JP2011216370A - 燃料電池システム及びその制御方法 - Google Patents

燃料電池システム及びその制御方法 Download PDF

Info

Publication number
JP2011216370A
JP2011216370A JP2010084460A JP2010084460A JP2011216370A JP 2011216370 A JP2011216370 A JP 2011216370A JP 2010084460 A JP2010084460 A JP 2010084460A JP 2010084460 A JP2010084460 A JP 2010084460A JP 2011216370 A JP2011216370 A JP 2011216370A
Authority
JP
Japan
Prior art keywords
fuel cell
resistance value
insulation resistance
condensed water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010084460A
Other languages
English (en)
Inventor
Hideharu Naito
秀晴 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010084460A priority Critical patent/JP2011216370A/ja
Publication of JP2011216370A publication Critical patent/JP2011216370A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】簡単な構成及び工程で、燃料電池スタック内に微少電流漏れが発生することを確実に阻止するとともに、凝縮水の排水処理を良好に遂行可能にする。
【解決手段】燃料電池システム10は、燃料電池スタック12と、酸化剤ガス排出連通孔72bの出口に連通し、凝縮水を貯留する貯留部116を有する樹脂製配管112と、前記貯留部116に貯留された前記凝縮水を排水する排水配管120と、流量調整装置と、システム絶縁抵抗値を検出する抵抗検出装置とを備える。流量調整装置は、貯留部116に貯留された凝縮水の貯水量を検出する貯水量検出部と、燃料電池スタック12の絶縁抵抗値を除くシステム絶縁抵抗値が、設定絶縁抵抗値を超えるか否かを判断する絶縁抵抗値判断部と、前記設定絶縁抵抗値を超えると判断された際、前記貯留部116に貯留された前記凝縮水を排水配管120に放流させる放流調整部とを設ける。
【選択図】図4

