JP2011209145A - Inclusion analysis method by emission spectrometric analysis - Google Patents

Inclusion analysis method by emission spectrometric analysis Download PDF

Info

Publication number
JP2011209145A
JP2011209145A JP2010077962A JP2010077962A JP2011209145A JP 2011209145 A JP2011209145 A JP 2011209145A JP 2010077962 A JP2010077962 A JP 2010077962A JP 2010077962 A JP2010077962 A JP 2010077962A JP 2011209145 A JP2011209145 A JP 2011209145A
Authority
JP
Japan
Prior art keywords
emission
sample
inclusions
inclusion
emission intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010077962A
Other languages
Japanese (ja)
Other versions
JP5304705B2 (en
Inventor
Hirofumi Kuraho
浩文 蔵保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2010077962A priority Critical patent/JP5304705B2/en
Publication of JP2011209145A publication Critical patent/JP2011209145A/en
Application granted granted Critical
Publication of JP5304705B2 publication Critical patent/JP5304705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-reliability inclusion analysis method when analyzing an inclusion in the metal by the spark discharge emission spectrometric analysis, by increasing the appearance frequency of emission pulses with the information on the inclusion, and by obtaining emission pulses influenced less by a main metal component.SOLUTION: The inclusion in the metal is analyzed by attaching substance particles to the surface of a sample, then by measuring emission pulses by performing spark discharge, and by selecting/analyzing the emission pulses with the information on the inclusion.

Description

本発明は、スパ−ク放電発光分光分析を利用して金属中の介在物を迅速に分析する技術に関する。   The present invention relates to a technique for rapidly analyzing inclusions in a metal using spark discharge emission spectrometry.

スパ−ク放電発光分光分析では、不活性ガス雰囲気中で金属試料と対電極との間に断続的なスパ−ク放電を起こさせ、試料の蒸発・励起により生じた発光を計測する。この分析法は金属試料の多くの元素を同時に迅速分析できるため工程管理分析などに用いられている。   In the spark discharge optical emission spectrometry, intermittent spark discharge is caused between a metal sample and a counter electrode in an inert gas atmosphere, and light emission generated by evaporation / excitation of the sample is measured. This analysis method is used for process control analysis because it can rapidly analyze many elements of a metal sample simultaneously.

一方、金属試料中に酸化物(例:アルミナ)などの介在物が存在する場合には、放電電極と金属試料の介在物との間において放電現象が発生する(以下、「介在物に放電が落ちる」という。)と、介在物構成元素(例:Al)の発光強度が地金(固溶体)での発光強度と比較して高く検出される。近年、この現象を利用して、放電パルス毎に各元素のスペクトル線強度を検出し、この発光パルスの中から介在物の情報を持つ分を選別・解析することにより、金属中介在物の粒度分布、存在量、組成などを迅速に求める方法が提案されるようになってきた。   On the other hand, when an inclusion such as an oxide (eg, alumina) is present in the metal sample, a discharge phenomenon occurs between the discharge electrode and the inclusion of the metal sample (hereinafter referred to as “the inclusion is discharged. The emission intensity of inclusion constituent elements (eg, Al) is detected higher than the emission intensity of the base metal (solid solution). In recent years, this phenomenon has been used to detect the spectral line intensity of each element for each discharge pulse, and by selecting and analyzing the information with inclusion information from this light emission pulse, the particle size of inclusions in the metal Methods have been proposed for quickly determining distribution, abundance, composition, and the like.

例えば、特許文献1では、放電初期の0〜数百パルスの中から介在物構成元素の発光強度が予め定める強度範囲にある発光パルスを対象として、顕微鏡測定によって求めた実測値を基に設定された所定の式を用いて、介在物の存在個数、直径、含有量及び平均直径を算出する発光分光分析法による金属中介在物の迅速評価法が開示されている。   For example, in Patent Document 1, the emission intensity of inclusion constituent elements is set based on the actual measurement value obtained by microscopic measurement for the emission intensity of the inclusion constituent element in a predetermined intensity range from 0 to several hundred pulses at the initial stage of discharge. In addition, a rapid evaluation method for inclusions in a metal by an emission spectroscopic analysis method for calculating the number of existing inclusions, diameter, content, and average diameter using a predetermined formula is disclosed.

また、特許文献2では、放電毎に得られる発光スペクトル線の強度値を予め設定してある放電時間で各元素の固溶体分と介在物分に分割して、介在物分の強度値を求める。検出された元素から介在物の組成(種類)がわかる。また、酸素の発光強度が定める値以上の発光パルスを対象として、予め標準試料で求めた強度値と粒径間の関係に基づき介在物分の強度値を粒径に変換し、この操作を多数回の放電毎に繰り返して積算し介在物の粒度分布を得る金属中介在物の組成及び粒度分布測定方法が開示されている。   Moreover, in patent document 2, the intensity value of the emission spectrum line obtained for every discharge is divided | segmented into the solid solution part and inclusion part of each element by the preset discharge time, and the intensity value of an inclusion part is calculated | required. The composition (type) of the inclusion is known from the detected element. In addition, for emission pulses with a value greater than the value determined by the oxygen emission intensity, the intensity value of inclusions is converted into a particle diameter based on the relationship between the intensity value obtained in advance with a standard sample and the particle diameter, and this operation is performed many times. A composition of inclusions in metal and a particle size distribution measuring method are disclosed in which the accumulation is repeated every discharge and the particle size distribution of inclusions is obtained.

さらに、特許文献3では、酸素の発光強度が定める値以上の発光パルスを対象として、介在物構成元素の発光スペクトル線の強度値より予め設定してある検量線を用いて当該元素の濃度を求め、これに放電1回当たりの試料の蒸発量を乗じて介在物質量を算出し、これを介在物の密度で除すことによって1個の球形介在物の体積としてから粒径に換算し、この操作を繰り返して粒度分布を得る金属中介在物の粒度分布測定方法が開示されている。   Furthermore, in Patent Document 3, the concentration of the element is obtained by using a calibration curve set in advance from the intensity value of the emission spectrum line of the inclusion constituent element, for an emission pulse having a value equal to or greater than the value determined by the oxygen emission intensity. The amount of inclusions is calculated by multiplying this by the amount of evaporation of the sample per discharge, and by dividing this by the density of inclusions, the volume of one spherical inclusion is converted into a particle size. A method for measuring the particle size distribution of inclusions in a metal to obtain a particle size distribution by repeating the operation is disclosed.

特開平4−238250号公報JP-A-4-238250 特開平9−43150号公報JP-A-9-43150 特開平9−43151号公報JP-A-9-43151

しかしながら、上記の従来技術では、介在物の情報を持つ発光パルスの出現頻度はあまり高くなく、また、得られた介在物の情報を持つ発光パルスも地金による影響を受ける。このため、結果として信頼性の高い分析結果を与えることはできていなかった。   However, in the above prior art, the frequency of appearance of light emission pulses having information on inclusions is not so high, and the light emission pulses having information on inclusions are also affected by the metal. For this reason, a highly reliable analysis result could not be given as a result.

本発明は、介在物の情報を持つ発光パルスの出現頻度を高め、且つ、地金による影響の少ない発光パルスを得ることにより、信頼性の高い介在物分析法を提供するためになされた。   The present invention has been made to provide a highly reliable inclusion analysis method by increasing the frequency of appearance of light emission pulses having information on inclusions and obtaining light emission pulses that are less affected by metal.

上記課題を解決すべく検討した結果、本発明者は次の知見を得た。
(1)金属試料の表面に物質粒子が付着していると、この物質粒子は金属表面に対して突出しているため、放電初期(具体的には1−500パルス)において優先的に物質粒子に放電が落ちる。このとき、金属試料表面の介在物に由来する発光パルスが、金属試料表面に由来する発光パルスに優先して発生する。
As a result of studies to solve the above problems, the present inventors have obtained the following knowledge.
(1) If substance particles are attached to the surface of the metal sample, the substance particles protrude from the metal surface. Therefore, in the initial stage of discharge (specifically, 1 to 500 pulses), the substance particles are preferentially used. The discharge falls. At this time, the light emission pulse derived from the inclusion on the surface of the metal sample is generated in preference to the light emission pulse derived from the surface of the metal sample.

(2)表面に物質粒子が付着している条件で金属試料の表面に落ちた放電に基づき放電初期に放出される発光パルスは、Feの発光強度の強弱により、金属試料における地金に由来するものと、介在物に由来するものとを、明確に区別することができる。   (2) The light emission pulse emitted at the beginning of the discharge based on the discharge that has fallen on the surface of the metal sample under the condition that the substance particles are attached to the surface is derived from the metal in the metal sample due to the intensity of the emission intensity of Fe. Can be clearly distinguished from those derived from inclusions.

(3)このため、Alなど地金および介在物の双方に含まれる元素の発光を含む発光パルスの中から、発光強度の強弱に関わらず、介在物に由来するものを選別することができる。   (3) For this reason, from the light emission pulse containing light emission of an element contained in both the metal and the inclusion such as Al, the one derived from the inclusion can be selected regardless of the intensity of the emission intensity.

(4)それゆえ、発光強度が強いもののみを介在物に由来する発光パルスと判定していた従来技術に比べて、このような元素を含む介在物の金属試料の表面における分布(例えば粒径分布)を正確に測定することが可能となる。   (4) Therefore, compared to the prior art in which only those having a high emission intensity are determined as emission pulses derived from inclusions, the distribution of inclusions containing such elements on the surface of the metal sample (for example, the particle size) Distribution) can be accurately measured.

以下の本発明は、上記の知見に基づき完成されたものである。
スパ−ク放電発光分光分析にて金属試料中の介在物を分析する方法に関して、試料表面に物質粒子を付着させた後、スパ−ク放電を行って発光パルスを計測し、介在物の情報を持つ発光パルスを選別・解析して、金属中の介在物を分析することを特徴とする発光分光分析による介在物分析方法。
The following present invention has been completed based on the above findings.
Regarding the method of analyzing inclusions in a metal sample by spark discharge emission spectrometry, after depositing substance particles on the sample surface, a spark discharge is performed to measure the emission pulse, and information on the inclusion is obtained. A method for analyzing inclusions by emission spectroscopic analysis, which comprises analyzing and analyzing inclusions in a metal by selecting and analyzing emitted light pulses.

ここで、物質粒子は、測定対象となる介在物と組成上の重複が顕著でない限り、組成上の制約はない。また、その粒径は、物質粒子に対する優先的な放電を実現するために必要とされる最低限の大きさを有している限り、物質粒子の付着させやすさなど作業性の観点を考慮して適宜設定される。物質粒子の表面への付着量も、物質粒子を付着させたことによる上記の作用効果と付着による不利益(例えば、過度に付着すると金属試料からの発光が得られなくなる。)とを勘案して適宜設定される。   Here, the substance particles have no compositional restriction unless the composition overlaps with the inclusions to be measured. In addition, as long as the particle size has a minimum size required to realize preferential discharge for the material particles, the viewpoint of workability such as ease of attaching the material particles is taken into consideration. Is set as appropriate. The amount of substance particles adhering to the surface also takes into account the above-mentioned effects and the disadvantages of adhering the substance particles (for example, light emission from a metal sample cannot be obtained if excessively adhering). Set as appropriate.

発光パルスの選別は、発光パルスにおけるFe発光強度がしきい値以下の場合に介在物に由来すると判断すればよい。なお、そのしきい値は、放電後期のような金属試料の表面から介在物が実質的に消滅した段階でのFeの発光強度分布に基づいて設定することが可能である。   The selection of the light emission pulse may be determined to be caused by inclusions when the Fe emission intensity in the light emission pulse is equal to or less than the threshold value. The threshold value can be set based on the emission intensity distribution of Fe at the stage where inclusions substantially disappear from the surface of the metal sample as in the late stage of discharge.

介在物に由来するものとして選別された発光パルスの解析方法は、得たい情報に応じて適宜設定される。   The analysis method of the light emission pulse selected as being derived from the inclusion is appropriately set according to the information to be obtained.

本発明により、信頼性の高いスパ−ク放電発光分光分析による介在物分析が可能になる。   According to the present invention, inclusions can be analyzed by highly reliable spark discharge optical emission spectrometry.

鋼試料の表面にSiCを塗布した場合のFe,Si,AlおよびMgのそれぞれの発光強度を時系列で示すグラフである。It is a graph which shows each luminescence intensity of Fe, Si, Al, and Mg at the time series at the time of apply | coating SiC to the surface of a steel sample. 鋼試料の表面にSiCを塗布した場合の、放電初期(a)および放電後期(b)における、Fe発光強度とSi,AlおよびMgのそれぞれの発光強度との相関を示すグラフである。It is a graph which shows the correlation with the light emission intensity of Fe, and each light emission intensity of Si, Al, and Mg in the discharge early stage (a) and the discharge late stage (b) at the time of apply | coating SiC to the surface of a steel sample. 鋼試料の表面にSiCを塗布した場合の放電初期におけるAl発光強度とMg発光強度との相関を示すグラフである。It is a graph which shows the correlation with the Al light emission intensity in the initial stage of discharge, and Mg light emission intensity at the time of apply | coating SiC to the surface of a steel sample. 従来技術に係る測定方法により測定された場合のFe,AlおよびMgのそれぞれの発光強度を時系列で示すグラフである。It is a graph which shows each luminescence intensity of Fe, Al, and Mg at the time series when measured by the measuring method which concerns on a prior art. 従来技術に係る測定方法により測定された場合の放電初期におけるAl発光強度とMg発光強度との相関を示すグラフである。It is a graph which shows the correlation with Al light emission intensity in the initial stage of discharge when measured by the measuring method which concerns on a prior art, and Mg light emission intensity. 鋼試料の表面に付着した物質粒子量と介在物の情報を持つ発光パルス個数との関係を示すグラフである。It is a graph which shows the relationship between the amount of substance particles adhering to the surface of a steel sample, and the number of light emission pulses with the information of inclusions. 介在物の粒度分布測定結果を示すヒストグラムであり、(a)は本発明に係る測定方法により測定された結果であり、(b)は抽出−SEM画像処理により測定された結果である。It is a histogram which shows the particle size distribution measurement result of an inclusion, (a) is a result measured by the measuring method concerning the present invention, and (b) is a result measured by extraction-SEM image processing. 金属表面にSiC粒子が塗布された試料に10回放電が落ちた後の試料表面の観察画像(a−1)、および同試料に500回放電が落ちた後の試料表面の観察画像(a−2)、ならびに金属表面にSiC粒子が塗布されていない試料に10回放電が落ちた後の試料表面の観察画像(b−1)、および同試料に500回放電が落ちた後の試料表面の観察画像(b−2)である。Observation image (a-1) of the sample surface after the discharge has dropped 10 times on the sample coated with SiC particles on the metal surface, and observation image (a-) of the sample surface after the discharge has dropped 500 times on the same sample 2), and an observation image (b-1) of the sample surface after the discharge has dropped 10 times on the sample on which the SiC particles are not coated on the metal surface, and the sample surface after the discharge has dropped 500 times on the sample It is an observation image (b-2).

本発明は、金属表面に各種物質粒子を塗布してスパ−ク放電発光分光分析を行い各種物質粒子の挙動を調査しているときに判明した現象に基づいてなされた。即ち、金属表面に塗布した物質粒子に放電が落ちるのと同時に金属表面近傍に存在する介在物にも放電が落ちるという現象である。これを利用することにより、地金の影響の少ない介在物の情報を持つ発光パルスが多く得られる。   The present invention has been made on the basis of a phenomenon found when various kinds of substance particles are applied to a metal surface, and a spark discharge emission spectroscopic analysis is performed to investigate the behavior of various kinds of substance particles. That is, this is a phenomenon in which the discharge falls on the inclusions existing in the vicinity of the metal surface as well as the discharge falls on the material particles applied to the metal surface. By using this, many light emission pulses having information on inclusions with little influence from the metal can be obtained.

図1に、MgOを少量含むアルミナ系介在物を含有する鉄鋼試料の表面にSiC粒子を塗布してスパ−ク放電発光分光分析を行った場合において、放電初期(1−500パルス)に得られたFe,Si,AlおよびMgのそれぞれの発光強度を時系列で示す。   In FIG. 1, when SiC particles are applied to the surface of a steel sample containing alumina inclusions containing a small amount of MgO and subjected to spark discharge optical emission spectrometry, it is obtained at the beginning of discharge (1-500 pulses). The emission intensity of Fe, Si, Al, and Mg is shown in time series.

放電初期に、試料マトリックスであるFeの発光が抑制されて、試料表面に付着する物質粒子であるSiC粒子に起因するSiの発光が検出されるのと同時に、介在物構成元素であるAlとMgの発光が検出されているのがわかる。   In the early stage of discharge, the emission of Fe as a sample matrix is suppressed, and the emission of Si caused by SiC particles as substance particles adhering to the sample surface is detected. At the same time, inclusion constituent elements Al and Mg are detected. It can be seen that luminescence is detected.

図2(a)に、図1に示されるデータと同じデ−タを用いて、Feの発光強度とSi,AlおよびMgのそれぞれの発光強度との相関を示す。
Siの発光強度とFeの発光強度との相関を示すグラフ(図2(a)上段)から、発光パルスには傾向が異なる2種類が存在することが理解される。一つは、Feの発光強度の増加に応じてSiの発光強度が増加する、すなわち正の相関関係を有する発光パルスである。もう一つは、Feの発光強度に対する相関が低く、比較的Siの発光強度が高い発光パルスである。
FIG. 2A shows the correlation between the emission intensity of Fe and the emission intensity of Si, Al, and Mg using the same data as the data shown in FIG.
From the graph showing the correlation between the light emission intensity of Si and the light emission intensity of Fe (the upper part of FIG. 2A), it is understood that there are two types of light emission pulses having different tendencies. One is a light emission pulse in which the light emission intensity of Si increases as the light emission intensity of Fe increases, that is, has a positive correlation. The other is a light emission pulse having a low correlation with the emission intensity of Fe and a relatively high emission intensity of Si.

後者の発光パルスは、Siの発光強度が高いことから、試料表面に付着した物質粒子に放電が落ちたことに基づき得られたものであると理解される。また、後者の発光パルスはFeの発光強度が低い(図1の例では、Feの発光強度<1500)ことから、試料表面に付着した物質粒子に落ちた放電に基づき発生する発光パルスには地金に由来する情報が多く含まれていないことが理解される。   The latter light emission pulse is understood to be obtained on the basis of the fact that the discharge dropped on the substance particles adhering to the sample surface because of the high light emission intensity of Si. Further, since the latter emission pulse has a low emission intensity of Fe (in the example of FIG. 1, the emission intensity of Fe <1500), the emission pulse generated on the basis of the discharge that has fallen on the substance particles adhering to the sample surface is not grounded. It is understood that there is not much information derived from gold.

Alの発光強度とFeの発光強度との相関を示すグラフ(図2(a)中段)およびMgの発光強度とFeの発光強度との相関を示すグラフ(図2(a)下段)についても、Siの発光強度とFeの発光強度との相関を示すグラフと同様に、Feの発光強度との相関が低くAlおよびMgの発光強度が高い発光パルスが、Feの発光強度が低い領域に集中しているという傾向が見られる。Feの発光強度との相関が低くこれらの元素の発光強度が高いということから、この領域における発光パルスは、主として介在物に由来する情報を有していると理解される。   Regarding the graph showing the correlation between the emission intensity of Al and the emission intensity of Fe (FIG. 2 (a) middle stage) and the graph showing the correlation between the emission intensity of Mg and the emission intensity of Fe (lower stage of FIG. 2 (a)), Similar to the graph showing the correlation between the emission intensity of Si and the emission intensity of Fe, emission pulses having a low correlation with the emission intensity of Fe and high emission intensity of Al and Mg are concentrated in a region where the emission intensity of Fe is low. There is a tendency to be. Since the correlation with the emission intensity of Fe is low and the emission intensity of these elements is high, it is understood that the emission pulse in this region has information mainly derived from inclusions.

以上のことから、Feの発光強度が低い領域(図の例では、Feの発光強度<1500)にプロットされた点群が、試料表面に付着したSiC粒子と同時に介在物にスパ−ク放電が落ちた発光パルスを表していることが理解される。   From the above, the point group plotted in the region where the emission intensity of Fe is low (in the example of the figure, the emission intensity of Fe <1500), the spark discharge is generated in the inclusions simultaneously with the SiC particles adhering to the sample surface. It is understood that it represents a fallen emission pulse.

ここで、金属表面にSiC粒子が塗布された試料および塗布されていない試料のそれぞれについて、10回または500回放電させた後の表面を観察した結果を図8に示す。
図8に示される画像は、それぞれ、金属表面にSiC粒子が塗布された試料に10回放電が落ちた後の試料表面の観察画像(a−1)、および同試料に500回放電が落ちた後の試料表面の観察画像(a−2)、ならびに金属表面にSiC粒子が塗布されていない試料に10回放電が落ちた後の試料表面の観察画像(b−1)、および同試料に500回放電が落ちた後の試料表面の観察画像(b−2)である。
Here, the result of observing the surface after discharging 10 times or 500 times for each of the sample coated with SiC particles on the metal surface and the sample not coated is shown in FIG.
The images shown in FIG. 8 are an observation image (a-1) of the sample surface after the discharge has dropped 10 times on the sample in which the SiC particles are coated on the metal surface, and the discharge has dropped 500 times on the same sample. Later observation image (a-2) of the sample surface, observation image (b-1) of the sample surface after the discharge has dropped 10 times on the sample on which no SiC particles are applied on the metal surface, and 500 for the same sample It is an observation image (b-2) of the sample surface after a circular discharge fell.

