JP2011192518A - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
JP2011192518A
JP2011192518A JP2010057236A JP2010057236A JP2011192518A JP 2011192518 A JP2011192518 A JP 2011192518A JP 2010057236 A JP2010057236 A JP 2010057236A JP 2010057236 A JP2010057236 A JP 2010057236A JP 2011192518 A JP2011192518 A JP 2011192518A
Authority
JP
Japan
Prior art keywords
lead plate
storage element
power storage
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010057236A
Other languages
English (en)
Inventor
Takeshi Fujino
健 藤野
Eisuke Komazawa
映祐 駒澤
Yuki Tominaga
由騎 冨永
Yoshiji Ishikura
誉士 石倉
Minoru Noguchi
実 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010057236A priority Critical patent/JP2011192518A/ja
Publication of JP2011192518A publication Critical patent/JP2011192518A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】蓄電素子に短絡等の不具合が生じた際に、当該蓄電素子を他の蓄電素子から電気的に切り離して発熱を抑制する電流遮断機構を有する二次電池を提供する。
【解決手段】電池ケースと、電解液を有し、並列に接続される複数の蓄電素子と、蓄電素子の両端から導出される正極集電箔および負極集電箔と、集電箔を正極端子および負極端子にそれぞれ接続する正極リード板および負極リード板と、少なくとも一方の極において、リード板と電池ケース壁との間に設けられリード板と電池ケースとの間で圧縮されることで蓄電素子を電池ケースに対して固定する弾性部材とを備えた二次電池であって、少なくとも一方の極におけるリード板と弾性部材との間、または他方の極におけるリード板とケースとの間には、所定の温度により変形する熱変形部材が設けられ、熱変形部材の周囲には、熱変形した熱変形部材が移動可能な空間を有する。
【選択図】図1

Description

本発明は、たとえば自動車駆動用電源に用いて好適な二次電池に係り、特に、短絡等の不具合が発生した電池に正常な電池から電流が流れ込んで発熱することを防止する技術に関する。
車載用のリチウムイオン二次電池においては、それぞれ正極、負極および電解液を有する単電池(セル)が複数個直列に配置されて組電池を形成し、充放電制御のためのセルコントローラが接続され、必要な電圧が得られるようにバッテリーモジュールを形成する。
このような二次電池の単電池には、電極シートとセパレータを重ね、扁平型や円筒型に巻回した後に潰した巻回型蓄電素子、あるいは、平板状に切り出した電極とセパレータを積層した積層型蓄電素子の2種類があり、これらを、円筒型のケースに収納したものや、角型、扁平型のケースに収納したものがある。
蓄電素子を角型ケースに収納する場合、蓄電素子の両端部から導出される正極側および負極側の集電箔は重ねられ、それぞれ正極側および負極側の集電体(リード)に溶接され、ケースに収納される。
上記のうち積層型の蓄電素子は、各電極への面圧が一定であり、巻回型の蓄電素子に比べて屈曲部が無く、活物質の脱落などの課題が少ない。
一方、巻回型の蓄電素子は、長尺のシートを巻回して蓄電素子を作製するため、工程を簡素化することができ、低コスト化することができる。しかしながら、扁平型の巻回型蓄電素子では巻き芯部分が空間となるためケースへの充填密度が積層型の蓄電素子より上がりにくいという課題があり、充填密度を向上するためには、ケースに装填する際に蓄電素子を潰して装填する。
ケース内にこのような蓄電素子を複数個有する単電池においては、単電池内で一方の蓄電素子において例えば内部短絡等の不具合が生じた場合(以下、短絡蓄電素子と称する場合がある)、短絡蓄電素子の電圧が低下し、他方の正常な蓄電素子から、さらには組電池における他の単電池から電流が流れ込み、当該短絡蓄電素子が異常な発熱に至るという問題があった。
このような問題を解決するため、図15(a)に示すように1個の蓄電素子100aを有する単電池100内に、あるいは図15(b)に示すように複数の蓄電素子101a〜101dを有する単電池101内にヒューズ200、200a〜200dを設け、過大な電流が流れた際には回路を遮断する技術が知られている。この技術によれば、不具合の生じた短絡蓄電素子に大電流が流れ込んだ場合に、ヒューズの溶断によって、当該蓄電素子が発熱を起こす前に他の蓄電素子から電気的に切り離すことができる。例えば、蓄電素子101bに不具合が発生した場合、ヒューズ200aあるいは200bが溶断する。
しかしながら、図15(b)に示す単電池101においては、例えば蓄電素子101dにのみ不具合が発生してヒューズ200cあるいは200dが溶断した場合、ヒューズ200c(200d)の下流側にある正常な蓄電素子も含む全ての蓄電素子101a〜101dが電気的に切り離されてしまうという問題があった。また、回路上に数多くのヒューズが設けられることにより電気抵抗が上昇し、電池の正常な運転時において消費電力が増加してしまい非効率的であるという問題があった。さらに、各蓄電素子においてヒューズ、蓄電素子および端子を接続するため、組電池全体では作業工数がかかり生産性が低下してコストアップにつながるため現実的ではない。
これに対して、巻回型の蓄電素子を円筒型ケースに収めた蓄電池において、蓄電素子を封入した領域を密閉構造とするとともにこの領域の端部に防爆弁およびリード遮断用ストリッパーを設け、蓄電素子に短絡等の不具合が発生した場合、すなわち異常発熱により当該領域の内圧が増大して所定の内圧に到達したときに、リード板が防爆弁より剥離あるいはリード板が破断して、電流を遮断することができる技術が開示されている(例えば、特許文献1参照)。
しかしながら、この方法は、圧力に強い円筒型ケースにおいてのみ適用可能であり、本願発明のような車載用の角型ケースにおいては、側面が弱く、内圧の増大に耐えられないため、採用することができない。仮に角型ケースの側面を厚くしてケースの強度を向上させれば適用することは可能であるが、電池重量が増大して好ましくない。また、内圧が増大して電流遮断を行う方法では、1個の素子に対して1つの閉じられた空間が必要となり、複数の蓄電素子を封入した電池に採用することができない。
また、巻回型の蓄電素子を円筒型ケースに収めた蓄電池において、蓄電素子から外部電極へ至る回路の途上に、対向して端部が接触する2つの接続板を設け、これら接続板の間の領域に所定の温度で膨張する熱膨張樹脂を配置し、蓄電素子が発熱して温度が上昇した場合に、膨張した熱膨張樹脂が、互いに接触する接続板の端部に割り込むようにして接続板が互いに分離させられ、電流を遮断することができる技術が開示されている(例えば、特許文献2参照)。
しかしながら、熱膨張により接点を開放する技術であるので、樹脂の膨張力と接続板の接触圧力の管理を同時にする必要があり、確実な動作管理が困難である。また、複数の素子が並列に接続される電池では、電流遮断機構と固定部材がそれぞれの蓄電素子に必要となるため、部品数が多くなり、また、そのためのスペースが必要となり、電池が大きくなってしまう。さらに、円筒型ケースではケース端部のロールカシメにより電流遮断機構の一端を固定することができるが、角型ケースで蓄電素子を横向きに入れた構成では、接点と可動部を固定する部材が新たに必要となる。
さらに、巻回型の蓄電素子において、正極シート、セパレータおよび負極シートを巻回したものの最外周における露出した正極シートであって蓄電素子最外周を固定している接着テープの端部との境界に、破断溝を設け、過大な電流が流れた際に破断溝が切断されて電流を遮断することができる技術が開示されている(例えば、特許文献3参照)。
しかしながら、自動車用途では素子が大型化して重量が重くなり、かつ金属疲労や振動に対する耐久性が求められるため、脆弱な破断部を設けることは好ましくない。また、素子の膨張は、素子のケースに対するクリアランスの取り方や発熱の形態など発生条件が不安定であり、確実に破断部を速断できるとは言い難い。
大型電池においては、複数の蓄電素子を並列に接続して、充填密度の向上を図る構造であるため、問題のある蓄電素子を素早く、確実に切り離すことが可能なコンパクトな安全機構が求められており、特に、リード部の振動に対する接続信頼性確保、電流遮断機構の切断信頼性と遮断機構介在による抵抗上昇を最小限にでき、かつ、各蓄電素子個別に電流遮断機構が存在する蓄電素子群からなる、コンパクトな構造の電流遮断機構とそれを用いた角型の単電池が求められていた。しかしながら、上述した従来の電流遮断機構は、そのような大型角型電池に採用するには不十分なものであった。
特許第2701375号 特開2007−194069号公報 特開平8−329925号公報
本発明は、以上述べた従来技術の課題を解決するためになされたもので、大型の蓄電素子を角型ケースに装填した自動車用二次電池構造において、不具合の発生した蓄電素子への正常な蓄電素子からの電流の流入を抑制し、不具合の発生した蓄電素子の発熱を防止することができる電流遮断機構を有する二次電池を提供することを目的としている。
本発明の二次電池は、電池ケースと、電解液を有し並列に接続される複数の蓄電素子と、蓄電素子の両端から導出される正極集電箔および負極集電箔と、集電箔を正極端子および負極端子にそれぞれ接続する正極リード板および負極リード板と、少なくとも一方の極において、リード板と電池ケース壁との間に設けられリード板と電池ケースとの間で圧縮されることで蓄電素子を電池ケースに対して固定する弾性部材とを備えた二次電池であって、少なくとも一方の極におけるリード板と弾性部材との間、または他方の極におけるリード板とケースとの間には、所定の温度により変形する熱変形部材が設けられ、熱変形部材の周囲には、熱変形した熱変形部材が移動可能な空間を有することを特徴としている。
上記構成の二次電池にあっては、リード板と電池ケース側壁との間で圧縮された弾性部材により、リード板を介して蓄電素子に力が掛かり、複数の蓄電素子は電池ケースに対して固定されている。この状態から、1個の蓄電素子に短絡が生じた場合、その蓄電素子の電位が低下し、他の蓄電素子から大電流が流れ込む。この電流により蓄電素子およびリード板が発熱し、リード板に接する熱変形部材が溶融変形し、変形した熱変形部材は弾性部材に押圧されて周囲の空間に移動する。これにより弾性部材による当該蓄電素子への圧縮が解除されるため、この蓄電素子とリード板との接触が弱まって電気抵抗が増大する。このようにして、短絡の生じた蓄電素子への電流の流入が抑制され、結果として蓄電素子の発熱を防止することができる。
本発明の二次電池においては、熱変形部材が、中空部を有するドーナツ形状および/または多孔質であることを好ましい態様としている。
上記構成の二次電池にあっては、短絡蓄電素子の発熱で熱変形部材が変形する際、ドーナツ形状においては自身の中空部、あるいは多孔質においては多数の細孔が逃げ場となって変形部分がこれらの空間に流入することで、熱変形部材が変形し易くなり、すなわち厚さを薄くすることができるので、短絡蓄電素子の電気的な切り離しを速やかに行うことができる。
本発明の二次電池においては、弾性部材が、多孔質であることを好ましい態様としている。
上記構成の二次電池にあっては、蓄電素子の発熱で熱変形部材が変形する際、変形した熱変形部材が弾性部材の細孔に吸収されるため、熱変形部材の厚さを薄くすることができるばかりでなく、変形した熱変形部材が正常な蓄電素子に入り込むことを防止することができる。
本発明の二次電池においては、弾性部材と熱変形部材が接触する面における弾性部材の面積が、熱変形部材の面積よりも小さいことを好ましい態様としている。
上記構成の二次電池にあっては、弾性部材の方がより小さい面積を有しているので、弾性部材は熱変形部材に対して食い込み易くなっており、熱変形部材の変形に際して熱変形部材の変形を容易にし、厚さを薄くすることができるので、短絡の生じた蓄電素子の電気的な切り離しを速やかに行うことができる。
本発明の二次電池においては、弾性部材が、熱変形部材に対して接触する面において凹部または孔部が設けられていることを好ましい態様としている。
上記構成の二次電池にあっては、蓄電素子の発熱で熱変形部材が変形する際、熱変形部材において圧力が掛かる押し付け部が優先的に変形し、さらに変形した部分が弾性部材の凹部または孔部に吸収されるため、熱変形部材の厚さを薄くすることができるので、短絡蓄電素子の電気的な切り離しを速やかに行うことができる。
また、本発明の二次電池は、電池ケースと、電解液を有する1個の蓄電素子と、蓄電素子の両端から導出される正極集電箔および負極集電箔と、集電箔を正極端子および負極端子にそれぞれ接続する正極リード板および負極リード板と、少なくとも一方の極において、リード板と電池ケース壁との間に設けられリード板と電池ケースとの間で圧縮されることで蓄電素子を電池ケースに対して固定する弾性部材とを備えた二次電池であって、少なくとも一方の極におけるリード板と弾性部材との間には、所定の温度により変形する熱変形部材が設けられ、熱変形部材の周囲には、熱変形した熱変形部材が移動可能な空間を有することを特徴としている。
本発明によれば、複数の蓄電素子の個々に対する電流遮断機構を、板状の熱変形部材1枚を挟み込むだけで設置できるため、セルサイズを小型化することができる。また、回路上に電流遮断機構を設置しないため、組み込みによる電気抵抗の増大がない。また、リード板と電流遮断機構を接続するための溶接やカシメ、ボルトナット等の部材が必要ないため、振動に対する接続信頼性を高くすることができ、部品分の低コスト化と軽量化が可能である。また、ケースへ挿入するのみの組み立て構造なので、従来必要であった、電流遮断機構を接続するための工数が削減でき、生産性を向上することができる。さらに、電流遮断動作は、スペーサーとしての熱変形部材の体積変化のみであり、設計範囲が広く、また簡便である。特に、熱変形部材の組成制御や構造制御で軟化点を調整でき、電流遮断機構の動作タイミングを自由に変更することができる。
本発明の第1実施形態に係る単電池を示し、(a)は透視斜視図、(b)は透視正面図である。 本発明の第1実施形態に係る単電池を示す透視側面図である。 本発明の第1実施形態に係る単電池の集電部分を示す分解斜視図である。 図2および3におけるA−A線断面図である。 図4における部分拡大図であり、(a)は電流遮断機構の動作前を、(b)は動作後を示す。 本発明の第2実施形態に係る単電池の断面図である。 図6における部分拡大図であり、(a)は電流遮断機構の動作前を、(b)は動作後を示す。 本発明の第3実施形態に係る単電池の断面図における部分拡大図であり、(a)は電流遮断機構の動作前を、(b)は動作後を示す。 本発明の第4実施形態に係る単電池の断面図における部分拡大図であり、(a)は電流遮断機構の動作前を、(b)は動作後を示す。また、(c)は弾性部材の斜視図を示す。 本発明の第5実施形態に係る単電池の断面図である。 図10における部分拡大図であり、(a)は電流遮断機構の動作前を、(b)は動作後を示す。 本発明の第6実施形態に係る単電池を示し、(a)は透視斜視図、(b)は透視正面図である。 本発明の第6実施形態に係る単電池の集電部分を示す分解斜視図である。 本発明の蓄電素子を電池ケースに装填する工程を示す模式図である。 従来の電流遮断機構を説明する模式図である。
以下、図面を参照して本発明の実施の形態を説明する。
第1実施形態
図1は、本発明の第1実施形態に係る単電池である。単電池は、公知のリチウムイオン二次電池等であって、電池ケース10および電池蓋11を有する。電池ケース10内には、正極材料を塗布した金属箔/セパレータ/負極材料を塗布した金属箔を重ねて巻回体等とし電解液が含浸された複数の蓄電素子30と、複数の蓄電素子30の両端からそれぞれ導出された正極集電箔31および負極集電箔32に接続された1枚の導電性の正極リード板22および負極リード板23とが収容されている。正極リード板22および負極リード板23のそれぞれには、電池蓋11を貫通して電池外部に露出するように正極端子20および負極端子21が設けられている。
各構成要素の積層順を図2に分解図で示すように、複数の蓄電素子30の端部にそれぞれ露出した正極集電箔31には、1枚の正極リード板22が重ねられ、正極リード板22の上には、複数の蓄電素子30のそれぞれに対応する箇所に熱変形部材40と弾性部材50が順に積み重ねられており、また、図1に示すように負極リード板23の上には、絶縁部材60が重ねられている。弾性部材50は、ゴム等からなる弾性材料からなり、熱変形部材40と電池ケース10の側壁との間で圧縮されることによって、蓄電素子30を電池ケース10に対して固定している。
図3は、蓄電素子30、正極リード板22、熱変形部材40および弾性部材50からなる複合体を分解して示した模式図である。図3に示すように、正極リード板22は、正極リード板22を集電箔31に押圧して電気的に接続するための押圧部22aを蓄電素子の個数に応じて有し(図では2個分)、また、蓄電素子の中空部33に挿入されて正極リード板22の位置決めを行うための突出部22bと、溝部22cと、電解液を蓄電素子内部へスムーズに含浸させるための切欠部22dを有する。
蓄電素子30は、偏平状の中空部33を有し、この中空部33に、正極リード板22の突出部22bが位置決めのために挿入され、続いて押圧部22aの蓄電素子30と反対側から、中空部40aを有するドーナツ形状の熱変形部材40が配置される。さらに熱変形部材40の上には、弾性部材50が配置される。
同様に、図4に示すように、正極リード板22の蓄電素子30を挟んだ反対側には、負極リード板23が設けられている。負極リード板23も、正極リード板22と同様に、負極リード板23を負極集電箔32に押圧して電気的に接続するための押圧部23aと、位置決めのための突出部23bと、電解液を蓄電素子内部へスムーズに含浸させるための図示しない切欠部を有する。蓄電素子30の中空部に、負極リード板23の突出部23bが挿入され、続いて押圧部23aの蓄電素子30と反対側から、負極リード板23と電池ケース10を絶縁する絶縁部材60が配置される。なお、絶縁部材60の代わりに、正極側と同様に弾性部材50を配置しても良い。
正極側(あるいは負極側にも)に設けられた弾性部材50が電池ケース10と熱変形部材40(負極側の場合は負極リード板23)との間で圧縮されることにより発生する反発力によって、正極および負極のリード板押圧部は、集電箔31および32に押し付けられ、これらは電気的に接続される。この状態を示したのが、図5(a)の拡大図であり、矢印で示すように、弾性部材50から発生する反発力により、正極リード板22は、正極集電箔31に押圧されて電気的に接続されている。また、図示しない反対側の負極リード板23も、負極集電箔32に押圧されて電気的に接続されている。
上記構成の第1実施形態の単電池によれば、複数の蓄電素子のうち一の蓄電素子に短絡が発生すると、この蓄電素子の電圧が低下し、他の正常な蓄電素子あるいは図示しない組電池における他の単電池から大電流が流れ込む。すると、短絡蓄電素子の温度が上昇する。この温度が熱変形部材40の軟化点あるいは融点を超えると、図5(b)に示すように、圧縮部材50の圧縮により熱変形部材40は溶融変形し、厚さがTからTへ減少する。これにより圧縮部材50の圧縮による反発力が消失あるいは軽減し、正極リード板22および負極リード板23に伝達されなくなる。そして、それまで付勢されていた正極リード板22および負極リード板23と集電箔31および32との接触が弱まり、電気抵抗が増大する。電気抵抗の増大により、短絡蓄電素子への電流の流入が減少し、短絡蓄電素子は回路から電気的に切断され、かつ他の正常な蓄電素子のみが回路に接続された状態となる。結果として、短絡蓄電素子の異常発熱を防止することができる。なお、図5(b)では正極リード板22と正極集電箔31との間に隙間Bが図示されているが、これは必ずしも正極リード板22と正極集電箔31が完全に分離することを意味するものではなく、微細な隙間の形成を模式的に示すものである。
熱変形部材40の変形に際しては、弾性部材からの圧縮力を消失させるために熱変形部材40の厚さを減少させる必要がある。そのためには変形した熱変形部材が逃げ場として流入するための空間が周囲に設けられていることが必要である。そのような空間として、例えば図5(b)に示すように、正極リード板22に形成された溝部22cが利用される。また、図示はされていないが、切欠部22dの空間も利用される。また、図2〜5に示すように、熱変形部材40をドーナツ形状として、自身の中空部40aの空間を利用することができる。さらに、熱変形部材40を多孔質として、その細孔を利用することもできる。
第2実施形態
図6は、本発明の第2実施形態に係る単電池の断面図である。また、図7は、図6の部分拡大図である。なお、以降の実施形態の説明においては、第1実施形態と同様の構成については説明を省略する。第2実施形態においては、図に示すように、弾性部材51は、熱変形部材40と接する面が平面ではなく、突出した凸状接触部51bを有し、この部分にて熱変形部材40と接触している。すなわち、弾性部材51と熱変形部材40が接触している面においては、熱変形部材40の面積よりも弾性部材51の面積の方が小さく形成されている。
上記構成の第2実施形態の単電池によれば、図7に示すように、弾性部材51の接触領域(凸状接触部51b)の方が熱変形部材40の平面領域より小さい面積を有しているので、熱変形部材40の変形に際しては、熱変形部材40の変形部分が熱変形部材40の周囲の空間に移動するのに加えて、図7(b)に示すように弾性部材51の接触領域が熱変形部材40に食い込む。これにより、弾性部材51と正極リード板22との距離をT→Tと小さくすることが第1実施形態よりも容易にすることができる。結果として、弾性部材51による反発力を消失あるいは軽減させ、短絡蓄電素子の電気的な切り離しを速やかに行うことができる。
第3実施形態
図8は、本発明の第3実施形態に係る単電池の部分拡大図である。この実施形態では、弾性部材52は、熱変形部材40と接触する面において、溝部52bを有している。
上記構成の第3実施形態の単電池によれば、図8に示すように、弾性部材52は、熱変形部材40と接触する面において溝部52bを有しているので、熱変形部材40の変形に際しては、熱変形部材40の変形部分が熱変形部材40の周囲の空間に移動するのに加えて、図8(b)に示すように熱変形部材40の変形部分が弾性部材の溝部52bに入り込む。これにより、弾性部材51と正極リード板22との距離をT→Tと小さくすることが第1実施形態よりも容易にすることができる。結果として、弾性部材52による反発力を消失あるいは軽減させ、短絡蓄電素子の電気的な切り離しを速やかに行うことができる。なお、溝部52bは、図では左右1対が図示されているが、数は1対に限定されず、任意の数を設けることができる。
第4実施形態
図9(a)および(b)は、本発明の第4実施形態に係る単電池の部分拡大図であり、(c)は、この実施形態で用いられる弾性部材53を示す斜視図である。この実施形態では、弾性部材53は、熱変形部材40と接触する面において、溝部53bを有するとともに、弾性部材53と一体成型された突起部53cを有している。この突起部53cは、熱変形部材40の中空部に挿入されることで、熱変形部材40に係合し、弾性部材53と熱変形部材40を固定している。
上記構成の第4実施形態の単電池によれば、弾性部材53は、熱変形部材40と接触する面において溝部53bを有しているので、熱変形部材40の変形に際しては、熱変形部材40の変形部分が熱変形部材40の周囲の空間に移動するのに加えて、図9(b)に示すように熱変形部材40の変形部分が弾性部材の溝部53bに入り込む。これにより、弾性部材53と正極リード板22との距離をT→Tと小さくすることが第1実施形態よりも容易にすることができる。結果として、弾性部材53による反発力を消失させ、短絡蓄電素子の電気的な切り離しを速やかに行うことができる。また、突起部53cによって弾性部材53と熱変形部材40が固定されているので、後述する電池の装填工程において、蓄電素子の複合体が一体化されて、構成要素の脱落を防止するので、好ましい。
以上、第1〜第4実施形態では、蓄電素子が2並列である単電池を例に説明したが、本発明は上記態様に限定されるものではなく、3個以上の蓄電素子を並列に電池ケースに封入した単電池に適用することもできる。
第5実施形態
図10は、本発明の第5実施形態に係る単電池の断面図である。また、図11は、図10の部分拡大図である。第5実施形態においては、図に示すように、正極側において熱変形部材が設けられておらず、弾性部材51と正極リード板22とが直接接触している。また、負極側においては、負極リード板23と電池ケース10との間に、熱変形部材40が設けられている。このように、本発明においては、これまで説明してきたように弾性部材と熱変形部材とが必ずしも同じ極側で接触していなくてもよく、本実施形態のように両者を二つの極に別々に設けることもできる。
上記構成の第5実施形態の単電池によれば、図11(a)に示すように、正極側の弾性部材51から発生する反発力は、正極リード板22に直接付与され、蓄電素子および集電箔を通じて負極リード板23に伝達し、熱変形部材40は負極リード板23と電池ケース10の間で圧縮される。そして、熱変形部材40の変形に際しては、図11(b)に示すように、熱変形部材40は負極リード板23と電池ケース10との間で変形し、変形部分が熱変形部材40の周囲の空間に移動することによって、熱変形部材の厚さをT→Tと小さくすることができる。結果として、弾性部材51による反発力を消失あるいは軽減させ、短絡蓄電素子の電気的な切り離しを速やかに行うことができる。なお、図11(b)では正極リード板22と正極集電箔31との間および負極リード板23と負極集電箔32との間に隙間BおよびBが図示されているが、これは必ずしもリード板と集電箔が完全に分離することを意味するものではなく、微細な隙間の形成を模式的に示すものである。
第6実施形態
図12は、本発明の第6実施形態に係る単電池である。単電池は、公知のリチウムイオン二次電池等であって、電池ケース10および電池蓋11を有する。電池ケース10内には、正極材料を塗布した金属箔/セパレータ/負極材料を塗布した金属箔を重ねて巻回体等とし電解液が含浸された1個の蓄電素子30と、蓄電素子30の両端から導出された正極集電箔31および負極集電箔32に接続された導電性の正極リード板24および負極リード板25とが収容されている。正極リード板24および負極リード板25のそれぞれには、電池蓋11を貫通して電池外部に露出するように正極端子20および負極端子21が設けられている。
各構成要素の積層順を図13に分解図で示すように、1個の蓄電素子30の端部に露出した正極集電箔31には、正極リード板24が重ねられ、正極リード板24の上には、熱変形部材40と弾性部材50が順に積み重ねられている。また、負極リード板25の上には、絶縁部材60が重ねられている。第1実施形態と同様、蓄電素子30は、弾性部材50の圧縮によって電池ケース10に対して固定されている。
正極リード板24は、1個の蓄電素子に対応する形状を有している以外は第1実施形態と同様であって、押圧部24aと、突出部24bと、溝部24cと、切欠部24dを有する。蓄電素子30は、偏平状の中空部33を有し、この中空部33に、正極リード板24の突出部24bが位置決めのために挿入され、続いて押圧部24aの蓄電素子30と反対側から、中空部40aを有するドーナツ形状の熱変形部材40が配置される。さらに熱変形部材40の上には、弾性部材50が配置される。
同様に、正極リード板24の蓄電素子30を挟んだ反対側には、負極リード板25が設けられている。負極リード板25も、正極リード板24と同様に、負極リード板25を負極集電箔32に押圧して電気的に接続するための押圧部25aと、位置決めのための突出部25bと、電解液を蓄電素子内部へスムーズに含浸させるための図示しない切欠部を有する。蓄電素子30の中空部33に、負極リード板25の突出部25bが挿入され、続いて押圧部25aの蓄電素子30と反対側から、負極リード板25と電池ケース10を絶縁する絶縁部材60が配置される。なお、絶縁部材60の代わりに、正極側と同様に弾性部材50を配置しても良い。
上記構成の第6実施形態の単電池によれば、蓄電素子30に短絡が発生すると、この蓄電素子の電圧が低下し、図示しない組電池における他の正常な単電池から大電流が流れ込むが、第1〜第5実施形態と同様に、熱変形部材40が溶融変形し、この単電池が他の組電池から電気的に切断され、かつ他の正常な単電池のみが回路に接続された状態となる。結果として、短絡蓄電素子を含む単電池の異常な発熱を防止することができる。
以上、第1〜第4および第6実施形態においては、正極側に弾性部材とともに熱変形部材を設け、負極側に絶縁部材を設けた例を説明し、また、第5実施形態においては、正極側に弾性部材のみを設け負極側に絶縁部材を設けた例を説明したが、本発明は上記態様のみに限定されず、負極側および正極側に設ける部材を逆にした態様としてもよいし、また、正極および負極の両側に熱変形部材を設けた態様も含む。
電池ケースへの装填
次に、図14を用いて、本発明における蓄電素子、リード板、熱変形部材および弾性部材からなる複合体を電池ケースに装填する工程を説明する。まず、(a)に示すように、蓄電素子複合体90は、上型80に立てられた2本の素子挟み込みガイド81の間に上下を逆にして挟持される。この時、各図において示す弾性部材50〜53や絶縁部材60の外側に形成された溝部50a、51a、52a、53aおよび60aに素子挟み込みガイド81が嵌合することにより、蓄電素子複合体90が圧縮された状態を維持したまま固定される。
次に、(b)に示すように、上型80は上下が逆にされ、上型80の孔部83に対して、下型84に立てられた2本のジグ用ガイドピン85が挿入される。また、下型84には、電池ケース91が載置される。
続いて、(c)に示すように、上型80を下方に移動させ、蓄電素子複合体90を素子挟み込みガイド81ごと電池ケース91に挿入する。
最後に、(d)に示すように、上型80の中央に形成された矩形の孔部82に蓄電素子押さえ板86を挿入して、蓄電素子複合体90に当接させる。蓄電素子複合体90が動かないように蓄電素子押さえ板86を押圧しつつ、上型80を上方に移動させる。以上のようにして、電池ケース91内に蓄電素子複合体90を装填することができる。
なお、素子挟み込みガイド81によって蓄電素子複合体90が保持される際は、第4実施形態で説明した突起部53cによって弾性部材53および熱変形部材40が固定されていると、これらの部材が装填工程の間に脱落することが防止できるので、好ましい。
以下、本発明の各構成要素について詳細に説明する。
正極シート
蓄電素子を構成する正極シートは、アルミニウムからなる正極集電体の両面に正極材料が結着した構造を有する。本実施例の正極材料としては、Li酸化物粉末を用い、導電フィラーとして、アセチレンブラック、ケッチエンブラック、VGCF等が挙げられる。中心部の蓄電素子と外周部の蓄電素子の正極、および負極の活物質は、同一でも、異なっていても良い。
負極シート
蓄電素子を構成する負極シートは、銅などからなる負極集電体の両面に負極材料が結着した構造を有する。本実施例の負極材料としては、リチウムイオンを吸蔵放出する炭素材料やSn、Si、Pb、Coを含む合金や酸化物を用いることができる。炭素材料としては、天然黒鉛、人造黒鉛、活性炭、600〜1200℃で焼成した低温炭素体(例えば、易黒鉛性炭素前駆体として、ピッチ、メソフェーズピッチ、または難黒鉛化性炭素前駆体として、フェノール樹脂、キシレン樹脂、PPS、セルロース等)を不活性雰囲気中で熱処理して合成した炭素などが挙げられる。中心部の素子と外周部の素子の電極活物質は、同一でも、異なっても良い。例えば、中心部の素子は、温度が高くなるので劣化が起こりやすいので、劣化タフネスが高く、膨張の小さい、ハードカーボンを中心部の負極に用い、外側の電極はソフトカーボン、黒鉛材料を用いることもできる。
セパレータシート
蓄電素子を構成するセパレータシートは、ポリオレフィン系微多孔質セパレータ、例えば、ポリエチレン、ポリプロピレンや不織布セパレータ、例えば、ポリエステル繊維、アラミド繊維を用いることができる。
電解液
溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。溶媒は、単独で使用しても、2種以上混合して使用しても良い。電解質としては、例えば過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]等のリチウム塩を挙げることができる。電解質は、単独で使用しても、2種以上混合して使用しても良い。電解質の溶媒に対する溶解量は、通常は0.2mol/L〜2mol/L程度である。種々のイオン性液体を混合してもよい。加えて、電解液の保持する、ゲル電解質としてもよくその保持材料としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ビニリデンフロライド(VdF)やヘキサフルオロプロピレン(HFP)またはその誘導体、または共重合体を用いることができる。
蓄電素子作製
本発明の素子は、巻回型でも積層型でも可能であるが、巻回型の蓄電素子が好ましく、特に扁平形状の巻回型蓄電素子に好適である。
電極端子
正極端子および負極端子の電極端子には、銅、ニッケル、アルミニウム、ステンレスといった金属またはこれらを含む合金やこれら金属を母材にしてニッケルメッキを施したものが使用可能である。集電箔と端子部分の接合面積を稼ぐためには、板状であることが好ましい。
リード板
正極及び負極リード板には、銅、ニッケル、アルミニウム、ステンレスといった金属またはこれらを含む合金やこれら金属を母材にしてニッケルメッキを施したものが使用可能である。
電池ケース
底面部の形状を加工するには、アルミニウム、ステンレス合金、樹脂を用いることができるが、インパクト成型、トランスファープレス加工によって作製したアルミニウム合金が好ましい。ケースは、蓄電素子と密着する構造が好ましく、これによりケースと蓄電素子との間の空間が少なくなり、電解液を注液した際の液面が上昇するので、蓄電素子への吸収が改善され含浸時間を短くできる効果がある。
熱変形部材
弾性部材とリード板との間のスペーサーとなる熱変形部材は、熱により溶融、または、発泡するなどして体積変形を伴う構造物である。熱変形部材は、樹脂、パラフィンなどのワックス、低融点金属などが挙げられるが、30kgf/cmの圧縮力に対して変形量が5%以下の剛体が好ましい。変形のための軟化点または融点が100℃以上300℃以下の材料を用いることができる。特に、熱可塑性樹脂、例えばポリビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニルが挙げられ、また、熱収縮率の大きい、フッ素樹脂PTFE、PFA、FEP、PVDFを用いることができる。特に、ポリエチレンが成型性、重量、電解液に対する安定性の点で好ましい。高密度ポリエチレン(HDPE)、中密度ポチエチレン(MDPE)、低密度ポリエチレン(LDPE)が好ましい。強度を保持するため、ガラス繊維や炭素繊維などで強化しても良く、伝熱性を向上させるために、黒鉛粉末混合した樹脂が特に良い。また、ポリエチレンは熱収縮、変形をすばやく行うために、ポリエチレン多孔体も使用でき、この場合、HDPEおよびMDPEが好ましい。
また、熱変形部材を樹脂ではなく、樹脂と低融点金属の複合体とすることも可能である。低融点金属としては、例えば、Sn、In、Bi、Pb、Al、Cdのいずれかを含む低融点の合金からなる部材を用いることができる。低融点金属を単独ではなく樹脂との複合体とする理由は、低融点金属を単独で用いると正極では電気化学的に溶解しショートするためであり、また、負極では局部電池ができるためである。さらに、低融点金属は強度が十分ではなく、弾性体の荷重に耐えられないので、低融点で強度のある合金が必要であるためである。
弾性部材
弾性部材は、ケース挿入時の圧縮により、厚みが変形する部材であり、弾性部材の圧縮によりリード板は蓄電素子に一定の荷重で押し付けられている。弾性部材としては具体的には、各種ゴムが用いられ、EPDMが好ましい。また、防振効果を高めるために防振構造をもつ材質(ウレタン系樹脂)を結合してもよい。また、熱変形部材の温度上昇により、熱変形部材が形状を速やかに変形することを促進する形状が好ましい。具体的には、弾性部材が熱変形部材と接触する面は凸部を有しており、熱変形部材の変形に伴って凸部が熱変形部材内部へとめり込む構造である。さらに、弾性部材は、凹部を有していると好ましく、熱変形部材が軟化溶融変形した際にその変形分を凹部に受け入れることができる。
絶縁部材
弾性部材と熱変形部材からなる電流遮断機構を片側の極のみに設ける場合は、他方の極にはリード板と電池ケースの間を絶縁する絶縁部材が用いられる。絶縁部材としては、耐電解液性を考慮するとエポキシ系樹脂、ポリプロピレン、ポリエチレンや金属酸化物アルミナ、シリカ等が好ましい。また、伝熱性能を考慮するとアルミニウム、銅、などの金属の表面に絶縁コート〔テフロン(登録商標)加工〕、フィルム(カプトンテープ)など表面処理が行われた物やシリコン樹脂などでも良い。
巻き芯
アルミニウム、ステンレス合金、熱硬化性樹脂、(例えばエポキシ系樹脂、フェノール樹脂、PPS樹脂)、ポリプロピレン、ポリエチレンを用いると、軽量化できて好ましく、特に、エポキシ系樹脂が好ましい。
以下、本発明の具体的な作製例について説明する。
[実施例1]
蓄電素子の作製
負極の集電箔として厚さ14μmのCu箔を用い、正極の集電箔として厚さ20μmのAl箔を用いた。正極活物質として粒径D50=12μmのLiNi0.33Mn0.33Co0.33を用い、負極活物質は、粒径22μmの人造黒鉛粒子を用いた。PVDFバインダを用いて電極を作製し、電極体プレス後の活物質層の厚みはそれぞれ100μmとした。負極の電極密度は1.5g/cm、正極の電極密度は3.8g/cmであった。正極側は塗工部110mm、未塗工部8mmとし、負極側は塗工部114mm、未塗工部8mmとし、セパレータは膜厚25μmのものを用いて正負極の間に挟んだ。
セパレータ間に正、負極を挿入して、2軸の巻き芯で巻回した。終了後、巻き芯を抜き、素子厚み12mmの扁平型の蓄電素子を得た。集電箔として、正極、負極にそれぞれAlおよびCuの未塗工部を左右に出した。同様にして2個作製した。
リード板と熱変形部材の接合
2個の蓄電素子について、両極板の未塗工部の箔を素子厚みの中央方向に倒れるように癖を付けておき、ジグで素子の幅方向に5.0mm潰し、全体の幅を124mmにする。潰したそれぞれの蓄電素子の未塗工部の中空部に挿入するように図3に示すリード板(厚み0.5mm)を置き、さらに、外側から図3に示すドーナツ形状の熱変形部材(低密度ポリエチレン、密度0.92g/cc、厚み1mm)、および弾性部材(EPDM)で押さえ込み、全体の幅を131mmとした蓄電素子複合体を得た。
含浸
蓄電素子複合体を80℃で24hr真空乾燥した後、グローブボックス内の含浸用の容器の中に、蓄電素子複合体を投入し容器の内部を減圧、その後電解液1.0MのLiPF/(EC+DMC+EMC)を注入して、含浸を行った。
電池ケース装填
3003のアルミニウム合金を用いて、インパクト成型により、ケース板厚0.5mm、ケース外形寸法L130×W25×H80mmの電池ケースを作製した。上記で作製した蓄電素子は、上述した図14に示す方法で、2mm圧縮させた状態で電池ケース内に挿入した。この電池ケース内に挿入し、上部を電池蓋にて封止し、蓋とケースをYAG溶接で封口後、充放電装置で、4.2Vまで0.2Cの電流でCCCV充電を8時間行った。その後、減圧して脱泡して、注液口にゴム栓をしてセルを完成させた。SOC50%まで放電を行い、初期性能測定を行った。測定結果を表1に示す。
[実施例2]
熱変形部材として、実施例1におけるドーナツ状低密度ポリエチレン部材の代わりに積層厚み1mmの多孔質ポリエチレンシート(ポロシティー55%)を用いた以外は実施例1と同様にして、実施例2の単電池を得、初期性能測定を行った。測定結果を表1に示す。
[比較例]
電池ケースの長さを130mmから132mmに変更し、正極の塗工幅を112mm、負極塗工幅を116mmとし、熱変形部材を挿入しなかった以外は実施例1と同様にして、比較例の単電池を得、初期性能測定を行った。測定結果を表1に示す。
[1.セル初期性能]
実施例および比較例のセル初期性能を表1にまとめた。
Figure 2011192518
[2.短絡試験]
実施例と比較例のセルを、下記の条件で充電し、釘を刺して短絡させることにより短絡試験を行い、短絡中のセルの釘刺し部付近の最大温度および電流遮断後の正常なセルの残電圧を測定し、結果を表2に示す。
試験条件
・予備充電条件:4.2V CCCV充電 4時間
・環境温度:25℃
・釘差し条件:直径φ2.5mmの釘を、釘刺し速度150mm/secにて深さ6mmとなるように刺した。
試験結果
実施例1および2のセルでは、内部短絡が起こったため、内部の発熱と、巻き込み電流により、リード板が加熱されて熱変形部材が溶融し、電流遮断が機能した。その結果、釘が刺された素子は発熱を起こす前に電気的に切り離され、かつ正常な素子は接続されたままであるため、端子電圧が4.19V残存し、ほとんど低下しなかった。
一方の比較例のセルは、熱変形部材を有さないので、巻き込み電流により放電が継続して起こり、端子電圧が低下した。発熱により、弾性部材に用いたEPDMゴムが熱で変形したため、集電荷重が低下して、電流が遮断された。そのため、素子温度が実施例よりも上昇した。また、弾性部材が変形して反発力が消失してしまったので、正常な蓄電素子までも切り離されてしまい、端子間電圧を測定することができなかった。
Figure 2011192518
本発明によれば、短絡等の不具合が生じた蓄電素子に他の正常な蓄電素子から大電流が流入して発熱を起こすことを防止することができるから、車載用リチウムイオン二次電池に適用して極めて有望である。
10…電池ケース、
11…電池蓋、
20…正極端子、
21…負極端子、
22、24…正極リード板、
22a、24a…正極リード板(押圧部)、
22b、24b…正極リード板(突出部)、
22c、24c…正極リード板(溝部)、
22d、24d…正極リード板(切欠部)、
23、25…負極リード板、
23a、25a…負極リード板(押圧部)、
23b、25b…負極リード板(突出部)、
30…蓄電素子(塗工部)、
31…蓄電素子(正極集電箔)、
32…蓄電素子(負極集電箔)、
33…蓄電素子(中空部)、
40…熱変形部材、
40a…熱変形部材(孔部)、
50〜53…弾性部材、
50a、51a、52a、52b、53a、53b…弾性部材(溝部)、
51b…弾性部材(凸状接触部)
53c…弾性部材(突起部)、
60…絶縁部材、
60a…絶縁部材(溝部)、
80…上型、
81…素子挟み込みガイド、
82、83…孔部、
84…下型、
85…ジグ用ガイドピン、
86…蓄電素子押さえ板、
90…蓄電素子複合体、
91…電池ケース、
100〜101…単電池、
100a〜101d…蓄電素子、
200〜200d…ヒューズ。

Claims (6)

  1. 電池ケースと、
    電解液を有し、並列に接続される複数の蓄電素子と、
    前記蓄電素子の両端から導出される正極集電箔および負極集電箔と、
    前記集電箔を正極端子および負極端子にそれぞれ接続する正極リード板および負極リード板と、
    少なくとも一方の極において、前記リード板と前記電池ケース壁との間に設けられ前記リード板と前記電池ケースとの間で圧縮されることで前記蓄電素子を前記電池ケースに対して固定する弾性部材とを備えた二次電池であって、
    前記少なくとも一方の極における前記リード板と前記弾性部材との間、または他方の極におけるリード板とケースとの間には、所定の温度により変形する熱変形部材が設けられ、
    前記熱変形部材の周囲には、熱変形した前記熱変形部材が移動可能な空間を有することを特徴とする二次電池。
  2. 前記熱変形部材は、中空部を有するドーナツ形状および/または多孔質であることを特徴とする請求項1に記載の二次電池。
  3. 前記弾性部材は、多孔質であることを特徴とする請求項1に記載の二次電池。
  4. 前記弾性部材と前記熱変形部材が接触する面における前記弾性部材の面積は、前記熱変形部材の面積よりも小さいことを特徴とする請求項1に記載の二次電池。
  5. 前記弾性部材は、前記熱変形部材に対して接触する面において凹部または孔部が設けられていることを特徴とする請求項1に記載の二次電池。
  6. 電池ケースと、
    電解液を有する1個の蓄電素子と、
    前記蓄電素子の両端から導出される正極集電箔および負極集電箔と、
    前記集電箔を正極端子および負極端子にそれぞれ接続する正極リード板および負極リード板と、
    少なくとも一方の極において、前記リード板と前記電池ケース壁との間に設けられ前記リード板と前記電池ケースとの間で圧縮されることで前記蓄電素子を前記電池ケースに対して固定する弾性部材とを備えた二次電池であって、
    前記少なくとも一方の極における前記リード板と前記弾性部材との間、または他方の極におけるリード板とケースとの間には、所定の温度により変形する熱変形部材が設けられ、
    前記熱変形部材の周囲には、熱変形した前記熱変形部材が移動可能な空間を有することを特徴とする二次電池。
JP2010057236A 2010-03-15 2010-03-15 二次電池 Pending JP2011192518A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010057236A JP2011192518A (ja) 2010-03-15 2010-03-15 二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010057236A JP2011192518A (ja) 2010-03-15 2010-03-15 二次電池

Publications (1)

Publication Number Publication Date
JP2011192518A true JP2011192518A (ja) 2011-09-29

Family

ID=44797210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010057236A Pending JP2011192518A (ja) 2010-03-15 2010-03-15 二次電池

Country Status (1)

Country Link
JP (1) JP2011192518A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458570A (zh) * 2013-08-20 2013-12-18 苏州康华净化系统工程有限公司 一种车间照明系统
WO2014034241A1 (ja) * 2012-08-31 2014-03-06 日立ビークルエナジー株式会社 角形二次電池
KR20140125256A (ko) * 2013-04-18 2014-10-28 삼성에스디아이 주식회사 이차 전지
JP2017201581A (ja) * 2016-05-02 2017-11-09 株式会社豊田自動織機 電極組立体
CN110447122A (zh) * 2017-03-17 2019-11-12 戴森技术有限公司 储能设备
WO2020218473A1 (ja) * 2019-04-26 2020-10-29 三洋電機株式会社 極板、非水電解質二次電池、及び極板の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034241A1 (ja) * 2012-08-31 2014-03-06 日立ビークルエナジー株式会社 角形二次電池
JP2014049311A (ja) * 2012-08-31 2014-03-17 Hitachi Vehicle Energy Ltd 角形二次電池
US9583783B2 (en) 2012-08-31 2017-02-28 Hitachi Automotive Systems, Ltd. Prismatic secondary battery
KR20140125256A (ko) * 2013-04-18 2014-10-28 삼성에스디아이 주식회사 이차 전지
KR101675621B1 (ko) 2013-04-18 2016-11-11 삼성에스디아이 주식회사 이차 전지
CN103458570A (zh) * 2013-08-20 2013-12-18 苏州康华净化系统工程有限公司 一种车间照明系统
JP2017201581A (ja) * 2016-05-02 2017-11-09 株式会社豊田自動織機 電極組立体
CN110447122A (zh) * 2017-03-17 2019-11-12 戴森技术有限公司 储能设备
WO2020218473A1 (ja) * 2019-04-26 2020-10-29 三洋電機株式会社 極板、非水電解質二次電池、及び極板の製造方法

Similar Documents

Publication Publication Date Title
US9203059B2 (en) Battery with insulating member including bus bar fixing section
US10115937B2 (en) Battery including branched current collector sections
JP4920111B2 (ja) パウチ型二次電池
JP4977375B2 (ja) リチウムイオン電池およびそれを用いた組電池
CN102210053B (zh) 堆叠的蓄电池
KR101601123B1 (ko) 서로 탈착 가능한 2개의 전극리드를 포함하는 이차전지
KR101111074B1 (ko) 구조적 안정성과 절연저항성이 우수한 전지셀
JP2011210390A (ja) 電池及び電池モジュール
JP5953549B2 (ja) リチウムイオン電池
JP2011108507A (ja) 二次電池
US8940428B2 (en) Separator, a lithium rechargeable battery using the same and a method of manufacture thereof
KR100914108B1 (ko) 전극 조립체 및 이를 구비하는 이차 전지
KR101724620B1 (ko) 이차 전지용 파우치 및 이를 이용한 플렉서블 이차 전지
JP2009218078A (ja) 非水電解質二次電池
JP2011192518A (ja) 二次電池
KR101310732B1 (ko) 이차 전지 및 그 제조 방법
JP5099880B2 (ja) リチウムイオン二次電池およびリチウムイオン二次電池の組電池
JP5232751B2 (ja) リチウムイオン二次電池
US20180219208A1 (en) Lithium storage battery with integrated circuit-breaker for improved operating safety
JP2007087801A (ja) リチウムイオン二次電池
KR20220092101A (ko) 이차전지 및 이의 제조 방법
JP2011086483A (ja) ラミネート型2次電池
JP2011096485A (ja) 二次電池
JP2018125109A (ja) 二次電池および組電池
JP2015057788A (ja) 非水電解質電池の製造方法