Description

本発明は、複数の発電セルが積層される燃料電池スタックと、前記発電セルから排出される凝縮水を貯留する貯留部を有する電気絶縁性の接続部材と、前記貯留部に貯留された前記凝縮水を排水する排水配管と、前記排水配管を流れる前記凝縮水の流量を調整する流量調整装置と、システム絶縁抵抗値を検出する抵抗検出装置とを備える燃料電池システム及びその制御方法に関する。
例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる電解質膜の両側に、それぞれアノード側電極及びカソード側電極を配設した電解質膜・電極構造体(MEA)を、セパレータによって挟持した発電セルを備えている。この種の燃料電池は、通常、所定数の発電セルを積層することにより、例えば、車載用燃料電池スタックとして使用されている。
燃料電池スタックでは、積層されている各発電セルのアノード側電極及びカソード側電極に、それぞれ反応ガスである燃料ガス及び酸化剤ガスを供給するため、内部マニホールドを構成する場合が多い。この内部マニホールドは、発電セルの積層方向に貫通して設けられる反応ガス供給連通孔及び反応ガス排出連通孔を備えている。
その際、燃料電池スタックには、外部機器、例えば、加湿器が排出側配管を介して反応ガス排出連通孔に連通している。このため、燃料電池スタックと排出側配管との接続部位から凝縮水を介して微少電流が流れることがある(以下、微少電流漏れともいう)。
そこで、この種の微少電流漏れを抑制するために、例えば、特許文献1に開示されている燃料電池システムが提案されている。この燃料電池システムは、図15に示すように、燃料電池スタック1を備えており、この燃料電池スタック1は、複数のセルモジュール2を積層した積層体を備えるとともに、この積層体の積層方向両端には、エンドプレート3a、3bが配設されている。
一方のエンドプレート3aには、加湿された水素ガス、加湿された空気及び冷却液のそれぞれの供給配管4a、5a及び6aと、それぞれの排出配管4b、5b及び6bとが接続されている。これらの供給配管4a〜6a及び排出配管4b〜6bは、電気絶縁性部材で形成されている。
特開2005−332674号公報
しかしながら、上記の特許文献1では、特に排出配管5bに連通する空気排出連通孔(図示せず)には、発電により生成される生成水が凝縮して滞留水(凝縮水)が発生し易い。一方、排出配管4bに連通する水素ガス排出連通孔(図示せず)には、生成水の電解質膜を介した逆拡散による水分が凝縮して滞留水(凝縮水)が発生し易い。
このため、排出配管4b、5b内には、凝縮水が反応ガス排出圧力によって排出されており、この凝縮水を介して発電セル間で短絡が惹起されるおそれがある。その際、発電セルには、電極触媒として、Ru(ルテニウム)系触媒や白金触媒等、白金族が使用されている。従って、水素、空気及び水が存在するとともに、白金族触媒によって、多量の過酸化水素(H22)が発生してしまう。これにより、通常の電流量に比べて大電流が流れるため、MEAの劣化が促進されるという問題がある。
一方、凝縮水を介して複数の発電セルに跨って短絡が惹起されるおそれがある。このため、通常の電流量に比べて大電流が流れてしまい、特に金属部材であるセパレータのイオン化による劣化が促進されるという問題がある。
本発明はこの種の問題を解決するものであり、簡単な構成及び工程で、燃料電池スタック内に微少電流漏れが発生することを確実に阻止するとともに、凝縮水の排水処理が良好に遂行可能な燃料電池システム及びその制御方法を提供することを目的とする。
本発明に係る燃料電池システムは、複数の発電セルが積層されるとともに、発電反応に使用された反応ガスを、積層方向に流通させる反応ガス排出連通孔が設けられる燃料電池スタックと、前記反応ガス排出連通孔の出口に連通し、前記発電セルから排出される凝縮水が貯留される貯留部を有する電気絶縁性の接続部材と、前記接続部材に連結され、前記貯留部に貯留された前記凝縮水を排水する排水配管と、前記排水配管を流れる前記凝縮水の流量を調整する流量調整装置と、前記燃料電池スタックの絶縁抵抗値及び該燃料電池スタック以外の絶縁抵抗値を含むシステム絶縁抵抗値を検出する抵抗検出装置とを備えている。
この燃料電池システムでは、流量調整装置は、貯留部に貯留された凝縮水の貯水量を検出する貯水量検出部と、燃料電池スタックの絶縁抵抗値を除くシステム絶縁抵抗値が、設定絶縁抵抗値を超えるか否かを判断する絶縁抵抗値判断部と、前記絶縁抵抗値判断部により、前記システム絶縁抵抗値が前記設定絶縁抵抗値を超えると判断された際、前記貯留部に貯留された前記凝縮水を前記排水配管に放流させる放流調整部とを設けている。
また、この燃料電池システムでは、絶縁抵抗値判断部により、システム絶縁抵抗値が設定絶縁抵抗値を超えないと判断された際、放流調整部は、排水配管に放流可能な凝縮水量を算出し、算出された前記凝縮水量の前記凝縮水を前記排水配管に放流することが好ましい。
さらに、この燃料電池システムでは、貯留部と排水配管とを開閉するためのバルブを備え、算出された凝縮水量が、前記バルブの開閉動作で排水できる水量を超えている際、流量調整装置は、燃料電池スタックに供給される反応ガス量を増加させることが好ましい。
さらにまた、この燃料電池システムは、反応ガス量の増加ができない際に報知するための報知部を備えることが好ましい。
また、この燃料電池システムでは、貯水量検出部は、燃料電池スタックの発電量から凝縮水量を推定し、推定された前記凝縮水量から貯留部の貯水量を検出することが好ましい。
さらに、この制御方法は、貯留部に貯留された凝縮水の貯水量を検出する工程と、燃料電池スタックの絶縁抵抗値を除くシステム絶縁抵抗値が、設定絶縁抵抗値を超えるか否かを判断する工程と、前記システム絶縁抵抗値が前記設定絶縁抵抗値を超えると判断された際、前記貯留部に貯留された前記凝縮水を前記排水配管に放流させる工程とを有している。
さらにまた、この制御方法は、燃料電池スタックの絶縁抵抗値を除くシステム絶縁抵抗値が、設定絶縁抵抗値を超えないと判断された際、排水配管に放流可能な凝縮水量を算出し、算出された前記凝縮水量の凝縮水を前記排水配管に放流することが好ましい。
また、この制御方法は、算出された凝縮水量が、貯留部と排水配管とを開閉するためのバルブの開閉動作で排水できる水量を超えている際、燃料電池スタックに供給される反応ガス量を増加させることが好ましい。
さらに、この制御方法は、反応ガス量の増加ができない際に報知することが好ましい。
さらにまた、この制御方法は、燃料電池スタックの発電量から凝縮水量を推定し、推定された前記凝縮水量から貯留部の貯水量を検出することが好ましい。
本発明によれば、貯留部に所定量の凝縮水が貯留された状態で、燃料電池スタックの絶縁抵抗値を除くシステム絶縁抵抗値が、設定絶縁抵抗値を超えるか否かを判断している。そして、システム絶縁抵抗値が、設定絶縁抵抗値を超えると判断された際、すなわち、貯留部からの放水により設定絶縁抵抗値を下回らないと判断された際、前記貯留部に貯留された前記凝縮水を排水配管に放流させている。
これにより、簡単な構成及び工程で、燃料電池スタック内に微少電流漏れが発生することを確実に阻止するとともに、凝縮水の排水処理が良好に遂行可能になる。
本発明の第1の実施形態に係る燃料電池システムの概略構成図である。 燃料電池スタックを構成する発電セルの分解斜視説明図である。 前記燃料電池システムを構成する加湿器及び前記燃料電池スタックの斜視説明図である。 前記燃料電池スタックの要部断面説明図である。 前記燃料電池システムの回路説明図である。 システム絶縁抵抗値の説明図である。 燃料電池システムの絶縁抵抗値の説明図である。 燃料電池システムの制御方法を説明するフローチャートである。 発電量と総凝縮水量との関係説明図である。 総凝縮水量と貯留部容積との関係説明図である。 凝縮水が放流される際の絶縁抵抗値の変化説明図である。 本発明の第2の実施形態に係る燃料電池システムの概略説明図である。 前記燃料電池システムの動作説明図である。 別の燃料電池システムの概略説明図である。 特許文献1に開示されている燃料電池システムの概略説明図である。
図1に示すように、本発明の第1の実施形態に係る燃料電池システム10は、図示しない燃料電池車両に搭載される。燃料電池システム10は、燃料電池スタック12と、前記燃料電池スタック12に冷却媒体を供給するための冷却媒体供給装置16と、前記燃料電池スタック12に酸化剤ガス(反応ガス)を供給するための酸化剤ガス供給装置18と、前記燃料電池スタック12に燃料ガス(反応ガス)を供給するための燃料ガス供給装置20と、システム制御を行うコントローラ22とを備える。
冷却媒体供給装置16は、ラジエータ24を備える。このラジエータ24には、冷媒用ポンプ26を介して冷却媒体供給配管28及び冷却媒体排出配管30が接続される。
酸化剤ガス供給装置18は、空気用ポンプ32を備え、この空気用ポンプ32に一端が接続される空気供給配管34は、加湿器36に他端が接続されるとともに、この加湿器36には、加湿空気供給配管38を介して燃料電池スタック12が接続される。
加湿器36には、使用済みの凝縮水を含んだ酸化剤ガス(以下、酸化剤オフガスという)を、燃料電池スタック12から加湿流体として供給するためのオフガス流入路40が設けられる。加湿器36では、オフガス流入路40を介して供給された酸化剤オフガスの排出側に、背圧弁42が配設される。
燃料ガス供給装置20は、燃料ガスとして水素ガスが貯留される燃料ガスタンク(燃料タンク)44を備える。この燃料ガスタンク44には、燃料ガス供給配管45の一端が接続され、前記燃料ガス供給配管45には、遮断弁46、レギュレータ48及びエゼクタ50が接続されるとともに、前記エゼクタ50が燃料電池スタック12に接続される。
燃料電池スタック12には、使用済みの燃料ガスを排出するための排出燃料ガス配管52が接続される。この排出燃料ガス配管52は、リターン配管54を介してエゼクタ50に接続されるとともに、一部がパージ弁56から希釈器57に連通する。希釈器57には、オフガス流入路40から分岐する希釈流路41を介して希釈用エア及び加湿器36からの結露水が供給可能である。
燃料電池スタック12は、複数の発電セル58が車長方向である水平方向(図2及び図3中、矢印A方向)に積層されるとともに、積層方向の両端には、ターミナルプレート59a、59b及び絶縁プレート60a、60bを介してエンドプレート62a、62bが配設される(図1参照)。ターミナルプレート59a、59bから外方に電力取り出し端子63a、63bが突出し、前記電力取り出し端子63a、63bは、後述する車両走行用モータ139や補機類に接続される。
図2に示すように、各発電セル58は、電解質膜・電極構造体66と、前記電解質膜・電極構造体66を挟持する第1及び第2セパレータ68、70とを備えるとともに、縦長に構成される。なお、第1及び第2セパレータ68、70は、カーボンセパレータ又は金属セパレータで構成される。
発電セル58の長辺方向(矢印C方向)の一端縁部(上端縁部)には、矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス供給連通孔72a、及び燃料ガス、例えば、水素含有ガスを供給するための燃料ガス供給連通孔76aが設けられる。
発電セル58の長辺方向の他端縁部(下端縁部)には、矢印A方向に互いに連通して、酸化剤ガスを排出するための酸化剤ガス排出連通孔(反応ガス排出連通孔)72b及び燃料ガスを排出するための燃料ガス排出連通孔(反応ガス排出連通孔)76bが設けられる。
発電セル58の短辺方向(矢印B方向)の一端縁部には、冷却媒体を供給するための冷却媒体供給連通孔74aが設けられるとともに、前記発電セル58の短辺方向の他端縁部には、冷却媒体を排出するための冷却媒体排出連通孔74bが設けられる。冷却媒体供給連通孔74a及び冷却媒体排出連通孔74bは、縦長形状に設定される。
電解質膜・電極構造体66は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜78と、前記固体高分子電解質膜78を挟持するアノード側電極80及びカソード側電極82とを備える。
第1セパレータ68の電解質膜・電極構造体66に向かう面68aには、燃料ガス供給連通孔76aと燃料ガス排出連通孔76bとを連通する燃料ガス流路84が形成される。この燃料ガス流路84は、例えば、矢印C方向に延在する溝部により構成される。第1セパレータ68の面68aとは反対の面68bには、冷却媒体供給連通孔74aと冷却媒体排出連通孔74bとを連通する冷却媒体流路86の一部が形成される。
第2セパレータ70の電解質膜・電極構造体66に向かう面70aには、例えば、矢印C方向に延在する溝部からなる酸化剤ガス流路88が設けられるとともに、この酸化剤ガス流路88は、酸化剤ガス供給連通孔72aと酸化剤ガス排出連通孔72bとに連通する。第2セパレータ70の面70aとは反対の面70bには、第1セパレータ68の面68bと重なり合って冷却媒体流路86が一体的に形成される。図示しないが、第1及び第2セパレータ68、70には、シール部材が一体又は個別に設けられる。
図3に示すように、燃料電池スタック12は、例えば、エンドプレート62a、62bを端板とするケーシング89を備える。なお、ケーシング89に代えて、エンドプレート62a、62b間を図示しないタイロッドで連結して構成してもよい。
図1に示すように、エンドプレート62aには、冷却媒体入口96aと、冷却媒体出口96bとが設けられる。冷却媒体入口96aは、冷却媒体供給連通孔74aに連通する一方、冷却媒体出口96bは、冷却媒体排出連通孔74bに連通する。冷却媒体入口96a及び冷却媒体出口96bは、冷却媒体供給配管28及び冷却媒体排出配管30を介してラジエータ24に連通している。
エンドプレート62bには、酸化剤ガス供給連通孔72aに連通する酸化剤ガス入口98a、燃料ガス供給連通孔76aに連通する燃料ガス入口100a、酸化剤ガス排出連通孔72bに連通する酸化剤ガス出口98b、及び燃料ガス排出連通孔76bに連通する燃料ガス出口100bが設けられる。
図3に示すように、燃料電池スタック12のエンドプレート62bには、加湿器36を構成する加湿器ジョイント部101が直接固定される。加湿器36内には、第1及び第2加湿部102a、102bが上下に配列して収容される。第1加湿部102a及び第2加湿部102bは、空気供給配管34と加湿空気供給配管38とに接続される。第1加湿部102a及び第2加湿部102bは、例えば、中空糸膜型加湿構造を採用することができる。
図4に示すように、エンドプレート62bの酸化剤ガス出口98bには、樹脂製連結配管110が装着される。樹脂製連結配管110の一端110aは、酸化剤ガス排出連通孔72bの出口形状に対応して矩形状を有する一方、前記樹脂製連結配管110の他端110bは、リング状を有する。この樹脂製連結配管110の他端110bには、電気絶縁性の接続配管、例えば、樹脂製配管112が連結される。
エンドプレート62bと加湿器ジョイント部101とは、樹脂製配管112を介して連結される。樹脂製配管112は、例えば、ポリフェニレンサルファイド(PPS)等の絶縁材料で形成される。なお、樹脂製配管112は、金属製本体の表面に樹脂被膜を形成してもよい。
樹脂製配管112は、樹脂製連結配管110の他端110bにOリング114を介して挿入される。樹脂製配管112は、加湿器ジョイント部101のオフガス流入路40内に進入するとともに、発電セル58から排出される凝縮水(生成水が凝縮した水)を貯留する貯留部116を有する。貯留部116の下端には、ドレイン弁118を介して金属製の排水配管120が接続される。排水配管120は、希釈流路41から希釈器57に連通する。
図5に示すように、コントローラ22は、排水配管120を流れる凝縮水の流量を調整する流量調整装置130と、燃料電池スタック12の絶縁抵抗値及び該燃料電池スタック12以外の絶縁抵抗値を含むシステム絶縁抵抗値を検出する抵抗検出装置132の機能を有する。
燃料電池システム10では、燃料電池スタック12の電力取り出し端子63a、63bに、電圧コントロールユニット134を介してバッテリ136と車両負荷138とが並列に接続される。バッテリ136は、燃料電池スタック12の始動時に補機類で、例えば、冷媒用ポンプ26や空気用ポンプ32等に電力を供給するとともに、遮断弁46等のバルブ類に開閉駆動用電力を供給する。車両負荷138は、車両走行用モータ139の他、上記の補機類を含む。
燃料電池システム10では、図6に示すように、システム絶縁抵抗値RALLは、燃料電池スタック12の絶縁抵抗値RFC、車両走行用モータ139及び補機類の絶縁抵抗値RED及びバッテリ136等の絶縁抵抗値RESが並列された総合抵抗値である。
燃料電池スタック12の絶縁抵抗値RFCは、図7に示すように、酸化剤ガス供給連通孔72aの絶縁抵抗値RCAIN、酸化剤ガス排出連通孔72bの絶縁抵抗値RCAOUT、燃料ガス供給連通孔76aの絶縁抵抗値RANIN及び燃料ガス排出連通孔76bの絶縁抵抗値RANOUTが並列された全抵抗値である。抵抗検出装置132には、システム絶縁抵抗値RALLを検出する抵抗検出センサ140を備える。
流量調整装置130は、樹脂製配管112の貯留部116に貯留された凝縮水の貯水量を検出する貯水量検出部142と、燃料電池スタック12の絶縁抵抗値RFCを除くシステム絶縁抵抗値RALLが、設定絶縁抵抗値(燃料電池スタック12から微小電流漏れが発生しない絶縁抵抗値)を超えるか否かを判断する絶縁抵抗値判断部144と、前記システム絶縁抵抗値RALLが前記設定絶縁抵抗値を超えると判断された際、前記貯留部116に貯留された前記凝縮水を排水配管120に放流させる放流調整部146とを備える。
貯水量検出部142は、燃料電池スタック12の発電量から凝縮水量を推定し、推定された前記凝縮水量から貯留部116の貯水量を検出することができる。なお、貯留部116に水位センサを設け、この貯留部116の貯水量を検出してもよい。
絶縁抵抗値判断部144は、抵抗検出センサ140の検出結果に基づいて、燃料電池スタック12の絶縁抵抗値RFCを除くシステム絶縁抵抗値RALLを検出する。放流調整部146は、ドレイン弁118を開閉操作させて貯留部116の貯留水を排水配管120に放流する一方、後述するように、算出された凝縮水量の凝縮水を前記排水配管120に放流するために、前記ドレイン弁118を開閉動作させる。コントローラ22には、警報等を発するための報知部148が接続される。
このように構成される燃料電池システム10の動作について、以下に説明する。
先ず、図1に示すように、酸化剤ガス供給装置18を構成する空気用ポンプ32が駆動され、酸化剤ガスである外部空気が吸引されて空気供給配管34に導入される。この空気は、空気供給配管34から加湿器36内に導入され、第1及び第2加湿部102a、102bを通って加湿空気供給配管38に供給される(図3参照)。
その際、オフガス流入路40を介して第1及び第2加湿部102a、102bには、後述するように、反応に使用された酸化剤オフガスである酸化剤ガスが供給されている。このため、使用前の空気には、酸化剤オフガス中に含まれる水分が移動し、この使用前の空気が加湿される。加湿された空気は、加湿空気供給配管38からエンドプレート62bを通って燃料電池スタック12内の酸化剤ガス供給連通孔72aに供給される。
一方、図1に示すように、燃料ガス供給装置20では、遮断弁46の開放作用下に、燃料ガスタンク44内の燃料ガス(水素ガス)がレギュレータ48で降圧された後、エゼクタ50を通ってエンドプレート62bから燃料電池スタック12内の燃料ガス供給連通孔76aに導入される。
さらに、冷却媒体供給装置16では、冷媒用ポンプ26の作用下に、冷却媒体供給配管28からエンドプレート62aを通って燃料電池スタック12内の冷却媒体供給連通孔74aに冷却媒体が導入される。
図2に示すように、燃料電池スタック12内の各発電セル58に供給された空気は、酸化剤ガス供給連通孔72aから第2セパレータ70の酸化剤ガス流路88に導入され、電解質膜・電極構造体66のカソード側電極82に沿って移動する。一方、燃料ガスは、燃料ガス供給連通孔76aから第1セパレータ68の燃料ガス流路84に導入され、電解質膜・電極構造体66のアノード側電極80に沿って移動する。
従って、各電解質膜・電極構造体66では、カソード側電極82に供給される空気中の酸素と、アノード側電極80に供給される燃料ガス(水素)とが、電極触媒層内で電気化学反応により消費され、発電が行われる。
次いで、カソード側電極82に供給されて消費された空気は、酸化剤ガス排出連通孔72bに沿って流動した後、酸化剤オフガスとしてエンドプレート62bからオフガス流入路40に排出される(図1参照)。
その際、カソード側電極82で発電により生成される生成水は、酸化剤ガス排出連通孔72bに導入される。酸化剤ガス排出連通孔72bでは、エンドプレート62b側に導入された生成水が、オフガスの流れに伴ってオフガス流入路40に排出される。
図4に示すように、エンドプレート62bと加湿器36の加湿器ジョイント部101との間に、酸化剤ガス排出連通孔72bとオフガス流入路40とを連通する絶縁材料製の樹脂製配管112が装着されている。このため、酸化剤ガス排出連通孔72bから樹脂製配管112内に排出される生成水は、前記樹脂製配管112に設けられている貯留部116に導入される。この生成水は、酸化剤ガス側の配管内で凝縮し、凝縮水として貯留される。
次いで、貯留部116から排水配管120に凝縮水を排出するための第1の実施形態に係る制御方法について、図8に示すフローチャートに沿って、以下に説明する。
先ず、貯水量検出部142は、燃料電池スタック12の積算発電量(又は、積算運転時間)から総凝縮水量を算出する(ステップS1)。凝縮水量は、燃料電池スタック12の発電量に比例しており、この燃料電池スタック12の積算発電量と総凝縮水量とは、例えば、図9に示される関係を有している。
そして、算出された総凝縮水量から、貯留部116の貯水量が検出される(ステップS2)。ステップS3では、算出された総凝縮水量と貯留部116の累積された凝縮水量との総和が、所定値よりも多いか否かが判断される。この所定値は、貯留部116の最大容量よりも少ない量(最大容量からマージン量を引いた量)に設定されている。
次に、ステップS4に進んで、燃料電池スタック12のシステム絶縁抵抗値RALLが、所定値以上であるか否かが判断される。すなわち、貯留部116内の貯留水を排水配管120に放流した際、図7に示すように、絶縁抵抗値RCAOUTが低下する。従って、システム絶縁抵抗値RALLが、微小電流漏れを発生する所定値を下回らないようにする必要がある。
なお、ステップ4で測定されるシステム絶縁抵抗値RALLは、実質的に抵抗値RFC以外の抵抗値RED及びRESとなる。凝縮水は、絶縁された貯留部116に貯留されるため、抵抗値RFC、詳しくは、抵抗値CAOUTは低下しない。従って、ステップ4で測定されるシステム絶縁抵抗値RALLは、実質的に抵抗値RFC以外の抵抗値RED及びRESとなる。
システム絶対抵抗値RALLが、所定値を超えていると判断されると(ステップS4中、YES)、ステップS5に進んで、ドレイン弁118が開放される。これにより、貯留部116に貯留されている凝縮水は、排水配管120に放出され(図10参照)、燃料電池スタック12RFCの絶縁抵抗値が低下する。
その際、図11に示すように、燃料電池スタック12の絶縁抵抗値RFC以外の絶縁抵抗値の総和が、所定値を超えている。このため、貯留部116の凝縮水が放流されて絶縁抵抗値が低下しても、全体として微少電流漏れが発生可能な絶縁抵抗値以上に維持することができる。排水配管120への放水が終了すると、ステップS6に進んで、貯留部116内から放出された凝縮水量分の値がリセットされ、排水処理が終了する。
一方、ステップS4において、総絶縁抵抗値が所定値以下であると判断されると(ステップS4中、NO)、ステップS7に進んで、燃料電池スタック12の現在の絶縁抵抗値RALLから、排水可能な水量が算出される。さらに、算出された排水量が、ドレイン弁118の開閉動作により排水できる水量(最小排水量)を超えているか否かが判断される。
そして、算出された排水量が、最小排水量以上である際には(ステップS8中、NO)、ステップS5に進んで、ドレイン弁118を開閉させて貯留部116から排水配管120に排水処理を行う。その際、凝縮水の放流により絶縁抵抗値が下がり、微少電流漏れが可能な絶縁抵抗値を下回っても、前記ドレイン弁118の開放操作を十分に長いインターバルで行うことにより、劣化の抑制を図ることが可能になる。
また、算出排水量が最小排水量未満と判断されると(ステップS8中、YES)、ステップS9に進んで、燃料電池スタック12に供給される空気量が増加可能であるか否かが判断される。空気量増加が可能である場合には(ステップS9中、YES)、ステップS10に進んで、空気量を増加させた際に、操作者からの要求出力に対応できるか否かの判断が行われる。
要求出力への対応が可能であると判断されると(ステップS10中、YES)、ステップS11に進んで、空気量の増加処理が行われる。一方、空気量の増加が可能ではないと判断されると(ステップS9中、NO)、ステップS12に進み、報知部148による警報がなされる。
なお、ステップS10において、要求出力の応答が可能でないと判断された際には(ステップS10中、NO)、ステップS12に進む。すなわち、貯留部116での凝縮水の保持が不可能となり、この凝縮水によって微少電流漏れが発生するおそれがあるからである。
この場合、第1の実施形態では、樹脂製配管112の貯留部116に、所定量の凝縮水が貯留された状態で、燃料電池スタック12の絶縁抵抗値RFCを除くシステム絶縁抵抗値RALLが、設定絶縁抵抗値(所定値)を超えるか否かが判断されている。そして、システム絶縁抵抗値RALLが、設定絶縁抵抗値を超えると判断された際、すなわち、貯留部116からの放水によっても、設定絶縁抵抗値を下回らないと判断された際、前記貯留部116に貯留された前記凝縮水を排水配管120に放流させている。
これにより、簡単な構成及び工程で、貯留部116から凝縮水を放流する際に、燃料電池スタック12内に微少電流漏れが発生することを確実に阻止するとともに、前記凝縮水の排水処理が良好に遂行され、前記燃料電池スタック12内に該凝縮水が貯留することを阻止することができるという効果が得られる。
特に、燃料電池スタック12に微少電流漏れが惹起することがなく、発電セル58間の短絡による過酸化水素(H22)の大量発生を防止することが可能になる。このため、電解質膜・電極構造体66の劣化を確実に抑制することができる。一方、複数の発電セル58に跨って短絡することによる第1及び第2セパレータ68、70のイオン化(劣化)が良好に抑制されるという利点がある。
また、燃料電池スタック12のシステム絶縁抵抗値RALLと貯留部116から凝縮水を放流する際の予測抵抗値との和が、設定絶縁抵抗値を超えないと判断された際、排水配管120に放流可能な凝縮水量が算出され、算出された前記凝縮水量の凝縮水が前記排水配管120に放流されている。従って、凝縮水が貯留部116から溢れ出すことを阻止するとともに、ドレイン弁118を所定のインターバルで開放させることにより、電解質膜・電極構造体66や第1及び第2セパレータ68、70の劣化を良好に抑制することが可能になる。
さらに、算出された凝縮水量が、ドレイン弁118の開閉動作で排水できる凝縮水量を越えている際には、燃料電池スタック12に供給される空気量を増加させている。これにより、凝縮水は、酸化剤ガス排出連通孔72bを流通する増加された空気流によって吹き飛ばされ、貯留部116に凝縮水が滞留することを防止することができる。このため、貯留部116には、規定量以上の凝縮水が流入することを防止し、前記貯留部116から流出する凝縮水による絶縁抵抗値の低下を防止することが可能になる。
さらにまた、貯留部116の凝縮水の保有が不可能であると判断された際には、報知部148によって操作者に報知することができる。従って、燃料電池スタック12に微少電流漏れが継続して発生することを防止することが可能になる。
また、燃料電池スタック12の発電量から凝縮水量を推定し、推定された前記凝縮水量から貯留部116の貯水量が検出されている。これにより、水位センサ等の専用センサ類を不要にすることができ、経済的であるという利点がある。
図12は、本発明の第2の実施形態に係る燃料電池システム160の要部断面説明図である。
なお、第1の実施形態に係る燃料電池システム10と同一の構成要素には、同一の参照符号を付して、その詳細な説明は省略する。
エンドプレート62bと加湿器ジョイント部101とは、樹脂製配管162を介して連結される。樹脂製配管162は、貯留部164を別体として有しており、この貯留部164は、一端に回転軸166を支点にして回動可能に構成される。回転軸166には、モータ168が連結される。
なお、モータ168に替えて、例えば、リンク機構(図示せず)を用いることもでき、貯留部164を回動可能であれば、種々の構成が採用可能である。
このように構成される第2の実施形態では、貯留部164内に所定量の凝縮水が貯留された際、第1の実施形態と同様に、この貯留部164から排水配管120に凝縮水の放流が行われる。
その際、モータ168の駆動作用下に、回転軸166を支点にして貯留部164が回動することにより、前記貯留部164内の凝縮水は、排水配管120に排水される(図13参照)。従って、第2の実施形態では、上記の第1の実施形態と同様の効果が得られる。
なお、図14に示す燃料電池システム180により、貯留水の排水を行うことができる。この燃料電池システム180では、樹脂製配管182は、貯留部183が形成されており、前記貯留部183の底部には、開閉蓋184が揺動自在に取り付けられる。開閉蓋184には、フロート186が設けられるとともに、前記開閉蓋184により、貯留部183と排水配管120とが開閉可能である。
このため、貯留部183に凝縮水が貯留されることにより、貯留部183の水面が所定の高さ位置に至ると、フロート186を介して開閉蓋184が開放される。これにより、貯留部183から排水配管120への排水処理が行われる。
以上、説明した第1実施形態と第2実施形態は、本発明を実施するうえでの一例を示すものであり、本発明が前記した実施形態に限定して解釈されるものではないことは言うまでもない。
例えば、本実施形態では、貯留部の凝縮水が満水になり、微小排水や空気量増加といった貯留部への凝縮水の更なる流入を阻止する制御もできなくなったときに操作者に満水の警告をしているが、システム全体の絶縁抵抗地RALL自体が設定絶縁抵抗値を超えたときに警告をしてもよい。これにより、警告を報知する回数を削減でき、操作者に対して無用な心配を掛けることを防止できる。
10、160、180…燃料電池システム 12…燃料電池スタック
16…冷却媒体供給装置 18…酸化剤ガス供給装置
20…燃料ガス供給装置 24…ラジエータ
26、32…ポンプ 28…冷却媒体供給配管
30…冷却媒体排出配管 34…空気供給配管
36…加湿器 38…加湿空気供給配管
40…オフガス流入路 44…燃料ガスタンク
52…排出燃料ガス配管 58…発電セル
62a、62b…エンドプレート 63a、63b…電力取り出し端子
66…電解質膜・電極構造体 68、70…セパレータ
72a…酸化剤ガス供給連通孔 72b…酸化剤ガス排出連通孔
74a…冷却媒体供給連通孔 74b…冷却媒体排出連通孔
76a…燃料ガス供給連通孔 76b…燃料ガス排出連通孔
78…固体高分子電解質膜 80…アノード側電極
82…カソード側電極 84…燃料ガス流路
86…冷却媒体流路 88…酸化剤ガス流路
101…加湿器ジョイント部 112、162、182…樹脂製配管
116、164、183…貯留部 118…ドレイン弁
120…排水配管 130…流量調整装置
132…抵抗検出装置 136…バッテリ
138…車両負荷 139…モータ
140…抵抗検出センサ 142…貯水量検出部
144…絶縁抵抗値判断部 146…放流調整部
148…報知部

Claims (10)

  1. 複数の発電セルが積層されるとともに、発電反応に使用された反応ガスを、積層方向に流通させる反応ガス排出連通孔が設けられる燃料電池スタックと、
    前記反応ガス排出連通孔の出口に連通し、前記発電セルから排出される凝縮水が貯留される貯留部を有する電気絶縁性の接続部材と、
    前記接続部材に連結され、前記貯留部に貯留された前記凝縮水を排水する排水配管と、
    前記排水配管を流れる前記凝縮水の流量を調整する流量調整装置と、
    前記燃料電池スタックの絶縁抵抗値及び該燃料電池スタック以外の絶縁抵抗値を含むシステム絶縁抵抗値を検出する抵抗検出装置と、
    を備えるとともに、
    前記流量調整装置は、前記貯留部に貯留された凝縮水の貯水量を検出する貯水量検出部と、
    前記燃料電池スタックの絶縁抵抗値を除く前記システム絶縁抵抗値が、設定絶縁抵抗値を超えるか否かを判断する絶縁抵抗値判断部と、
    前記絶縁抵抗値判断部により、前記システム絶縁抵抗値が前記設定絶縁抵抗値を超えると判断された際、前記貯留部に貯留された前記凝縮水を前記排水配管に放流させる放流調整部と、
    を設けることを特徴とする燃料電池システム。
  2. 請求項1記載の燃料電池システムにおいて、前記絶縁抵抗値判断部により、前記システム絶縁抵抗値が前記設定絶縁抵抗値を超えないと判断された際、前記放流調整部は、前記排水配管に放流可能な凝縮水量を算出し、算出された前記凝縮水量の前記凝縮水を前記排水配管に放流することを特徴とする燃料電池システム。
  3. 請求項2記載の燃料電池システムにおいて、前記貯留部と前記排水配管とを開閉するためのバルブを備え、
    算出された前記凝縮水量が、前記バルブの開閉動作で排水できる水量を超えている際、前記流量調整装置は、前記燃料電池スタックに供給される反応ガス量を増加させることを特徴とする燃料電池システム。
  4. 請求項3記載の燃料電池システムにおいて、前記反応ガス量の増加ができない際に報知するための報知部を備えることを特徴とする燃料電池システム。
  5. 請求項1〜4のいずれか1項に記載の燃料電池システムにおいて、前記貯水量検出部は、前記燃料電池スタックの発電量から凝縮水量を推定し、推定された前記凝縮水量から前記貯留部の貯水量を検出することを特徴とする燃料電池システム。
  6. 複数の発電セルが積層されるとともに、発電反応に使用された反応ガスを、積層方向に流通させる反応ガス排出連通孔が設けられる燃料電池スタックと、
    前記反応ガス排出連通孔の出口に連通し、前記発電セルから排出される凝縮水を貯留する貯留部を有する電気絶縁性の接続部材と、
    前記接続部材に連結され、前記貯留部に貯留された前記凝縮水を排水する排水配管と、
    前記排水配管を流れる前記凝縮水の流量を調整する流量調整装置と、
    前記燃料電池スタックの絶縁抵抗値及び該燃料電池スタック以外の絶縁抵抗値を含むシステム絶縁抵抗値を検出する抵抗検出装置と、
    を備える燃料電池システムの制御方法であって、
    前記貯留部に貯留された凝縮水の貯水量を検出する工程と、
    前記燃料電池スタックの絶縁抵抗値を除く前記システム絶縁抵抗値が、設定絶縁抵抗値を超えるか否かを判断する工程と、
    前記システム絶縁抵抗値が前記設定絶縁抵抗値を超えると判断された際、前記貯留部に貯留された前記凝縮水を前記排水配管に放流させる工程と、
    を有することを特徴とする燃料電池システムの制御方法。
  7. 請求項6記載の制御方法において、前記燃料電池スタックの絶縁抵抗値を除く前記システム絶縁抵抗値が、設定絶縁抵抗値を超えないと判断された際、前記排水配管に放流可能な凝縮水量を算出し、算出された前記凝縮水量の前記凝縮水を前記排水配管に放流することを特徴とする燃料電池システムの制御方法。
  8. 請求項7記載の制御方法において、算出された前記凝縮水量が、前記貯留部と前記排水配管とを開閉するためのバルブの開閉動作で排水できる水量を超えている際、前記燃料電池スタックに供給される反応ガス量を増加させることを特徴とする燃料電池システムの制御方法。
  9. 請求項8記載の制御方法において、前記反応ガス量の増加ができない際に報知することを特徴とする燃料電池システムの制御方法。
  10. 請求項6〜9のいずれか1項に記載の制御方法において、前記燃料電池スタックの発電量から凝縮水量を推定し、推定された前記凝縮水量から前記貯留部の貯水量を検出することを特徴とする燃料電池システムの制御方法。
JP2010084460A 2010-03-31 2010-03-31 燃料電池システム及びその制御方法 Withdrawn JP2011216370A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010084460A JP2011216370A (ja) 2010-03-31 2010-03-31 燃料電池システム及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010084460A JP2011216370A (ja) 2010-03-31 2010-03-31 燃料電池システム及びその制御方法

Publications (1)

Publication Number Publication Date
JP2011216370A true JP2011216370A (ja) 2011-10-27

Family

ID=44945897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010084460A Withdrawn JP2011216370A (ja) 2010-03-31 2010-03-31 燃料電池システム及びその制御方法

Country Status (1)

Country Link
JP (1) JP2011216370A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287509A (ja) * 2006-04-18 2007-11-01 Honda Motor Co Ltd 燃料電池スタック
JP2010170948A (ja) * 2009-01-26 2010-08-05 Honda Motor Co Ltd 燃料電池スタック
JP2016523436A (ja) * 2013-06-27 2016-08-08 デーナ、カナダ、コーパレイシャン 燃料電池システムのための統合されたガス管理デバイス
KR20190116630A (ko) * 2018-04-05 2019-10-15 현대자동차주식회사 연료전지 시스템의 운전 제어 장치 및 방법
CN116387562A (zh) * 2023-06-02 2023-07-04 国家电投集团氢能科技发展有限公司 增湿器、燃料电池系统和湿度调节方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287509A (ja) * 2006-04-18 2007-11-01 Honda Motor Co Ltd 燃料電池スタック
JP2010170948A (ja) * 2009-01-26 2010-08-05 Honda Motor Co Ltd 燃料電池スタック
JP2016523436A (ja) * 2013-06-27 2016-08-08 デーナ、カナダ、コーパレイシャン 燃料電池システムのための統合されたガス管理デバイス
US11031611B2 (en) 2013-06-27 2021-06-08 Dana Canada Corporation Integrated gas management device for a fuel cell system
KR20190116630A (ko) * 2018-04-05 2019-10-15 현대자동차주식회사 연료전지 시스템의 운전 제어 장치 및 방법
KR102552146B1 (ko) 2018-04-05 2023-07-05 현대자동차주식회사 연료전지 시스템의 운전 제어 장치 및 방법
CN116387562A (zh) * 2023-06-02 2023-07-04 国家电投集团氢能科技发展有限公司 增湿器、燃料电池系统和湿度调节方法
CN116387562B (zh) * 2023-06-02 2023-08-18 国家电投集团氢能科技发展有限公司 增湿器、燃料电池系统和湿度调节方法

Similar Documents

Publication Publication Date Title
JP4456188B2 (ja) 燃料電池スタック
JP5214906B2 (ja) 燃料電池システム
US20130130141A1 (en) Direct oxidation fuel cell system
US6743540B2 (en) Method and apparatus for collecting condensate in an integrated fuel cell system
JP2011216370A (ja) 燃料電池システム及びその制御方法
JP2009151999A (ja) 燃料電池システム
US20110311890A1 (en) Open type fuel cell system with unreacted material removing function
JP2003123805A (ja) 水循環装置
JP5474318B2 (ja) 燃料電池スタック
JP2011054423A (ja) 燃料電池スタック
JP5310739B2 (ja) 燃料電池システム
JP5140993B2 (ja) 燃料電池システム
JP5502547B2 (ja) 燃料電池用液絡検出装置
US7851096B2 (en) Humidifying a reactant flow of a fuel cell system
JP4810872B2 (ja) 燃料電池システム
US20090208781A1 (en) Method for operating a fuel cell system
JP5430318B2 (ja) 燃料電池スタック
JP2009245826A (ja) 燃料電池スタック及び燃料電池システム
US20230170502A1 (en) Purge systems and methods in a fuel cell system
JP2007280642A (ja) 燃料電池システム及びその運転方法
JP5286741B2 (ja) 燃料電池システム
JP5217123B2 (ja) 燃料電池システム
JP2012129081A (ja) 燃料電池システムの運転方法
WO2014045510A1 (ja) 直接酸化型燃料電池システムおよびこれに用いる回収タンク
JP2022162240A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604