JP5746832B2 - Stainless steel screws - Google Patents

Stainless steel screws Download PDF

Info

Publication number
JP5746832B2
JP5746832B2 JP2010129915A JP2010129915A JP5746832B2 JP 5746832 B2 JP5746832 B2 JP 5746832B2 JP 2010129915 A JP2010129915 A JP 2010129915A JP 2010129915 A JP2010129915 A JP 2010129915A JP 5746832 B2 JP5746832 B2 JP 5746832B2
Authority
JP
Japan
Prior art keywords
stainless steel
screw
layer
steel screw
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010129915A
Other languages
Japanese (ja)
Other versions
JP2011256412A (en
Inventor
田中 信一
信一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Ltd
Original Assignee
Tanaka Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Ltd filed Critical Tanaka Ltd
Priority to JP2010129915A priority Critical patent/JP5746832B2/en
Publication of JP2011256412A publication Critical patent/JP2011256412A/en
Application granted granted Critical
Publication of JP5746832B2 publication Critical patent/JP5746832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、ステンレス鋼の表面硬化層にねじ面を形成したステンレス鋼製ねじおよびその製造方法に関するものである。   The present invention relates to a stainless steel screw having a threaded surface formed on a surface hardened layer of stainless steel and a method for manufacturing the same.

一般に、350℃以上700℃未満という比較的低温のプラズマ浸炭処理を行なうことにより、チタンや鋼の表面に炭素原子を浸透拡散させて表面硬化層を形成する技術が知られており、これにより金属内部の非浸炭部分とは明瞭な境界を形成しないように傾斜的に形成された表面硬化層は、剥がれ難く耐久性のあることが知られている(特許文献1)。   In general, a technique of forming a hardened surface layer by permeating and diffusing carbon atoms on the surface of titanium or steel by performing a plasma carburizing process at a relatively low temperature of 350 ° C. or higher and lower than 700 ° C. is known. It is known that a hardened surface layer formed in an inclined manner so as not to form a clear boundary with an internal non-carburized portion is difficult to peel off and is durable (Patent Document 1).

また、機械構造用鋼に対し、高温での浸炭処理や窒化処理および焼入・焼戻処理によって表面硬化し、その後、表面粗さがRmax0.2〜0.3μmになるようにバレル研磨し、歯車の歯面について接触疲労強度を向上させることが知られている(特許文献2)。   In addition, for steel for machine structure, the surface is hardened by carburizing treatment, nitriding treatment and quenching / tempering treatment at high temperature, and then barrel-polishing so that the surface roughness is Rmax 0.2 to 0.3 μm. It is known to improve the contact fatigue strength of the tooth surface of a gear (Patent Document 2).

また、オーステナイト系ステンレス製のねじの表面に、タッピングやドリリング性の向上のために窒化硬化層を形成し、ねじの頭部またはそれに連続する首下部分などの窒化硬化層を部分的に剥離除去し、ねじ面以外の部分についてオーステナイト系ステンレス素材を露出させて耐食性を向上させることが知られている(特許文献3)。   In addition, a nitrided hardened layer is formed on the surface of the austenitic stainless steel screw to improve tapping and drilling properties, and the nitrided hardened layer such as the head of the screw or the continuous neck under part is peeled off. However, it is known that the austenitic stainless steel material is exposed at portions other than the thread surface to improve the corrosion resistance (Patent Document 3).

特開2001−152316号公報JP 2001-152316 A 特開平6−246548号公報JP-A-6-246548 特開平5−59530号公報JP-A-5-59530

しかし、上記した従来技術では、ステンレス鋼製のねじが、組み立てやメンテナンスなどの際に締結を繰り返すと、ねじの焼付き現象(以下、単に「焼付き」と称する。)を起こしやすいという問題がある。   However, the above-described conventional technique has a problem that when a stainless steel screw is repeatedly fastened during assembly or maintenance, a screw seizure phenomenon (hereinafter simply referred to as “seizure”) is likely to occur. is there.

「焼付き」の起こる状態を詳しく説明すると、例えば、ねじの締め付けと緩める操作は組み立てやメンテナンスなどの際に繰り返されるが、そのような場合に「おねじ」と「めねじ」のかみ合うねじ面には大きな摩擦力が繰り返し発生し、この摩擦力によってねじ面が部分的に融合と分離をくり返し(いわゆる「かじり」の状態となり)、最終的には広い面で融合すると、「おねじ」と「めねじ」は回転不能に固定されて締め付ける操作も緩める操作もできない状態になってしまう。   Explaining in detail the state of occurrence of "seizure", for example, the tightening and loosening operations of the screw are repeated during assembly and maintenance, but in such cases the threaded surface where the "male thread" and "female thread" mesh. A large frictional force is repeatedly generated, and this frictional force causes the threaded surface to partially fuse and separate (so-called “galling” state). The “female screw” is fixed in a non-rotatable state and cannot be tightened or loosened.

また、一般にねじ面は、ねじの締結と弛緩操作時に摩耗しやすく荒れやすく、特にステンレス鋼は、熱伝導率が鉄の約1/3と小さく、また熱膨張率は鉄の約1.5倍であるから、焼付き現象が極めて起こりやすい。   In general, the thread surface is easily worn and rough during screw tightening and loosening operations. In particular, stainless steel has a thermal conductivity of about 1/3 that of iron, and the thermal expansion coefficient is about 1.5 times that of iron. Therefore, the seizure phenomenon is extremely likely to occur.

また、半導体製造装置用真空装置内部や、クリーンルーム内、食品や飲料の製造等関係装置、化粧品や医療品の製造等関係装置のように、真空または清浄雰囲気下で使用されるステンレス鋼製ねじには、コンタミネーションと呼ばれる微小な塵埃の発生を抑制する対策も求められ、そのために潤滑油を用いない無潤滑状態で使用する必要性もある。   Also, stainless steel screws used in a vacuum or clean atmosphere, such as in vacuum equipment for semiconductor manufacturing equipment, in clean rooms, related equipment such as food and beverage manufacturing, and related equipment such as manufacturing cosmetics and medical products. Therefore, there is a need for a measure called “contamination” that suppresses the generation of minute dust, and for this reason, there is a need to use in a non-lubricated state without using lubricating oil.

因みに、めっきやコーティングを施したねじでは、めっき層などの被膜が剥がれやすいので、ねじ面からの微小な塵埃の発生を抑制する対策としては十分ではない。   Incidentally, a plated or coated screw is not sufficient as a measure to suppress the generation of minute dust from the screw surface because a coating such as a plating layer is easily peeled off.

また、特許文献2に記載されているように、自動車のトランスミッション用の歯車は、その摩擦面の接触疲労強度を向上させるために、機械的にバレル研磨することが有効であるが、その技術を用いてねじ面を均一にバレル研磨することは至難であり、バレル研磨では、ねじ山の寸法精度が損なわれやすく実用性がなかった。   Further, as described in Patent Document 2, it is effective to mechanically polish a gear for an automobile transmission in order to improve the contact fatigue strength of its friction surface. It is extremely difficult to uniformly barrel polish the thread surface by using it, and the barrel polishing has a lack of practicality since the dimensional accuracy of the screw thread is liable to be impaired.

さらにまた、特許文献3に記載された発明では、窒化硬化層の表面の摩擦係数が大きく、摩擦熱が発生しやすいので、ねじの締付けの際に焼付きが起こる可能性が高い。   Furthermore, in the invention described in Patent Document 3, since the friction coefficient of the surface of the nitrided hardened layer is large and frictional heat is likely to be generated, there is a high possibility that seizure will occur when screws are tightened.

そこで、この発明の課題は、上記した問題点を解決して、オーステナイト系ステンレス鋼製のねじを用いて耐食性の必要な環境下でねじの締付けや緩めの操作を繰り返す場合に、ねじ面が「かじり」や「焼付き」を起こさないものとし、特に真空または清浄雰囲気下に無潤滑で使用される専用ねじであっても、焼付きなどを起こさずに発塵のないオーステナイト系ステンレス鋼製ねじとすることであり、またこのような課題を解決できるオーステナイト系ステンレス鋼製ねじを効率よく製造できるようにすることである。   Therefore, the problem of the present invention is to solve the above-described problems, and when the screw surface is repeatedly tightened or loosened in an environment where corrosion resistance is required using an austenitic stainless steel screw, An austenitic stainless steel screw that does not cause seizure and does not cause seizure, even if it is a dedicated screw that is used without lubrication in a vacuum or clean atmosphere. It is also possible to efficiently produce an austenitic stainless steel screw that can solve such problems.

上記の課題を解決するために、この発明においては、オーステナイト系などのステンレス鋼製ねじの表面に、浸炭層もしくは窒化層または浸炭窒化層からなる表面硬化層を設けると共に、前記表面のうち少なくともねじ面が前記表面硬化層を電解研磨または化学研磨した研磨面で形成したものからなるステンレス鋼製ねじとしたのである。   In order to solve the above-described problems, in the present invention, a surface hardened layer made of a carburized layer, a nitrided layer, or a carbonitrided layer is provided on the surface of an austenitic stainless steel screw, and at least the screw of the surface The surface was a stainless steel screw made of a polished surface obtained by electropolishing or chemically polishing the surface hardened layer.

上記したように構成されるこの発明に係るステンレス鋼製ねじは、浸炭層もしくは窒化層または浸炭窒化層からなる表面硬化層が鋼材内部の非浸炭または非窒化部分とは明瞭な境界を有しない傾斜状に存在する材料であって、そのような表面硬化層からなるねじ面を電解研磨または化学研磨した研磨面でねじ面が形成されているので、そのようなねじ面は硬質であり、しかも滑面となって、耐摩耗性および低摩擦係数の摺動特性を備えたものになり、すなわちねじ面は耐摩耗性、耐剥離性を備え、さらに低発塵性のものになる。   The stainless steel screw according to the present invention configured as described above has a slope in which a hardened surface layer composed of a carburized layer, a nitrided layer, or a carbonitrided layer does not have a clear boundary with a non-carburized or non-nitrided portion inside the steel material. Since the threaded surface is a polished surface obtained by electropolishing or chemically polishing the threaded surface made of such a surface hardened layer, such a threaded surface is hard and smooth. The surface is provided with wear resistance and sliding characteristics with a low coefficient of friction, that is, the thread surface is provided with wear resistance and peeling resistance, and further has low dust generation.

すなわち、このようなねじを用いて締付けや緩めの操作を繰り返して行うと、ねじ面が「かじり」や「焼付き」を起こさず、特に真空または清浄雰囲気下に無潤滑で使用される専用ねじでは、または例えば200℃という高温環境においても焼付きなどを起こさずに発塵もない優れたステンレス鋼製ねじとなる。   In other words, repeated tightening and loosening operations using such screws do not cause threading or seizure on the screw surface, and are specially used screws that are used without lubrication, particularly in a vacuum or clean atmosphere. Then, for example, even in a high temperature environment of 200 ° C., an excellent stainless steel screw that does not cause seizure and does not generate dust is obtained.

また、ねじ面の表面硬化層が、より好ましい硬さで滑面となるような研磨面であるためには、浸炭層もしくは窒化層または浸炭窒化層からなる表面硬化層の当初表面から深さ10μm以浅まで研磨された研磨面であることが好ましい。   In addition, in order for the hardened surface of the threaded surface to be a polished surface having a more preferable hardness, a depth of 10 μm from the initial surface of the hardened layer made of a carburized layer, a nitrided layer, or a carbonitrided layer. A polished surface polished to a shallower depth is preferable.

このような表面硬化層は、ステンレス鋼内に炭素または窒素が充分に富化されかつ拡散された層であり、かつ低摩擦係数な層であるから、その研磨面は耐摩耗性に優れた摩擦係数の低い摺動特性を備えた面になる。   Such a surface hardened layer is a layer in which carbon or nitrogen is sufficiently enriched and diffused in stainless steel, and is a layer having a low coefficient of friction. The surface has a low coefficient of sliding property.

また、上記ステンレス鋼製ねじが、真空または清浄雰囲気下に無潤滑で使用される専用ねじとすることは、焼付きなどを起こさずに発塵も起こさない特性を充分に生かせる用途として好ましく、またステンレス鋼製ねじとしては、オーステナイト系ステンレス鋼製ねじを採用することができる。   In addition, it is preferable that the stainless steel screw be a dedicated screw that is used without lubrication in a vacuum or a clean atmosphere as an application that makes full use of characteristics that do not cause seizure and do not generate dust. As the stainless steel screw, an austenitic stainless steel screw can be adopted.

上記したように有利な作用効果を奏するステンレス鋼製ねじを効率よく製造するためには、ステンレス鋼製ねじに対し、350℃以上700℃未満の雰囲気内におけるプラズマ浸炭処理もしくはプラズマ窒化処理またはプラズマ浸炭窒化処理によって30μmを越える表面硬化層を形成し、この表面硬化層を電解研磨または化学研磨によって当初表面から深さ10μm以浅まで研磨してねじ面を形成することからなるステンレス鋼製ねじの製造方法を採用することが好ましい。   In order to efficiently produce a stainless steel screw exhibiting advantageous effects as described above, plasma carburizing treatment or plasma nitriding treatment or plasma carburizing in an atmosphere of 350 ° C. or higher and lower than 700 ° C. is performed on the stainless steel screw. A method for producing a stainless steel screw comprising forming a surface hardened layer exceeding 30 μm by nitriding, and polishing the surface hardened layer from the initial surface to a depth of 10 μm or less by electrolytic polishing or chemical polishing to form a thread surface Is preferably adopted.

ステンレス鋼製ねじの素材となるステンレスに対して、所定範囲を超える高温で浸炭する場合には、ステンレス鋼中のクロムと炭素が反応してクロム炭化物が析出してしまい、これにより周辺のクロム含量が減少するため耐食性が低下する不都合があるが、この発明では低い所定温度域でのプラズマ浸炭を採用することにより、ステンレス鋼内に炭素イオンを固溶して拡散させることができ、クロム炭化物を析出させることなく、したがってステンレスの耐食性は損なわれないものである。   When stainless steel, which is a material for stainless steel screws, is carburized at a high temperature exceeding the specified range, chromium in the stainless steel reacts with carbon to precipitate chromium carbide, which results in the surrounding chromium content. However, in this invention, by adopting plasma carburization in a low predetermined temperature range, carbon ions can be dissolved and diffused in stainless steel, and chromium carbide can be diffused. Without precipitation, the stainless steel's corrosion resistance is not compromised.

この発明は、オーステナイト系などのステンレス鋼製ねじの表面に、浸炭層もしくは窒化層または浸炭窒化層からなる表面硬化層を設けると共に、前記表面のうち少なくともねじ面が前記表面硬化層を電解研磨または化学研磨した研磨面で形成したものからなるステンレス鋼製ねじとしたので、ねじの締付けや緩めの操作を繰り返す場合に、ねじ面が「かじり」や「焼付き」を起こさないものとなり、特に真空または清浄雰囲気下に無潤滑で使用される専用ねじについて、焼付きなどを起こさずに発塵も起こさないステンレス鋼製ねじとなる利点がある。   The present invention provides a surface hardened layer made of a carburized layer, a nitrided layer, or a carbonitrided layer on the surface of a stainless steel screw such as austenitic, and at least the threaded surface of the surface is subjected to electropolishing or polishing the surface hardened layer. Since it is a stainless steel screw made of a chemically polished surface, the screw surface will not cause galling or seizure when the screw tightening or loosening operation is repeated. Alternatively, a dedicated screw used without lubrication in a clean atmosphere has an advantage of becoming a stainless steel screw that does not cause seizure and does not generate dust.

また、この発明の製造方法は、所定の窒化処理または所定温度でのプラズマ浸炭処理によって表面硬化層を形成し、この表面硬化層を電解研磨または化学研磨によって当初表面から10μm以浅まで研磨してねじ面を形成することにより、上記したように有利な効果を奏するステンレス鋼製ねじを効率よく製造できるという利点がある。   In the manufacturing method of the present invention, a hardened surface layer is formed by a predetermined nitriding treatment or a plasma carburizing treatment at a predetermined temperature, and the hardened surface layer is polished to a depth of 10 μm or less from the initial surface by electrolytic polishing or chemical polishing. By forming the surface, there is an advantage that a stainless steel screw having an advantageous effect as described above can be efficiently manufactured.

ステンレス鋼の硬度(HV)と表面からの深さ(μm)の関係を示す図表Chart showing the relationship between hardness (HV) and depth from surface (μm) of stainless steel 実施例のねじの軸力と各種トルクの関係を示す図表Chart showing the relationship between the axial force of various screws and various torques 比較例のねじの軸力と各種トルクの関係を示す図表Chart showing the relationship between the axial force of various screws and various torques

この発明のステンレス鋼製ねじは、ステンレス鋼製ねじの表面に、浸炭層もしくは窒化層または浸炭窒化層からなる表面硬化層を設けると共に、前記表面のうち少なくともねじ面が前記表面硬化層を電解研磨または化学研磨した研磨面で形成したものである。   The stainless steel screw according to the present invention is provided with a hardened layer formed of a carburized layer, a nitrided layer, or a carbonitrided layer on the surface of the stainless steel screw, and at least the threaded surface of the surface is electropolished with the surface hardened layer. Alternatively, it is formed by a chemically polished surface.

この発明に用いるねじの母材のステンレス鋼は、12%以上のクロムを含有する鋼として化学組成などは周知のものであり、代表的な対象材としてはオーステナイト系ステンレス鋼のJIS SUS304(304L)、SUS305、SUS303、SUS309、SUS310、SUS316(316L)およびCu含有のXM−7などが挙げられる。   The stainless steel of the screw base material used in the present invention has a well-known chemical composition as a steel containing 12% or more of chromium, and a typical target material is JIS SUS304 (304L) of austenitic stainless steel. SUS305, SUS303, SUS309, SUS310, SUS316 (316L), Cu-containing XM-7, and the like.

これらを母材としてプラズマ浸炭もしくはプラズマ窒化またはプラズマ浸炭窒化するときには、前処理として溶体化処理した後、表面を慎重に研削し、被処理面にオーステナイト組織が現れるようにすることが好ましい。   When plasma carburizing or plasma nitriding or plasma carbonitriding is performed using these as a base material, it is preferable that the surface is carefully ground after pre-treatment so that an austenite structure appears on the surface to be treated.

オーステナイト系ステンレス鋼は、優れた耐食性をもつ鉄鋼材料として化学プラントをはじめとして、食品産業や多くの機械工業で使用されているものであるが、硬さが低いという特徴があり、このような鉄鋼材料に対する表面処理方法として浸炭または窒化により、柔らかい母材に対して密着性のよい硬質膜を形成できる。   Austenitic stainless steel is used as a steel material with excellent corrosion resistance in the chemical plant, food industry and many machine industries, but it has the characteristic of low hardness. A hard film having good adhesion to a soft base material can be formed by carburizing or nitriding as a surface treatment method for the material.

このようなステンレス鋼に対して表面硬化層を形成するには、炭化水素ガスからなる浸炭用ガスもしくは窒素ガスからなる窒化用ガスまたは炭化水素ガスと共に窒素ガスを含む浸炭窒化ガスの雰囲気内で、オーステナイト相などのステンレス鋼を母材とするねじに、陰極電圧を放電状態で印加してプラズマ浸炭層もしくはプラズマ窒化層またはプラズマ浸炭窒化層からなる表面硬化層を形成する。   In order to form a hardened surface layer on such stainless steel, in the atmosphere of carbonitriding gas containing nitrogen gas together with carburizing gas consisting of hydrocarbon gas or nitriding gas consisting of nitrogen gas or hydrocarbon gas, A cathode voltage is applied in a discharge state to a screw made of stainless steel such as an austenitic phase as a base material to form a surface hardened layer made of a plasma carburized layer, a plasma nitrided layer, or a plasma carbonitrided layer.

表面硬化層は、一層であってもよいが、プラズマ浸炭層またはプラズマ浸炭窒化層からなる浸炭硬化層を形成した後、さらに窒素ガスを含む雰囲気内で前記ワーク表面にプラズマ窒化層を重ねて形成することもできる。   The surface hardened layer may be a single layer, but after forming a carburized hardened layer consisting of a plasma carburized layer or a plasma carbonitrided layer, the plasma nitrided layer is formed on the workpiece surface in an atmosphere containing nitrogen gas. You can also

このようにオーステナイト相のステンレス鋼母材に、先ず比較的低温でプラズマ浸炭層またはプラズマ浸炭窒化層からなる浸炭硬化層を形成しておき、その後に浸炭硬化層の上から比較的低温でプラズマ窒化層を形成してもよい。このようにすると、先に形成されていた浸炭硬化層内の炭素は母材の深部へ追いやられ、それより表面側にプラズマ窒化層が形成される。また、このように浸炭硬化層の上から比較的低温でプラズマ窒化層を形成すると、浸炭硬化層の厚さが当初よりも厚くなる。   In this way, a carburized hardened layer consisting of a plasma carburized layer or a plasma carbonitrided layer is first formed at a relatively low temperature on the austenitic stainless steel base material, and then plasma nitrided at a relatively low temperature from above the carburized hardened layer. A layer may be formed. In this case, carbon in the carburized hardened layer that has been formed earlier is driven to the deep part of the base material, and a plasma nitrided layer is formed on the surface side thereof. In addition, when the plasma nitrided layer is formed on the carburized hardened layer at a relatively low temperature, the thickness of the carburized hardened layer becomes thicker than the initial thickness.

因みに、浸炭層の窒化による移動は、オーステナイト中での侵入型原子の位置に、トラップサイトと拡散サイトの2種があり、クロムより親和力の強い窒素が先にトラップサイトを占めていた炭素からトラップサイトを横取りするというメカニズムで説明できる。この2種のサイトの存在が、化合物を作らない拡散であるにもかかわらず濃度分布が非誤差関数的である理由でもある。トラップサイトを追い出された炭素は、拡散サイトを伝ってより侵入型原子濃度の低い深部へと拡散していく。   Incidentally, nitriding movement of the carburized layer has two types of trap sites and diffusion sites at the position of interstitial atoms in austenite. Nitrogen with a higher affinity than chromium traps from the carbon that previously occupied the trap site. Can be explained by the mechanism of intercepting the site. The presence of these two types of sites is also the reason why the concentration distribution is non-error function despite the diffusion that does not form a compound. The carbon expelled from the trap site diffuses through the diffusion site to the deeper part where the concentration of interstitial atoms is lower.

プラズマ浸炭またはプラズマ窒化は、以下の操作で行なうことができる。
まず、処理室にステンレス鋼からなる母材を装入して排気した後、水素、アルゴンなどの希釈用ガスと共に、例えばメタン等の炭化水素ガスの濃度を1〜20%程度に注入し、残りをアルゴン(Ar)等の希釈ガスとして処理室に導入し、かつ3A/cm2程度の直流高電圧を印加して12時間程度保持する。
Plasma carburizing or plasma nitriding can be performed by the following operation.
First, a base material made of stainless steel is charged into the processing chamber and evacuated. Then, together with a dilution gas such as hydrogen and argon, the concentration of hydrocarbon gas such as methane is injected to about 1 to 20%, and the rest Is introduced into the processing chamber as a diluent gas such as argon (Ar), and a high DC voltage of about 3 A / cm 2 is applied and held for about 12 hours.

このとき、導入された炭化水素ガスまたは窒素や不活性ガスの混合ガスもプラズマ化し、陰極付近で急激に電位が低下する。このため、プラズマ中の炭素または窒素は、イオン化した状態で陰極降下によって加速され、母材表面に衝突して打ち込まれて、浸炭硬化層および窒化層を形成する。   At this time, the introduced hydrocarbon gas or a mixed gas of nitrogen or an inert gas is also turned into plasma, and the potential is rapidly lowered near the cathode. For this reason, the carbon or nitrogen in the plasma is accelerated by the cathode fall in an ionized state, and is collided with the surface of the base material to be driven to form a carburized hardened layer and a nitrided layer.

上記した炭化水素ガスは、Cn2n+2で示されるメタン同属体であって前記浸炭温度において気体であるものを種類に限定なく使用することができる。特に、常温で気体のメタン、エタン、プロパン、ブタンは、使用に際して気化設備が不要であるので、好ましいものであるといえる。 As the above-described hydrocarbon gas, a methane congener represented by C n H 2n + 2 which is a gas at the carburizing temperature can be used without limitation. In particular, methane, ethane, propane, and butane that are gaseous at room temperature are preferable because they do not require vaporization equipment when used.

この発明におけるプラズマ浸炭もしくはプラズマ浸炭窒化またはプラズマ窒化処理は、母材が所定温度に加熱された条件で行なう。すなわち、これらの処理は、350℃以上700℃未満で行ない、好ましくは400〜500℃の低温で行ない、プラズマ窒化処理については、好ましくは450℃以下、より好ましくは350〜450℃で行なう。なぜなら、上記所定範囲未満でプラズマ浸炭もしくはプラズマ浸炭窒化などを行なうと、拡散速度が低いため充分な厚さの硬化層を形成できないからであり、上記所定範囲を超えて高温で処理すると、耐食性が悪い層が形成されて好ましくないからである。   The plasma carburizing, plasma carbonitriding or plasma nitriding treatment in the present invention is performed under the condition that the base material is heated to a predetermined temperature. That is, these treatments are performed at 350 ° C. or more and less than 700 ° C., preferably at a low temperature of 400 to 500 ° C., and the plasma nitriding treatment is preferably performed at 450 ° C. or less, more preferably 350 to 450 ° C. This is because, if plasma carburizing or plasma carbonitriding is performed below the predetermined range, a diffusion layer has a low diffusion rate, so that a cured layer having a sufficient thickness cannot be formed. This is because a bad layer is formed, which is not preferable.

次に、少なくともねじ面が前記表面硬化層を電解研磨または化学研磨した研磨面で形成されるように、以下の処理を行う。   Next, the following treatment is performed so that at least the threaded surface is formed of a polished surface obtained by electrolytic polishing or chemical polishing of the surface hardened layer.

化学研磨は、脱脂処理した後、研磨浴への浸漬処理およびその後の水洗処理によって行なう。
研磨浴は、ステンレス鋼に対する充分な溶解能を有する成分と、酸化剤のような不動態化能を有する成分を適当に配合したものからなり、例えば縮合リン酸90〜100体積%、硫酸0〜10体積%からなる研磨浴を例示できる。
The chemical polishing is performed by degreasing treatment, immersion treatment in a polishing bath, and subsequent water washing treatment.
The polishing bath is composed of an appropriate blend of a component having sufficient solubility in stainless steel and a component having passivating ability such as an oxidizing agent, for example, 90 to 100% by volume of condensed phosphoric acid, 0 to 0 to sulfuric acid. An example of the polishing bath is 10% by volume.

このような研磨浴に対して、150〜200℃の温度条件で数秒〜数分の浸漬時間を設定すればよいが、表面硬化層の当初表面から10μm以浅まで研磨するために好ましい条件としては、50〜80℃の温度条件で3〜15分の浸漬時間であることが好ましい。   What is necessary is just to set immersion time for several seconds-several minutes on the temperature conditions of 150-200 degreeC with respect to such polishing bath, As preferable conditions in order to grind | polish from the initial surface of a surface hardening layer to 10 micrometer or less, It is preferable that the immersion time is 3 to 15 minutes at a temperature of 50 to 80 ° C.

また、電解研磨は、硫酸系研磨浴を用い、ガラスラスニング電解槽中に陽極にステンレス鋼製ねじを接続して、大面積の陰極を対向させて直流電圧を印加し、電流密度および温度並びに時間を調整して行なう。   Electropolishing uses a sulfuric acid-based polishing bath, a stainless steel screw is connected to the anode in a glass-lasting electrolytic bath, a direct current voltage is applied with the large-area cathode facing the current, and the current density, temperature, and Adjust the time.

電解研磨用の研磨浴の例としては、リン酸40〜45体積%、硫酸35〜40体積%、クロム酸5〜7体積%、水(残部)からなるものが挙げられる。   As an example of the polishing bath for electropolishing, there may be mentioned one comprising phosphoric acid 40 to 45% by volume, sulfuric acid 35 to 40% by volume, chromic acid 5 to 7% by volume, and water (remainder).

このような研磨浴を用いた電解研磨では、電流密度40〜70A/dm、温度60〜90℃、時間2〜15分の条件で行なうことができるが、表面硬化層の当初表面から10μm以浅まで研磨するために好ましい条件としては、電流密度40〜70A/dm、温度70〜90℃、時間3〜10分の条件であることが好ましい。 Electrolytic polishing using such a polishing bath can be performed under the conditions of a current density of 40 to 70 A / dm 2 , a temperature of 60 to 90 ° C., and a time of 2 to 15 minutes, but is shallower than 10 μm from the initial surface of the surface hardened layer. As the preferable conditions for polishing up to 30 mm, it is preferable that the current density is 40 to 70 A / dm 2 , the temperature is 70 to 90 ° C., and the time is 3 to 10 minutes.

このようにして前述した表面硬化層を電解研磨または化学研磨すると、機械研磨のように大きな凹凸はそのままに残るが、微小凹凸は除去されるという特徴が現れ、ねじ山やねじ溝は、研磨によって大きく削り取られることなく、ねじの表面には不動態化皮膜が形成され、かつ適当な厚さで残る表面硬化層は鋼材内部の非浸炭または非窒化部分とは明瞭な境界を有しない傾斜的な密度で拡散し、ねじ面は摺動による微小粒子を発生させ難いものになる。このようにしてこの発明に係るステンレス鋼製ねじは、耐摩耗性および低摩擦係数の摺動特性を備えたものになり、さらに低発塵性のものになる。   When the surface hardened layer is electropolished or chemically polished in this way, large unevenness remains as it is like mechanical polishing, but the feature that micro unevenness is removed appears. Without being greatly scraped off, a passivating film is formed on the surface of the screw, and the hardened surface layer remaining at an appropriate thickness is inclined so as not to have a clear boundary with the non-carburized or non-nitrided portion inside the steel material. It diffuses with density, and the thread surface is difficult to generate fine particles by sliding. Thus, the stainless steel screw according to the present invention has wear resistance and sliding characteristics with a low coefficient of friction, and further has low dust generation.

[実施例1]
オーステナイト系ステンレス鋼(SUS316)を所要の長さに切断した直径約9mmの丸棒を、周知のプレスを用いて、六角穴付きボルト頭を有するねじ素材を成形した。このねじ素材を周知の平ダイス転造装置に供給し、ねじ転造加工を行ってねじ(六角穴付きボルト)を作製した。その後、浸炭処理温度と同等の500℃にまで加熱し、水素ガスを混合した窒素ガスを用いてクリーニング処理を行なった。
[Example 1]
A threaded material having a hexagon socket head bolt was formed from a round bar of about 9 mm in diameter obtained by cutting austenitic stainless steel (SUS316) to a required length using a known press. This screw material was supplied to a well-known flat die rolling device, and thread rolling was performed to produce a screw (hexagon socket head bolt). Then, it heated to 500 degreeC equivalent to a carburizing process temperature, and performed the cleaning process using the nitrogen gas which mixed hydrogen gas.

そして、浸炭用ガスとしてのメタンガス(流量0.5L/min)と希釈ガスとしての水素ガス(流量3.0L/min)の混合ガスからなる雰囲気ガスを前記処理室に導入し、この雰囲気ガス温度、即ち浸炭処理温度が500℃、同ガス圧力が約200Pa、処理時間が12時間の条件で、プラズマ浸炭処理を行った。   Then, an atmospheric gas composed of a mixed gas of methane gas (flow rate 0.5 L / min) as a carburizing gas and hydrogen gas (flow rate 3.0 L / min) as a dilution gas is introduced into the processing chamber, and the atmospheric gas temperature That is, the plasma carburizing process was performed under the conditions that the carburizing temperature was 500 ° C., the gas pressure was about 200 Pa, and the processing time was 12 hours.

浸炭処理終了後、迅速に雰囲気ガスを排気し、処理室に窒素ガスを導入してねじ素材を常温まで強制冷却した。   After the carburizing process was completed, the atmosphere gas was quickly exhausted, nitrogen gas was introduced into the processing chamber, and the screw material was forcibly cooled to room temperature.

このねじについて、浸炭層の深さを調べるため、表面からの深さ(μm)と硬さ(Hv)との関係を調べ、この結果を図1に示した。
図1の結果からも明らかなように、プラズマ浸炭処理による表面硬化により、表面から30μm程度の深さまで、炭素の浸透拡散による表面硬化層の形成が認められ、炭素は鋼材内部の非浸炭部分とは明瞭な境界を有しない傾斜的な密度で拡散しているものと認められた。
For this screw, in order to investigate the depth of the carburized layer, the relationship between the depth (μm) from the surface and the hardness (Hv) was examined, and the result is shown in FIG.
As is clear from the results of FIG. 1, the surface hardening by plasma carburizing treatment, the formation of a hardened surface layer by permeation and diffusion of carbon is recognized from the surface to a depth of about 30 μm. Was observed to diffuse with a gradient density without a clear boundary.

次に、化学研磨を以下の条件で行なった。
縮合リン酸90体積%、硫酸10体積%からなる研磨浴を用いて180℃の温度条件で2分の浸漬時間による化学研磨を行ない、当初表面から深さ20μmまで研磨されたねじ面を有するステンレス鋼製ねじを作製した。
Next, chemical polishing was performed under the following conditions.
Stainless steel having a threaded surface polished from the initial surface to a depth of 20 μm by chemical polishing for 2 minutes under a temperature condition of 180 ° C. using a polishing bath composed of 90% by volume condensed phosphoric acid and 10% by volume sulfuric acid. Steel screws were produced.

参考例
実施例1において、プラズマ浸炭に代えて、プラズマ窒化を以下の条件で行なったこと以外は、全く同様にしてステンレス鋼製ねじを作製した。
すなわち、プラズマ窒化は、窒素ガス(流量1.0L/min)と希釈ガスとしての水素ガス(流量3.0L/min)の混合ガスからなる雰囲気ガスを処理室に導入し、この雰囲気ガス温度、即ち窒化処理温度が450℃、同ガス圧力が約200Pa、処理時間が12時間の条件で、プラズマ窒化処理を行なった。
[ Reference example ]
In Example 1, a stainless steel screw was produced in exactly the same manner except that plasma nitriding was performed under the following conditions instead of plasma carburizing.
That is, in plasma nitriding, an atmosphere gas composed of a mixed gas of nitrogen gas (flow rate 1.0 L / min) and hydrogen gas (flow rate 3.0 L / min) as a dilution gas is introduced into the processing chamber, and the atmosphere gas temperature, That is, the plasma nitriding treatment was performed under the conditions that the nitriding temperature was 450 ° C., the gas pressure was about 200 Pa, and the treatment time was 12 hours.

上記処理終了後、迅速に雰囲気ガスを排気し、処理室に窒素ガスを導入してねじ素材を常温まで強制冷却した。   After completion of the treatment, the atmosphere gas was quickly exhausted, and nitrogen gas was introduced into the treatment chamber to forcibly cool the screw material to room temperature.

[実施例3]
実施例1において、化学研磨に代えて、以下の条件で電解研磨を行なったこと以外は、全く同様にしてステンレス鋼製ねじを作製した。
電解研磨用の研磨浴としては、リン酸40体積%、硫酸35体積%、クロム酸5体積%、水20体積%を用い、電流密度60A/dm、温度75℃、時間10分の条件で行なった。
[Example 3]
In Example 1, a stainless steel screw was produced in the same manner except that the electrolytic polishing was performed under the following conditions instead of the chemical polishing.
As a polishing bath for electrolytic polishing, phosphoric acid 40% by volume, sulfuric acid 35% by volume, chromic acid 5% by volume, water 20% by volume, current density 60A / dm 2 , temperature 75 ° C., time 10 minutes. I did it.

表面硬化層の当初表面から10μmまで研磨するためには、電流密度50A/dm、温度80℃、時間5分の条件を採用した。 In order to polish from the initial surface of the surface hardened layer to 10 μm, conditions of current density of 50 A / dm 2 , temperature of 80 ° C., and time of 5 minutes were adopted.

[比較例1]
オーステナイト系ステンレス鋼(SUS316)を所要の長さに切断した直径約9mmの丸棒を、周知のプレスを用いて、六角穴付きボルト頭を有するねじ素材を成形した。このねじ素材を周知の平ダイス転造装置に供給し、ねじ転造加工を行ってねじ(六角穴付きボルト)を作製した。
[Comparative Example 1]
A threaded material having a hexagon socket head bolt was formed from a round bar of about 9 mm in diameter obtained by cutting austenitic stainless steel (SUS316) to a required length using a known press. This screw material was supplied to a well-known flat die rolling device, and thread rolling was performed to produce a screw (hexagon socket head bolt).

[比較例2]
実施例1において、化学研磨を行なわなかったこと以外は、全く同様にして六角穴付きボルトを作製した。
[Comparative Example 2]
In Example 1, a hexagon socket head cap screw was manufactured in the same manner except that chemical polishing was not performed.

以上のようにして得られた実施例および比較例のステンレス鋼製ねじの特性を調べるため、以下の締付け試験を行なった。
[締付け試験]
SDC社製:ねじ性能試験機(東工大 丸山一男光学博士考案の「弾・塑性域締結ねじ性能試験機」の改良型)を用いて、ステンレス鋼製ねじの回転による10回の繰り返し締付けを行ない、その際の締付けトルク、ねじ部トルク、座面トルクの各トルク(Nm)と軸力(kN)との関係を調べ、図2に実施例1の結果を示し、図3に比較例1の結果を示した。
In order to investigate the characteristics of the stainless steel screws of Examples and Comparative Examples obtained as described above, the following tightening tests were performed.
[Tightening test]
Made by SDC: Using a screw performance tester (an improved version of the “Elastic / Plastic Area Fastening Screw Performance Testing Machine” designed by Dr. Kazuo Maruyama, Tokyo Institute of Technology), tightening 10 times by rotating a stainless steel screw. Then, the relationship between each torque (Nm) and axial force (kN) of the tightening torque, screw portion torque, and seating surface torque at that time was examined. FIG. 2 shows the results of Example 1, and FIG. Results are shown.

図3の結果からも明らかなように、ボルト回転による10回の繰り返しを試行したが、表面硬化層を有しない比較例1では、初回の締付けは正常であったが、締付け回数を重ねるうちにトルクと軸力との関係が不安定になり、ねじ部に大きな変化が生じていることが確認され、8回目の締付けによって焼付きが発生し、ねじが破壊された。   As is apparent from the results of FIG. 3, the trial was repeated 10 times by bolt rotation. In Comparative Example 1 having no surface hardened layer, the initial tightening was normal, but as the number of tightening was repeated, The relationship between torque and axial force became unstable, and it was confirmed that a large change occurred in the threaded portion, seizure occurred by the eighth tightening, and the screw was broken.

一方、図2の結果からも明らかなように、表面硬化層を研磨面で形成したねじ面を有する実施例1は、ボルト回転による10回の繰り返しにおいて、各トルク(Nm)と軸力(kN)との関係は安定しており、焼付きやかじりの現象は全く認められなかった。   On the other hand, as is apparent from the results of FIG. 2, Example 1 having a threaded surface in which a hardened surface layer is formed of a polished surface has each torque (Nm) and axial force (kN) in 10 repetitions by bolt rotation. ) Was stable, and no seizure or galling phenomenon was observed.

また、別途作製した実施例1、参考例と比較例1、2に対し、使用に耐える機械的性質を有しているかどうかを確かめるため、JIS B1054の「ステンレス鋼製耐食ねじ部品の機械的性質」の引張り試験に供したところ、実施例1、参考例は比較例1と同様に、引張り強さは高く、伸びまたは破断位置も同じであり、表面硬化層の形成および研磨加工による強度の低下は全くないことが確認できた。 In addition, in order to confirm whether the mechanical properties that can be used with respect to Examples 1 and 3 and Reference Examples 1 and 2 and Comparative Examples 1 and 2 that were separately prepared were used, the “mechanical machine for stainless steel corrosion resistant screw parts” of JIS B1054 When subjected to a tensile test of “proper properties”, Examples 1 and 3 and Reference Example had the same high tensile strength and the same elongation or fracture position as in Comparative Example 1, and formed and polished a surface hardened layer. It was confirmed that there was no decrease in strength due to.

また、実施例1、参考例と比較例1、2に対し、SUS304の板に同寸法のめねじを形成し、締付けトルク10N・mで締め付けた。これ電気炉に収容して200℃の雰囲気で8時間保持し、その後、常温に冷却した後、ねじを緩めるという工程を30回繰り返した。
その結果、実施例1、参考例は、焼付き現象は全く生じないことが確認でき、また試験後のねじは限界ゲージによるねじの精度試験にも合格することが確認できた。
Further, for Examples 1 and 3 and Reference Examples and Comparative Examples 1 and 2, female screws of the same size were formed on the SUS304 plate and tightened with a tightening torque of 10 N · m. The process of accommodating in this electric furnace and hold | maintaining at 200 degreeC atmosphere for 8 hours, after cooling to normal temperature after that, the process of loosening a screw was repeated 30 times.
As a result, in Examples 1 and 3 and the reference example , it was confirmed that no seizure phenomenon occurred, and it was confirmed that the screw after the test passed the screw accuracy test using a limit gauge.

このように実施例のステンレス鋼製ねじは、めっきや塗装などによる表面硬化層を形成したものとは異なり、表面硬化層の剥離の心配がないため、半導体・医薬品などの製造装置及びクリーンルーム内など厳しい室内環境においても使用できるものであり、ねじ部品の焼付きによる機器の損傷・故障防止効果も有しており、同種のねじの長寿命化を図ることができることが明らかであった。   In this way, the stainless steel screw of the embodiment is different from the case where the surface hardened layer is formed by plating or painting, and there is no fear of peeling of the surface hardened layer. It can be used even in harsh indoor environments, and has the effect of preventing damage and failure of equipment due to seizure of screw parts, and it was clear that it is possible to extend the life of screws of the same type.

Claims (4)

ステンレス鋼製ねじの表面に、浸炭層または浸炭窒化層からなる表面硬化層を設けると共に、前記表面のうち少なくともねじ面が前記表面硬化層を当初表面から10μm以浅まで電解研磨または化学研磨した研磨面で形成されたものからなるステンレス鋼製ねじ。 A polished surface in which a surface hardened layer made of a carburized layer or a carbonitrided layer is provided on the surface of the stainless steel screw, and at least the threaded surface of the surface is electropolished or chemically polished from the initial surface to a depth of 10 μm or less. Stainless steel screw made of 上記ステンレス鋼製ねじが、真空または清浄雰囲気下に無潤滑で使用される専用ねじである請求項1に記載のステンレス鋼製ねじ。 The stainless steel screw according to claim 1, wherein the stainless steel screw is a dedicated screw used without lubrication in a vacuum or a clean atmosphere. ステンレス鋼製ねじが、オーステナイト系ステンレス鋼製ねじである請求項1または2に記載のステンレス鋼製ねじ。 The stainless steel screw according to claim 1 or 2 , wherein the stainless steel screw is an austenitic stainless steel screw. ステンレス鋼製ねじに対し、350℃以上700℃未満の雰囲気内におけるプラズマ浸炭処理またはプラズマ浸炭窒化処理によって表面硬化層を形成し、この表面硬化層を電解研磨または化学研磨によって当初表面から10μm以浅まで研磨してねじ面を形成することからなるステンレス鋼製ねじの製造方法。   For a stainless steel screw, a surface hardened layer is formed by plasma carburizing treatment or plasma carbonitriding treatment in an atmosphere of 350 ° C. or higher and lower than 700 ° C., and this surface hardened layer is made shallower than 10 μm from the initial surface by electrolytic polishing or chemical polishing. A method for producing a stainless steel screw comprising polishing to form a threaded surface.
JP2010129915A 2010-06-07 2010-06-07 Stainless steel screws Active JP5746832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010129915A JP5746832B2 (en) 2010-06-07 2010-06-07 Stainless steel screws

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129915A JP5746832B2 (en) 2010-06-07 2010-06-07 Stainless steel screws

Publications (2)

Publication Number Publication Date
JP2011256412A JP2011256412A (en) 2011-12-22
JP5746832B2 true JP5746832B2 (en) 2015-07-08

Family

ID=45472922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129915A Active JP5746832B2 (en) 2010-06-07 2010-06-07 Stainless steel screws

Country Status (1)

Country Link
JP (1) JP5746832B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136384A1 (en) * 2012-03-14 2013-09-19 キヤノンアネルバ株式会社 Fastening member and vacuum device
DE102020209146A1 (en) * 2020-07-21 2022-01-27 Carl Zeiss Smt Gmbh FASTENING ELEMENT FOR A LITHOGRAPHY PLANT, LITHOGRAPHY PLANT AND METHOD OF MAKING A FASTENING ELEMENT

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633076B2 (en) * 1990-10-04 1997-07-23 大同ほくさん株式会社 Hard austenitic stainless steel screw and its manufacturing method
CA2160793A1 (en) * 1993-05-04 1994-11-10 Tonny Westlund A screw
SE9403773L (en) * 1994-11-02 1996-05-03 Faestsystem I Karlskoga Ab Screw as well as ways to manufacture and process a screw
JPH10330906A (en) * 1997-06-05 1998-12-15 Daido Hoxan Inc Production of austenitic stainless steel product
JP2003294146A (en) * 2002-01-29 2003-10-15 Sharp Corp Vacuum flange and vacuum flange unit

Also Published As

Publication number Publication date
JP2011256412A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
CN102191452B (en) Coloured austenite stainless steel material with high corrosion resistance and high hardness and production method thereof
KR100998055B1 (en) Heat treatment method for salt bath carburization of stainless steel having high corrosion resistance
JP2005533185A (en) Stainless steel surface hardening
JP2008163430A (en) High corrosion-resistant member and its manufacturing method
JPS62294160A (en) Thermochemical surface treatment of material in reactive gaseous plasma
GB2458518A (en) An aerospace bearing
TWI248987B (en) Surface-carbonitrided stainless steel parts excellent in wear resistance and method for their manufacture
EP3205742B1 (en) Method for altering surface of an iron based metal
Kusmanov et al. Possibilities of increasing wear resistance of steel surface by plasma electrolytic treatment
US20100058592A1 (en) Method for hardening running surfaces of roller bearing components
Chang et al. Investigation of the characteristics of DLC films on oxynitriding-treated ASP23 high speed steel by DC-pulsed PECVD process
WO2004005572A1 (en) Surface modified stainless steel
Furlan et al. Diamond-like carbon films deposited by hydrocarbon plasma sources
JP5746832B2 (en) Stainless steel screws
JP4505246B2 (en) Formation method of hardened surface of corrosion resistant and wear resistant austenitic stainless steel
EP0801142B1 (en) Treatment method of a metallic substrate, metallic substrate thereby obtained and his applications
JP2010222648A (en) Production method of carbon steel material and carbon steel material
Ensinger Correlations between process parameters and film properties of diamond-like carbon films formed by hydrocarbon plasma immersion ion implantation
JP2004307894A (en) Method for manufacturing corrosion resistant, abrasion resistant and non-magnetic metal product, and corrosion resistant, abrasion resistant non-magnetic metal product obtained thereby
Zhao et al. Active screen plasma nitriding of AISI 316L austenitic stainless steel at different potentials
JP5674180B2 (en) Method for surface modification of stainless steel materials
JP2773092B2 (en) Surface coated steel products
Surberg et al. Effect of deep cold treatment on two case hardening steels
Chang et al. Enhancement of the wear and corrosion resistance of DLC/oxynitriding duplex-treated PM30 steel by the asymmetric bipolar-pulsed plasma enhanced CVD
WO2010082403A1 (en) Titanium alloy screw formed by rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

R150 Certificate of patent or registration of utility model

Ref document number: 5746832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250