabilization (paragraph 0041). The column region (20b) is also formed in a region outside the annular shallow p-type region (20c) (the left side in FIG. 19). In this region, the upper end of the column region (20b) is the field insulating film. (23) is in contact. No field electrode is provided on the field insulating film (23).

特許文献3及びそれを基礎とする米国出願である特許文献4には、外周領域のp/n接合とフィールド絶縁膜の内端との位置関係を規定して外周領域の電界集中を緩和した構造が記載されている。
特許文献3の図1/特許文献4の図1A、図1Bには、外周領域(56)に環状の浅いp型領域はなく、素子形成領域(54)のコラム領域(34,36)より浅い位置にコラム領域(38)が形成された構造が形成されている。外周領域(56)には、コラム領域(38)の直上に、フィールド絶縁膜(46)とフィールド電極(48)とが積層されている。特許文献2では、外周領域(56)において、フィールド絶縁膜(46)の下方にコラム領域(38)が形成されているが、フィールド絶縁膜(46)の内端(64)の直下及びその近傍領域にはコラム領域(38)が形成されないようにして、フィールド絶縁膜(46)の内端(64)付近の電界集中を緩和している。
Patent document 3 and US patent document 4 which is a US application based on the above structure have a structure in which the electric field concentration in the outer peripheral region is reduced by defining the positional relationship between the p / n junction in the outer peripheral region and the inner end of the field insulating film. Is described.
In FIG. 1A and FIG. 1B of Patent Document 3 in FIG. 1 / Patent Document 4, there is no annular shallow p-type region in the outer peripheral region (56), which is shallower than the column regions (34, 36) of the element formation region (54). A structure in which a column region (38) is formed at a position is formed. In the outer peripheral region (56), a field insulating film (46) and a field electrode (48) are laminated immediately above the column region (38). In Patent Document 2, the column region (38) is formed below the field insulating film (46) in the outer peripheral region (56), but just below and near the inner end (64) of the field insulating film (46). The column region (38) is not formed in the region, and the electric field concentration near the inner end (64) of the field insulating film (46) is relaxed.

特許文献5及びそれを基礎とする米国出願である特許文献6の図1には、外周領域に環状の浅いp型領域(105)とコラム領域(106)とが形成され、外周領域において最外周のコラム領域(106a)より外側の領域(環状の浅いp型領域(105)とコラム領域(106)とがない領域)にフィールド絶縁膜(118)が形成され、外周領域においてコラム領域(106)の直上を除く領域にフィールド電極(120)が形成された構造が記載されている。
また、それに関連する説明には、外周領域にコラム領域(106)を形成することにより、外周領域の耐圧を高く保つことができると記載されている。特許文献5、6では、フィールド電極(120)をコラム領域(106)直上に形成しないことで、フィールド電極を形成した後にコラム領域(106)を形成することを可能としている。
In FIG. 1 of Patent Document 5 and Patent Document 6 which is a US application based thereon, an annular shallow p-type region (105) and a column region (106) are formed in the outer peripheral region, and the outermost periphery is formed in the outer peripheral region. A field insulating film (118) is formed in a region outside the column region (106a) (region where there is no annular shallow p-type region (105) and column region (106)), and the column region (106) is formed in the outer peripheral region. A structure in which a field electrode (120) is formed in a region except directly above is described.
In addition, the description related thereto describes that the breakdown voltage of the outer peripheral region can be kept high by forming the column region (106) in the outer peripheral region. In Patent Documents 5 and 6, the field electrode (120) is not formed immediately above the column region (106), so that the column region (106) can be formed after the field electrode is formed.

外周領域に柱状のコラム領域がないタイプであるが、参考までに特許文献7及びそれを基礎とする米国出願である特許文献8を挙げておく。特許文献7、8の図1には、外周領域にコラム領域(4)の代わりにp型の埋め込み半導体領域(BGR1〜BGR4)が設けられ、これら埋め込み半導体領域(BGR1〜BGR4)の上方に環状の浅いp型領域(GR1〜GR4)が設けられ、これら環状の浅いp型領域(GR1〜GR4)の直上にフィールド電極(14)が形成された構造が記載されている。特許文献4の段落0032〜0041には、環状の浅いp型領域GR1〜GR4及び埋め込み半導体領域(BGR1〜BGR4)によって、局所的な電界集中が抑えられることが記載されている。   Although it is a type which does not have a columnar column region in the outer peripheral region, Patent Document 7 and Patent Document 8 which is a US application based on the same are cited for reference. In FIG. 1 of Patent Documents 7 and 8, p-type buried semiconductor regions (BGR1 to BGR4) are provided in the outer peripheral region instead of the column region (4), and a ring is formed above these buried semiconductor regions (BGR1 to BGR4). In this structure, a shallow p-type region (GR1 to GR4) is provided, and a field electrode (14) is formed immediately above these annular shallow p-type regions (GR1 to GR4). Paragraphs 0032 to 0041 of Patent Document 4 describe that local electric field concentration can be suppressed by the annular shallow p-type regions GR1 to GR4 and the embedded semiconductor regions (BGR1 to BGR4).

特開2001-298190号公報JP 2001-298190 A 米国特許出願公開第2001/0028083号明細書US Patent Application Publication No. 2001/0028083 特開2007-103902号公報JP 2007-103902 A 米国特許出願公開第2007/0052015号明細書US Patent Application Publication No. 2007/0052015 特開2006-196518号公報JP 2006-196518 A 米国特許出願公開第2006/0151831号明細書US Patent Application Publication No. 2006/0151831 特開2009-088345号公報JP 2009-088345 米国特許出願公開第2009/0090968号明細書US Patent Application Publication No. 2009/0090968

本発明者が詳細な分析を実施したところ、後述するように、上記従来構造では外周領域における耐圧や破壊耐量が必ずしも充分ではないことが分かった。   As a result of detailed analysis by the inventor, it was found that the above-described conventional structure does not necessarily have sufficient withstand pressure and breakdown resistance in the outer peripheral region, as will be described later.

本発明の半導体装置は、
半導体基板の一方の面に半導体層が形成された基板に、
前記半導体層内に、第1導電型のドリフト領域と第2導電型のコラム領域とが基板面方向に並列された並列構造と、当該並列構造の上方に形成された第2導電型のベース領域とを有する少なくとも1つのトランジスタ素子が形成された半導体装置であって、
前記少なくとも1つのトランジスタ素子が形成された素子形成領域より外側の外周領域には、前記半導体層内に、前記トランジスタ素子の前記並列構造と同一構造である、第1導電型のドリフト領域と第2導電型のコラム領域との並列構造と、前記トランジスタ素子の前記ベース領域の側方に当該ベース領域から離間して平面視環状に形成された第2導電型の環状拡散領域とが形成されており、
前記外周領域の前記第2導電型の環状拡散領域は、最内端及びその近傍部分が前記コラム領域上に位置され、最外端が最外周の前記コラム領域よりも外側に位置されており、
前記外周領域の前記半導体層上に、前記第2導電型の環状拡散領域を覆うフィールド絶縁膜が積層されたものである。
The semiconductor device of the present invention is
On a substrate having a semiconductor layer formed on one side of the semiconductor substrate,
A parallel structure in which a first conductivity type drift region and a second conductivity type column region are arranged in parallel in the substrate surface direction in the semiconductor layer, and a second conductivity type base region formed above the parallel structure. A semiconductor device in which at least one transistor element is formed,
In the outer peripheral region outside the element formation region where the at least one transistor element is formed, a drift region of the first conductivity type and the second structure are the same as the parallel structure of the transistor elements in the semiconductor layer. A parallel structure with a conductive type column region and a second conductive type annular diffusion region formed in an annular shape in plan view and spaced apart from the base region are formed on the side of the base region of the transistor element. ,
The annular diffusion region of the second conductivity type in the outer peripheral region, the innermost end and the vicinity thereof are positioned on the column region, the outermost end is positioned outside the outermost column region,
A field insulating film covering the annular diffusion region of the second conductivity type is laminated on the semiconductor layer in the outer peripheral region.

本発明によれば、図3Aに等ポテンシャル面のシミュレーション例を示すように、電界集中が緩和され、耐圧及び破壊耐量が向上された所謂スーパージャンクション構造の半導体装置を提供することができる。   According to the present invention, as shown in FIG. 3A showing an example of an equipotential surface simulation, it is possible to provide a semiconductor device having a so-called super junction structure in which electric field concentration is reduced and breakdown voltage and breakdown resistance are improved.

本発明によれば、電界集中が緩和され、耐圧及び破壊耐量が向上された所謂スーパージャンクション構造の半導体装置を提供することができる。   According to the present invention, it is possible to provide a semiconductor device having a so-called super junction structure in which electric field concentration is reduced and breakdown voltage and breakdown resistance are improved.

本発明に係る第1実施形態の半導体装置の要部断面図である。It is principal part sectional drawing of the semiconductor device of 1st Embodiment which concerns on this invention. 図1の半導体装置の要部平面図である。FIG. 2 is a main part plan view of the semiconductor device of FIG. 1. 図1の半導体装置の全体平面図である。FIG. 2 is an overall plan view of the semiconductor device of FIG. 1. 本発明に係る実施例の外周領域の等ポテンシャル面のシミュレーション例である。It is an example of a simulation of the equipotential surface of the outer periphery area | region of the Example which concerns on this invention. 比較例の外周領域の等ポテンシャル面のシミュレーション例である。It is a simulation example of the equipotential surface of the outer peripheral area | region of a comparative example. 設計変更例を示す要部平面図である。It is a principal part top view which shows the example of a design change. 設計変更例を示す全体平面図である。It is a whole top view which shows the example of a design change. 他の設計変更例を示す全体平面図である。It is a whole top view which shows the example of another design change. 本発明に係る第2実施形態の半導体装置の要部断面図である。It is principal part sectional drawing of the semiconductor device of 2nd Embodiment which concerns on this invention. 本発明に係る第3実施形態の半導体装置の要部断面図である。It is principal part sectional drawing of the semiconductor device of 3rd Embodiment concerning this invention. SJ構造を有する縦型パワーMOSFETの基本構成を示す要部断面図である。It is principal part sectional drawing which shows the basic composition of the vertical power MOSFET which has SJ structure.

「第1実施形態」
図面を参照して、本発明に係る第1実施形態の半導体装置の構成について説明する。図1は本実施形態の半導体装置の要部断面図、図2Aは要部平面図、図2Bは全体平面図である。図面上は視認しやすくするため、各部材の縮尺や位置は適宜、実際のものとは異ならせてある。
“First Embodiment”
The configuration of the semiconductor device according to the first embodiment of the present invention will be described with reference to the drawings. 1 is a cross-sectional view of a main part of the semiconductor device of the present embodiment, FIG. 2A is a plan view of the main part, and FIG. 2B is a plan view of the whole. In order to facilitate visual recognition on the drawings, the scale and position of each member are appropriately different from the actual ones.

本実施形態の半導体装置1は、第1導電型の半導体基板101に、少なくとも1つのスーパージャンクション(SJ)構造を有する縦型のパワーMOSFET(トランジスタ素子)200が形成されたものである。本実施形態では、1つの半導体基板101に複数のMOSFET200が形成されており、複数のMOSFET200が形成された領域を素子形成領域(セル領域)200X、それより外側を外周領域300Xと呼ぶ。素子形成領域200Xと外周領域300Xとの間には明確な境界がある訳ではない。図1では、p型ベース領域203の形成領域を素子形成領域200Xとし、それより外側を外周領域300Xとして、図示してある。   In the semiconductor device 1 of the present embodiment, a vertical power MOSFET (transistor element) 200 having at least one super junction (SJ) structure is formed on a first conductive type semiconductor substrate 101. In the present embodiment, a plurality of MOSFETs 200 are formed on one semiconductor substrate 101, and a region where the plurality of MOSFETs 200 are formed is referred to as an element formation region (cell region) 200X, and the outer side is referred to as an outer peripheral region 300X. There is no clear boundary between the element formation region 200X and the outer peripheral region 300X. In FIG. 1, the formation region of the p-type base region 203 is illustrated as an element formation region 200X, and the outer side is illustrated as an outer peripheral region 300X.

半導体装置1には、第1導電型の半導体基板101の一方の面(図示上面)全体に半導体層201が形成され、他方の面(図示下面)全体にドレイン電極212が形成されている。
MOSFET200(半導体装置1の素子形成領域200X)は、
半導体基板101の一方の面(図示上面)に形成された半導体層201と、
半導体層201上に形成された層間絶縁膜210と、
層間絶縁膜210に開孔されたコンタクトホールを介して、半導体層201と電気的に接続されたソース電極211と、
半導体層201の上面から開溝された溝部(トレンチ)内に形成されたゲート絶縁膜206及びゲート電極207と、
半導体基板101の他方の面(図示下面)に形成されたドレイン電極212とを備えている。
In the semiconductor device 1, a semiconductor layer 201 is formed on one entire surface (illustrated upper surface) of the first conductivity type semiconductor substrate 101, and a drain electrode 212 is formed on the entire other surface (illustrated lower surface).
MOSFET 200 (element formation region 200X of semiconductor device 1)
A semiconductor layer 201 formed on one surface (illustrated upper surface) of the semiconductor substrate 101;
An interlayer insulating film 210 formed on the semiconductor layer 201;
A source electrode 211 electrically connected to the semiconductor layer 201 through a contact hole opened in the interlayer insulating film 210;
A gate insulating film 206 and a gate electrode 207 formed in a groove (trench) opened from the upper surface of the semiconductor layer 201;
And a drain electrode 212 formed on the other surface (the lower surface in the drawing) of the semiconductor substrate 101.

MOSFET200は、
半導体層201内に、
第1導電型のドリフト領域(不純物濃度の低いドレイン領域)202と、
ドリフト領域202の上方に形成された第2導電型のベース領域203と、
ベース領域203の上層部に形成された第1導電型のソース領域204と、
ドリフト領域202内においてベース領域203の下方に柱状に形成された第2導電型のコラム領域205とを備えている。
MOSFET 200 is
In the semiconductor layer 201,
A first conductivity type drift region (drain region having a low impurity concentration) 202;
A second conductivity type base region 203 formed above the drift region 202;
A first conductivity type source region 204 formed in an upper layer portion of the base region 203;
The drift region 202 includes a column region 205 of a second conductivity type formed in a column shape below the base region 203.

MOSFET200において、断面視、内部にゲート絶縁膜206及びゲート電極207が形成された溝部は、半導体層201の上面から少なくともソース領域204とベース領域203とに跨って開溝されている。内部にゲート絶縁膜206及びゲート電極207が形成された溝部の平面パターンについては、図2A及び図2Bを参照されたい。   In the MOSFET 200, a groove portion in which the gate insulating film 206 and the gate electrode 207 are formed is opened from the upper surface of the semiconductor layer 201 across at least the source region 204 and the base region 203. Refer to FIGS. 2A and 2B for the planar pattern of the groove in which the gate insulating film 206 and the gate electrode 207 are formed.

本実施形態では、第1導電型はn型、第2導電型はp型である。より詳しくは、半導体基板101はn型、ドリフト領域202はn型、ベース領域203はp型、ソース領域204はn型、コラム領域205はp型である。 In the present embodiment, the first conductivity type is n-type, and the second conductivity type is p-type. More specifically, the semiconductor substrate 101 is n + type, the drift region 202 is n type, the base region 203 is p type, the source region 204 is n + type, and the column region 205 is p type.

半導体層201内には、第1導電型のドリフト領域202と第2導電型のコラム領域205とが基板面方向に並列された並列構造(p/n接合構造)が形成されている。
本実施形態において、第1導電型のドリフト領域202のドナー不純物量と第2導電型のコラム領域205のアクセプタ不純物量とが略同一に設定されることが好ましい。「略同一」は、誤差範囲のずれは許容されることを意味する。
第1導電型のドリフト領域202のドナー不純物量と第2導電型のコラム領域205のアクセプタ不純物量とが略同一の条件では、第1導電型のドリフト領域202と第2導電型のコラム領域205のチャージとがバランスした状態(チャージバランス条件)となり、耐圧を最大化することができ、好ましい。かかるチャージバランス条件下では、デバイスのOFF時にドレイン−ソース電極間に逆バイアス電圧がかかると、ドリフト領域とコラム領域間のp/n接合から空乏層が横方向に均等に広がるため、隣接する空乏層同士が互いに接続し易くなる。SJ構造全体が空乏化して単一の空乏層になると、等ポテンシャル面がほぼ等間隔かつほぼ平行となるため、耐圧を最大化することができる。SJ構造の設計では、チャージバランス条件下で(耐圧を最大化した状態で)ドリフト領域の不純物濃度を高濃度化できるため、ドリフト抵抗を低減でき、オン抵抗を低減できる。
In the semiconductor layer 201, a parallel structure (p / n junction structure) in which a first conductivity type drift region 202 and a second conductivity type column region 205 are arranged in parallel in the substrate surface direction is formed.
In the present embodiment, it is preferable that the donor impurity amount of the first conductivity type drift region 202 and the acceptor impurity amount of the second conductivity type column region 205 are set to be substantially the same. “Substantially the same” means that a deviation in the error range is allowed.
Under the condition that the donor impurity amount of the first conductivity type drift region 202 and the acceptor impurity amount of the second conductivity type column region 205 are substantially the same, the first conductivity type drift region 202 and the second conductivity type column region 205 are the same. It is preferable that the charge is balanced (charge balance condition) and the withstand voltage can be maximized. Under such a charge balance condition, when a reverse bias voltage is applied between the drain and source electrodes when the device is OFF, the depletion layer spreads laterally evenly from the p / n junction between the drift region and the column region. Layers can be easily connected to each other. When the entire SJ structure is depleted to form a single depletion layer, the equipotential surfaces are substantially equidistant and substantially parallel, so that the withstand voltage can be maximized. In the design of the SJ structure, the impurity concentration in the drift region can be increased under charge balance conditions (with the breakdown voltage maximized), so that the drift resistance can be reduced and the on-resistance can be reduced.

なお、半導体基板101、ドリフト領域202、ベース領域203、ソース領域204、コラム領域205の導電型及び不純物濃度については、本発明の趣旨を逸脱しない範囲内において適宜設計変更できる。第1導電型と第2導電型とは、上記の逆でも構わない。   Note that the conductivity types and impurity concentrations of the semiconductor substrate 101, the drift region 202, the base region 203, the source region 204, and the column region 205 can be appropriately changed within the scope of the present invention. The first conductivity type and the second conductivity type may be reversed.

図2A及び図2Bに示すように、本実施形態において、平面視、ライン状の複数の第2導電型のコラム領域205が、図示左右方向に周期的に配列されている。   As shown in FIGS. 2A and 2B, in the present embodiment, a plurality of second conductivity type column regions 205 in a line shape in a plan view are periodically arranged in the horizontal direction in the drawing.

本実施形態において、外周領域300Xには、半導体層201内に、素子形成領域200Xに形成された第1導電型のドリフト領域202と第2導電型のコラム領域205の並列構造と同一の並列構造と、素子形成領域200Xの第2導電型のベース領域203の側方に、当該ベース領域から離間して平面視環状に形成された第2導電型の環状拡散領域303とが形成されている。本実施形態において、第2導電型の環状拡散領域303は素子形成領域200Xのベース領域203と同様、p型である。   In the present embodiment, the outer peripheral region 300X has the same parallel structure as the parallel structure of the first conductivity type drift region 202 and the second conductivity type column region 205 formed in the element formation region 200X in the semiconductor layer 201. In addition, a second conductivity type annular diffusion region 303 is formed on the side of the element formation region 200X on the side of the second conductivity type base region 203 so as to be spaced apart from the base region and formed in an annular shape in plan view. In the present embodiment, the annular diffusion region 303 of the second conductivity type is p-type like the base region 203 of the element formation region 200X.

素子形成領域200Xの第2導電型のベース領域203と外周領域300Xの第2導電型の環状拡散領域303の深さと不純物濃度は、略同一でも異なっていても構わないが、略同一であることが好ましい。
素子形成領域200Xの第2導電型のベース領域203と外周領域300Xの第2導電型の環状拡散領域303とは同一プロセスで形成されることが好ましい。この場合、第2導電型の環状拡散領域303を設けても、工程数の増加がなく、好ましい。
The depth and impurity concentration of the second conductivity type base region 203 of the element formation region 200X and the second conductivity type annular diffusion region 303 of the outer peripheral region 300X may be substantially the same or different, but are substantially the same. Is preferred.
The second conductivity type base region 203 of the element formation region 200X and the second conductivity type annular diffusion region 303 of the outer peripheral region 300X are preferably formed by the same process. In this case, even if the second conductivity type annular diffusion region 303 is provided, there is no increase in the number of steps, which is preferable.

本実施形態において、素子形成領域200Xにおいて、断面視、第2導電型のベース領域203と第2導電型のコラム領域205とが接し、外周領域300Xにおいて、断面視、第2導電型の環状拡散領域303と第2導電型のコラム領域205とが接している。   In the present embodiment, the second conductivity type base region 203 and the second conductivity type column region 205 are in contact with each other in the element formation region 200X, and the second conductivity type annular diffusion in the outer peripheral region 300X. The region 303 and the second conductivity type column region 205 are in contact with each other.

図1に示すように、本実施形態において、外周領域300Xの第2導電型の環状拡散領域303は、最内端303A及びその近傍部分がコラム領域205上に位置され、最外端303Bが最外周のコラム領域(図示最右端のコラム領域)205よりも外側に位置されている。
すなわち、外周領域300Xの第2導電型の環状拡散領域303は、最内端303Aを含む図示左端部がコラム領域205に重なって形成されており、最外端303Bを含む図示右端部が最外周のコラム領域205より外側に張り出している。
素子形成領域200Xの第2導電型のベース領域203と、外周領域300Xの第2導電型の環状拡散領域303、及び第2導電型のコラム領域205の平面関係については、図2A及び図2Bを参照されたい。
As shown in FIG. 1, in the present embodiment, in the second conductivity type annular diffusion region 303 of the outer peripheral region 300X, the innermost end 303A and the vicinity thereof are located on the column region 205, and the outermost end 303B is the outermost end. It is located outside the outer peripheral column region (the rightmost column region in the figure) 205.
That is, the second conductivity type annular diffusion region 303 of the outer peripheral region 300X is formed so that the illustrated left end including the innermost end 303A overlaps the column region 205, and the illustrated right end including the outermost end 303B is the outermost peripheral. It protrudes outside the column region 205.
2A and 2B for the planar relationship between the second conductivity type base region 203 of the element formation region 200X, the second conductivity type annular diffusion region 303 of the outer peripheral region 300X, and the second conductivity type column region 205. Please refer.

外周領域300Xの半導体層201上に、第2導電型の環状拡散領域303を覆うように、フィールド絶縁膜306が積層されている。フィールド絶縁膜306上にはさらに、フィールド電極307と層間絶縁膜210とが順次積層されている。フィールド電極307は、素子形成領域200Xのゲート電極207の材料(例えばポリシリコン)が図示しない領域でフィールド絶縁膜306上に引き出されたものである。フィールド電極307は、ゲートパッド(図示せず)に接続されている。   A field insulating film 306 is stacked on the semiconductor layer 201 in the outer peripheral region 300 </ b> X so as to cover the annular diffusion region 303 of the second conductivity type. On the field insulating film 306, a field electrode 307 and an interlayer insulating film 210 are sequentially stacked. In the field electrode 307, the material (for example, polysilicon) of the gate electrode 207 in the element formation region 200X is drawn on the field insulating film 306 in a region not shown. The field electrode 307 is connected to a gate pad (not shown).

本実施形態は所謂スーパージャンクション構造(SJ構造)を有する縦型パワーMOSFET200を備えたものであるので、高耐圧特性と大電流容量とを有しつつ、オン抵抗をSJ構造を有しない縦型パワーMOSFETよりも低減することが可能である。
本実施形態は所謂スーパージャンクション構造(SJ構造)を有する縦型パワーMOSFET200を備えたものであるので、高耐圧特性と大電流容量とを有しつつ、オン抵抗をSiリミットを越えて低減することが可能である。
本実施形態では、SJ構造の特徴である柱状のp/n接合(コラム領域205/ドリフト領域202とのp/n接合)の繰り返し構造を外周領域300Xまで延長しているので、外周領域300Xの耐圧及び破壊耐量の向上が図られている。
本実施形態においてはさらに、外周領域300Xに、最内端303A及びその近傍部分はコラム領域205上に位置し、最外端303Bは最外周のコラム領域205よりも外側に位置する第2導電型の環状拡散領域303を設けることで、外周領域300Xにおける耐圧及び破壊耐量のより一層の向上が図られている。
Since the present embodiment includes the vertical power MOSFET 200 having a so-called super junction structure (SJ structure), the vertical power without the SJ structure has a high withstand voltage characteristic and a large current capacity. It can be reduced as compared with the MOSFET.
Since this embodiment includes a vertical power MOSFET 200 having a so-called super junction structure (SJ structure), the on-resistance is reduced beyond the Si limit while having high breakdown voltage characteristics and large current capacity. Is possible.
In this embodiment, the columnar p / n junction (p / n junction with the column region 205 / drift region 202), which is a feature of the SJ structure, is extended to the outer peripheral region 300X. Improvements in pressure resistance and breakdown resistance are achieved.
In the present embodiment, in the outer peripheral region 300X, the innermost end 303A and its vicinity are located on the column region 205, and the outermost end 303B is located outside the outermost column region 205. By providing the annular diffusion region 303, the breakdown voltage and the breakdown resistance in the outer peripheral region 300X are further improved.

図3Aは、本実施形態において、MOSFET200のOFF時にドレイン−ソース電極間に充分に大きな逆バイアス電圧が印加された場合の外周領域300Xにおける等ポテンシャル面のシミュレーション例である(実施例)。
図3Bは、外周領域300Xに第2導電型の環状拡散領域303がないことを除けば本実施形態と同様の構成についての同シミュレーション例である(比較例)。この比較例の構成では、外周領域300Xにおいて、第2導電型の環状拡散領域303がなく、コラム領域205がフィールド絶縁膜306に直接接している。
FIG. 3A is a simulation example of an equipotential surface in the outer peripheral region 300X when a sufficiently large reverse bias voltage is applied between the drain and source electrodes when the MOSFET 200 is OFF in the present embodiment (Example).
FIG. 3B is a simulation example of the same configuration as that of the present embodiment except that the outer peripheral region 300X does not have the second conductivity type annular diffusion region 303 (comparative example). In the configuration of this comparative example, there is no second conductivity type annular diffusion region 303 in the outer peripheral region 300 </ b> X, and the column region 205 is in direct contact with the field insulating film 306.

図3Aと図3Bとを比較すると分かるように、図3Bでは、フィールド絶縁膜と最外周のコラム領域との接触部分付近で等ポテンシャル面の曲率が急激に小さくなり、その部分に電界が集中している。
これに対して、図3Aでは、外周領域300Xに、最内端303A及びその近傍部分はコラム領域205上に位置し、最外端303Bは最外周のコラム領域205よりも外側に位置する第2導電型の環状拡散領域303が設けられたことで、等ポテンシャル面の間隔が広がり、且つ等ポテンシャル面の曲率が緩やかになっており、電界集中が緩和されている。
As can be seen from a comparison between FIG. 3A and FIG. 3B, in FIG. 3B, the curvature of the equipotential surface suddenly decreases near the contact portion between the field insulating film and the outermost column region, and the electric field concentrates on that portion. ing.
On the other hand, in FIG. 3A, in the outer peripheral region 300X, the innermost end 303A and the vicinity thereof are located on the column region 205, and the outermost end 303B is the second outermost region located outside the outermost peripheral column region 205. By providing the conductive type annular diffusion region 303, the interval between the equipotential surfaces is widened, the curvature of the equipotential surfaces is gentle, and the electric field concentration is alleviated.

フィールド電極307にはゲート電圧がかかるため、デバイスのOFF時には接地電位が印加される。デバイスのOFF時にはフィールド電極307が一定電位(接地電位)になるため、第2導電型のコラム領域205も第2導電型の環状拡散領域303も形成されていない更に外側の領域では、図3Aの場合も図3Bの場合も、等ポテンシャル面がフィールド電極307及びドレイン電極212に対して平行になる。このため、最外周のコラム領域205からフィールド絶縁膜306に向かう等ポテンシャル面は、フィールド電極307があることにより、これに並行になるように曲げられており、等ポテンシャル面の曲率はフィールド電極307が無い場合に比べて緩やかになる。   Since a gate voltage is applied to the field electrode 307, a ground potential is applied when the device is OFF. Since the field electrode 307 is at a constant potential (ground potential) when the device is OFF, in the further outer region where the second conductivity type column region 205 and the second conductivity type annular diffusion region 303 are not formed, In both cases and FIG. 3B, the equipotential surface is parallel to the field electrode 307 and the drain electrode 212. For this reason, the equipotential surface from the outermost column region 205 toward the field insulating film 306 is bent in parallel with the presence of the field electrode 307, and the curvature of the equipotential surface is the field electrode 307. It becomes gentle compared to the case where there is no.

本実施形態では、素子成領域200Xの第2導電型のベース領域203と外周領域300Xの第2導電型の環状拡散領域303とを、平面視で離間させている。かかる構成では、素子成領域200Xの第2導電型のベース領域203の外端203Bと第1導電型のドリフト領域202間のp/n接合と、第2導電型の環状拡散領域303の内端303Aと第1導電型のドリフト領域202間のp/n接合のそれぞれから横方向に空乏層が広がるため、第2導電型のベース領域203と第2導電型の環状拡散領域303とが離間していない場合よりも、横方向の電界に強い半導体装置1が得られる。   In the present embodiment, the second conductivity type base region 203 of the element forming region 200X and the second conductivity type annular diffusion region 303 of the outer peripheral region 300X are separated in plan view. In such a configuration, the p / n junction between the outer end 203B of the second conductivity type base region 203 and the first conductivity type drift region 202 of the element forming region 200X, and the inner end of the second conductivity type annular diffusion region 303 are formed. Since a depletion layer spreads laterally from each of the p / n junctions between 303A and the first conductivity type drift region 202, the second conductivity type base region 203 and the second conductivity type annular diffusion region 303 are separated from each other. Thus, the semiconductor device 1 that is more resistant to the electric field in the lateral direction can be obtained than when it is not.

第1導電型のドリフト領域202の比抵抗(不純物濃度)、第2導電型のコラム領域205の不純物濃度、第2導電型の環状拡散領域303の不純物濃度、及び第2導電型の環状拡散領域303の最外周のコラム領域205からの張出し部分の長さは、所望の耐圧(VDSS)に応じて設計できる。
本発明者は、例えば、素子形成領域200Xの耐圧(VDSS)が55Vのトレンチゲート型パワーMOSFET200を得ようとする場合、第1導電型のドリフト領域202を比抵抗0.50Ω・cm程度のエピタキシャル層で形成し、第2導電型のコラム領域205の不純物濃度を6.0×1016cm−3程度とし、第2導電型の環状拡散領域303の不純物濃度を4.0×1016cm−3程度とし、第2導電型の環状拡散領域303を最外周のコラム領域205よりも約5.0μm外側に張り出すように設計すればよいことを求めている。なお、ここに挙げた数値は設計例であり、適宜設計できることは言うまでもない。
The specific resistance (impurity concentration) of the drift region 202 of the first conductivity type, the impurity concentration of the column region 205 of the second conductivity type, the impurity concentration of the annular diffusion region 303 of the second conductivity type, and the annular diffusion region of the second conductivity type The length of the protruding portion from the outermost column region 205 of 303 can be designed according to the desired breakdown voltage (VDSS).
For example, when the present inventor intends to obtain a trench gate type power MOSFET 200 in which the breakdown voltage (VDSS) of the element formation region 200X is 55V, the first conductivity type drift region 202 is epitaxially formed with a specific resistance of about 0.50 Ω · cm. The second conductivity type column region 205 has an impurity concentration of about 6.0 × 10 16 cm −3 , and the second conductivity type annular diffusion region 303 has an impurity concentration of 4.0 × 10 16 cm −. 3 about and to require that we may be designed so as to project approximately 5.0μm outward from the second conductive type annular diffusion region 303 outermost peripheral column region 205. Needless to say, the numerical values given here are design examples and can be designed as appropriate.

「背景技術」の項で挙げた特許文献1の図19(特許文献2の図18)には、素子形成領域(122)を囲うように浅いp型領域(20c)が形成されているものの、この浅いp型領域(20c)よりも外側のコラム領域(20b)がフィールド絶縁膜(23)に接触している。また、外周領域にはフィールド電極も存在しない。従って、特許文献1の外周構造における等ポテンシャル面は、特許文献1の図19(特許文献2の図18)内に破線で示されているように、フィールド絶縁膜(23)に対してほぼ垂直に入り込んでいる。つまり、比較例の図3Bよりもさらに電界集中が大きく、耐圧や破壊耐量が低くなっている。   In FIG. 19 of Patent Document 1 (FIG. 18 of Patent Document 2) cited in the “Background Art” section, a shallow p-type region (20c) is formed so as to surround the element formation region (122). The column region (20b) outside the shallow p-type region (20c) is in contact with the field insulating film (23). Further, there is no field electrode in the outer peripheral region. Therefore, the equipotential surface in the outer peripheral structure of Patent Document 1 is substantially perpendicular to the field insulating film (23) as shown by a broken line in FIG. 19 of Patent Document 1 (FIG. 18 of Patent Document 2). I'm stuck in. That is, the electric field concentration is larger than that in FIG.

「背景技術」の項で挙げた特許文献3の図1(特許文献4の図1A、図1B)には、特許文献1(特許文献2)に比べて、外周領域(56)に浅いp型領域がなく、素子形成領域のコラム領域(34,36)よりも浅い位置にコラム領域(38)が形成されており、外周領域(56)にフィールド電極(48)が形成されているため、最外周のコラム領域(38)とフィールド絶縁膜(46)との接触部分における電界集中は、特許文献1(特許文献2)よりも緩和されると考えられる。
しかしながら、特許文献3(特許文献4)の外周構造では、コラム領域(38)は素子形成領域(54)のベース領域(51)よりも深い位置に形成されている。すなわち、特許文献3(特許文献4)の外周構造では、最外周のコラム領域(38)の深さは、本実施形態の浅いp型環状拡散領域303に比べるとかなり深いため、最外周のコラム領域(38)からフィールド絶縁膜(46)に向かう等ポテンシャル面は図3Aよりも急峻であり、等ポテンシャル面の曲率は図3Aよりも小さくなる。従って、本実施形態の外周構造の方が、特許文献3(特許文献4)よりも電界集中が小さくなり、耐圧や破壊耐量が優れている。
FIG. 1 of Patent Document 3 (FIGS. 1A and 1B of Patent Document 4) cited in the section “Background Art” shows a shallow p-type in the outer peripheral region (56) compared to Patent Document 1 (Patent Document 2). Since there is no region, the column region (38) is formed at a position shallower than the column regions (34, 36) of the element formation region, and the field electrode (48) is formed in the outer peripheral region (56). It is considered that the electric field concentration at the contact portion between the outer peripheral column region (38) and the field insulating film (46) is more relaxed than in Patent Document 1 (Patent Document 2).
However, in the outer peripheral structure of Patent Document 3 (Patent Document 4), the column region (38) is formed at a position deeper than the base region (51) of the element formation region (54). That is, in the outer peripheral structure of Patent Document 3 (Patent Document 4), the depth of the outermost column region (38) is considerably deeper than that of the shallow p-type annular diffusion region 303 of the present embodiment. The equipotential surface from the region (38) toward the field insulating film (46) is steeper than in FIG. 3A, and the curvature of the equipotential surface is smaller than that in FIG. 3A. Therefore, the electric field concentration is smaller in the outer peripheral structure of the present embodiment than in Patent Document 3 (Patent Document 4), and the breakdown voltage and the breakdown resistance are excellent.

「背景技術」の項で挙げた特許文献5(特許文献6)の図1には、外周領域に浅いp型領域(105)とコラム領域106とが形成されているが、外周領域の浅いp型領域(105)の最内端及びその近傍部分はコラム領域(106)上には位置していない。外周領域にフィールド絶縁膜(118)とフィールド電極(120)とが形成されているが、これらは浅いp型領域(105)とコラム領域106との上方には形成されていない。
特許文献5(特許文献6)では、フィールド絶縁膜の下にはコラム領域もベース領域も形成されていないので、等電位面を緩やかにする効果は特許文献3(特許文献4)よりも劣っている。
In FIG. 1 of Patent Document 5 (Patent Document 6) cited in the “Background Art” section, a shallow p-type region (105) and a column region 106 are formed in the outer peripheral region. The innermost end of the mold region (105) and the vicinity thereof are not located on the column region (106). A field insulating film (118) and a field electrode (120) are formed in the outer peripheral region, but they are not formed above the shallow p-type region (105) and the column region.
In Patent Document 5 (Patent Document 6), neither the column region nor the base region is formed under the field insulating film, so that the effect of relaxing the equipotential surface is inferior to that of Patent Document 3 (Patent Document 4). Yes.

「背景技術」の項で挙げた特許文献7(特許文献8)の図1には、外周領域にコラム領域(4)の代わりにp型の埋め込み半導体領域(BGR1〜BGR4)が設けられ、これら埋め込み半導体領域(BGR1〜BGR4)の上方に環状の浅いp型領域(GR1〜GR4)が設けられ、これら環状の浅いp型領域(GR1〜GR4)の直上にフィールド電極(14)が形成された構造が記載されている。
この半導体装置は、外周領域にコラム領域がなく、代わりに厚み方向の異なる位置に複数の埋め込み半導体領域(BGR1〜BGR4)が設けられているので、外周領域の設計が複雑である。また、埋め込み半導体領域(BGR1〜BGR4)を素子領域のコラム領域とは異なる工程で形成しているため、工程数も多くなる。
In FIG. 1 of Patent Document 7 (Patent Document 8) cited in “Background Art”, p-type buried semiconductor regions (BGR1 to BGR4) are provided in the outer peripheral region instead of the column region (4). An annular shallow p-type region (GR1 to GR4) is provided above the buried semiconductor region (BGR1 to BGR4), and a field electrode (14) is formed immediately above the annular shallow p-type region (GR1 to GR4). The structure is described.
In this semiconductor device, there is no column region in the outer peripheral region, and instead a plurality of embedded semiconductor regions (BGR1 to BGR4) are provided at different positions in the thickness direction, so the design of the outer peripheral region is complicated. Further, since the buried semiconductor regions (BGR1 to BGR4) are formed in a process different from the column region of the element region, the number of processes is increased.

以上説明したように、本実施形態によれば、電界集中が緩和され、耐圧及び破壊耐量が向上された半導体装置1を提供することができる。   As described above, according to the present embodiment, it is possible to provide the semiconductor device 1 in which the electric field concentration is reduced and the breakdown voltage and the breakdown resistance are improved.

「第1実施形態の設計変更例」
第1導電型のコラム領域205のパターンは、図2A及び図2Bに示したラインパターンに制限されず、適宜設計変更できる。
第1導電型のコラム領域205のパターンは、図4A及び図4Bに示すようなアレイパターンあるいは図4Cに示すような千鳥パターンでも構わない。
この場合も、外周領域300Xの第2導電型の環状拡散領域303の最内端303A及びその近傍部分をアレイパターンあるいは千鳥パターンのコラム領域205上に位置させ、最外端303Bを最外周のいずれのコラム領域205よりも外側に位置させることで、第1実施形態と同様の効果が得られる。
"Design change example of the first embodiment"
The pattern of the column region 205 of the first conductivity type is not limited to the line pattern shown in FIGS. 2A and 2B, and can be appropriately changed in design.
The pattern of the first conductivity type column region 205 may be an array pattern as shown in FIGS. 4A and 4B or a staggered pattern as shown in FIG. 4C.
In this case as well, the innermost end 303A of the second conductivity type annular diffusion region 303 in the outer peripheral region 300X and the vicinity thereof are positioned on the column region 205 of the array pattern or the staggered pattern, and the outermost end 303B is positioned at any of the outermost periphery. By locating outside the column region 205, the same effect as in the first embodiment can be obtained.

「第2実施形態」
図面を参照して、本発明に係る第2実施形態の半導体装置の構成について説明する。図5は本実施形態の半導体装置の要部断面図である。第1実施形態と同じ構成要素については同じ参照符号を付して、説明を省略する。
“Second Embodiment”
The configuration of the semiconductor device according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a fragmentary cross-sectional view of the semiconductor device of this embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施形態の半導体装置2の基本構成は第1実施形態と同様であり、本実施形態では外周領域300Xの第2導電型の環状拡散領域303が間隙を空けて複数の領域に分割されている。本実施形態では第2導電型の環状拡散領域303が2つの分割領域303P1(内側)、304P2(外側)に分割されている。   The basic configuration of the semiconductor device 2 of this embodiment is the same as that of the first embodiment. In this embodiment, the second conductivity type annular diffusion region 303 in the outer peripheral region 300X is divided into a plurality of regions with a gap. . In the present embodiment, the annular diffusion region 303 of the second conductivity type is divided into two divided regions 303P1 (inner side) and 304P2 (outer side).

本実施形態において、第2導電型の環状拡散領域303の最内端303Aと最外端303Bの位置は第1実施形態と同様である。すなわち、第2導電型の環状拡散領域303の最内端303A(最内の分割領域303P1の内端に相当)及びその近傍部分は第2導電型のコラム領域205上に位置され、最外端303B(最外の分割領域303P2の外端に相当)は最外周の第2導電型のコラム領域205よりも外側に位置されている。   In the present embodiment, the positions of the innermost end 303A and the outermost end 303B of the second conductivity type annular diffusion region 303 are the same as in the first embodiment. That is, the innermost end 303A of the second conductivity type annular diffusion region 303 (corresponding to the inner end of the innermost divided region 303P1) and the vicinity thereof are located on the second conductivity type column region 205, and the outermost end 303B (corresponding to the outer end of the outermost divided region 303P2) is located on the outer side of the outermost peripheral column region 205 of the second conductivity type.

本実施形態においても、第1実施形態と同様の効果が得られる。
さらに、本実施形態の半導体装置2によれば、第2導電型の環状拡散領域303が複数の分割領域に303P1、303P2に分割されているので、それぞれの端面のp/n接合で横方向の電界を分担して負担することで、横方向の電界にさらに強い半導体装置2が得られる。第2導電型の環状拡散領域303の分割数や複数の分割領域の間隙は、適宜設計できる。
Also in this embodiment, the same effect as the first embodiment can be obtained.
Furthermore, according to the semiconductor device 2 of the present embodiment, since the second conductivity type annular diffusion region 303 is divided into a plurality of divided regions 303P1 and 303P2, the lateral direction at the p / n junction of each end face By sharing and sharing the electric field, the semiconductor device 2 that is stronger against the electric field in the lateral direction can be obtained. The number of divisions of the second conductivity type annular diffusion region 303 and the gaps between the plurality of division regions can be appropriately designed.

「第3実施形態」
図面を参照して、本発明に係る第3実施形態の半導体装置の構成について説明する。図6は本実施形態の半導体装置の要部断面図である。第1実施形態と同じ構成要素については同じ参照符号を付して、説明を省略する。
“Third Embodiment”
A configuration of a semiconductor device according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a fragmentary cross-sectional view of the semiconductor device of this embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施形態の半導体装置3の基本構成は第1実施形態と同様であり、本実施形態では、素子形成領域200Xにおいて、断面視、第2導電型のベース領域203と第2導電型のコラム領域205とが離間している。素子形成領域200Xの第2導電型のベース領域203と外周領域300Xの第2導電型の環状拡散領域303とは好ましくは同一プロセスで形成されるので、素子形成領域200Xの第2導電型のベース領域203と第2導電型のコラム領域205の関係と同様に、外周領域300Xでは断面視、第2導電型の環状拡散領域303と第2導電型のコラム領域205とが離間している。   The basic configuration of the semiconductor device 3 of the present embodiment is the same as that of the first embodiment. In the present embodiment, in the element formation region 200X, the second conductivity type base region 203 and the second conductivity type column region are viewed in cross section. 205 is spaced apart. Since the second conductivity type base region 203 of the element formation region 200X and the second conductivity type annular diffusion region 303 of the outer peripheral region 300X are preferably formed by the same process, the second conductivity type base of the element formation region 200X is formed. Similar to the relationship between the region 203 and the second conductivity type column region 205, in the outer peripheral region 300X, the second conductivity type annular diffusion region 303 and the second conductivity type column region 205 are separated from each other in a cross-sectional view.

本実施形態においても、第1実施形態と同様の効果が得られる。
さらに、本実施形態においては、素子形成領域200Xにおいて、断面視、第2導電型のベース領域203と第2導電型のコラム領域205とが離間しているので、素子形成領域200Xにおいてトレンチゲート側面のオン電流の経路が広くなり、第1実施形態よりもオン抵抗の低減が図られる。
また、素子形成領域200Xにおいて、断面視、第2導電型のベース領域203と第2導電型のコラム領域205とが離間して独立しているので、これらの設計の最適化が容易である。同様に、外周領域300Xにおいて、断面視、第2導電型の環状拡散領域303と第2導電型のコラム領域205とが離間して独立しているので、これらの設計の最適化が容易である。
Also in this embodiment, the same effect as the first embodiment can be obtained.
Further, in the present embodiment, the second conductivity type base region 203 and the second conductivity type column region 205 are separated from each other in the element formation region 200X. The on-current path becomes wider, and the on-resistance can be reduced than in the first embodiment.
Further, in the element formation region 200X, since the second conductivity type base region 203 and the second conductivity type column region 205 are separated and independent in a cross-sectional view, it is easy to optimize these designs. Similarly, in the outer peripheral region 300X, the second conductive type annular diffusion region 303 and the second conductive type column region 205 are separated and independent from each other in cross-sectional view, and it is easy to optimize these designs. .

本実施形態においても、外周領域300Xの第2導電型の環状拡散領域303を、図5に示した半導体装置2のように、複数の分割領域に分割してもよい。   Also in the present embodiment, the annular diffusion region 303 of the second conductivity type in the outer peripheral region 300X may be divided into a plurality of divided regions as in the semiconductor device 2 shown in FIG.

「設計変更」
本発明は上記実施形態に限らず、本発明の趣旨を逸脱しない範囲内において適宜設計変更可能である。
上記実施形態では、SJ構造を有するMOSFETを備えた半導体装置を例に説明したが、SJ構造を有するIGBT(Insulated Gate Bipolar Transistor)等を備えた半導体装置にも適用できる。
"Design changes"
The present invention is not limited to the above embodiment, and can be appropriately modified within a range not departing from the gist of the present invention.
In the above embodiment, the semiconductor device including the MOSFET having the SJ structure has been described as an example. However, the present invention can also be applied to a semiconductor device including an IGBT (Insulated Gate Bipolar Transistor) having the SJ structure.

1〜3 半導体装置
101 第1導電型の半導体基板
200 MOSFET(トランジスタ素子)
200X 素子形成領域
201 半導体層
202 第1導電型のドリフト領域
203 第2導電型のベース領域
203B 第2導電型のベース領域の外端
204 第1導電型のソース領域
205 第2導電型のコラム領域
206 ゲート絶縁膜
207 ゲート電極
210 層間絶縁膜
211 ソース電極
212 ドレイン電極
300X 外周領域
303 第2導電型の環状拡散領域
303A 第2導電型の環状拡散領域の最内端
303B 第2導電型の環状拡散領域の最外端
303P1、303P2 第2導電型の環状拡散領域の分割領域
306 フィールド絶縁膜
307 フィールド電極
1-3 Semiconductor device 101 First conductivity type semiconductor substrate 200 MOSFET (transistor element)
200X element formation region 201 semiconductor layer 202 first conductivity type drift region 203 second conductivity type base region 203B outer end 204 of second conductivity type base region first conductivity type source region 205 second conductivity type column region 206 Gate insulating film 207 Gate electrode 210 Interlayer insulating film 211 Source electrode 212 Drain electrode 300X Outer peripheral region 303 Second conductivity type annular diffusion region 303A Inner end 303B of second conductivity type annular diffusion region Second conductivity type annular diffusion Outermost ends 303P1 and 303P2 of the regions Divided regions 306 of the second conductivity type annular diffusion region Field insulating film 307 Field electrode

Claims (5)

半導体基板の一方の面に半導体層が形成された基板に、
前記半導体層内に、第1導電型のドリフト領域と第2導電型のコラム領域とが基板面方向に並列された並列構造と、当該並列構造の上方に形成された第2導電型のベース領域とを有する少なくとも1つのトランジスタ素子が形成された半導体装置であって、
前記少なくとも1つのトランジスタ素子が形成された素子形成領域より外側の外周領域には、前記半導体層内に、前記トランジスタ素子の前記並列構造と同一構造である、第1導電型のドリフト領域と第2導電型のコラム領域との並列構造と、前記トランジスタ素子の前記ベース領域の側方に当該ベース領域から離間して平面視環状に形成された第2導電型の環状拡散領域とが形成されており、
前記外周領域の前記第2導電型の環状拡散領域は、最内端及びその近傍部分が前記コラム領域上に位置され、最外端が最外周の前記コラム領域よりも外側に位置されており、
前記外周領域の前記半導体層上に、前記第2導電型の環状拡散領域を覆うフィールド絶縁膜が積層された半導体装置。
On a substrate having a semiconductor layer formed on one side of the semiconductor substrate,
A parallel structure in which a first conductivity type drift region and a second conductivity type column region are arranged in parallel in the substrate surface direction in the semiconductor layer, and a second conductivity type base region formed above the parallel structure. A semiconductor device in which at least one transistor element is formed,
In the outer peripheral region outside the element formation region where the at least one transistor element is formed, a drift region of the first conductivity type and the second structure are the same as the parallel structure of the transistor elements in the semiconductor layer. A parallel structure with a conductive type column region and a second conductive type annular diffusion region formed in an annular shape in plan view and spaced apart from the base region are formed on the side of the base region of the transistor element. ,
The annular diffusion region of the second conductivity type in the outer peripheral region, the innermost end and the vicinity thereof are positioned on the column region, the outermost end is positioned outside the outermost column region,
A semiconductor device in which a field insulating film covering the annular diffusion region of the second conductivity type is stacked on the semiconductor layer in the outer peripheral region.
前記フィールド絶縁膜上に前記トランジスタ素子のゲート電極に電気的に接続されたフィールド電極が積層された請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein a field electrode electrically connected to a gate electrode of the transistor element is stacked on the field insulating film. 前記素子形成領域において、断面視、前記ベース領域と前記コラム領域とが互いに接し、前記外周領域において、断面視、前記第2導電型の環状拡散領域と前記コラム領域とが互いに接した請求項1又は2に記載の半導体装置。   The cross-sectional view, the base region and the column region are in contact with each other in the element formation region, and the annular region of the second conductivity type and the column region are in contact with each other in the outer peripheral region. Or the semiconductor device of 2. 前記素子形成領域において、断面視、前記ベース領域と前記コラム領域とが離間し、
前記外周領域において、断面視、前記第2導電型の環状拡散領域と前記コラム領域とが離間した請求項1又は2に記載の半導体装置。
In the element formation region, a cross-sectional view, the base region and the column region are separated,
3. The semiconductor device according to claim 1, wherein, in the outer peripheral region, the annular diffusion region of the second conductivity type and the column region are separated from each other in a cross-sectional view.
前記外周領域の前記第2導電型の環状拡散領域が、平面視、複数の領域に分割された請求項1〜4のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the second conductivity type annular diffusion region in the outer peripheral region is divided into a plurality of regions in plan view.
JP2010280431A 2010-03-15 2010-12-16 Semiconductor device Expired - Fee Related JP5718627B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010280431A JP5718627B2 (en) 2010-03-15 2010-12-16 Semiconductor device
US13/045,236 US8450800B2 (en) 2010-03-15 2011-03-10 Semiconductor device
CN201110064091.1A CN102194882B (en) 2010-03-15 2011-03-15 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010057886 2010-03-15
JP2010057886 2010-03-15
JP2010280431A JP5718627B2 (en) 2010-03-15 2010-12-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2011216847A true JP2011216847A (en) 2011-10-27
JP5718627B2 JP5718627B2 (en) 2015-05-13

Family

ID=44559140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280431A Expired - Fee Related JP5718627B2 (en) 2010-03-15 2010-12-16 Semiconductor device

Country Status (3)

Country Link
US (1) US8450800B2 (en)
JP (1) JP5718627B2 (en)
CN (1) CN102194882B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111129A (en) * 2014-12-04 2016-06-20 ローム株式会社 Semiconductor device
WO2016158015A1 (en) * 2015-03-27 2016-10-06 ローム株式会社 Semiconductor device
JP6154083B1 (en) * 2016-03-31 2017-06-28 新電元工業株式会社 Power semiconductor device and method of manufacturing power semiconductor device
JP2019220727A (en) * 2019-10-07 2019-12-26 ローム株式会社 Semiconductor device
JP2020129573A (en) * 2019-02-07 2020-08-27 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method therefor
JP2020174170A (en) * 2019-04-12 2020-10-22 富士電機株式会社 Super junction semiconductor device and method of manufacturing super junction semiconductor device
JP2021007129A (en) * 2019-06-28 2021-01-21 ルネサスエレクトロニクス株式会社 Semiconductor device
US12125905B2 (en) 2019-06-28 2024-10-22 Renesas Electronics Corporation Semiconductor device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641995B2 (en) * 2011-03-23 2014-12-17 株式会社東芝 Semiconductor element
US9728652B2 (en) 2012-01-25 2017-08-08 Infineon Technologies Ag Sensor device and method
US9184277B2 (en) * 2012-10-31 2015-11-10 Infineon Technologies Austria Ag Super junction semiconductor device comprising a cell area and an edge area
US10068834B2 (en) * 2013-03-04 2018-09-04 Cree, Inc. Floating bond pad for power semiconductor devices
US9117694B2 (en) * 2013-05-01 2015-08-25 Infineon Technologies Austria Ag Super junction structure semiconductor device based on a compensation structure including compensation layers and a fill structure
US9070580B2 (en) 2013-05-01 2015-06-30 Infineon Technologies Austria Ag Semiconductor device with a super junction structure based on a compensation structure with compensation layers and having a compensation rate gradient
US9024383B2 (en) 2013-05-01 2015-05-05 Infineon Technologies Austria Ag Semiconductor device with a super junction structure with one, two or more pairs of compensation layers
US9559171B2 (en) * 2014-10-15 2017-01-31 Fuji Electric Co., Ltd. Semiconductor device
DE102015102136B4 (en) * 2015-02-13 2021-09-30 Infineon Technologies Austria Ag Semiconductor components and a method for forming a semiconductor component
US9520492B2 (en) * 2015-02-18 2016-12-13 Macronix International Co., Ltd. Semiconductor device having buried layer
JP6448434B2 (en) * 2015-03-25 2019-01-09 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
DE102015106707A1 (en) * 2015-04-30 2016-11-03 Infineon Technologies Austria Ag Semiconductor devices and methods of forming a semiconductor device
CN105070757A (en) * 2015-08-18 2015-11-18 上海华虹宏力半导体制造有限公司 Structure for improving switching characteristic of super-junction device
DE102016115759B4 (en) * 2016-08-25 2018-06-28 Infineon Technologies Austria Ag METHOD FOR PRODUCING A SUPERJUNCTION SEMICONDUCTOR DEVICE AND SUPERJUNCTION SEMICONDUCTOR DEVICE
CN109888004A (en) * 2019-01-08 2019-06-14 上海华虹宏力半导体制造有限公司 IGBT device
JP7424782B2 (en) * 2019-09-27 2024-01-30 ローム株式会社 semiconductor equipment
CN111900090B (en) * 2020-08-26 2024-01-23 上海华虹宏力半导体制造有限公司 Method for manufacturing super junction device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277733A (en) * 1999-03-26 2000-10-06 Sanken Electric Co Ltd Insulated-gate field-effect transistor
JP2001168327A (en) * 1999-12-09 2001-06-22 Hitachi Ltd Semiconductor device and power switching drive system provided with the same
WO2009039441A1 (en) * 2007-09-21 2009-03-26 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765012B2 (en) 2000-02-09 2011-09-07 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP4860929B2 (en) 2005-01-11 2012-01-25 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP5015488B2 (en) 2005-09-07 2012-08-29 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2009088345A (en) 2007-10-01 2009-04-23 Toshiba Corp Semiconductor device
JP5491723B2 (en) * 2008-11-20 2014-05-14 株式会社東芝 Power semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277733A (en) * 1999-03-26 2000-10-06 Sanken Electric Co Ltd Insulated-gate field-effect transistor
JP2001168327A (en) * 1999-12-09 2001-06-22 Hitachi Ltd Semiconductor device and power switching drive system provided with the same
WO2009039441A1 (en) * 2007-09-21 2009-03-26 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111129A (en) * 2014-12-04 2016-06-20 ローム株式会社 Semiconductor device
US10431677B2 (en) 2015-03-27 2019-10-01 Rohm Co., Ltd. Semiconductor device
WO2016158015A1 (en) * 2015-03-27 2016-10-06 ローム株式会社 Semiconductor device
JP2016187002A (en) * 2015-03-27 2016-10-27 ローム株式会社 Semiconductor device
US11888058B2 (en) 2015-03-27 2024-01-30 Rohm Co., Ltd. Semiconductor device
US11004968B2 (en) 2015-03-27 2021-05-11 Rohm Co., Ltd. Semiconductor device
JP6154083B1 (en) * 2016-03-31 2017-06-28 新電元工業株式会社 Power semiconductor device and method of manufacturing power semiconductor device
TWI636572B (en) * 2016-03-31 2018-09-21 新電元工業股份有限公司 Power semiconductor device and manufacturing method thereof
WO2017168735A1 (en) * 2016-03-31 2017-10-05 新電元工業株式会社 Power semiconductor device and method for manufacturing power semiconductor device
JP2020129573A (en) * 2019-02-07 2020-08-27 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method therefor
JP7175787B2 (en) 2019-02-07 2022-11-21 ルネサスエレクトロニクス株式会社 Semiconductor device and its manufacturing method
JP7524527B2 (en) 2019-04-12 2024-07-30 富士電機株式会社 Super-junction semiconductor device and method for manufacturing the same
JP2020174170A (en) * 2019-04-12 2020-10-22 富士電機株式会社 Super junction semiconductor device and method of manufacturing super junction semiconductor device
JP2021007129A (en) * 2019-06-28 2021-01-21 ルネサスエレクトロニクス株式会社 Semiconductor device
US12125905B2 (en) 2019-06-28 2024-10-22 Renesas Electronics Corporation Semiconductor device
JP7165778B2 (en) 2019-10-07 2022-11-04 ローム株式会社 semiconductor equipment
JP2022191474A (en) * 2019-10-07 2022-12-27 ローム株式会社 Semiconductor device
JP7423853B2 (en) 2019-10-07 2024-01-29 ローム株式会社 semiconductor equipment
JP2021108400A (en) * 2019-10-07 2021-07-29 ローム株式会社 Semiconductor device
JP2019220727A (en) * 2019-10-07 2019-12-26 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
US8450800B2 (en) 2013-05-28
JP5718627B2 (en) 2015-05-13
CN102194882B (en) 2015-08-19
CN102194882A (en) 2011-09-21
US20110220992A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5718627B2 (en) Semiconductor device
US9577087B2 (en) Semiconductor apparatus
US8957502B2 (en) Semiconductor device
US6833585B2 (en) High voltage lateral DMOS transistor having low on-resistance and high breakdown voltage
JP6139356B2 (en) Semiconductor device
US6825565B2 (en) Semiconductor device
US9362351B2 (en) Field effect transistor, termination structure and associated method for manufacturing
JP6323556B2 (en) Semiconductor device
CN108701709A (en) Terminal area framework for Vertical power transistors
US9293548B2 (en) Semiconductor device
JP5297706B2 (en) Semiconductor device
JP2009088345A (en) Semiconductor device
US20140077257A1 (en) Semiconductor device
KR20170042596A (en) Super-junction metal oxide semiconductor field effect transistor
JP6299658B2 (en) Insulated gate type switching element
US8680606B2 (en) Power semiconductor device
TWI473267B (en) Mosfet device
US8853775B2 (en) Insulated gate bipolar transistor having control electrode disposed in trench
US9312331B2 (en) Semiconductor device
JP2021034528A (en) Switching element
KR101721181B1 (en) Power semiconductor device
JP2018046254A (en) Switching element
TW202228284A (en) Semiconductor strcuture
US8502306B2 (en) Semiconductor device
JP2018056380A (en) Switching element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150319

R150 Certificate of patent or registration of utility model

Ref document number: 5718627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees