JP2011195947A - Color austenitic stainless steel material having corrosion resistance and high hardness and method of manufacturing the same - Google Patents
Color austenitic stainless steel material having corrosion resistance and high hardness and method of manufacturing the same Download PDFInfo
- Publication number
- JP2011195947A JP2011195947A JP2010073132A JP2010073132A JP2011195947A JP 2011195947 A JP2011195947 A JP 2011195947A JP 2010073132 A JP2010073132 A JP 2010073132A JP 2010073132 A JP2010073132 A JP 2010073132A JP 2011195947 A JP2011195947 A JP 2011195947A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- color
- corrosion resistance
- steel material
- austenitic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/34—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
- C23C8/26—Nitriding of ferrous surfaces
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
本発明はオーステナイト系ステンレス鋼材及びその製造方法に係るもので、より詳しくはオーステナイト系ステンレス鋼で製造された素材や部品を窒化熱処理(nitriding)及び表面加工工程を経た後、酸化処理を実施して優れた耐食性、高い表面硬度及び多様なカラーを有する高耐食性及び高硬度のカラーオーステナイト系ステンレス鋼材及びその製造方法に関するものである。 The present invention relates to an austenitic stainless steel material and a method for producing the same, and more specifically, a material or a part produced with austenitic stainless steel is subjected to a nitriding heat treatment (nitriding) and a surface processing step, followed by an oxidation treatment. The present invention relates to a high-corrosion resistance and high-hardness color austenitic stainless steel material having excellent corrosion resistance, high surface hardness and various colors, and a method for producing the same.
耐食性が重要視される分野に使用されるオーステナイト系ステンレス鋼(austenitic stainless steel)はクロム18重量%、ニッケル8重量%を含有した鉄を基本にした素材として、一般的に18-8ステンレス鋼と呼ぶ。またこの18-8ステンレス鋼に1〜3重量%のMoを含有したオーステナイト系ステンレス鋼も汎用的に使用される。
これらオーステナイト系ステンレス鋼はSTS304、STS316、STS310等用途や特性によって多くの鋼種がKSに規格化されており、耐食性に優れて生活用品、家庭及び事務室用品、装身具、美容器具、食品産業及び化学産業などに広く使用されている。
一方、現代社会で色相を用いて生活の中で多様な美観を作り出そうとする欲求が高まっている。
このようなステンレス鋼に対する従来のカラー形成方法は例えば次のようなものらがある。
CVD法やPVD法によってステンレス鋼の表面に形成されたTi又はZrの硬質膜は硬度は高いが母材との密着力が低くて剥離が生じることができて、主に金色系統の単一色相のみが具現可能だということが短所である。また母材であるステンレス鋼に匹敵する程度の耐食性を提供することができないことも問題である。
一方、イギリスのINCO法(UKpat、275、781)はステンレス鋼を酸性Cr溶液に浸漬させてFe、Ni、Crの酸化物からなった厚さ1μm内外の酸化物層を形成してこの酸化物層によって現れる光の干渉作用によって様々な色が発現されるのに、この際形成される酸化物層の厚さは数百Å程度に過ぎないので被膜の厚さが薄くて表面硬度が低くて傷が生じやすい。
ステンレス鋼を高温の酸化性雰囲気で酸化処理すると金色、褐色及び青色等の色相を付与することができるがこの際形成される厚さÅ程度の酸化被膜は前記INCO法と同様に傷が生じやすい。
また、前記の方法らは母材の硬度を高めることはできないので大きな荷重が作用する用途としては使用することが困難である。
一方、前記のカラー形成方法によるカラー素材は使用中にカラー酸化被膜層の剥離が発生したり又は変色される場合これを再処理して再び使用することができないので廃棄しなければならない問題もある。
Austenitic stainless steel used in fields where corrosion resistance is important is generally based on iron containing 18 wt% chromium and 8 wt% nickel. Call. An austenitic stainless steel containing 1 to 3% by weight of Mo in this 18-8 stainless steel is also generally used.
These austenitic stainless steels have many types of steel standardized by KS, such as STS304, STS316, STS310, etc., and they have excellent corrosion resistance and are used in daily life, household and office supplies, accessories, beauty instruments, food industry and chemicals. Widely used in industry.
On the other hand, there is a growing desire to create various aesthetics in daily life using hue.
Conventional color forming methods for such stainless steel include, for example, the following.
The hard film of Ti or Zr formed on the surface of stainless steel by CVD or PVD method has high hardness but low adhesion to the base material and can cause peeling. The disadvantage is that only can be implemented. Another problem is that it cannot provide corrosion resistance comparable to that of stainless steel as a base material.
On the other hand, the UK INCO method (UKpat, 275, 781) is formed by immersing stainless steel in an acidic Cr solution to form an oxide layer with a thickness of 1 μm and made of Fe, Ni and Cr oxides. Although various colors are manifested by the interference of light appearing by the layer, the thickness of the oxide layer formed at this time is only a few hundred mm, so the film thickness is thin and the surface hardness is low. Scratches are likely to occur.
When stainless steel is oxidized in a high-temperature oxidizing atmosphere, hues such as gold, brown, and blue can be imparted. However, the oxide film having a thickness of about Å is easily damaged as in the case of the INCO method. .
In addition, since the above methods cannot increase the hardness of the base material, it is difficult to use as a use in which a large load acts.
On the other hand, when the color oxide film layer peels off or changes color during use, the color material produced by the color forming method has a problem in that it cannot be used again after being reprocessed. .
本発明は前記の全ての問題点を考慮して提案されたものであり、本発明の目的は傷がよく生じなくて耐摩耗性及び耐食性に優れて、色相が美麗で装飾性に優れるだけでなく、使用後素材および部品を再処理することが可能で再使用することができるので省資源が可能で製造費用を低減することができる高耐食性及び高硬度のカラーオーステナイト系ステンレス鋼材及びその製造方法を提供することである。 The present invention has been proposed in consideration of all the above-mentioned problems, and the object of the present invention is that scratches do not occur well, wear resistance and corrosion resistance are excellent, hue is beautiful, and decoration is excellent. High-corrosion-resistant and high-hardness color austenitic stainless steel material that can save resources and reduce manufacturing costs because it can be reprocessed and reused after use. Is to provide.
このような目的を達成するために、本発明によると、(a)オーステナイト系ステンレス鋼材に窒化熱処理を実施する段階;(b)窒化熱処理を実施した前記鋼材に対して表面加工工程を実施する段階;および(c)表面加工工程を実施した前記鋼材に対してカラー酸化被膜層を形成するための酸化熱処理を実施する段階を含むことを特徴とする高耐食性及び高硬度のカラーオーステナイト系ステンレス鋼材の製造方法が提供される。
本発明で窒化熱処理ということは、ステンレス鋼材の表面に高硬度の窒素過飽和固溶体(nitrogen supersaturated solid solution)とその下部に窒素拡散層を形成するためにガス法、プラズマ法又は塩浴法で、300〜450℃の温度範囲で1〜30時間熱処理を実施することができ、この際ステンレス鋼材の表面に形成される窒素過飽和固溶体の相組成は好ましくはS−相(S-phase)であることを特徴とする。
前記表面加工工程は窒化熱処理の際、表面に生成された酸化物を除去して0.1〜5μmRaの表面粗度を形成するためのものでサンディング、ショットピーニング、バッフィング、ラッピング、ポリッシング又はベーパーショット等で実施することができる。
前記カラー酸化被膜層の形成は表面加工を実施したステンレス鋼の素材や部品の表面に多様で美麗なカラーを具現するためのもので、150〜600℃の酸化性ガス雰囲気で10秒〜20時間の間維持して実施して、この際酸化性ガス雰囲気は酸素、空気、水蒸気又は二酸化窒素の中で選択されたいずれか1種もしくはこれら2種以上の混合ガスである。また、これらガスに窒素ガスを混合して使用することもできる。
In order to achieve such an object, according to the present invention, (a) a step of performing a nitriding heat treatment on the austenitic stainless steel material; (b) a step of performing a surface processing step on the steel material subjected to the nitriding heat treatment. And (c) a step of performing an oxidation heat treatment for forming a color oxide film layer on the steel material that has been subjected to the surface processing step, wherein the color austenitic stainless steel material having high corrosion resistance and high hardness is provided. A manufacturing method is provided.
In the present invention, the nitriding heat treatment is a gas method, a plasma method or a salt bath method in order to form a nitrogen supersaturated solid solution having a high hardness on the surface of a stainless steel material and a nitrogen diffusion layer in the lower part thereof. The heat treatment can be carried out at a temperature range of ˜450 ° C. for 1 to 30 hours, and the phase composition of the nitrogen supersaturated solid solution formed on the surface of the stainless steel material is preferably S-phase. Features.
The surface processing step is for removing the oxide generated on the surface during nitriding heat treatment to form a surface roughness of 0.1 to 5 μmRa. Sanding, shot peening, buffing, lapping, polishing or vapor shot Etc. can be implemented.
The formation of the color oxide layer is intended to realize various and beautiful colors on the surface of stainless steel materials and parts subjected to surface processing, and it is 10 seconds to 20 hours in an oxidizing gas atmosphere at 150 to 600 ° C. In this case, the oxidizing gas atmosphere is any one selected from oxygen, air, water vapor, or nitrogen dioxide, or a mixed gas of two or more thereof. Moreover, nitrogen gas can also be mixed and used for these gases.
前記のようになされた本発明の高耐食性及び高硬度のカラーオーステナイト系ステンレス鋼の素材及び部品は次のような効果を提供する。
第一、傷がよく生じなくて耐摩耗性及び耐食性に優れた素材および部品を提供することができる。
第二、色相が美麗で装飾性に優れた素材および部品を提供することができる。
第三、使用後、素材および部品を再処理して再使用することができるので省資源が可能で製造費用を低減することができる。
The high corrosion resistance and high hardness color austenitic stainless steel materials and parts of the present invention as described above provide the following effects.
First, it is possible to provide a material and a part that are not easily damaged and have excellent wear resistance and corrosion resistance.
Second, it is possible to provide materials and parts having a beautiful hue and excellent decorativeness.
Third, after use, materials and parts can be reprocessed and reused, so that resources can be saved and manufacturing costs can be reduced.
まず、本発明はオーステナイト系ステンレス鋼で製造された素材や部品に対してガス法、プラズマ法又は塩浴法で300〜450℃の温度範囲で1〜30時間の間窒化熱処理を実施するのに、この際形成された窒素過飽和固溶体の厚さは1〜30μm、硬度は1000〜1800HVであり、相組成はS-相になるようにすることが望ましい。
高い耐食性を持つステンレス鋼材に対して450℃を超過する温度で窒化熱処理を実施する場合、次のような理由で耐食性が低下される。
ステンレス鋼の高い耐食性は鋼の表面に形成されているクロムの不動態皮膜によるもので、450℃超過温度範囲で窒化熱処理を実施すると鋼の表面にクロム窒化物(CrN,Cr2N等)が析出されて、このようなクロム窒化物の近傍では鋼に固溶されたクロムの量が低下される。従って、クロム窒化物の近傍ではクロムの不動態皮膜が形成されないか又は形成される量が足りなくなる、クロム窒化物が腐食環境に対していわゆる鋭敏化現象が生じて耐食性が低下される。
従って、仮に450℃以下で窒化熱処理を行うと、表面にこのようなクロム窒化物が析出されずS−相の窒素固溶体が形成されるのにこのS-相の窒素固溶体はステンレス鋼の固有の耐食性を低下させずに1000HV以上の高い表面硬度を有する。
特に、400℃以下の温度範囲で窒化熱処理を実施して形成されたS-相は窒化熱処理を実施しない場合と類似した水準の耐食性を持つもので知られている。
S-相の特性については多くの研究があるのに、格子常数が0.378nmの面心立方体((FCC、Face Centered Cubic)であり、ここに窒素が最大22原子%固溶された窒素過飽和固溶体である。
一方、ステンレス鋼材の窒化熱処理によって耐食性が向上される理由としては、(a)ステンレス鋼の表面にて窒素の不動態皮膜の形成が促進されるからだということと(b)活性化されたステンレス鋼の表面に窒素の濃度が増加されたからだということ等を挙げられる。
ところで、450℃超過温度で窒化熱処理を実施するとこのS-相の代わりにCrNが析出されて耐食性を低下する。従って、窒化熱処理は300〜450℃の温度範囲で1〜30時間の間実施してS-相の厚さが1〜30μmになるようにすることが望ましい。
これより低温で窒化熱処理を実施すると、窒素原子の拡散速度が著しく低いので十分な厚さのS-相と窒素拡散層を得ることができず外部の高荷重を支えることができない。さらに、長時間窒化熱処理を実施すると所望の厚さのS-相と窒素拡散層を得ることができるが経済的でない。
前記窒化熱処理はガス法、プラズマ法又は塩浴法で実施することができるのに、ここで窒化熱処理ということは純粋窒化雰囲気で実施する純窒化熱処理(nitriding)と純粋窒化雰囲気に炭素を含む混合雰囲気で実施する窒化浸炭熱処理(nitrocarburizing)とを含む広義の意味で使用する。
前記窒化熱処理の工程の中ガス法による窒化熱処理は次の方法で実施することができる。
まず、窒化熱処理に先立って、窒素原子の浸透を容易にするためにフッ化処理を実施する。このフッ化処理に使用するフッ素系ガスとしてはNF3、BF3、CF4、HF、SF6、C2F6及びWF6等で構成されるフッ素化合物ガスがあるのに、これらを単独もしくは混合して使用したり、もしくはここに窒素ガスを希釈して使用することもできる。
フッ化処理は窒化熱処理温度である300〜450℃の熱処理炉にステンレス鋼の素材や部品を装入した後フッ素系ガス雰囲気を作り、この雰囲気下で維持して実施する。このようなフッ素系ガス雰囲気中でステンレス鋼の素材や部品の維持時間はその形状や寸法によって適当な時間で設定するのに普通は数分〜数十分の範囲内で設定する。
このフッ化処理によって、窒素原子がステンレス鋼の表面層に浸透しやすくなるのに、この理由は次のようだ。
ステンレス鋼材の表面は窒化作用を起こす窒素原子の浸透拡散を阻害する不動態皮膜が形成されている。このような不動態皮膜が形成されているステンレス鋼材を前記のようなフッ素系ガス雰囲気下で加熱すると前記不動態皮膜がフッ化膜に変換される。このフッ化膜は前記不動態皮膜に比べ窒素原子の浸透が容易なのでステンレス鋼は窒化が容易な表面状態で転移されて深くて均一な窒化層が形成され得る与件を造成する。
窒化熱処理は前記のように、フッ化処理によって窒素原子の浸透が容易な状態になったステンレス鋼を300〜450℃の温度のガス窒化雰囲気で維持することによって実施される。この場合、ガス窒化雰囲気は純粋NH3、又はNH3と吸熱性ガス又はNH3とCO2の混合ガスが使用されるのに、一般的には前記ガスに窒素ガスが混合されて使用される。
又はアンモニアガスと炭化水素系の混合ガスを使用して窒化熱処理を実施することもできるのに、この場合炭化水素系ガスによる表面活性化の効果で前記のように窒化熱処理の前にフッ素系ガスで前処理を実施しなくてもガス窒化熱処理を実施することができる。
塩浴窒化はNaCN、KCN、NaCNO、KCNO、K2CO3及びNa2CO3等の混合溶融塩にステンレス鋼を一定の時間浸漬してCN-又はCNO-の窒化、又は窒化浸炭反応によって窒化熱処理を実施する工程である。
プラズマ窒化は真空チャンバー内にステンレス鋼を装入して一定の圧力まで減圧した後窒素、水素及び炭化水素などの反応ガスを所定の割合で混合して真空チャンバーに導入すると真空チャンバーの壁は陽極になって、ステンレス鋼は陰極になるように電圧を印加するとグロー放電が発生して窒化反応が進行される。
この際、反応ガスを導入する前にステンレス鋼の表面をスパッタリングで活性化させる予備処理を行うことが重要である。スパッタリングは例えば、300〜450℃の温度領域で0.5〜5torr程度のArと水素の混合ガス雰囲気でグロー加熱して、高温のガスイオンを金属表面に衝突させて、最表面の酸化被膜や吸着汚染層を除去する工程である。この予備処理の操作が十分ではないと、形成される窒化層が不十分であるか、または全然窒化層が形成されない場合もある。
前記300〜450℃の温度領域で窒化熱処理を実施して形成されるS-相はステンレス鋼の固有の耐食性を低下させずに1000HV以上の高い表面硬度を有するステンレス鋼を提供する。
続いて、前記窒化熱処理を実施した素材及び部品に対して表面加工工程を実施する。
窒化熱処理の際工程によって、例えば窒化熱処理の完了の後高温で熱処理で外に取り出して空気と接触すると、空気中の酸素によってステンレス鋼の表面に酸化物が生成されるのに、このような酸化物は後述する酸化によるカラー酸化被膜層の形成に妨げになるのでこれを除去する必要がある。
また、酸化被膜の形成によるカラー具現は酸化層の表面から反射された光と酸化層を透過して母材の表面から反射された光との干渉現象によるもので、表面が粗過ぎる場合光の乱反射によって所望の美麗な色相を得ることができない。
従って、表面加工工程でステンレス鋼の表面の酸化物を除去して表面粗度を調節するのに、この際表面加工の後の粗度は0.1〜5μmRaの範囲とすることが好ましく表面加工工程はサンディング(sanding)、ショットピーニング(shot peening)、バッフィング(buffing)、ラッピング(lapping)、ポリッシング(polishing)又はベーパーショット(vapor shot)等で実施することができる。
その次、前記表面加工工程を実施したステンレス鋼に対してカラー酸化被膜を形成するための酸化処理を実施する。
酸化によるカラー具現は酸化層の厚さによって独特のカラーを形成するもので、酸化処理は150〜600℃の酸化性ガス雰囲気下で10秒〜20時間の間酸化して実施することができる。この際、使用される酸化性ガスは酸素、空気、水蒸気及び二酸化窒素を単独またはこれらを2種以上混合して使用することができる。もしくは、これらガスに窒素を含むこともできる。
酸化処理の温度が150℃未満であるか又は酸化処理の時間を10秒未満にした時は酸化処理が行われないので所望のカラーを得ることができず、酸化処理の温度が600℃より高いか又は酸化処理の時間が20時間を超過する場合には窒化熱処理の際に形成されたS-相がフェライト、CrN及びオーステナイト相で分解して耐食性が低下され硬度が急激に低くなる。
一方、低温では長時間の酸化処理で、または高温では短時間の酸化処理で同一の水準の厚さを有する酸化物層が形成されて同一のカラーを得ることができる。
即ち、高周波熱処理のように800℃の高温で数秒〜数十秒の間短時間加熱しても低温で長時間加熱した時と同一の色相を得ることができる。
前記酸化処理の際、酸化温度、時間および酸化雰囲気によって形成される酸化物層の厚さが異なることになり、(数十ないし数百Å内外)この酸化物層の厚さに相応する色相が得られる。
一方、使用中にカラー酸化被膜層の剥離または変色が発生する場合、表面加工工程で前記カラー酸化被膜層を除去して再び酸化処理を実施してカラーを付与して再使用してもよい。
本発明による高耐食性及び高硬度のカラーオーステナイト系ステンレス鋼の素材及び部品は表面硬度が高くて高荷重に耐えることができ、摩擦によって傷がよく生じないので長時間使用してもその美麗な色相が維持される。且つ窒化熱処理の時形成されたS-相による優れた耐食性で腐食環境に曝される洗濯機部品、水栓、トイレ用品、建築内外装材及びクルーズ船舶の装飾品などに使用すればよい。
また、本発明によるカラー素材及び部品は使用中にカラー酸化被膜層の剥離が発生したり変色したりしても再使用することができるので省資源が可能で製造費用を低減することができる利点がある。
以下、本発明を実施例を通じてより具体的に説明する。
<実施例1>
STS304、STS316及びSTS310素材で外径30mmφ、厚さ1mm、長さ300mmのパイプを製作した。このパイプを400℃で設定したピット型炉に装入して炉内の空気をN2で置換した後フッ素系ガス(NF38嵩%とN292嵩%の混合ガス)を注入してこの状態で20分間維持した。次いで、前記フッ素系ガスをN2で置換した後400℃の窒化性ガス(NF360嵩%、CO210嵩%及びN230嵩%)の雰囲気で15時間の間窒化処理をした後空冷した。
このように窒化処理をした時、STS304、STS316及びSTS310素材の化合物層の厚さは各々15μm、18μm、14μmだったし、化合物層の硬度は各々1010Hv、1070Hv、1100Hvだった。且つ塩水噴霧試験で(KS D 9502)耐食性を評価した結果600時間でも発錆がなかった。
前記のような窒化処理パイプをバッフィングを実施してその表面粗度を1.2μmRaにした後480℃の空気雰囲気で5時間の間維持した結果、黄金色の色相を得たし材質別の色相の差は大きくなかった。
<実施例2>
STS304及びSTS316素材で厚さ5mm、直径20mmの円盤形状の試験片を製作してプラズマ窒化を実施した。プラズマ窒化の条件はN280嵩%とH220嵩%の混合ガスを導入して5torrで減圧して試験片は陰極にして約500Vを印加して、グロー放電状態で13時間の間実施することにした。この際、試験片の温度は390℃として、窒化処理の後高真空下で常温まで炉冷した。
前記のようにプラズマ窒化を実施した時、化合物層の厚さはSTS304及びSTS316に対して各々12μm、14μmだったし化合物層の硬度は各々1020Hv、1200Hvだった。これを塩水噴霧試験で(KS D 9502)耐食性を評価した結果600時間でも発錆がなかった。
この試片を表面粗度が0.9μmRaになるようにポリッシングした後、450℃の酸素50嵩%と空気50嵩%の混合ガス雰囲気で5時間の間酸化処理した結果、金色の色相を得た。
<実施例3>
STS316及びSTS310で製造された直径11mmのボールに対して塩浴窒化を実施した。塩浴窒化は450℃で維持されるNaCN45重量%、Na2CO345重量%及び(NaK)4Fe(CN)615重量%で構成される混合溶融塩に8時間の間浸積する方法で実施した。このように塩浴窒化を実施した時化合物層の厚さはSTS316及びSTS310に対して各々22μm、19μmだったし、化合物層の硬度は二つの素材が全て1000Hv程度だった。
この後、この塩浴窒化されたボールに対してバレル研磨を実施した。バレル研磨の条件はボール100個に対して水500cc、直径3mmの研磨石800cc及びコンパウンド30ccの割合で混合した混合液に浸して回転数は200prmとして20分間遠心バレルを実施することにした。
この研磨されたボールを500℃の酸素60嵩%と窒素40嵩%の混合ガス雰囲気で5時間の間酸化を実施した結果金色の色相を得たし、塩水噴霧試験で耐食性を評価した結果700時間後にも発錆がなかった。
以上のように、本発明はたとえ限定された実施例によって説明されたが、本発明が属する技術分野における通常の知識を持つ者により本発明の技術思想と下記に記載される特許請求範囲の均等範囲内で多様な修正及び変形が可能である。
First, in the present invention, a nitriding heat treatment is performed on a material or a part made of austenitic stainless steel by a gas method, a plasma method or a salt bath method at a temperature range of 300 to 450 ° C. for 1 to 30 hours. The nitrogen supersaturated solid solution formed at this time has a thickness of 1 to 30 μm, a hardness of 1000 to 1800 HV, and a phase composition of S-phase.
When a nitriding heat treatment is performed on a stainless steel material having high corrosion resistance at a temperature exceeding 450 ° C., the corrosion resistance is lowered for the following reason.
The high corrosion resistance of stainless steel is due to the passive film of chromium formed on the surface of the steel. When nitriding heat treatment is performed at a temperature exceeding 450 ° C, chromium nitride (CrN, Cr 2 N, etc.) is formed on the surface of the steel. In the vicinity of such chromium nitrides, the amount of chromium dissolved in the steel is reduced. Accordingly, a chromium passive film is not formed in the vicinity of the chromium nitride or the amount formed is insufficient, and the chromium nitride causes a so-called sensitization phenomenon to the corrosive environment, thereby reducing the corrosion resistance.
Accordingly, if a nitriding heat treatment is performed at 450 ° C. or lower, such a chromium nitride is not deposited on the surface and an S-phase nitrogen solid solution is formed, but this S-phase nitrogen solid solution is inherent to stainless steel. It has a high surface hardness of 1000 HV or more without deteriorating corrosion resistance.
In particular, an S-phase formed by performing a nitriding heat treatment in a temperature range of 400 ° C. or less is known to have a level of corrosion resistance similar to that in the case of not performing the nitriding heat treatment.
Although there are many studies on the properties of the S-phase, it is a face-centered cube with a lattice constant of 0.378 nm (FCC, Face Centered Cubic), where nitrogen is supersaturated with a maximum of 22 atomic percent of solid solution of nitrogen. It is a solid solution.
On the other hand, the reason why the corrosion resistance is improved by the nitriding heat treatment of the stainless steel material is that (a) the formation of a passive film of nitrogen is promoted on the surface of the stainless steel and (b) the activated stainless steel This is because the concentration of nitrogen was increased on the surface.
By the way, when the nitriding heat treatment is performed at a temperature exceeding 450 ° C., CrN is precipitated instead of the S-phase, and the corrosion resistance is lowered. Therefore, it is desirable that the nitriding heat treatment is performed in the temperature range of 300 to 450 ° C. for 1 to 30 hours so that the S-phase thickness becomes 1 to 30 μm.
When the nitriding heat treatment is performed at a temperature lower than this, since the diffusion rate of nitrogen atoms is remarkably low, a sufficiently thick S-phase and a nitrogen diffusion layer cannot be obtained and a high external load cannot be supported. Furthermore, when the nitriding heat treatment is performed for a long time, an S-phase and a nitrogen diffusion layer having a desired thickness can be obtained, but this is not economical.
The nitriding heat treatment can be performed by a gas method, a plasma method, or a salt bath method. Here, the nitriding heat treatment means a pure nitriding heat treatment (nitriding) performed in a pure nitriding atmosphere and a mixture containing carbon in a pure nitriding atmosphere. Used in a broad sense including nitrocarburizing performed in an atmosphere.
The nitriding heat treatment by the medium gas method in the nitriding heat treatment step can be performed by the following method.
First, prior to the nitriding heat treatment, a fluorination treatment is performed to facilitate the penetration of nitrogen atoms. Fluorine-based gas used for the fluorination treatment includes fluorine compound gas composed of NF 3 , BF 3 , CF 4 , HF, SF 6 , C 2 F 6, WF 6, etc. It can also be used by mixing, or nitrogen gas can be diluted here.
The fluorination treatment is carried out by introducing a stainless steel material and parts into a heat treatment furnace having a nitriding heat treatment temperature of 300 to 450 ° C., creating a fluorine-based gas atmosphere, and maintaining this atmosphere. In such a fluorine-based gas atmosphere, the maintenance time of the stainless steel material and parts is usually set within a range of several minutes to several tens of minutes in order to set it in an appropriate time depending on its shape and dimensions.
This fluorination treatment facilitates the penetration of nitrogen atoms into the surface layer of stainless steel. The reason for this is as follows.
The surface of the stainless steel material is formed with a passive film that inhibits the permeation and diffusion of nitrogen atoms that cause nitriding. When the stainless steel material on which such a passive film is formed is heated under the fluorine gas atmosphere as described above, the passive film is converted into a fluoride film. Since this fluoride film allows nitrogen atoms to penetrate more easily than the passive film, stainless steel can be transferred in a surface state that is easy to nitride, thereby forming a deep and uniform nitride layer.
As described above, the nitriding heat treatment is performed by maintaining the stainless steel in which nitrogen atoms are easily penetrated by the fluorination treatment in a gas nitriding atmosphere at a temperature of 300 to 450 ° C. In this case, the gas nitriding atmosphere is pure NH 3 , NH 3 and an endothermic gas, or a mixed gas of NH 3 and CO 2 , but generally the gas is mixed with nitrogen gas. .
Alternatively, the nitriding heat treatment can be carried out using a mixed gas of ammonia gas and hydrocarbon. In this case, the fluorine-based gas is used before the nitriding heat treatment as described above due to the surface activation effect by the hydrocarbon gas. Thus, the gas nitriding heat treatment can be performed without performing the pretreatment.
Salt bath nitriding is NaCN, KCN, NaCNO, KCNO, by dipping K 2 CO 3 and Na 2 CO 3 stainless steel constant time in a mixed molten salt such as CN - nitride nitride, or by nitriding carburizing reaction - or CNO This is a step of performing heat treatment.
In plasma nitriding, stainless steel is charged into a vacuum chamber and the pressure is reduced to a certain level, and then a reaction gas such as nitrogen, hydrogen, and hydrocarbon is mixed at a predetermined ratio and introduced into the vacuum chamber. Thus, when a voltage is applied so that the stainless steel becomes a cathode, glow discharge is generated and the nitriding reaction proceeds.
At this time, it is important to perform a pretreatment for activating the surface of the stainless steel by sputtering before introducing the reaction gas. For example, sputtering is performed by glow heating in a mixed gas atmosphere of Ar and hydrogen of about 0.5 to 5 torr in a temperature range of 300 to 450 ° C., and high-temperature gas ions collide with the metal surface to form an oxide film on the outermost surface. This is a step of removing the adsorbed contamination layer. If this pretreatment operation is not sufficient, the formed nitride layer may be insufficient, or no nitride layer may be formed at all.
The S-phase formed by performing a nitriding heat treatment in the temperature range of 300 to 450 ° C. provides a stainless steel having a high surface hardness of 1000 HV or higher without reducing the inherent corrosion resistance of the stainless steel.
Subsequently, a surface processing step is performed on the material and parts subjected to the nitriding heat treatment.
When the nitriding heat treatment process is performed, for example, after the completion of the nitriding heat treatment, when the heat treatment is taken out at a high temperature and contacted with air, oxides are generated on the surface of the stainless steel due to oxygen in the air. Since the material hinders the formation of a color oxide film layer by oxidation, which will be described later, it must be removed.
Also, the color realization by the formation of the oxide film is due to the interference phenomenon between the light reflected from the surface of the oxide layer and the light reflected through the oxide layer and reflected from the surface of the base material. A desired beautiful hue cannot be obtained by irregular reflection.
Accordingly, in order to adjust the surface roughness by removing oxides on the surface of the stainless steel in the surface processing step, the roughness after the surface processing is preferably in the range of 0.1 to 5 μmRa. The process can be performed by sanding, shot peening, buffing, lapping, polishing or vapor shot.
Subsequently, an oxidation treatment for forming a color oxide film is performed on the stainless steel subjected to the surface processing step.
The color formation by oxidation forms a unique color according to the thickness of the oxide layer, and the oxidation treatment can be performed by oxidizing for 10 seconds to 20 hours in an oxidizing gas atmosphere at 150 to 600 ° C. At this time, the oxidizing gas used may be oxygen, air, water vapor, and nitrogen dioxide alone or in combination of two or more thereof. Alternatively, these gases can contain nitrogen.
When the oxidation treatment temperature is less than 150 ° C. or the oxidation treatment time is less than 10 seconds, the oxidation treatment is not performed, so that a desired color cannot be obtained, and the oxidation treatment temperature is higher than 600 ° C. Alternatively, when the oxidation treatment time exceeds 20 hours, the S-phase formed during the nitriding heat treatment decomposes in the ferrite, CrN and austenite phases, the corrosion resistance is lowered, and the hardness is rapidly lowered.
On the other hand, the same color can be obtained by forming oxide layers having the same level of thickness by low-temperature oxidation treatment at low temperatures or short-time oxidation treatment at high temperatures.
That is, even when heated for a short time at a high temperature of 800 ° C. for several seconds to several tens of seconds as in the high-frequency heat treatment, the same hue as when heated for a long time at a low temperature can be obtained.
During the oxidation treatment, the thickness of the oxide layer formed varies depending on the oxidation temperature, time and oxidizing atmosphere (inside and outside of several tens to several hundreds of liters), and the hue corresponding to the thickness of this oxide layer is can get.
On the other hand, when peeling or discoloration of the color oxide film layer occurs during use, the color oxide film layer may be removed and re-oxidized in the surface processing step to give a color and reused.
High corrosion resistance and high hardness color austenitic stainless steel materials and parts according to the present invention have high surface hardness, can withstand high loads, and are not easily damaged by friction. Is maintained. Moreover, it may be used for washing machine parts, faucets, toilet articles, interior / exterior materials for buildings, and cruise ship decorations that are exposed to a corrosive environment with excellent corrosion resistance due to the S-phase formed during nitriding heat treatment.
In addition, the color material and parts according to the present invention can be reused even if the color oxide film layer is peeled off or discolored during use, so that resources can be saved and manufacturing costs can be reduced. There is.
Hereinafter, the present invention will be described more specifically through examples.
<Example 1>
Pipes having an outer diameter of 30 mmφ, a thickness of 1 mm, and a length of 300 mm were manufactured from STS304, STS316, and STS310 materials. The pipe was placed in a pit type furnace set at 400 ° C., and the air in the furnace was replaced with N 2, and then a fluorine-based gas (a mixed gas of 8% by volume of NF 3 and 92% by volume of N 2 ) was injected. The state was maintained for 20 minutes. Next, after replacing the fluorine-based gas with N 2 , nitriding treatment was performed for 15 hours in an atmosphere of a nitriding gas (NF 3 60% by volume, CO 2 10% by volume, and N 2 30% by volume) at 400 ° C. Air cooled.
When nitriding was performed in this way, the thicknesses of the compound layers of the STS304, STS316, and STS310 materials were 15 μm, 18 μm, and 14 μm, respectively, and the hardnesses of the compound layers were 1010 Hv, 1070 Hv, and 1100 Hv, respectively. In addition, as a result of evaluating the corrosion resistance in a salt spray test (KS D 9502), there was no rusting even after 600 hours.
After buffing the nitriding pipe as described above and setting its surface roughness to 1.2 μmRa, it was maintained in an air atmosphere at 480 ° C. for 5 hours. As a result, a golden hue was obtained and the hue of each material The difference was not great.
<Example 2>
A disk-shaped test piece having a thickness of 5 mm and a diameter of 20 mm was manufactured from STS304 and STS316 materials, and plasma nitriding was performed. The plasma nitriding conditions were carried out for 13 hours in a glow discharge state by introducing a mixed gas of 80% by volume of N 2 and 20% by volume of H 2 and depressurizing at 5 torr, applying a test piece of about 500 V as a cathode. Decided to do. At this time, the temperature of the test piece was set to 390 ° C., and the furnace was cooled to room temperature under high vacuum after nitriding.
When plasma nitriding was performed as described above, the thickness of the compound layer was 12 μm and 14 μm, respectively, with respect to STS304 and STS316, and the hardness of the compound layer was 1020 Hv and 1200 Hv, respectively. As a result of evaluating the corrosion resistance in a salt spray test (KS D 9502), there was no rust even after 600 hours.
This specimen was polished to a surface roughness of 0.9 μmRa, and then oxidized for 5 hours in a mixed gas atmosphere of 50% oxygen and 50% air at 450 ° C. As a result, a golden hue was obtained. It was.
<Example 3>
Salt bath nitridation was performed on 11 mm diameter balls made with STS316 and STS310. Salt bath nitriding is a method of immersing for 8 hours in a mixed molten salt composed of 45 wt% NaCN, 45 wt% Na 2 CO 3 and 15 wt% (NaK) 4 Fe (CN) 6 maintained at 450 ° C. It carried out in. When salt bath nitridation was performed in this way, the thickness of the compound layer was 22 μm and 19 μm, respectively, with respect to STS316 and STS310, and the hardness of the compound layer was about 1000 Hv for both of the two materials.
Then, barrel polishing was performed on the salt bath nitrided balls. The barrel polishing was carried out by centrifuging the barrel for 20 minutes at a rotation speed of 200 prm by immersing it in a mixture of 500 cc water, 800 cc grinding stone with a diameter of 3 mm and 30 cc compound for 100 balls.
The polished ball was oxidized for 5 hours in a mixed gas atmosphere of oxygen of 60% by volume and nitrogen of 40% by volume at 500 ° C. As a result, a golden hue was obtained, and the corrosion resistance was evaluated by a salt spray test. There was no rusting after hours.
As described above, the present invention has been described by way of limited embodiments, but the technical idea of the present invention and the equivalents of the claims described below are equivalent to those having ordinary knowledge in the technical field to which the present invention belongs. Various modifications and variations are possible within the scope.
Claims (7)
(b)窒化熱処理を実施した前記鋼材に対して表面加工工程を実施する段階、および
(c)表面加工工程を実施した前記鋼材に対してカラー酸化被膜層を形成するための酸化熱処理を実施する段階を含むことを特徴とする高耐食性及び高硬度のカラーオーステナイト系ステンレス鋼材の製造方法。 (a) performing a nitriding heat treatment on the austenitic stainless steel material;
(b) performing a surface processing step on the steel material subjected to the nitriding heat treatment; and
(c) A method for producing a high-corrosion-resistant and high-hardness color austenitic stainless steel material comprising a step of performing an oxidation heat treatment for forming a color oxide film layer on the steel material subjected to the surface processing step .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100023622A KR20110104631A (en) | 2010-03-17 | 2010-03-17 | Colored austenitic stainless steel article and manufacturing method of the same with excellent corrosion resistance and high surface hardness |
KR10-2010-0023622 | 2010-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011195947A true JP2011195947A (en) | 2011-10-06 |
Family
ID=44600309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010073132A Pending JP2011195947A (en) | 2010-03-17 | 2010-03-26 | Color austenitic stainless steel material having corrosion resistance and high hardness and method of manufacturing the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2011195947A (en) |
KR (1) | KR20110104631A (en) |
CN (1) | CN102191452B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102747317A (en) * | 2012-07-27 | 2012-10-24 | 重庆三爱海陵实业有限责任公司 | Liquid nitrocarburizing automatic production line for valve |
CN103276346A (en) * | 2013-05-06 | 2013-09-04 | 青岛泰德汽车轴承有限责任公司 | Processing method of metal bearing retainer |
KR101650318B1 (en) * | 2015-03-24 | 2016-08-23 | 금오공과대학교 산학협력단 | Nitriding method of stainless steel |
JP2018135596A (en) * | 2017-02-22 | 2018-08-30 | 学校法人トヨタ学園 | Production method of metal product |
JP2019119927A (en) * | 2017-12-28 | 2019-07-22 | ワークソリューション株式会社 | Stainless steel product, and manufacturing method of stainless steel product |
JP2022128997A (en) * | 2021-02-24 | 2022-09-05 | 株式会社サーフテクノロジー | Austenite stainless steel, and production method and machine instrument therefor |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102747316B (en) * | 2012-07-30 | 2014-06-18 | 鹰普航空零部件(无锡)有限公司 | Salt bath nitriding pre-treatment and gas nitriding complex heat treatment process of anti-corrosion stainless steel parts |
CN103014599B (en) * | 2012-12-09 | 2015-03-18 | 常州大学 | Treatment process of composite surface of austenitic stainless steel |
CN105112623B (en) * | 2015-07-10 | 2017-04-26 | 国网山东省电力公司电力科学研究院 | Rapid stabilization method for weathering resistant steel |
BR102015025727A2 (en) * | 2015-10-08 | 2017-05-02 | Mahle Int Gmbh | VALVE FOR INTERNAL COMBUSTION ENGINES |
KR101844575B1 (en) | 2016-12-23 | 2018-04-03 | 주식회사 포스코 | Gold color steel plate and manufacturing method thereof |
CN106591769B (en) * | 2016-12-27 | 2018-07-27 | 中国兵器工业第五九研究所 | A kind of preparation method of steel material surface wear-resistant self-lubricating black composite coating |
WO2018119769A1 (en) * | 2016-12-28 | 2018-07-05 | 深圳大学 | Wood-grain stainless steel and preparation method therefor |
CN108486525A (en) * | 2017-02-22 | 2018-09-04 | 学校法人丰田学园 | The manufacturing method of metal product |
KR20190076474A (en) * | 2017-12-22 | 2019-07-02 | 주식회사 포스코 | Stainless colored substrate having excellent wear resistance and colorstrength, and color development method of stainless steel substrate therefor |
KR102188994B1 (en) | 2018-10-31 | 2020-12-09 | 한국생산기술연구원 | Low-Temperature Carburizing Method by Controlling Carbon Potential |
KR102188995B1 (en) | 2018-10-31 | 2020-12-09 | 한국생산기술연구원 | Low-Temperature Carburizing Method Using Native Oxide Removal Gas |
KR102240463B1 (en) * | 2019-05-24 | 2021-04-15 | 장인열처리(주) | Manufacturing method of a lightweight piston rod with improved corrosion resistance of a shock-absorber |
CN110724902A (en) * | 2019-11-18 | 2020-01-24 | 惠州市鑫洪柏精密五金制品有限公司 | Pollution-free steel gas blackening process |
KR102498434B1 (en) * | 2020-12-29 | 2023-02-14 | 주식회사 컬러스텐 | Manufacturing method of colored stainless steel sheet |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4899047A (en) * | 1972-03-29 | 1973-12-15 | ||
JPS5141020B2 (en) * | 1972-10-07 | 1976-11-08 | ||
JPS6021370A (en) * | 1983-07-14 | 1985-02-02 | Hisashi Yokoo | Manufacture of color stainless material |
JPS61281864A (en) * | 1985-06-07 | 1986-12-12 | Nisshin Steel Co Ltd | Stainless steel strip provided with temper color and its manufacture |
JPS63238259A (en) * | 1987-03-27 | 1988-10-04 | Nippon Yakin Kogyo Co Ltd | Coloring treatment of stainless steel pipe |
JPH06145951A (en) * | 1992-09-16 | 1994-05-27 | Daido Hoxan Inc | Method for nitriding alustenitic stainless product |
JP2005533185A (en) * | 2002-07-16 | 2005-11-04 | デンマークス テクニスク ユニヴェルジテイト−ディーティーユー | Stainless steel surface hardening |
JP2007227149A (en) * | 2006-02-23 | 2007-09-06 | Riken Corp | Separator for solid polymer electrolyte fuel cell |
JP2008545886A (en) * | 2005-05-31 | 2008-12-18 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | Metal strip product and manufacturing method thereof |
JP2009052104A (en) * | 2007-08-28 | 2009-03-12 | Doshisha | Surface nitriding treatment method using molten salt electrochemical process |
JP2009161815A (en) * | 2008-01-08 | 2009-07-23 | Panasonic Corp | Aerosol deposition apparatus, pole plate for electricity storage device, separator, and electricity storage device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3174422B2 (en) * | 1993-03-01 | 2001-06-11 | エア・ウォーター株式会社 | Stainless nitride products |
KR100761903B1 (en) * | 2006-05-01 | 2007-09-28 | 김영희 | Method for manufacturing high corrosion-resistant color steel materials |
-
2010
- 2010-03-17 KR KR1020100023622A patent/KR20110104631A/en not_active Application Discontinuation
- 2010-03-26 JP JP2010073132A patent/JP2011195947A/en active Pending
- 2010-03-29 CN CN201010134496.3A patent/CN102191452B/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4899047A (en) * | 1972-03-29 | 1973-12-15 | ||
JPS5141020B2 (en) * | 1972-10-07 | 1976-11-08 | ||
JPS6021370A (en) * | 1983-07-14 | 1985-02-02 | Hisashi Yokoo | Manufacture of color stainless material |
JPS61281864A (en) * | 1985-06-07 | 1986-12-12 | Nisshin Steel Co Ltd | Stainless steel strip provided with temper color and its manufacture |
JPS63238259A (en) * | 1987-03-27 | 1988-10-04 | Nippon Yakin Kogyo Co Ltd | Coloring treatment of stainless steel pipe |
JPH06145951A (en) * | 1992-09-16 | 1994-05-27 | Daido Hoxan Inc | Method for nitriding alustenitic stainless product |
JP2005533185A (en) * | 2002-07-16 | 2005-11-04 | デンマークス テクニスク ユニヴェルジテイト−ディーティーユー | Stainless steel surface hardening |
JP2008545886A (en) * | 2005-05-31 | 2008-12-18 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | Metal strip product and manufacturing method thereof |
JP2007227149A (en) * | 2006-02-23 | 2007-09-06 | Riken Corp | Separator for solid polymer electrolyte fuel cell |
JP2009052104A (en) * | 2007-08-28 | 2009-03-12 | Doshisha | Surface nitriding treatment method using molten salt electrochemical process |
JP2009161815A (en) * | 2008-01-08 | 2009-07-23 | Panasonic Corp | Aerosol deposition apparatus, pole plate for electricity storage device, separator, and electricity storage device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102747317A (en) * | 2012-07-27 | 2012-10-24 | 重庆三爱海陵实业有限责任公司 | Liquid nitrocarburizing automatic production line for valve |
CN103276346A (en) * | 2013-05-06 | 2013-09-04 | 青岛泰德汽车轴承有限责任公司 | Processing method of metal bearing retainer |
KR101650318B1 (en) * | 2015-03-24 | 2016-08-23 | 금오공과대학교 산학협력단 | Nitriding method of stainless steel |
JP2018135596A (en) * | 2017-02-22 | 2018-08-30 | 学校法人トヨタ学園 | Production method of metal product |
JP7078220B2 (en) | 2017-02-22 | 2022-05-31 | 学校法人トヨタ学園 | Manufacturing method of metal products |
JP2019119927A (en) * | 2017-12-28 | 2019-07-22 | ワークソリューション株式会社 | Stainless steel product, and manufacturing method of stainless steel product |
JP7197109B2 (en) | 2017-12-28 | 2022-12-27 | 八田工業株式会社 | Stainless steel product and method for manufacturing stainless steel product |
JP2022128997A (en) * | 2021-02-24 | 2022-09-05 | 株式会社サーフテクノロジー | Austenite stainless steel, and production method and machine instrument therefor |
JP7417216B2 (en) | 2021-02-24 | 2024-01-18 | 株式会社サーフテクノロジー | Austenitic stainless steel production method |
Also Published As
Publication number | Publication date |
---|---|
CN102191452B (en) | 2014-12-24 |
KR20110104631A (en) | 2011-09-23 |
CN102191452A (en) | 2011-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011195947A (en) | Color austenitic stainless steel material having corrosion resistance and high hardness and method of manufacturing the same | |
US5593510A (en) | Method of carburizing austenitic metal | |
US20070251605A1 (en) | Method for producing highly corrosion-resistant colored article made of steel | |
CN101648334A (en) | Manufacturing technique of austenitic stainless steel cold-rolled plate with good surface performance | |
JP2005531694A (en) | Surface modified stainless steel | |
JP3961390B2 (en) | Surface carbonitrided stainless steel parts with excellent wear resistance and manufacturing method thereof | |
CN114686799A (en) | Surface treatment method for metal nitridation, oxidation and reduction | |
CN103589989A (en) | Surface processing method of common cast iron cookware | |
TWI548778B (en) | Method for treating stainless steel surface and stainless steel treating system | |
JPH04143263A (en) | Hard austenitic stainless steel screw and production thereof | |
Hong et al. | The diffusion behavior and surface properties of catalytic nitriding with LaFeO3 film prepared by the sol-gel method | |
CN112095073B (en) | QPQ treatment process with high toughness | |
JP3005952B2 (en) | Method for carburizing austenitic metal and austenitic metal product obtained by the method | |
Triwiyanto et al. | Low temperature thermochemical treatments of austenitic stainless steel without impairing its corrosion resistance | |
JP3064908B2 (en) | Carburized and hardened watch parts or accessories and their methods of manufacture | |
CN110714182A (en) | Chromium nitride coating, preparation method and application thereof | |
JP5746832B2 (en) | Stainless steel screws | |
KR100862217B1 (en) | Method for manufacturing high corrosion-resistant and high wear- resistant steel materials by 2 step gas nitriding or gas nitrocarburizing | |
JP3695643B2 (en) | Iron parts | |
Sanchette et al. | Single cycle plasma nitriding and hard coating deposition in a cathodic arc evaporation device | |
KR100998103B1 (en) | Manufacturing Method of High Corrosion Resistant and High Contamination Resistant Iron and Steel Materials | |
KR100317730B1 (en) | Oxidation film of fomation method | |
JP2010222649A (en) | Production method of carbon steel material and carbon steel material | |
CN117660872A (en) | Method for preparing black wear-resistant corrosion-resistant high-toughness modified layer on surface of steel material | |
JPH0971855A (en) | Carbohardened table ware and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130508 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140520 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140819 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140822 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140919 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150331 |