JP2005531694A - Surface modified stainless steel - Google Patents

Surface modified stainless steel Download PDF

Info

Publication number
JP2005531694A
JP2005531694A JP2004519462A JP2004519462A JP2005531694A JP 2005531694 A JP2005531694 A JP 2005531694A JP 2004519462 A JP2004519462 A JP 2004519462A JP 2004519462 A JP2004519462 A JP 2004519462A JP 2005531694 A JP2005531694 A JP 2005531694A
Authority
JP
Japan
Prior art keywords
stainless steel
less
nitriding
hardness
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004519462A
Other languages
Japanese (ja)
Other versions
JP2005531694A5 (en
Inventor
ベルイルンド,ゴーラン
Original Assignee
サンドビック インテレクチュアル プロパティー ハンデルスボラーグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンドビック インテレクチュアル プロパティー ハンデルスボラーグ filed Critical サンドビック インテレクチュアル プロパティー ハンデルスボラーグ
Publication of JP2005531694A publication Critical patent/JP2005531694A/en
Publication of JP2005531694A5 publication Critical patent/JP2005531694A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本発明は、ステンレス鋼に関し、特に窒化処理後の表面硬化層の硬さが1200HV以上であり、形態がワイヤ、プレート、ストリップ、チューブ、パイプなどであり、特に高強度および/または高靭性と高耐摩耗性との組み合わせに対する要求水準が高い用途に適したステンレス鋼および被覆処理の基材としてのステンレス鋼に関する。The present invention relates to stainless steel, and in particular, the hardness of the hardened surface layer after nitriding is 1200 HV or more, and the form is wire, plate, strip, tube, pipe, etc., and particularly high strength and / or high toughness and high strength. The present invention relates to stainless steel suitable for applications requiring a high level of combination with wear resistance and stainless steel as a base material for coating treatment.

Description

本発明は、ステンレス鋼に関し、特に、窒化処理後の表面硬化層の硬さが1200HV以上であり、高強度および/または高靭性と高耐摩耗性との組み合わせに対する要求水準が高い用途に特に適したステンレス鋼および被覆の基材としてのステンレス鋼に関する。   The present invention relates to stainless steel, and is particularly suitable for applications in which the hardness of the hardened surface layer after nitriding is 1200 HV or higher and the required level for a combination of high strength and / or high toughness and high wear resistance is high. Relates to stainless steel and stainless steel as a substrate for coating.

ステンレス鋼は他の鋼材に比べて比較的硬さが低い。その結果、ステンレス鋼の製品あるいは部品は多くの用途において硬化表面すなわち表面硬化層を備えている。表面硬化の考え方は、部材表面の比較的薄い層に炭素などを富化して改質し、この改質処理の影響の無い内部の母材よりも硬い表層を形成するものである。この状態で、全体としてはステンレス鋼としての良好な成形性を確保したまま、表層は母材のように軟らかくない。   Stainless steel has a relatively low hardness compared to other steel materials. As a result, stainless steel products or parts have a hardened surface or surface hardened layer in many applications. The concept of surface hardening is that a relatively thin layer on the surface of the member is modified by enriching carbon or the like, and a surface layer that is harder than the inner base material that is not affected by the modification treatment is formed. In this state, the surface layer is not as soft as the base material while maintaining good formability as stainless steel as a whole.

ステンレス鋼の表面硬化処理は、浸炭によって行なわれることが多い。浸炭は、製品表面に炭素が拡散して固溶することによって行なわれる。公知の表面硬化処理は高温で行なわれる。しかし、約540℃以上(ステンレス鋼の場合)で行なう浸炭処理では、表面硬化層中で炭化物の生成が起き易い。   The surface hardening treatment of stainless steel is often performed by carburizing. Carburization is performed by carbon diffusing and dissolving in the product surface. Known surface hardening treatments are performed at high temperatures. However, in the carburizing process performed at about 540 ° C. or higher (in the case of stainless steel), carbide is easily generated in the hardened surface layer.

別の表面硬化法としてプラズマ窒化処理があり、これは圧力100〜1000Pa(1〜10mbar)の窒素ガス含有雰囲気中でグロー放電下で行う処理であり、ステンレス鋼の表面処理方法として従来から用いられている方法の1つであり、生成する窒素拡散層が高硬さであり、高い耐摩耗性を発揮する。窒化による硬化は、表層での窒化物の析出によって起きる。   Another surface hardening method is plasma nitriding, which is a treatment performed under glow discharge in a nitrogen gas-containing atmosphere at a pressure of 100 to 1000 Pa (1 to 10 mbar), and has been conventionally used as a surface treatment method for stainless steel. The nitrogen diffusion layer to be produced has a high hardness and exhibits high wear resistance. Hardening by nitriding occurs by precipitation of nitride on the surface layer.

プラズマ窒化処理は、最も新しい表面硬化法である。この方法によってガス窒化法やタ炭窒化法(短時間ガス窒化、浴窒化、テニファー(tenifer)処理)などの従来からの窒化法が置き換わられたのは、これら従来法と同等の熱化学条件が達成されるからである。プラズマ窒化処理によれば、従来法よりも硬さおよび耐摩耗性を向上させつつ、歪は低減する。   Plasma nitriding is the newest surface hardening method. This method replaced conventional nitriding methods such as gas nitriding and ta carbonitriding (short-time gas nitriding, bath nitriding, tenifer processing), and the thermochemical conditions equivalent to these conventional methods. Is achieved. According to the plasma nitriding treatment, the strain is reduced while improving the hardness and wear resistance as compared with the conventional method.

プラズマ窒化処理は費用対効果が非常に良好である。それは、処理後の機械加工、仕上げ処理、残滓除去工程が多くの場合に不要だからである。同様に、研磨、燐酸被膜処理や、場合によっては亜鉛めっき、硬質クロムめっきも不要である。   Plasma nitriding is very cost effective. This is because post-processing machining, finishing, and residue removal steps are unnecessary in many cases. Similarly, polishing, phosphoric acid coating treatment, and in some cases, zinc plating and hard chrome plating are unnecessary.

プラズマ窒化処理は真空炉内で行なう。処理温度は、個々の処理に応じて400〜580℃の範囲内で設定する。典型的な処理温度は420〜500℃の範囲内である。最も一般的に用いるプロセスガスはアンモニア、窒素、メタン、水素である。後酸化の耐食工程では酸素と二酸化炭素を用いる。用いるプロセスガスの種類の他、圧力、温度、時間が処理プロセスの主パラメータである。これらのパラメータを変えることによって、種々の所望特性を正確に実現するようにプラズマ窒化処理を精密に調整できる。   Plasma nitriding is performed in a vacuum furnace. The treatment temperature is set within a range of 400 to 580 ° C. according to each treatment. Typical processing temperatures are in the range of 420-500 ° C. The most commonly used process gases are ammonia, nitrogen, methane and hydrogen. In the post-oxidation anti-corrosion process, oxygen and carbon dioxide are used. In addition to the type of process gas used, pressure, temperature, and time are the main parameters of the treatment process. By changing these parameters, the plasma nitridation process can be precisely adjusted to accurately achieve various desired characteristics.

鉄基材料であればいずれもプラズマ窒化処理を施すことができる。この処理方法は特殊な窒化用鋼を用いる必要がない。   Any iron-based material can be plasma-nitrided. This processing method does not require the use of special nitriding steel.

プラズマ窒化処理で得られた結果はピンポイントの正確さで再現可能である。これは規格製品を大量生産するには非常に重要である。アメリカ合衆国特許第5,632,826号には、粒子の析出によって強化を行なう析出硬化マルテンサイト合金が開示されている。強化粒子は擬結晶構造を持っており、この構造は650℃、1000時間の時効処理によって実質的に形成される。この強化による引張強度の上昇は200MPa以上である。アメリカ合衆国特許第5,632,826号の鋼を表面窒化すると、マトリクスに対して更に高い表面硬さが得られることを見出した。   The results obtained by plasma nitriding can be reproduced with pinpoint accuracy. This is very important for mass production of standard products. US Pat. No. 5,632,826 discloses a precipitation hardened martensitic alloy that is strengthened by precipitation of particles. The reinforcing particles have a pseudo-crystal structure, and this structure is substantially formed by an aging treatment at 650 ° C. for 1000 hours. The increase in tensile strength due to this strengthening is 200 MPa or more. It has been found that when surface nitriding the steel of US Pat. No. 5,632,826, a higher surface hardness is obtained for the matrix.

そこで本発明の主たる目的は、表面改質処理によって表面硬さの上昇と同時にマトリクスの硬さも上昇することを特徴とするステンレス鋼を提供することである。   Accordingly, a main object of the present invention is to provide a stainless steel characterized in that the hardness of the matrix is increased simultaneously with the increase of the surface hardness by the surface modification treatment.

本発明のもう1つの目的は、上記の表面改質ステンレス鋼で作製した製品を提供することである。   Another object of the present invention is to provide a product made of the above surface modified stainless steel.

更にもう1つの目的は、耐摩耗層を被覆するためのステンレス鋼基材を提供することである。   Yet another object is to provide a stainless steel substrate for coating the wear resistant layer.

表面改質前の本発明のステンレス鋼基材は下記の化学組成(質量%)を備えている。   The stainless steel substrate of the present invention before surface modification has the following chemical composition (mass%).

炭素 :0.1以下、
窒素 :0.1以下、
銅 :0.5〜4、
クロム :10〜14、
モリブデン :0.5〜6、
ニッケル :7〜11、
コバルト :0〜9、
タンタル :0.1以下、
ニオブ :0.1以下、
バナジウム :0.1以下、
タングステン:0.1以下、
アルミニウム:0.05〜0.6、
チタン :0.4〜1.4、
シリコン :0.7以下、
マンガン :1.0以下、
鉄 :残部、および
通常の製鋼添加物および不純物。
Carbon: 0.1 or less,
Nitrogen: 0.1 or less
Copper: 0.5-4
Chromium: 10-14,
Molybdenum: 0.5-6,
Nickel: 7-11
Cobalt: 0-9,
Tantalum: 0.1 or less
Niobium: 0.1 or less
Vanadium: 0.1 or less
Tungsten: 0.1 or less
Aluminum: 0.05-0.6,
Titanium: 0.4 to 1.4,
Silicon: 0.7 or less,
Manganese: 1.0 or less
Iron: balance, and normal steelmaking additives and impurities.

表面改質処理によって表面硬さの上昇と同時にマトリクスの硬さも上昇する。   The surface modification treatment increases the hardness of the matrix at the same time as the increase in surface hardness.

このステンレス鋼は、析出硬化処理を施すと、マルテンサイト組織中に擬結晶粒子を含有した組織になる。   When this stainless steel is subjected to precipitation hardening, it becomes a structure containing pseudocrystalline particles in the martensite structure.

プラズマ窒化処理は、ガスプラズマすなわちイオン化ガスの性質を利用した表面硬化法であって、材料表面に所望の機械的性質を付与する。   The plasma nitriding treatment is a surface hardening method using the properties of gas plasma, that is, ionized gas, and imparts desired mechanical properties to the material surface.

窒化処理で影響を持つ主たるパラメータは、処理の圧力、温度、時間と、イオン化されたプロセスガスの化学組成である。   The main parameters that have an influence on the nitriding process are the pressure, temperature and time of the process and the chemical composition of the ionized process gas.

プラズマ窒化処理を行なう圧力は0.3〜10mbarである。実際の処理圧力は、処理対象材の形状と必要な表層組織とによって決まる。   The pressure for plasma nitriding is 0.3 to 10 mbar. The actual processing pressure depends on the shape of the material to be processed and the required surface structure.

処理温度は、処理対象材の材質および前処理の内容と、必要な表層組織とに応じて、400〜580℃の範囲内で設定する。処理時間は10分〜70時間の範囲で、処理対象材と形成する表層の組織および厚さとに応じて設定する。プラズマ窒化処理に用いるプロセスガスは、アンモニアまたは、メタン、窒素、水素を含む混合ガスである。プロセスガスとして何を用いるかは、処理対象材の特性と必要な表層組織とに応じて決める。   The treatment temperature is set within a range of 400 to 580 ° C. according to the material of the material to be treated, the content of the pretreatment, and the necessary surface layer structure. The treatment time is set in the range of 10 minutes to 70 hours according to the material to be treated and the structure and thickness of the surface layer to be formed. A process gas used for the plasma nitriding treatment is ammonia or a mixed gas containing methane, nitrogen, and hydrogen. What is used as the process gas is determined according to the characteristics of the material to be treated and the necessary surface structure.

本発明は更に、本発明のステンレス鋼の製品であって、製品形態が、ワイヤ、プレート、ストリップ、チューブ、パイプ等の形状であり、特に高強度および/または高靭性と高耐摩耗性との組合せに対する要求水準が高い用途の複雑形状物、例えば、エンジンの耐摩耗部品その他のエンジン部品、衝撃荷重部材例えば安全装置、カムフォロワー、カムフォロワーパッド、バルブステム、バルブステムガイド、ピストンピン、ピストンシャフト、油圧ピストン、排出ピン、安全保護プレート、ロックシリンダー等のロッキング装置、ブロッキング部材、盗難予防設備などにも関する。   The present invention further relates to the stainless steel product of the present invention, wherein the product form is a shape of a wire, a plate, a strip, a tube, a pipe, etc., and particularly high strength and / or high toughness and high wear resistance. Complex shapes for applications with high requirements for combinations, such as engine wear-resistant parts and other engine parts, impact load members such as safety devices, cam followers, cam follower pads, valve stems, valve stem guides, piston pins, piston shafts It also relates to hydraulic pistons, discharge pins, safety protection plates, locking devices such as lock cylinders, blocking members, anti-theft equipment, etc.

本発明のステンレス鋼基材に、処理温度450〜580℃、処理時間1〜40時間のプラズマ窒化処理による表面改質処理を施した。処理後の表面硬化層は0.05〜0.5mmであった。この硬化処理は、ワイヤ、プレート、ストリップ、チューブ、パイプや種々の形態、特に複雑形状の部材に適用できる。本発明のステンレス鋼を処理基材として用いた場合に特に有利な点は、非常に複雑な形状でも全く寸法変化が生じないことである。表面硬さは、表面から深さ0.5mmでのマトリクスの基材硬さの2倍以上である。表面硬さは1200HV、望ましくは1100HV以上である。   The stainless steel substrate of the present invention was subjected to surface modification treatment by plasma nitriding treatment at a treatment temperature of 450 to 580 ° C. and a treatment time of 1 to 40 hours. The surface hardened layer after the treatment was 0.05 to 0.5 mm. This curing process can be applied to wires, plates, strips, tubes, pipes and various forms, particularly complex shaped members. A particularly advantageous point when the stainless steel of the present invention is used as a processing substrate is that no dimensional change occurs even in a very complicated shape. The surface hardness is at least twice the matrix substrate hardness at a depth of 0.5 mm from the surface. The surface hardness is 1200 HV, preferably 1100 HV or more.

図2に、表面から内部への硬さ分布を示す。深さ0.5mmでも硬化が起きていることが分かる。このように、本発明のステンレス鋼を基材として表面硬化処理を行なうことにより、深い硬化層を持つ表面改質材を得ることができるという利点がある。   FIG. 2 shows the hardness distribution from the surface to the inside. It can be seen that curing occurs even at a depth of 0.5 mm. Thus, there exists an advantage that the surface modifier with a deep hardened layer can be obtained by performing the surface hardening process by using the stainless steel of the present invention as a base material.

本発明の表面改質ステンレス鋼は、耐摩耗被膜を被着させる基材として特に適している。   The surface-modified stainless steel of the present invention is particularly suitable as a substrate on which an abrasion-resistant coating is applied.

本発明の表面改質ステンレス鋼のサンプルのミクロ組織を示す倍率500倍の光学顕微鏡写真であり、Aは表面窒化層、Bはステンレス鋼マトリクスである。It is an optical micrograph of magnification 500 times which shows the microstructure of the sample of the surface modification stainless steel of this invention, A is a surface nitrided layer, B is a stainless steel matrix. 表面からの深さ(mm)に対して硬さ(HV)をプロットした図である。It is the figure which plotted hardness (HV) with respect to the depth (mm) from the surface.

Claims (5)

化学組成(質量%)が下記:
炭素 :0.1以下、
窒素 :0.1以下、
銅 :0.5〜4、
クロム :10〜14、
モリブデン :0.5〜6、
ニッケル :7〜11、
コバルト :0〜9、
タンタル :0.1以下、
ニオブ :0.1以下、
バナジウム :0.1以下、
タングステン:0.1以下、
アルミニウム:0.05〜0.6、
チタン :0.4〜1.4、
シリコン :0.7以下、
マンガン :1.0以下、
鉄 :残部、および
通常の製鋼添加物および不純物
であるステンレス鋼において、
窒化処理後の表面硬化層の硬さが1200HV以上であることを特徴とするステンレス鋼。
The chemical composition (mass%) is as follows:
Carbon: 0.1 or less,
Nitrogen: 0.1 or less
Copper: 0.5-4
Chromium: 10-14,
Molybdenum: 0.5-6,
Nickel: 7-11
Cobalt: 0-9,
Tantalum: 0.1 or less
Niobium: 0.1 or less
Vanadium: 0.1 or less
Tungsten: 0.1 or less
Aluminum: 0.05-0.6,
Titanium: 0.4 to 1.4,
Silicon: 0.7 or less,
Manganese: 1.0 or less
Iron: In the balance, and the usual steelmaking additives and impurities stainless steel,
Stainless steel, wherein the hardness of the hardened surface layer after nitriding is 1200 HV or more.
請求項1において、析出硬化処理の生成物としてマルテンサイト組織中に擬結晶質粒子を含むことを特徴とするステンレス鋼。   2. The stainless steel according to claim 1, wherein the martensite structure contains pseudocrystalline particles as a product of the precipitation hardening process. 請求項1記載の表面改質ステンレス鋼を製造する方法において、
上記ステンレス鋼に、プラズマ窒化雰囲気中において450〜580℃で1〜40時間の窒化処理を施すことを特徴とする表面改質ステンレス鋼の製造方法。
The method for producing the surface-modified stainless steel according to claim 1,
A method for producing a surface-modified stainless steel, wherein the stainless steel is subjected to nitriding treatment at 450 to 580 ° C. for 1 to 40 hours in a plasma nitriding atmosphere.
請求項1から3までのいずれか1項記載のステンレス鋼の製品であって、上記ステンレス鋼の製品形態が、ワイヤ、プレート、ストリップ、チューブ、パイプ等の形状であり、特に高強度および/または高靭性と高耐摩耗性との組合せに対する要求水準が高い用途の複雑形状物、例えば、エンジンの耐摩耗部品その他のエンジン部品、衝撃荷重部材例えば安全装置、カムフォロワー、カムフォロワーパッド、バルブステム、バルブステムガイド、ピストンピン、ピストンシャフト、油圧ピストン、排出ピン、安全保護プレート、ロックシリンダー等のロッキング装置、ブロッキング部材、盗難予防設備などであって、寸法変化が無い製品。   The stainless steel product according to any one of claims 1 to 3, wherein the product form of the stainless steel is a shape of a wire, a plate, a strip, a tube, a pipe, etc., and particularly high strength and / or Complex shapes for applications with high requirements for the combination of high toughness and high wear resistance, such as engine wear resistant parts and other engine parts, impact load members such as safety devices, cam followers, cam follower pads, valve stems, Valve stem guides, piston pins, piston shafts, hydraulic pistons, discharge pins, safety protection plates, locking devices such as lock cylinders, blocking members, anti-theft equipment, etc. 請求項1または2記載までのいずれか1項記載のステンレス鋼であって、耐摩耗被膜の基材として用いることを特徴とするステンレス鋼。   The stainless steel according to any one of claims 1 and 2, wherein the stainless steel is used as a base material for a wear-resistant coating.
JP2004519462A 2002-07-03 2003-07-02 Surface modified stainless steel Pending JP2005531694A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0202107A SE525291C2 (en) 2002-07-03 2002-07-03 Surface-modified stainless steel
PCT/SE2003/001159 WO2004005572A1 (en) 2002-07-03 2003-07-02 Surface modified stainless steel

Publications (2)

Publication Number Publication Date
JP2005531694A true JP2005531694A (en) 2005-10-20
JP2005531694A5 JP2005531694A5 (en) 2006-08-10

Family

ID=20288446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004519462A Pending JP2005531694A (en) 2002-07-03 2003-07-02 Surface modified stainless steel

Country Status (6)

Country Link
US (1) US20060102253A1 (en)
EP (1) EP1518002A1 (en)
JP (1) JP2005531694A (en)
AU (1) AU2003245216A1 (en)
SE (1) SE525291C2 (en)
WO (1) WO2004005572A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534808A (en) * 2002-07-29 2005-11-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Plasma nitriding of maraging steel, shaver cap and cutting device for electric shaver manufactured from such maraging steel, and electric shaver
JP2008293716A (en) * 2007-05-22 2008-12-04 Nissan Motor Co Ltd Nonaqueous secondary battery
KR102330937B1 (en) 2020-05-22 2021-11-24 동의대학교 산학협력단 Method for manufacturing martensitic precipitation hardening stainless steel for improving corrosion resistance and surface hardness and method for surface treatment of cable protector

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526501C2 (en) * 2003-01-13 2005-09-27 Sandvik Intellectual Property Method of surface modifying a precipitation-hardened stainless steel
SE526481C2 (en) * 2003-01-13 2005-09-20 Sandvik Intellectual Property Surface hardened stainless steel with improved abrasion resistance and low static friction
DE102005013088B4 (en) * 2005-03-18 2006-12-28 Man B & W Diesel Ag Gas exchange valve with corrosion protection layer
SE0502312L (en) * 2005-10-17 2007-04-10 Sandvik Intellectual Property Thin-walled pipe and products comprising such a pipe
SE531483C2 (en) * 2005-12-07 2009-04-21 Sandvik Intellectual Property String for musical instruments including precipitation hardening stainless steel
JP4866178B2 (en) * 2006-08-29 2012-02-01 バンドー化学株式会社 Auto tensioner
US20110277886A1 (en) 2010-02-20 2011-11-17 Nucor Corporation Nitriding of niobium steel and product made thereby
DK2462253T3 (en) 2009-08-07 2021-05-31 Swagelok Co COOLING AT LOW TEMPERATURE UNDER LOW VACUUM
JP5146597B2 (en) * 2010-04-28 2013-02-20 トヨタ自動車株式会社 Metal ring and manufacturing method thereof
SG11201403969UA (en) 2012-01-20 2014-08-28 Swagelok Co Concurrent flow of activating gas in low temperature carburization
DE102012212426B3 (en) * 2012-07-16 2013-08-29 Schaeffler Technologies AG & Co. KG Rolling element, in particular rolling bearing ring
WO2015073094A2 (en) * 2013-08-27 2015-05-21 University Of Virginia Patent Foundation Lattice materials and structures and related methods thereof
US10151043B1 (en) * 2013-12-10 2018-12-11 Ibc Technologies, Ltd. Methods of producing coated locator pins and locator pins made therefrom
DE102015111993A1 (en) * 2015-07-23 2017-01-26 Schott Ag Forming mandrel with diffusion layer for glass forming
US10859031B2 (en) * 2018-03-06 2020-12-08 Ai Alpine Us Bidco Inc Thermally compensated bore guide systems and methods
JP7252051B2 (en) * 2018-05-17 2023-04-04 株式会社神戸製鋼所 Solid wire and weld joints for electroslag welding
IT201900002849A1 (en) * 2019-02-27 2020-08-27 Asso Werke S R L Unipersonale Set screw for piston rings

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988955A (en) * 1972-12-14 1976-11-02 Engel Niels N Coated steel product and process of producing the same
USH1210H (en) * 1990-04-04 1993-07-06 Surface hardening of reprographic machine components by coating or treatment processes
US5197783A (en) * 1991-04-29 1993-03-30 Esso Resources Canada Ltd. Extendable/erectable arm assembly and method of borehole mining
US5241748A (en) * 1991-06-27 1993-09-07 Teikoku Piston Ring Co., Ltd. Method for manufacturing a compression ring
JPH0544839A (en) * 1991-08-09 1993-02-23 Teikoku Piston Ring Co Ltd Combined oil ring
DE4421144C2 (en) * 1993-07-21 2003-02-13 Unaxis Balzers Ag Coated tool with increased service life
SE508684C2 (en) * 1993-10-07 1998-10-26 Sandvik Ab Precision-hardened iron alloy with quasi-crystalline structure particles
GB9715180D0 (en) * 1997-07-19 1997-09-24 Univ Birmingham Process for the treatment of austenitic stainless steel articles
SE518600C2 (en) * 1999-11-17 2002-10-29 Sandvik Ab automotive Suppliers
GB2364530B (en) * 2000-06-21 2002-10-16 Alstom Power Nv Method of finish treating a steel blade for use in turbomachinery
MXPA03008788A (en) * 2001-03-27 2004-02-12 Crs Holdings Inc Ultra-high-strength precipitation-hardenable stainless steel and elongated strip made therefrom.
JP2003301888A (en) * 2002-04-12 2003-10-24 Tsubakimoto Chain Co Silent chain
SE526501C2 (en) * 2003-01-13 2005-09-27 Sandvik Intellectual Property Method of surface modifying a precipitation-hardened stainless steel
SE526481C2 (en) * 2003-01-13 2005-09-20 Sandvik Intellectual Property Surface hardened stainless steel with improved abrasion resistance and low static friction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534808A (en) * 2002-07-29 2005-11-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Plasma nitriding of maraging steel, shaver cap and cutting device for electric shaver manufactured from such maraging steel, and electric shaver
JP2008293716A (en) * 2007-05-22 2008-12-04 Nissan Motor Co Ltd Nonaqueous secondary battery
KR102330937B1 (en) 2020-05-22 2021-11-24 동의대학교 산학협력단 Method for manufacturing martensitic precipitation hardening stainless steel for improving corrosion resistance and surface hardness and method for surface treatment of cable protector

Also Published As

Publication number Publication date
EP1518002A1 (en) 2005-03-30
US20060102253A1 (en) 2006-05-18
SE525291C2 (en) 2005-01-25
AU2003245216A1 (en) 2004-01-23
SE0202107D0 (en) 2002-07-03
WO2004005572A1 (en) 2004-01-15
SE0202107L (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP2005531694A (en) Surface modified stainless steel
US7270719B2 (en) Method for manufacturing surface hardened stainless steel with improved wear resistance and low static friction properties
Leyland et al. Low temperature plasma diffusion treatment of stainless steels for improved wear resistance
EP2548986B1 (en) Steel for nitrocarburization and production method of a nitrocarburized steel part
WO2012077705A1 (en) Gas-carburized steel component with excellent surface fatigue strength, gas-carburizing steel material, and process for producing gas-carburized steel component
JP4511514B2 (en) Surface-modified precipitation hardened stainless steel
US20080277030A1 (en) Composition and Process for Enhanced Properties of Ferrous Components
KR101892531B1 (en) Method for nitriding iron-based metal
US11840765B2 (en) Nitriding process for carburizing ferrium steels
KR102004723B1 (en) Method for prediction of physical property data of plasma ion nitriding
JP4752635B2 (en) Method for manufacturing soft nitrided parts
JP3005952B2 (en) Method for carburizing austenitic metal and austenitic metal product obtained by the method
JP7471206B2 (en) Steel surface treatment method
KR101614259B1 (en) Method for formation of hardened layer on martensitic precipitation-hardening stainless steel by the application of in-situ combination of aging treatment and plasma nitrocaburizing treatment
JP3064908B2 (en) Carburized and hardened watch parts or accessories and their methods of manufacture
JP2010222649A (en) Production method of carbon steel material and carbon steel material
US20060048857A1 (en) Method for processing alloys via high-current density ion implantation
JP2005036279A (en) Surface hardening method for steel, and metallic product obtained thereby
JP2006028584A (en) Die for cold working
Song et al. Effect of Nitrogen Hydrogen Ratio on Plasma Nitriding for 38crmoal
JP4327812B2 (en) Manufacturing method of carburized parts
JP2019039049A (en) Spring excellent in fatigue resistance, and production method thereof
Kim et al. Plasma and vacuum carburizing processes and mechanical properties of SCM 415 steel
KR101074164B1 (en) Method for nitriding by post-plasma
JPH01201458A (en) Method for carburizing high-chromium steel parts

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222