JP2011208624A - 高温部材の冷却構造 - Google Patents

高温部材の冷却構造 Download PDF

Info

Publication number
JP2011208624A
JP2011208624A JP2010080072A JP2010080072A JP2011208624A JP 2011208624 A JP2011208624 A JP 2011208624A JP 2010080072 A JP2010080072 A JP 2010080072A JP 2010080072 A JP2010080072 A JP 2010080072A JP 2011208624 A JP2011208624 A JP 2011208624A
Authority
JP
Japan
Prior art keywords
wall
cooling
gas
space
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010080072A
Other languages
English (en)
Inventor
Hisato Tagawa
久人 田川
Yasuhiro Horiuchi
康広 堀内
Tetsuro Morisaki
哲郎 森崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010080072A priority Critical patent/JP2011208624A/ja
Publication of JP2011208624A publication Critical patent/JP2011208624A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

【課題】ガスタービンにおける燃焼ガスの高温化など、技術の発達に伴い、できるだけ少ない冷却空気量で高温部材の温度上昇を抑えることのできる高性能な冷却技術が望まれている。本発明の目的は、少ない冷却空気量でも温度上昇を効果的に抑制できる高温部材を提供することにある。
【解決手段】本発明の部材は、第一の壁と、前記第一の壁と対向する第二の壁と、前記第一の壁と前記第二の壁とをつなぐ隔壁と、前記第一の壁と前記第二の壁と前記隔壁に囲まれた空間とを有する構造を複数有する部材において、前記第二の壁から供給された冷却ガスが前記空間を対流冷却した後に前記第一の壁から排出される。
【選択図】 図1

Description

本発明は、ガスタービン翼などのように表面を高温ガスに晒される部材の冷却構造に関する。
航空用や産業用のガスタービンシステムでは、圧縮機で圧縮した高圧空気を燃焼器で燃料と混合して燃焼することにより高温高圧の燃焼ガスを発生し、タービンを駆動して熱エネルギーを運動エネルギーに変換する。したがって、ガスタービンの静翼や動翼、あるいはガスパス構成部材のように、表面を燃焼ガスのような高温ガスに晒される部材は、材料の高温腐食や構造強度の低下を抑制するため、内部から冷却ガスを流して強制的に冷却し、材料温度を制限値以下に保持する必要がある。
冷却性能を向上するための先行技術として、以下のような特許文献が公開されている。
特許文献1では、フィルム冷却孔を有する翼外壁とインピンジ孔を有する翼内壁とを間隙を置いて配置し、内外壁を複数のピンで接続する構造が示されている。特許文献2では、高温ガス流路部品の内外壁を多数のピンでつなぎ、内壁あるいは外壁にディンプルを設けて、内壁ディンプルの位置にインピンジ孔、外壁にフィルム孔を穿孔する構造が示されている。特許文献3では、タービン翼を二重壁構造とし、内壁には多数のインピンジ孔、外壁にはフィルム孔を設けている。翼弦方向に隣り合うフィルム孔の間で二重壁間流路を仕切るようなシール部を設け、外壁にはフィルム孔を挟んで対称となるようにフィン状突起物を備えた構造が示されている。
特開平11−62504号公報 特開2005−147157号公報 特開2005−155364号公報
ガスタービンにおける燃焼ガスの高温化など、技術の発達に伴い、できるだけ少ない冷却空気量で高温部材の温度上昇を抑えることのできる高性能な冷却技術が望まれている。本発明の目的は、少ない冷却空気量でも温度上昇を効果的に抑制できる高温部材を提供することにある。
本発明の部材は、第一の壁と、前記第一の壁と対向する第二の壁と、前記第一の壁と前記第二の壁とをつなぐ隔壁と、前記第一の壁と前記第二の壁と前記隔壁に囲まれた空間とを有する構造を複数有する部材において、前記第二の壁から供給された冷却ガスが前記空間を対流冷却した後に前記第一の壁から排出される。
本発明によると、少ない冷却空気量でも温度上昇を効果的に抑制できる高温部材を提供することができる。
本発明の一実施形態を示す高温部材の冷却構造である。 本発明の一実施形態を示す高温部材の冷却構造である。 本発明と比較例の冷却性能を比較した図である。 本発明の冷却構造に使用できるリブ構造の一例である。 本発明の冷却構造に使用できるリブ構造の一例である。 本発明の冷却構造に使用できるリブ構造の一例である。 本発明の一実施形態を示す高温部材の冷却構造である。 本発明の一実施形態を示す高温部材の冷却構造である。 本発明の一実施形態を示す高温部材の冷却構造である。 比較例の高温部材の冷却構造の一例である。 ガスタービンの第1段静翼,第1段動翼の拡大図である。
本発明の高温部材を説明するために、以下、ガスタービンに用いられる高温部材を例にとって説明する。
省エネルギーおよび環境負荷低減を達成するため、ガスタービンシステムの熱効率の向上が図られている。これを達成する手段として、燃焼ガスの高温化が進められている。しかしながら、燃焼ガスの高温化は、ガスタービンシステムの熱効率の低下を招く恐れがある。一般にガスタービンの冷却には、圧縮機から抽気された圧縮空気が用いられるため、高温化に伴って必要冷却空気量が増加すると燃焼器で使用できる空気量が減ってしまうからである。またガスパス中に部材冷却後の冷却空気がより多く放出されることになり、作動ガス温度が低下することも影響する。したがって、燃焼ガスの高温化のメリットを損なわないように、冷却性能を向上しつつ、冷却空気量の増加を抑制することが望まれている。
さらに、タービン翼など高温部材が高温ガスの流路に晒される場合、高温部材の晒される場所や方向によって、高温部材が面する高温ガスの圧力が大きく異なる場合がある。一方で冷却空気圧力を絞って冷却空気量を低減すると、冷却空気と高温ガスとの差圧マージンが小さくなる。そうすると、高温ガスの圧力が高い部分ではフィルム冷却孔から高温ガスが逆流しやすくなり、冷却性能を維持することが困難になる。したがって、冷却空気量を低減しながら高温ガスの逆流を抑制して、冷却性能を維持できる冷却構造も望まれている。
前述の特許文献1の構造を用いれば、ピンによる伝熱面積の増加およびインピンジ孔から噴出した冷却空気の流れがピンにより拘束されて冷却面に当たることで熱伝達が向上するとされている。これに加え、特許文献2のようにディンプルを効果的に用いれば、流れをさらに乱して熱伝達を向上させることができる。
特許文献3では、タービン翼を二重壁構造とし、内壁には多数のインピンジ孔、外壁にはフィルム孔を設けている。翼弦方向に隣り合うフィルム孔の間で二重壁間流路を仕切るようなシール部を設け、外壁にはフィルム孔を挟んで対称となるようにフィン状突起物を備えた構造が示されている。この構造では二重壁間流路内の翼弦方向の流れを防止して、フィルム孔から翼内部へ高温ガスが逆流することを抑制できるとされている。
ここで、ガスタービンの高温部材を冷却するための例(比較例)として、図10に示すような冷却構造について説明する。図10に示した比較例の高温部材では、特に冷却が必要な面に配置された冷却壁401と、この冷却壁401に対向する位置に配置されたインピンジメントプレート410を有している。インピンジメントプレート410には、インピンジメント冷却孔405が多数開けられている。
比較例の高温部材では、インピンジメント冷却孔405からインピンジメント流路404に冷却ガスBを噴き出して冷却壁401を冷却している(インピンジメント冷却)。さらに、インピンジメント冷却後の冷却ガスBを冷却壁401に開けたフィルム冷却孔406からフィルム冷却ガスCとして噴き出させている。このフィルム冷却ガスCで冷却壁401の表面を覆い、高温ガスAからの熱負荷を低減している(フィルム冷却)。すなわち、この高温部材は、インピンジメント冷却とフィルム冷却を組み合わせた冷却構造を採用している。
この比較例に対し、以下説明する、本発明を適用した各実施例の高温部材では、冷却壁を外壁と内壁および隔壁で構成されるコンパートメント構造としている。その上で、コンパートメント毎に冷却ガス導入孔とフィルム冷却孔を設けている。各コンパートメント内へ冷却ガスの入口としての冷却ガス導入孔と、出口としてのフィルム孔を設けることにより、各コンパートメント内を冷却空気が流れる対流冷却の効果を享受できる。対流冷却により、必要流速を満足する冷却ガスで広い範囲を冷却できるため、比較例のインピンジメント冷却に比べて冷却ガス量を削減できる。
さらに、冷却空気導入孔の断面積を調節することで、コンパートメント毎に冷却ガスと高温ガスとの差圧調整が可能となる。そうすると、高温ガスの圧力変化が大きな流れに晒される高温部材においても、フィルム冷却孔からの高温ガスの逆流を確実に防止し、また冷却ガス流量を効果的に低減することが可能となる。
また、コンパートメント内壁にリブあるいはディンプルを設けたり、冷却ガス導入孔とフィルム冷却孔を高温ガスの流れ方向に互いに離れた位置に配置したり、コンパートメント高さを適切な狭さ(フィルム冷却孔の直径の1〜5倍)に設定することにより、より高い対流冷却効果を得ることができる。すなわち少ない冷却ガス流量でコンパートメント内部の対流冷却効果が最大限に機能するような冷却ガスの流れを作ることができ、冷却性能を大幅に向上することができる。
次に、本発明の一実施形態について図面を用いて説明する。図1は本発明の高温部材の冷却構造の一実施形態を説明するための垂直断面図を示す。
冷却壁Hは外壁1と内壁2およびこれらをつなぐ隔壁3とで構成されるコンパートメント4が複数隣接して並んでいる構造をしている。内壁2には冷却ガス供給孔5、外壁1にはフィルム冷却孔6が設けられている。外壁1の側に、高温ガスAが流れている。冷却ガス供給孔5から供給された冷却ガスBは、コンパートメント4の内部を流れて冷却壁Hを対流冷却した後、フィルム冷却孔6からフィルム冷却ガスCとして放出され、冷却壁表面9を覆うことにより、高温ガスAから冷却壁Hへの熱負荷を低減する。
コンパートメント4の内部を冷却ガスが効果的に対流するように、冷却ガス供給孔5とフィルム冷却孔6は高温ガスの流れ方向に対して水平方向に離れた位置に設けられている。冷却ガス供給孔5を高温ガスAの下流側に配置し、フィルム冷却孔6を高温ガスAの上流側に配置すれば、コンパートメント4内の冷却ガスの流れを高温ガスの上流側へ向かう対向流にすることができ、高温部材の温度分布を均一化して熱応力の低減を図ることができる。別の表現をすれば、高温ガスAの流れ方向に近い面で、高温ガスAの流れ方向の中間地点よりも下流側に冷却ガス供給孔5を、上流側にフィルム冷却孔6を配置するということである。
さらに望ましくは、最下流側に冷却ガス供給孔5を、最上流側にフィルム冷却孔6を配置するのがよい。ただしここで最下流側,最上流側というのは、加工性や構造強度を考慮して設けたスペースを除いた最も下流側,上流側という意味である。具体的には、冷却ガス供給孔5から流入しフィルム冷却孔6から排出されるガスにより、コンパートメント4の長さの8割以上が冷却できればかなり高い冷却効果を得ることができる。また、各孔の位置は、コンパートメント4の内部側の孔の位置とする。
図2は冷却面に垂直な方向から内部冷却構造を見た透視図を示す。図2には一つのコンパートメント4に3個のフィルム冷却孔を設けた例を示しているが、一つのコンパートメントに設けるフィルム冷却孔6の数は自由に設定して構わない。フィルム冷却孔6の直径やフィルム冷却孔間のピッチは、フィルム冷却孔の設計基準を考慮して決定すれば良い。
コンパートメントに流入する冷却ガスBの圧力や流量は冷却ガス供給孔5の直径で調整できる。冷却ガス供給孔5の直径を小さくすると、供給孔での圧力損失が大きくなり、フィルム冷却孔6噴出し前の圧力が低下し、冷却ガス流量は減少する。
また冷却ガスBの流量は冷却ガス供給孔5の個数で制御できる。供給孔の個数を増やすと、絞り断面積が大きくなり、冷却ガス流量が増加してフィルム冷却孔6吹き出し前の圧力が上昇する。
冷却ガス供給孔5の大きさや個数を適切に設定し、フィルム冷却孔6の位置における高温ガスAの圧力に応じてフィルム冷却ガスCの噴き出し圧力を調整することで、フィルム冷却孔6からの高温ガスAの逆流抑制効果を高めることができる。同様にしてコンパートメント4への熱負荷に応じて冷却ガスBの流量を調整することで、不要な冷却ガスの消費を抑えることができる。その結果、冷却空気量を効果的に低減することができる。
さらにコンパートメント4を構成する外壁1の内面には、冷却ガスの流れに直交する方向に延びたリブ70が複数個設けられている。このリブにより、コンパートメント4の内部における対流冷却効果を高めることができる。また、コンパートメント4の高さを狭くして流路断面積を制限することで、冷却ガスの流速を確保して対流冷却効果を増強している。フィルム冷却孔6の直径は、0.8〜2.0mmとするのが現実的である。これと、通常使用可能な空気流量や対流冷却性能の有効性とを考えて逆算すると、コンパートメント4の高さはフィルム冷却孔6の直径の5倍以下とするのが望ましいといえる。また、製作上の観点から、コンパートメント4の高さはフィルム冷却孔6の直径の1倍以上とするのが望ましい。
図3は本実施例による冷却構造と図10に示した比較例の冷却構造の冷却効率を比較した図である。横軸は、圧縮機吸込み流量に対する冷却空気流量の割合(%)を示している。ここで冷却効率は以下の式1で定義しており、η:冷却効率,Th:高温ガス温度,Tc:冷却ガス温度,Ts:冷却壁面温度である。
Figure 2011208624
どちらの構造でも、冷却空気流量の増加に従って冷却効率は向上する。ただし、例えば冷却空気流量0.6で比較すると、冷却効率は従来構造での40%に対して、本実施例による冷却構造では55%となっており、本実施例の方が15pt%向上することがわかる。これは高温ガスAの温度が1500℃、冷却ガスBの温度が400℃の場合には、冷却面温度が165℃低減することに相当しており、材料強度の確保に対して大きな効果がある。また同一冷却効率を達成するために必要な冷却空気量を比較すると、冷却効率40%を達成するためには、本実施例の冷却構造では比較例の冷却構造の約3分の1の冷却空気量で済むことが分かる。
この効果は、本実施例が、第一の壁である外壁1と、外壁1と対向する第二の壁である内壁2と、前記外壁1と内壁2とをつなぐ隔壁3と、外壁1と内壁2と隔壁3に囲まれた空間とを有するコンパートメント構造を複数有する部材において、内壁2の冷却ガス供給孔5から供給された冷却ガスがコンパートメント4内の空間を対流冷却した後に外壁1のフィルム冷却孔6から排出されるように構成されていることから享受可能な効果である。
図4〜図6はコンパートメント4を構成する外壁1の内面に設けるリブの他の形状を示している。図4は冷却ガスの流れに対して傾斜したリブを流路中央に対して対称に配置したV型リブ71、図5はV型リブを左右で流れ方向にずらしたV型スタッガードリブ72、図6はV型スタッガードリブの各リブの中央にスリットを設けた改良V型スタッガードリブ73が設けられた外壁1の内面を示している。本実施例の冷却構造に使用する、伝熱促進のためのリブ構造は図1に示した直交リブだけでなく、これらの改良型リブを適宜設置して冷却性能をさらに向上することができる。
図7は本発明の高温部材の冷却構造の他の実施形態を説明するための垂直断面図である。外壁101の内面に設けられたリブ170に加えて、内壁102の内面にもリブ171が設けられている点が実施例1とは異なっている。この構造では、図1の実施例よりもさらに冷却性能を向上できる。その一方で圧力損失が増加する。そのため、高温ガスAと冷却ガスBの差圧を十分確保できる場合には特に有効な例と言える。使用するリブは、図1の場合と同様に適宜選択することができる。
図8は本発明の高温部材の他の実施形態を説明するための垂直断面図である。外壁201の内面に、リブではなくディンプル280が設けられている点が実施例1とは異なっている。リブを設置する代わりにディンプルを設けると、コンパートメント内の対流冷却効果が低減する一方、圧力損失が小さくなる。そのため、高温ガスAと冷却ガスBの差圧が小さい場合には有効な構造である。外壁201の内面だけでなく、内壁202の内面にもディンプルを設けて冷却性能を向上することも可能である。
図9は本発明の高温部材の他の実施形態を説明するための垂直断面図である。外壁301の内面にはリブ370、内壁302の内面にはディンプル380が設けられている。このようにコンパートメント304の内面には、リブとディンプルを組合せて使用しても良い。さらにリブ形状は適宜選択できる。
最後に図11を用い、ここまで説明した各実施例の、ガスタービンにおける適用場所について説明する。ガスタービンは、圧縮空気を生成する圧縮機と、圧縮空気と燃料とから燃焼ガスを生成する燃焼器と、燃焼ガスで駆動するタービンとを有している。このタービンは、ケーシング内部に設けられた静翼と動翼とを複数有している。図11はガスタービンの第1段静翼510,第1段動翼520の拡大図を示す。
第1段静翼は、静翼本体513と外周側のエンドウォール511,内周側のエンドウォール512を有している。第1段動翼の外周側には、ケーシングにはめ込まれたシュラウド521が設けられている。エンドウォール511,512やシュラウド521は、周方向に分割構造されたセグメント構造をしている。エンドウォール511,512やシュラウド521はそれぞれ、シール手段を介して接続されている。
各実施例の冷却構造は、シュラウド521に適用した場合を想定して説明したものである。シュラウド521は内部に空間を複数有し、ケーシング側から供給された冷却ガスがこの空間を対流冷却して第1段動翼520側から排出されるよう構成されている。すなわち各実施例では冷却構造としてコンパートメント構造を採用しており、各コンパートメントを対流冷却するような構造となっている。
この冷却構造は、エンドウォール511,512や静翼本体513の構造としても適用できる。第1段だけでなく、第2段以降にも適用可能である。
流路幅や流路長さは適宜設定可能であり、この構造の採用位置に応じて冷却効果の調整が可能である。例えば主流圧力が高い位置に面する部分では、流路を短くして圧損を減らし、逆流防止効果を高めるのがよい。逆に主流圧力が低い位置に相当する部分では、流路を長くして冷却ガス流量を増やし、冷却性能を向上させるのがよい。すなわち各実施例の冷却構造を採用することにより、対流冷却効果や逆流抑制効果を容易に調節可能であり、各所に適した冷却構造とするための設計が容易になるという効果を奏する。
1,101,201,301 外壁
2,102,202,302 内壁
3,103,203,303 隔壁
4,104,204,304 コンパートメント
5,105,205,305 冷却ガス供給孔
6,106,206,306,406 フィルム冷却孔
70,170,171,370 リブ
9,109,209,309,409 冷却壁表面
71 V型リブ
72 V型スタッガードリブ
73 改良V型スタッガードリブ
280,380 ディンプル
401 冷却壁
404 インピンジメント流路
405 インピンジメント冷却孔
410 インピンジメントプレート
510 第1段静翼
511,512 エンドウォール
513 静翼本体
520 第1段動翼
521 シュラウド
A 高温ガス
B 冷却ガス
C フィルム冷却ガス
H 冷却壁

Claims (8)

  1. 第一の壁と、
    前記第一の壁と対向する第二の壁と、
    前記第一の壁と前記第二の壁とをつなぐ隔壁と、
    前記第一の壁と前記第二の壁と前記隔壁に囲まれた空間とを有する構造を複数有する部材において、
    前記第二の壁から供給された冷却ガスが前記空間を対流冷却した後に前記第一の壁から排出されるよう構成されていることを特徴とする部材。
  2. 請求項1の部材において、
    前記第二の壁に設けられた冷却ガス供給孔と、
    前記第一の壁に設けられたフィルム冷却孔とを有することを特徴とする部材。
  3. 請求項2の部材において、
    前記第一の壁の外側には高温ガスが流れており、
    前記フィルム冷却孔は、前記高温ガスの流れ方向で前記冷却ガス供給孔の上流側に設けられていることを特徴とする部材。
  4. 請求項3の部材において、
    前記フィルム冷却孔は前記高温ガスの流れ方向で前記空間の最上流側に設けられ、
    前記冷却ガス供給孔は前記高温ガスの流れ方向で前記空間の最下流側に設けられていることを特徴とする部材。
  5. 請求項1〜4の何れかの部材において、
    前記第一の壁に、伝熱促進部材が設けられていることを特徴とする部材。
  6. 請求項2〜5の何れかの部材において、
    前記空間の幅が、前記フィルム冷却孔の直径の1〜5倍であることを特徴とする部材。
  7. 圧縮空気を生成する圧縮機と、前記圧縮空気と燃料とから燃焼ガスを生成する燃焼器と、前記燃焼ガスで駆動するタービンとを有し、
    前記タービンは、ケーシング内部に設けられた静翼と動翼とを複数有し、前記動翼の外周側に、前記ケーシングにはめ込まれたシュラウドを有するガスタービンにおいて、
    前記シュラウドは内部に空間を複数有し、
    前記ケーシング側から供給された冷却ガスが前記空間を対流冷却して前記動翼側から排出されるよう構成されていることを特徴とするガスタービン。
  8. 第一の壁と、
    前記第一の壁と対向する第二の壁と、
    前記第一の壁と前記第二の壁とをつなぐ隔壁と、
    前記第一の壁と前記第二の壁と前記隔壁に囲まれた空間とを有する構造を複数有する部材の冷却方法において、
    冷却ガスを前記第二の壁から前記空間を経由して前記第一の壁から排出させることで、前記空間を対流冷却し、前記第一の壁をフィルム冷却することを特徴とする部材の冷却方法。
JP2010080072A 2010-03-31 2010-03-31 高温部材の冷却構造 Pending JP2011208624A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080072A JP2011208624A (ja) 2010-03-31 2010-03-31 高温部材の冷却構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080072A JP2011208624A (ja) 2010-03-31 2010-03-31 高温部材の冷却構造

Publications (1)

Publication Number Publication Date
JP2011208624A true JP2011208624A (ja) 2011-10-20

Family

ID=44939921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080072A Pending JP2011208624A (ja) 2010-03-31 2010-03-31 高温部材の冷却構造

Country Status (1)

Country Link
JP (1) JP2011208624A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020493A (ja) * 2015-05-07 2017-01-26 ゼネラル・エレクトリック・カンパニイ タービンバンドのアンチコーディングフランジ
WO2018131425A1 (ja) * 2017-01-12 2018-07-19 三菱日立パワーシステムズ株式会社 分割環表面側部材、分割環支持側部材、分割環、静止側部材ユニット及び方法
CN114412645A (zh) * 2021-12-26 2022-04-29 西北工业大学 涡扇发动机燃烧室用带狭缝肋层板冷却结构及冷却方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383766A (en) * 1990-07-09 1995-01-24 United Technologies Corporation Cooled vane
JPH11247621A (ja) * 1998-03-03 1999-09-14 Mitsubishi Heavy Ind Ltd ガスタービンにおける分割環の冷却構造
JP2001511864A (ja) * 1997-02-20 2001-08-14 シーメンス アクチエンゲゼルシヤフト タービン翼およびそのガスタービン設備への利用
JP2004534178A (ja) * 2001-07-13 2004-11-11 シーメンス アクチエンゲゼルシヤフト ターボ機械および燃焼タービンのための冷却可能なセグメント
WO2007099895A1 (ja) * 2006-03-02 2007-09-07 Ihi Corporation インピンジメント冷却構造
JP2009235964A (ja) * 2008-03-26 2009-10-15 Mitsubishi Heavy Ind Ltd ガスタービン冷却構造およびこれを備えたガスタービン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383766A (en) * 1990-07-09 1995-01-24 United Technologies Corporation Cooled vane
JP2001511864A (ja) * 1997-02-20 2001-08-14 シーメンス アクチエンゲゼルシヤフト タービン翼およびそのガスタービン設備への利用
JPH11247621A (ja) * 1998-03-03 1999-09-14 Mitsubishi Heavy Ind Ltd ガスタービンにおける分割環の冷却構造
JP2004534178A (ja) * 2001-07-13 2004-11-11 シーメンス アクチエンゲゼルシヤフト ターボ機械および燃焼タービンのための冷却可能なセグメント
WO2007099895A1 (ja) * 2006-03-02 2007-09-07 Ihi Corporation インピンジメント冷却構造
JP2009235964A (ja) * 2008-03-26 2009-10-15 Mitsubishi Heavy Ind Ltd ガスタービン冷却構造およびこれを備えたガスタービン

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020493A (ja) * 2015-05-07 2017-01-26 ゼネラル・エレクトリック・カンパニイ タービンバンドのアンチコーディングフランジ
CN106437867A (zh) * 2015-05-07 2017-02-22 通用电气公司 涡轮带防弦化凸缘
US10392950B2 (en) 2015-05-07 2019-08-27 General Electric Company Turbine band anti-chording flanges
WO2018131425A1 (ja) * 2017-01-12 2018-07-19 三菱日立パワーシステムズ株式会社 分割環表面側部材、分割環支持側部材、分割環、静止側部材ユニット及び方法
JP2018112144A (ja) * 2017-01-12 2018-07-19 三菱日立パワーシステムズ株式会社 分割環表面側部材、分割環支持側部材、分割環、静止側部材ユニット及び方法
US11441447B2 (en) 2017-01-12 2022-09-13 Mitsubishi Heavy Industries, Ltd. Ring-segment surface-side member, ring-segment support-side member, ring segment, stationary-side member unit, and method
CN114412645A (zh) * 2021-12-26 2022-04-29 西北工业大学 涡扇发动机燃烧室用带狭缝肋层板冷却结构及冷却方法
CN114412645B (zh) * 2021-12-26 2023-01-31 西北工业大学 涡扇发动机燃烧室用带狭缝肋层板冷却结构及冷却方法

Similar Documents

Publication Publication Date Title
JP6526166B2 (ja) ベーンの冷却構造
US9151173B2 (en) Use of multi-faceted impingement openings for increasing heat transfer characteristics on gas turbine components
JP6607566B2 (ja) 空気冷却式のエンジン表面冷却器
JP6245740B2 (ja) ガスタービン翼
US8668453B2 (en) Cooling system having reduced mass pin fins for components in a gas turbine engine
JP5977884B2 (ja) 非対称形状の後縁冷却孔
US10787911B2 (en) Cooling configuration for a gas turbine engine airfoil
US11414998B2 (en) Turbine blade and gas turbine
US8556583B2 (en) Blade cooling structure of gas turbine
US20130315710A1 (en) Gas turbine engine components with cooling hole trenches
JP4929097B2 (ja) ガスタービン翼
JP2006077767A (ja) オフセットされたコリオリタービュレータブレード
US8920122B2 (en) Turbine airfoil with an internal cooling system having vortex forming turbulators
JP2006105152A (ja) 段部付き出口のタービン翼形部
JP6435188B2 (ja) タービン翼における構造的構成および冷却回路
WO2012137898A1 (ja) タービン翼
US9810071B2 (en) Internally cooled airfoil
JP6506549B2 (ja) タービンブレード内の構造構成および冷却回路
EP3181821B1 (en) Turbulators for improved cooling of gas turbine engine components
KR20110065397A (ko) 오일 쿨러
JP2016125380A (ja) タービン翼の冷却構造
EP2955443A1 (en) Impingement cooled wall arrangement
JP2016538458A (ja) 内部冷却系を有する横方向に延在するスナッバを備えたタービン翼
JP2011208624A (ja) 高温部材の冷却構造
JP2010043568A (ja) タービン翼及びタービン翼後縁部の放熱促進部品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402