図8に示されるように、SiC粒子が塗布された試料は、いずれの放電回数においても、塗布されていない試料に比べて放電に由来する地金の粗面化の程度が小さく、地金よりも物質粒子に優先して放電が落ちていることが確認される。特に、10回程度の放電の場合には、地金の研磨痕が明確に確認され、この程度の放電回数では地金には実質的に放電が落ちていないと考えられる。   As shown in FIG. 8, the sample coated with SiC particles has a less rough surface due to the discharge than the sample not coated at any number of discharges. It is also confirmed that the discharge has dropped in preference to the substance particles. In particular, in the case of the discharge of about 10 times, the polishing mark of the bare metal is clearly confirmed, and it is considered that the discharge is not substantially dropped on the bare metal at this number of discharges.

以上の検討から、Feの発光強度が低い領域における発光パルスは介在物の情報を持つ発光パルスであり、このFeの発光強度が低い発光パルスを選択し、その選択した発光パルスを解析することにより、介在物の情報を選択的に取り出すことができることが導かれる。   From the above examination, the light emission pulse in the region where the emission intensity of Fe is low is an emission pulse having information on inclusions. By selecting the emission pulse with low emission intensity of Fe and analyzing the selected emission pulse In other words, the information on the inclusions can be selectively extracted.

図2(b)に放電後期(1501−2000パルス)を比較として示す。Feの発光強度に対する相関が低いSiの発光強度を有する発光パルスは発生しておらず、試料表面の分析領域には物質粒子は実質的に付着していないと考えられる。また、Feの発光強度が低い領域(Fe<1500)にプロットされる発光パルスはほとんど存在しない。AlおよびMgについてもSiと同様であり実質的に単一の傾向を有している。これらの結果から、放電後期には放電はほとんど地金に落ちていると想定される。   FIG. 2 (b) shows a late discharge period (1501-2000 pulses) as a comparison. It is considered that no emission pulse having Si emission intensity having a low correlation with the emission intensity of Fe is generated, and the substance particles are not substantially attached to the analysis region of the sample surface. In addition, there are almost no emission pulses plotted in a region where the emission intensity of Fe is low (Fe <1500). Al and Mg are similar to Si and have a substantially single tendency. From these results, it is assumed that the discharge almost fell to the metal in the late stage of discharge.

以上の図2の結果に基づく検討から、本発明に基づき表面に物質粒子を付着させた場合には、Feの発光強度が低い発光パルスを選択することによって、介在物からの発光パルスのみを選別することができるということが導かれる。   From the examination based on the results of FIG. 2 above, when substance particles are attached to the surface according to the present invention, only the light emission pulses from the inclusions are selected by selecting the light emission pulses having a low light emission intensity of Fe. It is guided that we can do it.

この点について図3を用いてさらに説明する。
図3に、放電初期、すなわち1−500パルスにおけるAl発光強度とMg発光強度との相関を示す。ここで、図3において、発光パルスにおけるFeの発光強度が1500以上の場合と1500未満の場合とで識別できるようにプロットすると、両者はそれぞれ独立した相関関係を有していることが理解される。
This point will be further described with reference to FIG.
FIG. 3 shows the correlation between the Al emission intensity and the Mg emission intensity at the initial stage of discharge, that is, 1-500 pulses. Here, in FIG. 3, when plotting so that the emission intensity of Fe in the emission pulse is 1500 or more and less than 1500, it is understood that both have independent correlations. .

具体的に説明すると、前者(Feの発光強度が1500以上)は地金(固溶体)のAlとMg濃度比を反映した傾きを持つ点群を形成している。一方、後者(介在物の情報を持つ発光パルス)は介在物中のAlとMgの濃度比を反映した傾きを持つ点群となっている。したがって、本発明に係る測定方法に従い、試料表面に物質粒子を付着させることにより、介在物の情報を有している発光パルスと地金の情報を有している発光パルスとを、そのパルスにおけるFeの発光強度の強弱によって、明確に分離することができる。このように、Feの発光強度が相対的に弱いときに介在物に由来する発光パルスであると判断することにより、Alの発光強度が弱い発光パルスからも介在物に関する情報を得ることができる。この点に関し、Alの発光強度は介在物の粒径と正の相関関係を有するため、本発明によれば、介在物の粒径分布を従来技術に比べて正確に測定できる。   More specifically, the former (Fe emission intensity of 1500 or more) forms a point group having an inclination reflecting the Al / Mg concentration ratio of the base metal (solid solution). On the other hand, the latter (light emission pulse having information of inclusions) is a point group having a slope reflecting the concentration ratio of Al and Mg in the inclusions. Therefore, according to the measuring method according to the present invention, by attaching substance particles to the sample surface, the light emission pulse having the information of inclusions and the light emission pulse having the information of the bare metal are included in the pulse. It can be clearly separated by the intensity of the emission intensity of Fe. Thus, by determining that the light emission pulse is derived from inclusions when the light emission intensity of Fe is relatively weak, information about the inclusions can be obtained from the light emission pulse having a low light emission intensity of Al. In this regard, since the emission intensity of Al has a positive correlation with the particle size of inclusions, according to the present invention, the particle size distribution of inclusions can be measured more accurately than in the prior art.

一方、同じ試料を用いて、切削またはベルタ−研磨にて試料前処理を行い、試料表面には物質粒子を付着させない従来技術で測定された発光パルスにおけるFe,AlおよびMgのそれぞれの発光強度を時系列で図4に示す(1−500パルス)。   On the other hand, using the same sample, sample pretreatment is performed by cutting or belt-polishing, and the emission intensity of each of Fe, Al, and Mg in the emission pulse measured by a conventional technique in which material particles do not adhere to the sample surface. This is shown in FIG. 4 in a time series (1-500 pulses).

Alの発光強度が高い(図の例では、Alの発光強度>1500)発光パルスが介在物の情報を持つ発光パルスであると識別することができるものの、同時に検出されるFeの発光強度が高いため、そのAlの発光強度から得られる情報は地金の影響を受けることになる。   Although the emission intensity of Al is high (in the example of the figure, the emission intensity of Al> 1500), the emission pulse can be identified as an emission pulse having information on inclusions, but the emission intensity of Fe detected at the same time is high Therefore, information obtained from the light emission intensity of Al is affected by the metal.

また、介在物の情報を持つ発光パルスの個数も、本発明の例では80個程度であったのに対して従来技術の例では20個程度と少ない。この結果から、試料表面に物質粒子を付着させることによって介在物からの発光パルスの発生を放電初期に集中させることが実現されていることが理解される。このことが、測定時間の短縮および測定精度の向上に資することはいうまでもない。   In addition, the number of light emission pulses having information on inclusions is about 80 in the example of the present invention, but is about 20 in the example of the prior art. From this result, it is understood that the generation of light emission pulses from inclusions is concentrated in the early stage of discharge by attaching substance particles to the sample surface. Needless to say, this contributes to shortening the measurement time and improving the measurement accuracy.

さらに、図5にAlとMgとの発光強度の相関を示す。本発明の図3のような互いに明確に識別可能な相関関係を有する複数の点群は認められない。このため、従来技術に係る測定においてはAlの発光強度が高い発光パルスを介在物に由来するものと判断せざるを得ない。ところが、上記のように、Alの発光強度は介在物の粒径と正の相関関係を有するため、Alの発光強度が低い発光パルスについては介在物に由来しないと判断してしまうと、粒径が小さい介在物についての情報を全く得ることができない。   Further, FIG. 5 shows the correlation between the emission intensities of Al and Mg. A plurality of point groups having a correlation that can be clearly distinguished from each other as shown in FIG. 3 of the present invention is not recognized. For this reason, in the measurement according to the prior art, it must be determined that a light emission pulse having a high Al light emission intensity is derived from inclusions. However, as described above, since the emission intensity of Al has a positive correlation with the particle size of inclusions, if it is determined that the emission pulse with low emission intensity of Al does not originate from inclusions, It is not possible to obtain any information about inclusions with small.

このように、本発明によれば、地金の影響を受けない介在物の情報を持つ発光パルスを放電初期に多く出現させることができ、しかもFeの発光強度を用いて地金の情報を多く有する発光パルスと容易に識別することが可能となる。   As described above, according to the present invention, many emission pulses having inclusion information that is not affected by the metal can appear at the beginning of the discharge, and more information on the metal can be obtained by using the emission intensity of Fe. It becomes possible to easily distinguish it from the light emission pulse it has.

本発明で検出される介在物の情報を持つ発光パルスの個数は、試料表面に付着した物質粒子の量に依存する。付着した物質粒子の量は、物質を構成する元素の発光強度の和によってその大小を見積もることができる。例えば付着粒子がSiCの場合、図2(a)においてFe発光強度が1500未満の発光パルスのSi発光強度の和を物質粒子量の代用値とする。図6に、付着した物質粒子量と検出された介在物の情報を持つ発光パルスの個数との相関を示す。なお、図6の縦軸の発光パルスの個数は、Feの発光強度が1500未満の発光パルス個数である。良好な相関関係が認められる。なお、この相関の傾きは試料中の介在物個数を反映したものになっている。   The number of emission pulses having inclusion information detected in the present invention depends on the amount of substance particles adhering to the sample surface. The amount of the adhered substance particles can be estimated by the sum of the emission intensity of the elements constituting the substance. For example, when the adhered particles are SiC, the sum of the Si emission intensities of the emission pulses having an Fe emission intensity of less than 1500 in FIG. FIG. 6 shows the correlation between the amount of adhering substance particles and the number of emission pulses having information on detected inclusions. Note that the number of light emission pulses on the vertical axis in FIG. 6 is the number of light emission pulses with Fe emission intensity of less than 1500. A good correlation is observed. Note that the slope of this correlation reflects the number of inclusions in the sample.

試料表面に付着させる物質粒子としては、無機物質(SiC,BN,TiO,CaCOなど)、有機物質(スクロ−ス,小麦粉など)を問わず試料を腐食させなければ使用できる。粒子の大きさは試料表面に付着しやすいμmオ−ダ−以下の微粒子が望ましい。付着させる量は、多過ぎると試料表面の情報を有する発光パルスを測定することが不能となるので、目視で残留が確認できるかできない程度以下の量が望ましい。付着させる方法としては、物質粒子を直接塗布、溶媒に分散/溶解させてから塗布・乾燥、試料研磨時に研磨粉が残留するタイプの研磨などが可能である。 As the material particles to be adhered to the sample surface, any inorganic material (SiC, BN, TiO 2 , CaCO 3 etc.) or organic material (sucrose, flour etc.) can be used as long as the sample is not corroded. The size of the particles is preferably fine particles of the order of μm or less, which easily adhere to the sample surface. If the amount to be adhered is too large, it becomes impossible to measure a light emission pulse having information on the surface of the sample. As a method for adhesion, it is possible to directly apply substance particles, disperse / dissolve them in a solvent, and then apply and dry, or a type of polishing in which polishing powder remains during sample polishing.

本発明の実施例として、MgOを少量含むアルミナ系介在物を含有する鉄鋼試料a〜d(0.2質量%C−0.2質量%Si−0.8質量%Mn鋼)における介在物の粒度分布、存在量、組成の分析例について説明する。なお、試料表面に物質粒子を付着させる方法としては、試料研磨時に研磨粉が残留するタイプの研磨を採用した。この研磨では砥粒のSiCに加えてKBFが含まれていたので、試料表面に付着した物質粒子量の代用値には、鉄鋼試料には含まれていない元素であるBの発光強度の和(ΣB)を用いた。 As an example of the present invention, inclusions in steel samples a to d (0.2 mass% C-0.2 mass% Si-0.8 mass% Mn steel) containing alumina inclusions containing a small amount of MgO. An analysis example of particle size distribution, abundance and composition will be described. As a method for attaching the substance particles to the sample surface, a type of polishing in which polishing powder remains at the time of sample polishing was adopted. Since this polishing contained KBF 4 in addition to the SiC of the abrasive grains, the substitute value of the amount of material particles adhering to the sample surface is the sum of the emission intensity of B which is an element not included in the steel sample. (ΣB) was used.

試料を上記により研磨した後、スパ−ク放電発光分光分析装置にセットした。スパ−ク放電を2000回行い放電パルス毎にFe,B,AlおよびMgの発光強度を計測・保存した。放電場所を変えて同様の測定を数回繰り返した。1−500パルス領域で予め設定してあるFe発光強度(本実施例においては1500)より小さいFe発光強度の発光パルスを介在物の情報を持つ発光パルスとして選別した。   After the sample was polished as described above, it was set in a spark discharge optical emission spectrometer. Spark discharge was performed 2000 times, and the emission intensity of Fe, B, Al, and Mg was measured and stored for each discharge pulse. The same measurement was repeated several times with different discharge locations. A light emission pulse having an Fe light emission intensity smaller than a preset Fe light emission intensity (1500 in the present embodiment) in the 1-500 pulse region was selected as a light emission pulse having inclusion information.

介在物の情報を持つ発光パルスのAl発光強度は放電の落ちた介在物(Al)の質量(体積)に比例するので、Al発光強度の1/3乗は介在物(Al)の粒径に比例する。したがって、試料において検出された介在物の情報を持つ発光パルスのAl発光強度の1/3乗を求め、標準試料を用いて予め決定してある換算係数により得られた数値を粒径に変換し、各発光パルスを積算して、介在物(Al)の粒度分布を求めた。 Since the Al emission intensity of the emission pulse having the information of the inclusion is proportional to the mass (volume) of the inclusion (Al 2 O 3 ) where the discharge has dropped, the 1/3 power of the Al emission intensity is the inclusion (Al 2 O). It is proportional to the particle size of 3 ). Therefore, obtain the 1/3 power of the Al emission intensity of the emission pulse having the information of the inclusions detected in the sample, and convert the numerical value obtained by the conversion factor that is determined in advance using the standard sample into the particle size. The emission pulses were integrated to determine the particle size distribution of inclusions (Al 2 O 3 ).

介在物の情報を持つ発光パルスのAl発光強度、Mg発光強度は放電の落ちた介在物のAl質量、MgO質量に比例するので、Al発光強度の和(ΣAl)、Mg発光強度の和(ΣMg)はAl存在量、MgO存在量に比例する。但し、本発明の場合は介在物の情報を持つ発光パルス個数は試料表面に付着した物質粒子量(モニタ−:ΣB)に比例するので、ΣAl/ΣB、ΣMg/ΣBがAl存在量、MgO存在量に比例する。 Since the Al emission intensity and Mg emission intensity of the emission pulse having the information of the inclusion are proportional to the Al 2 O 3 mass and MgO mass of the inclusion where the discharge has dropped, the sum of the Al emission intensity (ΣAl), the Mg emission intensity The sum (ΣMg) is proportional to the Al 2 O 3 abundance and MgO abundance. However, in the case of the present invention, the number of emission pulses having information of inclusions is proportional to the amount of substance particles adhering to the sample surface (monitor: ΣB), so ΣAl / ΣB and ΣMg / ΣB are present in the amount of Al 2 O 3 . , Proportional to the amount of MgO present.

したがって、試料のΣAl/ΣB、ΣMg/ΣBを、標準試料を用いて予め作成してある検量線[Al存在量vs.ΣAl/ΣB、MgO存在量vs.ΣMg/ΣB]によりAl存在量、MgO存在量に変換し、測定回で平均して試料のAl存在量、MgO存在量を算出した。さらに、両者よりMgO(質量%)組成を求めた。 Therefore, ΣAl / ΣB and ΣMg / ΣB of the sample are calculated using a calibration curve [Al 2 O 3 abundance vs.. ΣAl / ΣB, MgO abundance vs. The sample was converted into Al 2 O 3 abundance and MgO abundance by ΣMg / ΣB], and averaged over the measurement times to calculate the Al 2 O 3 abundance and MgO abundance of the sample. Furthermore, MgO (mass%) composition was calculated | required from both.

図7(a)に本発明に基づく測定方法により求めた介在物の粒度分布を示し、図7(b)に化学的な抽出分離後SEM/EDS−画像処理法により求めた介在物の粒度分布を示す。両者を比較すると、本発明では試料研磨の際に介在物の一部が削られるため抽出法とは完全には一致しないが、試料の介在物粒度分布の違いを反映した粒度分布が得られた。また、Al存在量、MgO存在量およびMgO(質量%)組成を(a)本発明に基づく測定方法、および(b)化学的な抽出分離後化学分析法により求めた結果を対比可能に表1に示す。かなり良い一致が認められた。 FIG. 7 (a) shows the particle size distribution of inclusions determined by the measuring method based on the present invention, and FIG. 7 (b) shows the particle size distribution of inclusions determined by SEM / EDS-image processing after chemical extraction and separation. Indicates. Comparing the two, in the present invention, some of the inclusions were scraped when polishing the sample, so it was not completely consistent with the extraction method, but a particle size distribution reflecting the difference in the inclusion particle size distribution of the sample was obtained . In addition, the results of Al 2 O 3 abundance, MgO abundance and MgO (mass%) composition obtained by (a) a measurement method based on the present invention and (b) a chemical analysis method after chemical extraction separation can be compared. Table 1 shows. A fairly good agreement was observed.

以上、本発明によれば、介在物の粒度分布、存在量および組成を良好に求めることができる。   As described above, according to the present invention, the particle size distribution, abundance, and composition of inclusions can be favorably obtained.

Claims (1)

スパ−ク放電発光分光分析にて金属試料中の介在物を分析する方法に関して、試料表面に物質粒子を付着させた後、スパ−ク放電を行って発光パルスを計測し、介在物の情報を持つ発光パルスを選別・解析して、金属中の介在物を分析することを特徴とする発光分光分析による介在物分析方法。   Regarding the method of analyzing inclusions in a metal sample by spark discharge emission spectrometry, after depositing substance particles on the sample surface, a spark discharge is performed to measure the emission pulse, and information on the inclusion is obtained. A method for analyzing inclusions by emission spectroscopic analysis, which comprises analyzing and analyzing inclusions in a metal by selecting and analyzing emitted light pulses.
JP2010077962A 2010-03-30 2010-03-30 Inclusion analysis method by emission spectroscopy Expired - Fee Related JP5304705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077962A JP5304705B2 (en) 2010-03-30 2010-03-30 Inclusion analysis method by emission spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077962A JP5304705B2 (en) 2010-03-30 2010-03-30 Inclusion analysis method by emission spectroscopy

Publications (2)

Publication Number Publication Date
JP2011209145A true JP2011209145A (en) 2011-10-20
JP5304705B2 JP5304705B2 (en) 2013-10-02

Family

ID=44940364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077962A Expired - Fee Related JP5304705B2 (en) 2010-03-30 2010-03-30 Inclusion analysis method by emission spectroscopy

Country Status (1)

Country Link
JP (1) JP5304705B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101758530B1 (en) * 2015-12-23 2017-07-17 주식회사 포스코 Method for analyzing inclusion in molten steel and method for manufacturing high clean molten steel for steel wire rod

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737252A (en) * 1980-08-18 1982-03-01 Nippon Steel Corp Emission spectroscopic analysis for inclusion detection of steel
JP2004069681A (en) * 2002-06-10 2004-03-04 Nippon Steel Corp Flaw inspection method and device for metal product, and flaw elimination method therefor
JP2005257299A (en) * 2004-03-09 2005-09-22 Nippon Steel Corp Time-resolved evaluation method for inclusions or the like in metal sample
JP2006126167A (en) * 2004-09-29 2006-05-18 Nsk Ltd Standard sample for spark emission spectral analyzer, and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737252A (en) * 1980-08-18 1982-03-01 Nippon Steel Corp Emission spectroscopic analysis for inclusion detection of steel
JP2004069681A (en) * 2002-06-10 2004-03-04 Nippon Steel Corp Flaw inspection method and device for metal product, and flaw elimination method therefor
JP2005257299A (en) * 2004-03-09 2005-09-22 Nippon Steel Corp Time-resolved evaluation method for inclusions or the like in metal sample
JP2006126167A (en) * 2004-09-29 2006-05-18 Nsk Ltd Standard sample for spark emission spectral analyzer, and its manufacturing method

Also Published As

Publication number Publication date
JP5304705B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
US8222598B2 (en) Method for quantitative analysis of a material
CN104048902B (en) A kind of measure in steel the distribution of globular oxide inclusion size and the method for content
CN103983201A (en) Method for detecting thickness of phosphating film of cold-rolled sheet
US7893400B2 (en) Method for laser desorption/ionization mass spectrometry, sample supporting substrate used therein, and substrate material testing method
JP5304705B2 (en) Inclusion analysis method by emission spectroscopy
EP3770589B1 (en) Analyzer
JP2021081432A (en) Method for determining material composition
JP3671600B2 (en) Method for measuring particle size distribution of oxide inclusions in metals
JP4038154B2 (en) Method for evaluating inclusions in metal sample, evaluation apparatus, computer program, and computer-readable storage medium
Goldstein et al. Special topics in electron beam x-ray microanalysis
JP4185001B2 (en) Time-resolved evaluation method for inclusions in metal samples
JP2006308347A (en) Inclusion composition quantitative analysis method by emission spectral analysis
JPH0943151A (en) Particle size distribution measuring method for metal inclusion
Li et al. Ultra-fast quantitative analysis of non-metallic inclusions in steel
US20030168132A1 (en) Method for measuring particle size of inclusion in metal by emission spectrum intensity of element constituting inclusion in metal, and method for forming particle size distribution of inclusion in metal, and apparatus for executing that method
CN114002250B (en) Method for removing analysis peak interference of electronic probe line and application thereof
US6480274B1 (en) Method of analyzing oxygen and oxide in metallic material
Bengtson et al. Glow Discharge Optical Emission Spectrometry–Activities and Opportunities in the Field of Depth Profile Analysis
JPH11295222A (en) Method for measuring fine particle by glow discharge light emission analysis
JPH0943150A (en) Method for measuring composition and particle size distribution of inclusion of metal
KR20080057115A (en) Apparatus measuring impurities of molten iron and method sameof
Simko et al. Characterization of zirconium oxide-based pretreatment coatings Part 1–variability in coating deposition on different metal substrates
Daolio et al. Mass-resolved ion scattering spectrometry for characterization of samples with historical value
WO2020012744A1 (en) Light emission analysis device and maintenance method for same
Castle Auger electron spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R151 Written notification of patent or utility model registration

Ref document number: 5304705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees