JP2011190969A - System for waste disposal - Google Patents

System for waste disposal Download PDF

Info

Publication number
JP2011190969A
JP2011190969A JP2010056634A JP2010056634A JP2011190969A JP 2011190969 A JP2011190969 A JP 2011190969A JP 2010056634 A JP2010056634 A JP 2010056634A JP 2010056634 A JP2010056634 A JP 2010056634A JP 2011190969 A JP2011190969 A JP 2011190969A
Authority
JP
Japan
Prior art keywords
combustion
heat
furnace
exhaust gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010056634A
Other languages
Japanese (ja)
Other versions
JP5143169B2 (en
Inventor
Tadashi Imai
正 今井
Tomohiro Todoroki
朋浩 轟木
Hironobu Abe
裕宣 安部
Takeo Sato
毅夫 佐藤
Masato Oda
真人 織田
Koji Hayashi
幸司 林
Hideaki Komine
英明 小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010056634A priority Critical patent/JP5143169B2/en
Priority to CN2011100341553A priority patent/CN102192511B/en
Priority to KR1020110009230A priority patent/KR101292233B1/en
Publication of JP2011190969A publication Critical patent/JP2011190969A/en
Application granted granted Critical
Publication of JP5143169B2 publication Critical patent/JP5143169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J11/00Devices for conducting smoke or fumes, e.g. flues 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • F23J3/04Traps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for waste disposal capable of reducing loads on the environment by suppressing the generation of nitrous oxide. <P>SOLUTION: The system includes: a pyrolysis furnace 3 for accepting organic waste to pyrolyze the organic waste under a reducing atmosphere at high temperature; a combustion furnace 4 for combusting the combustible pyrolysis gas generated in the pyrolysis furnace; one or more heat utilization equipment 2, 3, 5 for utilizing as a heat source the combustion exhaust gas generated in the combustion furnace; and reflux lines L7, L71, L72, L73 for refluxing a low temperature exhaust gas which resulted in low temperature since used in the heat utilization equipment, to any equipment disposed at the upper stream than the heat utilization equipment so as to be used in the upper stream equipment as a combustion air or dilution air therein. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機性廃棄物を処理する廃棄物処理システムに関する。   The present invention relates to a waste treatment system for treating organic waste.

脱水汚泥などの有機性廃棄物を処理する廃棄物処理システムでは、有機性廃棄物を熱分解炉内において低酸素状態で加熱分解することにより、熱分解ガス(乾留ガス)と熱分解残渣(炭化物)とに分離し、可燃性の熱分解ガスを燃焼炉で燃焼させて、この燃焼排ガスを熱利用機器の熱源としている。燃焼排ガスは、熱利用機器において熱エネルギーを奪われて温度が降下し、低温燃焼排ガスとして排出される。   In a waste treatment system that treats organic waste such as dewatered sludge, pyrolysis gas (dry distillation gas) and pyrolysis residue (carbide) are obtained by thermally decomposing organic waste in a pyrolysis furnace in a low oxygen state. And combustible pyrolysis gas is combusted in a combustion furnace, and this combustion exhaust gas is used as a heat source for heat utilization equipment. The combustion exhaust gas is deprived of heat energy in the heat utilization device, the temperature drops, and is discharged as a low temperature combustion exhaust gas.

例えば特許文献1および特許文献2には、廃棄物処理システムにおいて燃焼排ガスを利用する熱利用機器として、空気予熱器、熱分解炉、廃熱ボイラ、熱媒体加熱器または乾燥機等が記載されている。   For example, Patent Document 1 and Patent Document 2 describe an air preheater, a pyrolysis furnace, a waste heat boiler, a heat medium heater, a dryer, or the like as a heat utilization device that uses combustion exhaust gas in a waste treatment system. Yes.

特許第4198426号公報Japanese Patent No. 4198426 特開2007−270018号公報JP 2007-270018 A

しかしながら、特許文献1および特許文献2に記載されている従来の廃棄物処理システムにおいては、有機性廃棄物に有機窒素が含まれる場合、温室効果ガスである亜酸化窒素が生成される。この亜酸化窒素(N2O)は、地球環境に悪影響を及ぼすいわゆる環境負荷を増加させる物質であり、その排出量を可能な限り抑えなければならない。 However, in the conventional waste treatment systems described in Patent Document 1 and Patent Document 2, when organic nitrogen is contained in the organic waste, nitrous oxide, which is a greenhouse gas, is generated. This nitrous oxide (N 2 O) is a substance that increases the so-called environmental load that adversely affects the global environment, and its emission must be suppressed as much as possible.

本発明は上記の課題を解決するためになされたものであり、亜酸化窒素の発生を抑制して環境負荷を低減することができる廃棄物処理システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a waste treatment system that can reduce the environmental load by suppressing the generation of nitrous oxide.

本発明に係る廃棄物処理システムは、有機性廃棄物を受け入れて高温の還元性雰囲気下で該有機性廃棄物を熱分解させる熱分解炉と、前記熱分解炉で発生した可燃性の熱分解ガスを燃焼させる燃焼炉と、前記燃焼炉で発生した燃焼排ガスを熱源として利用する1つ又は複数の熱利用機器と、前記熱利用機器により利用されて温度が低下した熱利用後の低温排ガスを、前記熱利用機器から前記熱利用機器よりも上流側に配置された機器に還流させ、前記上流側に配置された機器において燃焼空気または希釈空気として利用させる還流ラインと、を具備することを特徴とする。   A waste treatment system according to the present invention includes a pyrolysis furnace that receives organic waste and thermally decomposes the organic waste under a high-temperature reducing atmosphere, and combustible pyrolysis generated in the pyrolysis furnace. A combustion furnace for burning gas, one or a plurality of heat utilization devices that use combustion exhaust gas generated in the combustion furnace as a heat source, and a low-temperature exhaust gas after heat utilization that has been used by the heat utilization device to lower the temperature. A reflux line for refluxing from the heat utilization device to a device disposed upstream of the heat utilization device and used as combustion air or dilution air in the device disposed on the upstream side. And

本発明によれば、亜酸化窒素の発生を抑制し、環境負荷を低減することができる廃棄物処理システムが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the waste treatment system which can suppress generation | occurrence | production of nitrous oxide and can reduce environmental impact is provided.

本発明の第1の実施形態に係る廃棄物処理システムを示す構成ブロック図。1 is a configuration block diagram showing a waste treatment system according to a first embodiment of the present invention. 低温燃焼排ガス中のN2O濃度と燃焼炉の燃焼温度との関係を示す特性線図。Characteristic diagram showing the relationship between combustion temperature of N 2 O concentration in the low-temperature combustion exhaust gas and the combustion furnace. 本発明の第2の実施形態に係る廃棄物処理システムを示す構成ブロック図。The block diagram which shows the waste disposal system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る廃棄物処理システムを示す構成ブロック図。The block diagram which shows the waste disposal system which concerns on the 3rd Embodiment of this invention.

(1)本発明の廃棄物処理システムは、有機性廃棄物を受け入れて高温の還元性雰囲気下で該有機性廃棄物を熱分解させる熱分解炉と、前記熱分解炉で発生した可燃性の熱分解ガスを燃焼させる燃焼炉と、前記燃焼炉で発生した燃焼排ガスを熱源として利用する1つ又は複数の熱利用機器と、前記熱利用機器により利用されて温度が低下した熱利用後の低温排ガスを、前記熱利用機器から前記熱利用機器よりも上流側に配置された機器に還流させ、前記上流側に配置された機器において燃焼空気または希釈空気として利用させる還流ラインとを有することを特徴とする。   (1) The waste treatment system of the present invention includes a pyrolysis furnace that receives organic waste and thermally decomposes the organic waste under a high-temperature reducing atmosphere, and a combustible material generated in the pyrolysis furnace. Combustion furnace that burns pyrolysis gas, one or more heat utilization devices that use combustion exhaust gas generated in the combustion furnace as a heat source, and a low temperature after heat utilization that is used by the heat utilization device to lower the temperature The exhaust gas is recirculated from the heat utilization device to a device arranged upstream of the heat utilization device, and has a reflux line for use as combustion air or dilution air in the device arranged upstream. And

本発明では、熱利用後の低温排ガスを還流ラインにより上流側配置機器に還流させ、上流側配置機器において燃焼空気または希釈空気として利用するため、上流側配置機器の1つである燃焼炉の燃焼温度を上昇させることができる。燃焼炉の燃焼温度が上昇すると、燃焼排ガス中の亜酸化窒素の生成量が減少する。また、熱利用機器の材質等の問題から燃焼排ガスの温度に上限が生じる場合であっても、燃焼排ガスの希釈空気として循環低温燃焼排ガスを使用すれば、同一温度でも熱利用機器に導入される希釈後の燃焼排ガス量が増大し、熱利用機器で回収される熱量が向上し、システム全体の熱効率を上げることができる。熱利用後の燃焼排ガスは外気に比べてはるかに高温であるため、上流側配置機器の燃焼空気または希釈空気として用いられるのに適しており、廃棄物処理システム全体の熱利用効率を向上させるのに大いに寄与できる。   In the present invention, the low-temperature exhaust gas after use of heat is recirculated to the upstream arrangement device through the reflux line and used as combustion air or dilution air in the upstream arrangement device, so that combustion in a combustion furnace that is one of the upstream arrangement devices The temperature can be raised. When the combustion temperature of the combustion furnace rises, the amount of nitrous oxide produced in the combustion exhaust gas decreases. Even if the upper limit of the temperature of the combustion exhaust gas occurs due to problems such as the material of the heat utilization equipment, if the circulating low-temperature combustion exhaust gas is used as dilution air of the combustion exhaust gas, it is introduced into the heat utilization equipment even at the same temperature. The amount of combustion exhaust gas after dilution is increased, the amount of heat recovered by the heat utilization device is improved, and the thermal efficiency of the entire system can be increased. The combustion exhaust gas after use of heat is much hotter than the outside air, so it is suitable for use as combustion air or dilution air for upstream equipment, improving the heat utilization efficiency of the entire waste treatment system. Can greatly contribute to.

(2)上記(1)において、燃焼炉を900℃以上1000℃以下の温度域で燃焼させることにより、亜酸化窒素の発生を抑制することが好ましい。燃焼排ガス中のN2O濃度は、燃焼炉の燃焼温度が高くなるに従って減少していくが、燃焼温度が900℃以上になるとほぼ一定になる。例えば燃焼温度が870℃のときの燃焼排ガス中のN2O濃度と900℃のときの燃焼排ガス中のN2O濃度とを比べてみると、温度差は30℃であるにもかかわらず、後者は前者のほぼ半分(約50%)にN2O濃度が急激に低下する(図2)。さらに燃焼温度を上昇させていき950℃以上にすると、燃焼排ガス中のN2O濃度はほとんど変化しなくなり実質的に一定になる(図2)。このため、本発明では、より好ましくは燃焼炉の燃焼温度が950℃以上になるように燃焼させる。 (2) In the above (1), it is preferable to suppress the generation of nitrous oxide by burning the combustion furnace in a temperature range of 900 ° C. or higher and 1000 ° C. or lower. The N 2 O concentration in the combustion exhaust gas decreases as the combustion temperature of the combustion furnace increases, but becomes almost constant when the combustion temperature reaches 900 ° C. or higher. For example, when comparing the N 2 O concentration in the flue gas when the combustion temperature is 870 ° C. with the N 2 O concentration in the flue gas when the combustion temperature is 900 ° C., the temperature difference is 30 ° C. In the latter case, the N 2 O concentration rapidly decreases to almost half of the former (about 50%) (FIG. 2). When the combustion temperature is further increased to 950 ° C. or higher, the N 2 O concentration in the combustion exhaust gas hardly changes and becomes substantially constant (FIG. 2). For this reason, in this invention, it is made to burn more preferably so that the combustion temperature of a combustion furnace may be 950 degreeC or more.

一方、燃焼炉の設計温度は1200℃であり、燃焼炉を構成する材料と構造はその温度まで耐えられるように設計されているが、燃焼炉の寿命を延ばすためなどの理由から、燃焼炉が運転されるときの実際の燃焼温度は最高で約1000℃までである。このため、本発明では、燃焼炉の燃焼温度の上限値を1000℃とする。   On the other hand, the design temperature of the combustion furnace is 1200 ° C., and the materials and structures constituting the combustion furnace are designed to withstand that temperature. However, for the purpose of extending the life of the combustion furnace, The actual combustion temperature when operated is up to about 1000 ° C. For this reason, in this invention, the upper limit of the combustion temperature of a combustion furnace shall be 1000 degreeC.

(3)上記(1)または(2)において、熱分解炉よりも上流側に配置され、有機性廃棄物を加熱して有機性廃棄物から水分を蒸発させることにより有機性廃棄物の含有水分を減少させる乾燥機をさらに有することが好ましい。   (3) In the above (1) or (2), the moisture contained in the organic waste is disposed upstream of the pyrolysis furnace, and the organic waste is heated to evaporate the moisture from the organic waste. It is preferable to further have a dryer that reduces the amount of water.

乾燥機を用いて有機性廃棄物を加熱乾燥させ、有機性廃棄物の含有水分を減少させると、次の熱分解炉において有機性廃棄物の熱分解反応が迅速かつ円滑に進むというメリットがある。例えば有機性廃棄物として活性汚泥のような水分を多量に含むものを処理する場合、これを熱分解炉に直送すると、体積が大きいためにオーバーフローするおそれがあり、熱分解炉の負荷が増大するが、有機性廃棄物を乾燥機で予め加熱乾燥して体積を小さくすると、熱分解炉の負荷が軽減される。   When organic waste is heated and dried using a dryer to reduce the moisture content of organic waste, there is an advantage that the thermal decomposition reaction of organic waste proceeds quickly and smoothly in the next pyrolysis furnace. . For example, when processing organic waste containing a large amount of moisture such as activated sludge, if this is sent directly to the pyrolysis furnace, it may overflow due to its large volume, increasing the load on the pyrolysis furnace. However, when the organic waste is preheated and dried with a dryer to reduce the volume, the load on the pyrolysis furnace is reduced.

この乾燥機は、熱利用機器で熱利用された後の低温燃焼排ガスの保有熱を利用する上流側配置機器の1つとなりうるものである。すなわち、燃焼炉の下流側に配置された熱利用機器から還流ラインを介して上流側の乾燥機に熱利用後の低温燃焼排ガスを供給することにより、乾燥機において低温燃焼排ガスを利用することが可能になる。ちなみに熱利用機器から排出される熱利用後の低温燃焼排ガスの温度は500℃以下であり、乾燥機のプロセス設計温度は100〜300℃の範囲である。また、乾燥機には種々の熱源を用いることができ、上記の低温燃焼排ガス以外に、熱媒や電気抵抗加熱装置、燃焼加熱装置などの公知の汎用加熱装置を用いることができる。   This dryer can be one of the upstream arrangement devices that use the retained heat of the low-temperature combustion exhaust gas after being heat-utilized by the heat-utilizing device. That is, the low-temperature combustion exhaust gas can be used in the dryer by supplying the low-temperature combustion exhaust gas after heat utilization from the heat utilization device arranged on the downstream side of the combustion furnace to the upstream dryer via the reflux line. It becomes possible. Incidentally, the temperature of the low-temperature combustion exhaust gas after use of heat discharged from the heat-utilizing device is 500 ° C. or less, and the process design temperature of the dryer is in the range of 100 to 300 ° C. In addition, various heat sources can be used for the dryer, and in addition to the above-described low-temperature combustion exhaust gas, known general-purpose heating devices such as a heat medium, an electric resistance heating device, and a combustion heating device can be used.

(4)上記(1)〜(3)において、複数の熱利用機器のうちの少なくとも1つが熱分解炉であることが好ましい。   (4) In the above (1) to (3), it is preferable that at least one of the plurality of heat utilization devices is a pyrolysis furnace.

燃焼炉の下流側に配置された熱利用機器から還流ラインを介して上流側の熱分解炉に熱利用後の低温燃焼排ガスを供給することにより、熱分解炉において低温燃焼排ガスを利用することが可能になる。ちなみに熱分解炉のプロセス設計温度は300〜750℃の範囲である。   It is possible to use low-temperature combustion exhaust gas in the pyrolysis furnace by supplying the low-temperature combustion exhaust gas after heat utilization to the upstream pyrolysis furnace via the reflux line from the heat utilization equipment arranged downstream of the combustion furnace. It becomes possible. Incidentally, the process design temperature of the pyrolysis furnace is in the range of 300 to 750 ° C.

(5)上記(1)〜(4)において、熱利用機器と燃焼炉との間に集塵機をさらに有することが好ましい(図3)。   (5) In said (1)-(4), it is preferable to further have a dust collector between heat utilization apparatus and a combustion furnace (FIG. 3).

燃焼炉で発生する煤塵(固形分)は下流側の熱利用機器の内壁に付着して熱利用効率を低下させるので、集塵機を用いて燃焼排ガスから煤塵を分離除去することにより、熱利用機器の熱利用効率を向上させることができる。なお、本発明において、集塵機は特定の形式のみに限定されない。   The dust (solid content) generated in the combustion furnace adheres to the inner wall of the heat utilization equipment on the downstream side and lowers the heat utilization efficiency. Therefore, by separating and removing the dust from the combustion exhaust gas using a dust collector, Heat utilization efficiency can be improved. In the present invention, the dust collector is not limited to a specific type.

(6)上記(1)〜(5)において、熱利用機器における不足熱量を補うために前記燃焼炉に補助燃料を供給する補助燃料供給装置をさらに有することが好ましい(図4)。   (6) In the above (1) to (5), it is preferable to further include an auxiliary fuel supply device that supplies auxiliary fuel to the combustion furnace in order to make up for a shortage of heat in the heat utilization device (FIG. 4).

燃焼炉の不完全燃焼や熱分解炉の異常運転など種々の原因により燃焼排ガスの熱量が不足することがあり、下流側の熱利用機器において必要な熱量が確保されず不足することがある。このような場合に、補助燃料供給装置から補助燃料を燃焼炉に補給し、不足熱量を補うことができる。   The amount of heat of the combustion exhaust gas may be insufficient due to various causes such as incomplete combustion of the combustion furnace or abnormal operation of the pyrolysis furnace, and a necessary amount of heat may not be secured in the downstream heat utilization device. In such a case, the auxiliary fuel can be supplemented to the combustion furnace from the auxiliary fuel supply device to compensate for the shortage of heat.

以下、添付の図面を参照して本発明を実施するための種々の形態を説明する。   Hereinafter, various embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

(第1の実施形態)
図1を参照して本発明の第1の実施形態を説明する。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIG.

本実施形態の廃棄物処理システム1は、図1に示すように、乾燥機2、熱分解炉3、燃焼装置4および熱利用機器5を備えている。この処理システム1の系内は下流側に配置された単数または複数のブロワ(図示せず)によって吸引排気されている。また、処理システム1の全体は図示しないプロセスコンピュータにより統括的に管理・制御されている。   As shown in FIG. 1, the waste treatment system 1 of this embodiment includes a dryer 2, a pyrolysis furnace 3, a combustion device 4, and a heat utilization device 5. The inside of the processing system 1 is sucked and exhausted by one or a plurality of blowers (not shown) arranged on the downstream side. Further, the entire processing system 1 is centrally managed and controlled by a process computer (not shown).

乾燥機2は、図示しない上流側の廃棄物投入装置からラインL1を介して有機性廃棄物が投入され、投入された有機性廃棄物を所定の温度(100〜300℃)で加熱して有機性廃棄物から水分を除去するものである。乾燥機2には種々の熱源を用いることができる。例えば下流側の熱利用機器5で熱利用された後の低温燃焼排ガスや、熱媒、電気抵抗加熱装置、燃焼加熱装置などの公知の汎用加熱装置を用いることができる。なお、廃棄物供給ラインL1は、例えばベルトコンベア、計量器、シューターおよびホッパーを含むものである。   The dryer 2 is supplied with organic waste from an upstream waste input device (not shown) via the line L1, and the input organic waste is heated at a predetermined temperature (100 to 300 ° C.) to be organic. It removes water from toxic waste. Various heat sources can be used for the dryer 2. For example, a known general-purpose heating device such as a low-temperature combustion exhaust gas after being heat-utilized by the heat utilization device 5 on the downstream side, a heat medium, an electric resistance heating device, or a combustion heating device can be used. The waste supply line L1 includes, for example, a belt conveyor, a measuring instrument, a shooter, and a hopper.

熱分解炉3は、回転駆動される中空シャフト室31とこれを加熱する加熱ジャケット32とを有するロータリーキルン方式またはスクリュウフィーダー方式の横置き型の装置である。中空シャフト室31は、中空円筒状の耐火材壁および送給スクリュウを有し、図示しない回転駆動機構により回転可能に支持されている。乾燥機2から廃棄物供給ラインL2を介して中空シャフト室31の中空部に有機性廃棄物を供給し、送給スクリュウを順方向に回転させて有機性廃棄物が軸方向に送給されるようになっている。中空シャフト室31の下流側の端部(出口端部)は、熱分解ガスラインL3を介して燃焼装置4の上段バーナ43に接続されている。また、中空シャフト室31の下流側の適所に炭化物排出ラインL5が設けられ、炭化物排出ラインL5を介して熱分解後の残渣である炭化物が中空シャフト室31から排出されるようになっている。   The pyrolysis furnace 3 is a rotary kiln type or screw feeder type horizontal installation apparatus having a hollow shaft chamber 31 that is rotationally driven and a heating jacket 32 that heats the hollow shaft chamber 31. The hollow shaft chamber 31 has a hollow cylindrical refractory material wall and a feed screw, and is rotatably supported by a rotation drive mechanism (not shown). The organic waste is supplied from the dryer 2 to the hollow portion of the hollow shaft chamber 31 via the waste supply line L2, and the organic waste is fed in the axial direction by rotating the feed screw in the forward direction. It is like that. The downstream end (exit end) of the hollow shaft chamber 31 is connected to the upper burner 43 of the combustion device 4 via a pyrolysis gas line L3. Further, a carbide discharge line L5 is provided at an appropriate position on the downstream side of the hollow shaft chamber 31, and the carbide, which is a residue after pyrolysis, is discharged from the hollow shaft chamber 31 through the carbide discharge line L5.

加熱ジャケット32は、中空シャフト室31の少なくとも一部を取り囲むジャケット容器であり、熱媒供給管33と熱媒排出管34がそれぞれ接続されている。図示しない熱媒供給源から熱媒供給管33を介して熱媒として高温の空気(例えば300〜750℃のドライエア)が加熱ジャケット32内に供給され、廃棄物を加熱した後に熱媒が熱媒排出管34を介して加熱ジャケット32から排出されるようになっている。なお、熱媒供給管33と熱媒排出管34とをリターンラインにより接続することで循環回路を形成し、使用済みの熱媒を熱分解炉において繰り返し利用するようにしてもよい。なお、熱分解炉3の熱源として、電気抵抗加熱装置または燃焼加熱装置などの公知の汎用加熱装置を用いることができるが、経済性の観点から次工程の燃焼炉4から排出される燃焼排ガスを利用するのが最も適している。また、補器として温度測定装置(図示せず)には熱電対などの公知の汎用計測器を用いることができる。   The heating jacket 32 is a jacket container that surrounds at least a part of the hollow shaft chamber 31, and a heating medium supply pipe 33 and a heating medium discharge pipe 34 are connected to each other. High-temperature air (for example, 300 to 750 ° C. dry air) is supplied into the heating jacket 32 as a heating medium through a heating medium supply pipe 33 from a heating medium supply source (not shown), and the heating medium is heated after the waste is heated. The heat is discharged from the heating jacket 32 through the discharge pipe 34. Note that a circulation circuit may be formed by connecting the heat medium supply pipe 33 and the heat medium discharge pipe 34 through a return line, and the used heat medium may be repeatedly used in the pyrolysis furnace. A known general-purpose heating device such as an electric resistance heating device or a combustion heating device can be used as a heat source for the pyrolysis furnace 3, but the combustion exhaust gas discharged from the combustion furnace 4 in the next step is used from the viewpoint of economy. Most suitable to use. Further, a known general-purpose measuring instrument such as a thermocouple can be used as a temperature measuring device (not shown) as an auxiliary device.

燃焼炉4は、一端に燃焼噴射方式のバーナを備えた燃焼装置である。バーナには熱分解ガスラインL3および燃焼用空気ライン(図示せず)がそれぞれ接続され、可燃性の熱分解ガスと燃焼用空気とが所定の比率で噴射混合されて燃焼するようになっている。燃焼炉4の他端には燃焼排ガスラインL4に連通する排出口41が設けられている。燃焼排ガスラインL4は2つのラインL41,L42に分岐し、一方の分岐ラインL41は熱分解炉3の熱媒供給管33に接続され、他方の分岐ラインL42は熱利用機器5の入口に接続されている。すなわち、燃焼炉4から排出される燃焼排ガスは、その一部がラインL4,L41を通って上流側の熱分解炉3の加熱ジャケット32に供給され、他の一部がラインL4,L42を通って下流側の熱利用機器5に供給されるようになっている。   The combustion furnace 4 is a combustion apparatus having a combustion injection type burner at one end. A pyrolysis gas line L3 and a combustion air line (not shown) are respectively connected to the burner, and combustible pyrolysis gas and combustion air are injected and mixed at a predetermined ratio and burned. . At the other end of the combustion furnace 4, an exhaust port 41 communicating with the combustion exhaust gas line L4 is provided. The combustion exhaust gas line L4 is branched into two lines L41 and L42, one branch line L41 is connected to the heat medium supply pipe 33 of the pyrolysis furnace 3, and the other branch line L42 is connected to the inlet of the heat utilization device 5. ing. That is, a part of the combustion exhaust gas discharged from the combustion furnace 4 is supplied to the heating jacket 32 of the upstream pyrolysis furnace 3 through the lines L4 and L41, and the other part is passed through the lines L4 and L42. Then, it is supplied to the heat utilization device 5 on the downstream side.

なお、本実施形態では燃焼排ガスラインを2つに分岐して熱分解炉3と熱利用機器5とに燃焼排ガスを分配しているが、さらに燃焼排ガスラインを3つに分岐して熱分解炉3および熱利用機器5ばかりでなく、乾燥機2にも燃焼排ガスを分配するようにもできる。あるいは燃焼排ガスラインを分岐させずにプロセス温度の高い機器から順に燃焼排ガスラインを接続するようにしてもよい。   In this embodiment, the combustion exhaust gas line is divided into two and the combustion exhaust gas is distributed to the thermal cracking furnace 3 and the heat utilization device 5, but the combustion exhaust gas line is further branched into three and the pyrolysis furnace. 3 and the heat utilization device 5 as well as the dryer 2 can distribute the combustion exhaust gas. Or you may make it connect a combustion exhaust gas line in an order from an apparatus with high process temperature, without branching a combustion exhaust gas line.

熱利用機器5は、入口が燃焼排ガスラインL42に接続され、出口が低温燃焼排ガスを排出する排出ラインL5に接続されている。熱利用機器5として例えば廃熱ボイラなどを用いることができる。熱利用機器5の本体内には、燃焼排ガスと熱交換する熱媒が流れる内部流路が形成されている。熱利用機器5の内部流路は、対向流路、並行流路あるいはサーペンタイン状流路など種々の形態とすることができる。   The heat utilization device 5 has an inlet connected to the flue gas line L42 and an outlet connected to an exhaust line L5 that discharges the low-temperature flue gas. For example, a waste heat boiler or the like can be used as the heat utilization device 5. In the main body of the heat utilization device 5, an internal flow path through which a heat medium that exchanges heat with the combustion exhaust gas flows is formed. The internal flow path of the heat utilization device 5 can have various forms such as a counter flow path, a parallel flow path, or a serpentine flow path.

熱利用機器5からの排出ラインL5は、2つのラインL6,L7に分岐している。一方の分岐ラインL6は、さらに下流側の他の熱利用機器(図示せず)に接続されるか、または無害化装置(図示せず)を経由して大気開放されている。   The discharge line L5 from the heat utilization device 5 is branched into two lines L6 and L7. One branch line L6 is further connected to another downstream heat utilization device (not shown) or opened to the atmosphere via a detoxifying device (not shown).

他方の分岐ラインL7は、燃焼炉4および熱利用機器5にそれぞれ低温燃焼排ガスを還流するための2つの還流ラインL71,L72に分岐している。第1の還流ラインL71は、燃焼炉4の入口側の燃焼用空気に合流するか、または燃焼炉4のバーナ噴射口に連通している。第2の還流ラインL72は、熱利用機器5の入口側の燃焼排ガスラインL42に合流するか、または燃焼排ガスラインL42と並行に進んでラインL42とともに熱利用機器5の内部流路にて合流している。   The other branch line L7 branches into two reflux lines L71 and L72 for refluxing the low-temperature combustion exhaust gas to the combustion furnace 4 and the heat utilization device 5, respectively. The first recirculation line L71 merges with the combustion air on the inlet side of the combustion furnace 4 or communicates with the burner injection port of the combustion furnace 4. The second recirculation line L72 merges with the combustion exhaust gas line L42 on the inlet side of the heat utilization device 5, or proceeds in parallel with the combustion exhaust gas line L42 and merges with the line L42 in the internal flow path of the heat utilization device 5. ing.

本実施形態の作用を説明する。   The operation of this embodiment will be described.

廃棄物投入装置(図示せず)からラインL1を介して乾燥機2内に有機性廃棄物を投入し、投入した有機性廃棄物を100〜300℃の温度に加熱して有機性廃棄物に含まれる水分を蒸発させ、水分含有率が数パーセント以下の乾燥有機性廃棄物とする。この乾燥有機性廃棄物をラインL2により熱分解炉3の中空シャフト室31に供給し、熱分解炉3により300℃以上の温度に加熱し、廃棄物中の有機成分を熱分解する。これにより有機性廃棄物は炭化物(固形分)と可燃性の熱分解ガス(気体分)とに分解する。このうち固形分である炭化物は、排出ラインL8を通って図示しない回収容器に排出回収される。一方、可燃性の熱分解ガスは、ラインL3を通って燃焼炉4のバーナに供給され、燃焼用空気と混合されて燃焼する。燃焼用空気は、図示しないコンプレッサーから圧縮空気として供給されるが、これに熱利用機器5からの低温燃焼排ガスを混合した混合ガスであってもよい。   The organic waste is introduced into the dryer 2 from the waste input device (not shown) via the line L1, and the input organic waste is heated to a temperature of 100 to 300 ° C. to become an organic waste. The contained moisture is evaporated to obtain a dry organic waste having a moisture content of several percent or less. This dry organic waste is supplied to the hollow shaft chamber 31 of the pyrolysis furnace 3 through the line L2, and heated to a temperature of 300 ° C. or higher by the pyrolysis furnace 3, so that the organic components in the waste are pyrolyzed. Thereby, the organic waste is decomposed into carbide (solid content) and combustible pyrolysis gas (gas content). Of these, the solid carbide is discharged and collected through a discharge line L8 into a collection container (not shown). On the other hand, the combustible pyrolysis gas is supplied to the burner of the combustion furnace 4 through the line L3, mixed with the combustion air, and burned. The combustion air is supplied as compressed air from a compressor (not shown), but may be a mixed gas in which the low-temperature combustion exhaust gas from the heat utilization device 5 is mixed.

燃焼排ガスの一部は、燃焼炉の排気口41からラインL4,L41を通過して、熱媒供給管33から熱分解炉の加熱ジャケット32内に導入され、回転する中空シャフト室31内の有機性廃棄物を熱分解する熱源となる。燃焼排ガスの他の一部は、燃焼炉の排気口41からラインL4,L42を通過して、熱利用機器5の内部流路に供給され、熱媒と熱交換される。   Part of the combustion exhaust gas passes through lines L4 and L41 from the exhaust port 41 of the combustion furnace, is introduced into the heating jacket 32 of the pyrolysis furnace from the heat medium supply pipe 33, and the organic in the rotating hollow shaft chamber 31 is rotated. It becomes a heat source for thermal decomposition of radioactive waste. Another part of the combustion exhaust gas passes through lines L4 and L42 from the exhaust port 41 of the combustion furnace, is supplied to the internal flow path of the heat utilization device 5, and is heat-exchanged with the heat medium.

熱利用機器5において熱利用された後の燃焼排ガスは、熱利用機器5にて熱エネルギーを回収されて500℃以下の温度に降下し、低温燃焼排ガスとして排出ラインL5を介して熱利用機器5から排出される。この低温燃焼排ガスの一部は、分岐部から還流ライン7→第1の還流ラインL71→燃焼炉4の順に通流して燃焼炉のバーナから噴射される。また、低温燃焼排ガスの他の一部は、分岐部から還流ライン7→第2の還流ラインL72→ラインL42→熱利用機器5の順に通流して燃焼排ガスと混合して熱利用機器5の内部流路に再び供給される。なお、本実施形態の熱利用機器となりうる機器として、空気予熱器(図示せず)、または熱分解炉3、または廃熱ボイラ(図示せず)、または乾燥機2などをあげることができる。   The combustion exhaust gas after heat utilization in the heat utilization device 5 is recovered by the heat utilization device 5 to fall to a temperature of 500 ° C. or lower, and is used as the low temperature combustion exhaust gas via the discharge line L5. Discharged from. A part of the low-temperature combustion exhaust gas flows from the branch portion in the order of the reflux line 7 → the first reflux line L71 → the combustion furnace 4 and is injected from the burner of the combustion furnace. Further, another part of the low-temperature combustion exhaust gas flows from the branch portion in the order of the reflux line 7 → second reflux line L72 → line L42 → heat utilization device 5 and mixes with the combustion exhaust gas to mix inside the heat utilization device 5. It is supplied again to the flow path. In addition, as an apparatus which can become the heat utilization apparatus of this embodiment, the air preheater (not shown), the thermal decomposition furnace 3, the waste heat boiler (not shown), or the dryer 2 can be mention | raise | lifted.

本実施形態の効果を説明する。   The effect of this embodiment will be described.

本実施形態によれば、熱利用機器で熱利用された後の低温燃焼排ガスは、少なくとも外気よりも温度が高いため、その一部を燃焼炉4のバーナで燃焼用空気として使用することにより、外気を使用する場合に比べて少ない流量で燃焼炉4の燃焼温度を維持できる。このため、低温燃焼排ガス量が少なくなり、無駄に廃棄される熱量を大幅に低減することができ、熱効率を向上させることができる。   According to this embodiment, since the temperature of the low-temperature combustion exhaust gas after being heat-utilized by the heat-utilizing device is higher than at least the outside air, by using a part thereof as combustion air in the burner of the combustion furnace 4, The combustion temperature of the combustion furnace 4 can be maintained with a smaller flow rate than when outside air is used. For this reason, the amount of low-temperature combustion exhaust gas is reduced, the amount of heat that is wasted can be greatly reduced, and the thermal efficiency can be improved.

また、熱利用機器5の材質等の問題から燃焼排ガスの温度に上限が生じる場合であっても、燃焼排ガスの希釈空気として循環低温燃焼排ガスを使用すれば、同一温度でも熱利用機器5に導入される希釈後の燃焼排ガス量が増大し、熱利用機器5で回収される熱量が向上し、システム全体の熱効率を上げることができる。   Even if the upper limit of the temperature of the combustion exhaust gas arises due to problems such as the material of the heat utilization device 5, if the circulating low-temperature combustion exhaust gas is used as the dilution air of the combustion exhaust gas, it is introduced into the heat utilization device 5 even at the same temperature. The amount of combustion exhaust gas after dilution is increased, the amount of heat recovered by the heat utilization device 5 is improved, and the thermal efficiency of the entire system can be increased.

有機性廃棄物を熱分解して得られる可燃性ガスを燃焼する場合、廃棄物の種類や燃焼状況により温室効果ガスである亜酸化二窒素(N2O)が排出される。図2に、燃焼炉の燃焼排ガスの温度(℃)と燃焼排ガスのN2O濃度(体積ppm)との関係を調べた結果を示す。 When combustible gas obtained by pyrolyzing organic waste is combusted, nitrous oxide (N 2 O), which is a greenhouse gas, is emitted depending on the type of waste and the state of combustion. FIG. 2 shows the result of examining the relationship between the temperature (° C.) of the combustion exhaust gas in the combustion furnace and the N 2 O concentration (volume ppm) of the combustion exhaust gas.

この図2から明らかなように、N2O濃度は、燃焼炉の燃焼温度が高くなるにしたがって減少し、燃焼温度900℃以上ではほぼ一定となり、とくに燃焼温度950℃以上の温度域ではほとんど変化しなくなる。N2O濃度を下げるには、高い燃焼温度が必要となるが、本実施形態では低温燃焼排ガスが外気に比べて高温であるため、燃焼炉の燃焼空気あるいは燃焼排ガスの希釈空気として使用する場合、より少ない流量で高温を維持でき、熱効率を向上できるというメリットがある。 As is apparent from FIG. 2, the N 2 O concentration decreases as the combustion temperature of the combustion furnace increases, becomes almost constant at a combustion temperature of 900 ° C. or higher, and changes almost at a temperature range of 950 ° C. or higher. No longer. In order to reduce the N 2 O concentration, a high combustion temperature is required. However, in this embodiment, the low-temperature combustion exhaust gas is hotter than the outside air, so it is used as combustion air for combustion furnaces or as dilution air for combustion exhaust gas. There is an advantage that high temperature can be maintained with a smaller flow rate and thermal efficiency can be improved.

(第2の実施形態)
図3を参照して本発明の第2の実施形態を説明する。なお、本実施形態が上記の実施形態と重複する部分の説明は省略する。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIG. In addition, description of the part which this embodiment overlaps with said embodiment is abbreviate | omitted.

本実施形態の廃棄物処理システム1Aは、燃焼炉4と熱利用機器5とをつなぐラインL42上に集塵機10をさらに備えている。集塵機10は、例えば上部に燃焼排ガスが導入され、導入ガスを旋回流として下降させ、燃焼排ガス中の固形分(不燃性粉塵を含む煤塵など)をガス分から遠心分離するサイクロンである。   The waste treatment system 1 </ b> A of the present embodiment further includes a dust collector 10 on a line L <b> 42 that connects the combustion furnace 4 and the heat utilization device 5. For example, the dust collector 10 is a cyclone in which combustion exhaust gas is introduced into the upper portion, the introduced gas is lowered as a swirl flow, and solids (such as soot containing incombustible dust) in the combustion exhaust gas are centrifuged from the gas component.

燃焼排ガス中に固形不燃物の粉塵が混入する場合、燃焼炉でこの固形不燃物は燃焼できず、燃焼排ガス中に煤塵として混入するが、煤塵は大気汚染物質であると共に熱利用機器の内部流路や内壁に付着すると熱伝導率を低下させることから熱効率が低下するおそれがある。しかし、本実施形態のシステムによれば、集塵機により燃焼排ガスから煤塵を分離除去するので、熱利用機器の熱伝導率低下を防止でき、大気汚染物質の大気への放出も低減できる。   When dust from solid incombustible material is mixed in the combustion exhaust gas, this solid incombustible material cannot be combusted in the combustion furnace and is mixed as soot in the combustion exhaust gas. If it adheres to the road or the inner wall, the thermal conductivity is lowered, so that the thermal efficiency may be lowered. However, according to the system of the present embodiment, soot and dust are separated and removed from the combustion exhaust gas by the dust collector, it is possible to prevent a decrease in the thermal conductivity of the heat utilization device and to reduce the release of air pollutants to the atmosphere.

(第3の実施形態)
図4を参照して本発明の第3の実施形態を説明する。なお、本実施形態が上記の実施形態と重複する部分の説明は省略する。
(Third embodiment)
A third embodiment of the present invention will be described with reference to FIG. In addition, description of the part which this embodiment overlaps with said embodiment is abbreviate | omitted.

本実施形態の廃棄物処理システム1Bは、熱分解ガスラインL3に補助燃料を注入する補助燃料供給装置11をさらに備えている。補助燃料供給装置11は、熱分解ガスラインL3に連通接続される注入ラインL9を有し、熱分解ガスラインL3を通流する熱分解ガスに補助燃料を注入し、燃焼炉4のバーナから燃焼噴射させるものである。   The waste treatment system 1B of the present embodiment further includes an auxiliary fuel supply device 11 that injects auxiliary fuel into the pyrolysis gas line L3. The auxiliary fuel supply device 11 has an injection line L9 connected to the pyrolysis gas line L3, injects auxiliary fuel into the pyrolysis gas flowing through the pyrolysis gas line L3, and burns from the burner of the combustion furnace 4 It is to be injected.

燃焼炉4の温度を維持する熱源として可燃性の熱分解ガスを利用しているが、熱利用側の需要により熱利用機器5で回収される熱量を多くする場合に、熱分解ガスの熱量が一定であると、低温燃焼排ガスの温度が低下して結露等の不具合が生じることがある。低温燃焼排ガスの温度を維持したまま熱利用機器5で回収される熱量を多くするには熱分解ガスの熱量を上げればよいが、この場合、熱分解ガスの原料である有機性廃棄物の処理量を多くする必要があり、熱分解炉の仕様上の制約により限界が生じる。   Although combustible pyrolysis gas is used as a heat source for maintaining the temperature of the combustion furnace 4, when the amount of heat recovered by the heat utilization device 5 is increased due to demand on the heat utilization side, the amount of heat of the pyrolysis gas is If it is constant, the temperature of the low-temperature combustion exhaust gas is lowered, and problems such as condensation may occur. In order to increase the amount of heat recovered by the heat utilization device 5 while maintaining the temperature of the low-temperature combustion exhaust gas, the amount of heat of the pyrolysis gas may be increased. In this case, the organic waste that is the raw material of the pyrolysis gas is treated. It is necessary to increase the amount, and there is a limit due to restrictions on the pyrolysis furnace specifications.

そこで、本実施形態では、熱利用機器の熱源が不足する場合に、補助燃料供給装置11からメタンガスなどの補助燃料を燃焼炉4の燃料として注入することにより、熱源の不足を解消することができる。また、本実施形態によれば、補助燃料供給装置11からの補助燃料を、有機性廃棄物を投入しない起動時や停止時の燃料としても使用できる利点もある。   Therefore, in this embodiment, when the heat source of the heat utilization device is insufficient, the shortage of the heat source can be solved by injecting auxiliary fuel such as methane gas as fuel of the combustion furnace 4 from the auxiliary fuel supply device 11. . In addition, according to the present embodiment, there is an advantage that the auxiliary fuel from the auxiliary fuel supply device 11 can be used as a fuel at the time of starting and stopping without introducing organic waste.

1,1A,1B…廃棄物処理システム、
2…乾燥機、3…熱分解炉、4…燃焼炉、
5…熱利用機器、
10…集塵機、
11…補助燃料供給装置、
L3…熱分解ガスライン、L4,L41,L42…燃焼排ガスライン、
L6…低温燃焼排ガスライン、
L7,L71,L72,L73…還流ライン(熱利用後の低温燃焼排ガスを還流するライン)、
L8…炭化物排出ライン。
1, 1A, 1B ... waste treatment system,
2 ... dryer, 3 ... pyrolysis furnace, 4 ... combustion furnace,
5 ... Heat utilization equipment,
10 ... Dust collector,
11 ... auxiliary fuel supply device,
L3 ... pyrolysis gas line, L4, L41, L42 ... combustion exhaust gas line,
L6 ... Low-temperature combustion exhaust gas line,
L7, L71, L72, L73 ... recirculation line (line for recirculating low-temperature combustion exhaust gas after use of heat),
L8 ... Carbide discharge line.

Claims (6)

有機性廃棄物を受け入れて高温の還元性雰囲気下で該有機性廃棄物を熱分解させる熱分解炉と、
前記熱分解炉で発生した可燃性の熱分解ガスを燃焼させる燃焼炉と、
前記燃焼炉で発生した燃焼排ガスを熱源として利用する1つ又は複数の熱利用機器と、
前記熱利用機器により利用されて温度が低下した熱利用後の低温排ガスを、前記熱利用機器から前記熱利用機器よりも上流側に配置された機器に還流させ、前記上流側に配置された機器において燃焼空気または希釈空気として利用させる還流ラインと、
を具備することを特徴とする廃棄物処理システム。
A pyrolysis furnace for receiving organic waste and thermally decomposing the organic waste under a high-temperature reducing atmosphere;
A combustion furnace for burning the combustible pyrolysis gas generated in the pyrolysis furnace;
One or a plurality of heat utilization devices that utilize the flue gas generated in the combustion furnace as a heat source;
The low-temperature exhaust gas after use of heat, which has been used by the heat-use equipment and whose temperature has dropped, is circulated from the heat-use equipment to the equipment arranged upstream of the heat-use equipment, and the equipment arranged on the upstream side A reflux line for use as combustion air or dilution air in
A waste treatment system comprising:
前記燃焼炉を900℃以上1000℃以下の温度域で燃焼させることにより、亜酸化窒素の発生を抑制することを特徴とする請求項1記載の廃棄物処理システム。 The waste treatment system according to claim 1, wherein generation of nitrous oxide is suppressed by burning the combustion furnace in a temperature range of 900 ° C or higher and 1000 ° C or lower. 前記熱分解炉よりも上流側に配置され、前記有機性廃棄物を加熱して前記有機性廃棄物から水分を蒸発させることにより前記有機性廃棄物の含有水分を減少させる乾燥機をさらに有することを特徴とする請求項1または2のいずれか1項記載の廃棄物処理システム。 It further has a dryer which is disposed upstream of the pyrolysis furnace and reduces the water content of the organic waste by heating the organic waste and evaporating water from the organic waste. The waste disposal system according to any one of claims 1 and 2. 前記複数の熱利用機器のうちの少なくとも1つが前記熱分解炉であることを特徴とする請求項1乃至3のいずれか1項記載の廃棄物処理システム。 The waste treatment system according to any one of claims 1 to 3, wherein at least one of the plurality of heat utilization devices is the pyrolysis furnace. 前記熱利用機器と前記燃焼炉との間に集塵機をさらに有することを特徴とする請求項1乃至4のいずれか1項記載の廃棄物処理システム。 The waste disposal system according to any one of claims 1 to 4, further comprising a dust collector between the heat utilization device and the combustion furnace. 前記熱利用機器における不足熱量を補うために前記燃焼炉に補助燃料を供給する補助燃料供給装置をさらに有することを特徴とする請求項2乃至5のいずれか1項記載の廃棄物処理システム。 The waste treatment system according to any one of claims 2 to 5, further comprising an auxiliary fuel supply device that supplies auxiliary fuel to the combustion furnace in order to make up for a shortage of heat in the heat utilization device.
JP2010056634A 2010-03-12 2010-03-12 Waste treatment system Expired - Fee Related JP5143169B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010056634A JP5143169B2 (en) 2010-03-12 2010-03-12 Waste treatment system
CN2011100341553A CN102192511B (en) 2010-03-12 2011-01-31 Waste treating system
KR1020110009230A KR101292233B1 (en) 2010-03-12 2011-01-31 Waste treating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056634A JP5143169B2 (en) 2010-03-12 2010-03-12 Waste treatment system

Publications (2)

Publication Number Publication Date
JP2011190969A true JP2011190969A (en) 2011-09-29
JP5143169B2 JP5143169B2 (en) 2013-02-13

Family

ID=44601114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056634A Expired - Fee Related JP5143169B2 (en) 2010-03-12 2010-03-12 Waste treatment system

Country Status (3)

Country Link
JP (1) JP5143169B2 (en)
KR (1) KR101292233B1 (en)
CN (1) CN102192511B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088323A (en) * 2011-10-19 2013-05-13 Nippon Steel & Sumikin Engineering Co Ltd Volume reduction processing method for low level radioactive waste
CN104019452A (en) * 2014-01-21 2014-09-03 无锡高尔环保科技有限公司 Waste incineration device and technology
CN105043092A (en) * 2015-09-05 2015-11-11 吉首大学 Manganese processing rotary kiln with gas furnace supplying heat
CN115560615A (en) * 2022-11-21 2023-01-03 山东福尔有限公司 Pyridine waste heat utilization device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900089B (en) * 2012-12-29 2016-05-18 中国中化股份有限公司 The dirty salt processing method of a kind of industry containing organic pollution
CN107206113A (en) * 2014-10-27 2017-09-26 安特哈德能源系统股份公司 The method and apparatus carried out disinfection using the waste gas of combustion system to bio-waste
CN105327930A (en) * 2015-11-13 2016-02-17 北京神雾环境能源科技集团股份有限公司 Power generation system using household garbage and power generation method thereof
CN109945195A (en) * 2019-03-20 2019-06-28 北京中和锦程科技有限公司 Organic waste low temperature magnetizes cracking apparatus
TWI777434B (en) * 2020-03-18 2022-09-11 日商住友重機械工業股份有限公司 heat treatment system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199157A (en) * 2004-01-15 2005-07-28 Mitsubishi Heavy Ind Ltd Method and apparatus for carbonization treatment of sludge, and power generation method
JP2007225223A (en) * 2006-02-24 2007-09-06 Mitsubishi Heavy Ind Ltd Pyrolysis gas treating method and its device for highly hydrous organic matter carbonizing system
JP2009091513A (en) * 2007-10-11 2009-04-30 Toshiba Corp Apparatus for converting sludge into fuel
JP2009097758A (en) * 2007-10-15 2009-05-07 Toshiba Corp Device for producing fuel from sludge
JP2009225223A (en) * 2008-03-18 2009-10-01 Epson Toyocom Corp Piezoelectric device
JP2009243714A (en) * 2008-03-28 2009-10-22 Mhi Environment Engineering Co Ltd Pyrolysis gas treatment method and device in sludge carbonizing treatment equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199157A (en) * 2004-01-15 2005-07-28 Mitsubishi Heavy Ind Ltd Method and apparatus for carbonization treatment of sludge, and power generation method
JP2007225223A (en) * 2006-02-24 2007-09-06 Mitsubishi Heavy Ind Ltd Pyrolysis gas treating method and its device for highly hydrous organic matter carbonizing system
JP2009091513A (en) * 2007-10-11 2009-04-30 Toshiba Corp Apparatus for converting sludge into fuel
JP2009097758A (en) * 2007-10-15 2009-05-07 Toshiba Corp Device for producing fuel from sludge
JP2009225223A (en) * 2008-03-18 2009-10-01 Epson Toyocom Corp Piezoelectric device
JP2009243714A (en) * 2008-03-28 2009-10-22 Mhi Environment Engineering Co Ltd Pyrolysis gas treatment method and device in sludge carbonizing treatment equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088323A (en) * 2011-10-19 2013-05-13 Nippon Steel & Sumikin Engineering Co Ltd Volume reduction processing method for low level radioactive waste
CN104019452A (en) * 2014-01-21 2014-09-03 无锡高尔环保科技有限公司 Waste incineration device and technology
CN104019452B (en) * 2014-01-21 2016-05-04 无锡高尔环保科技有限公司 A kind of garbage combustion device and burning process thereof
CN104791803B (en) * 2014-01-21 2018-11-23 无锡高尔环保科技有限公司 A kind of garbage combustion device and its burning process
CN105043092A (en) * 2015-09-05 2015-11-11 吉首大学 Manganese processing rotary kiln with gas furnace supplying heat
CN115560615A (en) * 2022-11-21 2023-01-03 山东福尔有限公司 Pyridine waste heat utilization device

Also Published As

Publication number Publication date
CN102192511B (en) 2013-11-06
KR101292233B1 (en) 2013-08-01
JP5143169B2 (en) 2013-02-13
KR20110103315A (en) 2011-09-20
CN102192511A (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP5143169B2 (en) Waste treatment system
KR101287262B1 (en) Method of disposing of organic waste of high water content and disposal apparatus therefor
JP4996416B2 (en) Sludge fuel plant
JP2009091496A (en) Apparatus for converting sludge into fuel
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
JP4958855B2 (en) Organic waste disposal methods
JP2008248161A (en) Thermal decomposition process and thermal decomposition system
TWI332563B (en)
JP5634158B2 (en) Biomass carbonization apparatus and method for producing carbide
JP4855644B2 (en) Organic waste disposal methods
JP2005319374A (en) Method and apparatus for converting sludge into fuel
TWI722316B (en) Sludge treatment method and cement manufacturing system
CN101373070B (en) Heat decomposition gas processing method and apparatus of carbonization processing system containing water
JP4937363B2 (en) Combustion device
JP2006008736A (en) Carbonization treatment apparatus for organic waste
CN105371280B (en) The apparatus and method that a kind of solid waste organic substance cleaning is burned
RU2704398C1 (en) Method for vitrification of sludge or other organic sludges and wastes and device for its implementation
KR101536135B1 (en) Low temperature Pyrolysis apparatus using the compound for treating waste asbestos
JP2008215661A (en) Combustion furnace, waste gasification system and combustible gas treatment method
CN105987384B (en) A kind of garbage disposal complete set of equipments
JP5040175B2 (en) Method and apparatus for producing mixed fuel of sludge and waste carbide
JP2004249280A (en) Gasification and melting method of sludge
JP5411312B2 (en) Organic waste processing apparatus, organic waste processing method, and control apparatus
JP5040174B2 (en) Method and apparatus for producing mixed fuel of dry sludge and waste carbide
JP2005230788A (en) Apparatus for carbonization treatment of organic material-containing sludge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5143169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees