JP2007225223A - Pyrolysis gas treating method and its device for highly hydrous organic matter carbonizing system - Google Patents

Pyrolysis gas treating method and its device for highly hydrous organic matter carbonizing system Download PDF

Info

Publication number
JP2007225223A
JP2007225223A JP2006048273A JP2006048273A JP2007225223A JP 2007225223 A JP2007225223 A JP 2007225223A JP 2006048273 A JP2006048273 A JP 2006048273A JP 2006048273 A JP2006048273 A JP 2006048273A JP 2007225223 A JP2007225223 A JP 2007225223A
Authority
JP
Japan
Prior art keywords
combustion
gas
furnace
exhaust gas
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006048273A
Other languages
Japanese (ja)
Other versions
JP4394654B2 (en
Inventor
Kazuaki Kakurada
一晃 加倉田
Masaharu Kira
雅治 吉良
Takeshi Amari
猛 甘利
Satoshi Okuno
敏 奥野
Mamoru Araoka
衛 荒岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006048273A priority Critical patent/JP4394654B2/en
Priority to TW96126399A priority patent/TW200905139A/en
Publication of JP2007225223A publication Critical patent/JP2007225223A/en
Application granted granted Critical
Publication of JP4394654B2 publication Critical patent/JP4394654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pyrolysis gas treating device for a highly hydrous organic matter carbonizing system complete combustion accompanied by the reduction of an NOx amount while maintaining a low fuel consumption rate by minimizing the use of assist fuel in combustion in a cracked gas burning furnace for pyrolysis gas after carbonizing in a carbonization furnace. <P>SOLUTION: Cracked gas produced from a highly hydrous organic matter in the carbonization furnace is introduced into the cracked gas burning furnace, a primary input of one part of dry exhaust gas after a drying process is carried out and primary combustion air is supplied to carry out a combustion process in a reducing atmosphere, secondary air is supplied to the combustion gas in the reducing atmosphere to carry out a combustion process in an oxidizing atmosphere, and a secondary input of dry exhaust gas of the combustion gas in the oxidizing atmosphere is carried out to carry out a final combustion process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、下水処理場などで発生する汚泥や、食品加工残渣、畜産糞尿などの高含水有機物を処理するための炭化処理システムにおける熱分解ガスの処理方法及びその装置に関する。   TECHNICAL FIELD The present invention relates to a method and apparatus for treating pyrolysis gas in a carbonization treatment system for treating sludge generated in a sewage treatment plant, food processing residue, livestock manure and other high water content organic matter.

下水汚泥に代表される高い水分を含有する有機物を炭化するためには、原料である水分を含有した有機物を乾燥処理した後、炭化炉にて炭化処理するのが一般的である。
ここで、炭化処理の熱源としては、該炭化処理により生成された熱分解ガスを分解ガス燃焼炉で燃焼させた燃焼排ガスを用いている。
上記分解ガス燃焼炉での燃焼時におけるNOxの生成を抑制した高含水有機物炭化処理システムの熱分解ガス処理方法及びその装置の一つに、本件出願人の出願に係る特許文献1(特開2005−199157号公報)の発明が提供されている。
In order to carbonize an organic substance containing high moisture represented by sewage sludge, the organic substance containing moisture as a raw material is generally dried and then carbonized in a carbonization furnace.
Here, as a heat source for the carbonization treatment, combustion exhaust gas obtained by burning the pyrolysis gas generated by the carbonization treatment in a cracked gas combustion furnace is used.
One of the pyrolysis gas treatment method and apparatus therefor of a high water content organic carbonization treatment system that suppresses the generation of NOx during combustion in the cracking gas combustion furnace is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2005-200511) relating to the application of the present applicant. No. 199157) is provided.

図3はかかる発明における高含水有機物の炭化処理装置の系統図である。
図3において、この炭化処理装置は、主として、下水汚泥を脱水する脱水機10と、下水汚泥に熱風を直接接触させて乾燥する乾燥炉20と、乾燥させた下水汚泥を炭化処理する外熱式ロータリーキルン型の炭化炉1と、該炭化炉1で生成された熱分解ガスを主に燃焼する燃焼炉40と、該炭化炉1に加熱ガスを送る燃焼炉50とにより構成されている。
FIG. 3 is a system diagram of a carbonization apparatus for high water content organic matter in the present invention.
In FIG. 3, this carbonization apparatus mainly includes a dehydrator 10 for dewatering sewage sludge, a drying furnace 20 for directly drying the sewage sludge with hot air, and an external heating type for carbonizing the dried sewage sludge. A rotary kiln type carbonization furnace 1, a combustion furnace 40 that mainly burns pyrolysis gas generated in the carbonization furnace 1, and a combustion furnace 50 that sends heated gas to the carbonization furnace 1 are configured.

上記脱水機10と乾燥炉20とはライン110で接続され、該乾燥炉20と炭化炉1とはライン21で接続され、該乾燥炉20と燃焼炉40とは、循環ガス予熱器22を介してライン23で接続されている。
上記炭化炉1の内部と燃焼炉40とは、炭化炉1内で生成した熱分解ガスの配管であるライン31で接続されている。このライン31には熱分解ガス中から炭化物を分離除去するサイクロン32が設けられている。該サイクロン32の底部と炭化炉1の炭化物出口には、炭化物6を排出するライン33とライン34とがそれぞれ設けられている。
The dehydrator 10 and the drying furnace 20 are connected by a line 110, the drying furnace 20 and the carbonization furnace 1 are connected by a line 21, and the drying furnace 20 and the combustion furnace 40 are connected via a circulating gas preheater 22. Are connected by a line 23.
The inside of the carbonization furnace 1 and the combustion furnace 40 are connected by a line 31 that is a pipe of pyrolysis gas generated in the carbonization furnace 1. The line 31 is provided with a cyclone 32 for separating and removing carbides from the pyrolysis gas. A line 33 and a line 34 for discharging the carbide 6 are respectively provided at the bottom of the cyclone 32 and the carbide outlet of the carbonization furnace 1.

上記燃焼炉40と乾燥炉20とは、該燃焼炉40からの燃焼排ガスを乾燥用ガスとして供給するためのライン43で接続されている。ライン43は、ライン44、ライン45に分岐し、循環ガス予熱器22の内部を経たライン45からのガス流路は、ライン37に合流し、以後このライン37は、順に空気予熱器38、排ガス処理装置8、及び煙突17を結ぶ配管として構成されている。
上記燃焼炉40には、ファン48が設置され、該ファン48により燃焼用空気を燃焼炉40内部に送り込むことができるように構成されている。そして、該燃焼炉40には、上記ファン48からの燃焼用空気と、上記サイクロン32を経た熱分解ガスと、上記乾燥炉20での乾燥処理後の乾燥排ガスと、LNG(天然ガス)又は重油等の化石燃料で構成される助燃料とが供給され、該熱分解ガスが燃焼せしめられるようになっている。
また、上記燃焼炉50には、燃焼用空気としてライン53により循環されるガス、及びライン61からの予熱された空気及び助燃料が供給されるようになっている。
The combustion furnace 40 and the drying furnace 20 are connected by a line 43 for supplying the combustion exhaust gas from the combustion furnace 40 as a drying gas. The line 43 branches to a line 44 and a line 45, and the gas flow path from the line 45 passing through the inside of the circulating gas preheater 22 merges with the line 37. Thereafter, the line 37 is sequentially connected to the air preheater 38 and the exhaust gas. It is configured as a pipe connecting the processing device 8 and the chimney 17.
The combustion furnace 40 is provided with a fan 48 so that combustion air can be sent into the combustion furnace 40 by the fan 48. The combustion furnace 40 includes combustion air from the fan 48, pyrolysis gas that has passed through the cyclone 32, dry exhaust gas after drying treatment in the drying furnace 20, and LNG (natural gas) or heavy oil. An auxiliary fuel composed of fossil fuel such as the like is supplied, and the pyrolysis gas is combusted.
The combustion furnace 50 is supplied with gas circulated through a line 53 as combustion air, and preheated air and auxiliary fuel from a line 61.

この高含水有機物の炭化処理装置を用いて、汚泥を炭化処理するにあたっては、先ず、脱水機10に下水汚泥を導入し、該下水汚泥の水分が約80%になるぐらいまで脱水する。
次いで、脱水した下水汚泥を乾燥炉20に送る。該乾燥炉20では、汚泥の水分が約30%位になるまで乾燥する。該乾燥炉20での乾燥は、ライン44から導入される燃焼排ガスを、汚泥に直接接触させることにより行う。なお、乾燥に必要な量以上の燃焼排ガスは、ライン45の系統に送られる。乾燥させた汚泥はライン21を介して炭化炉1に導入される。
When carbonizing sludge using this high water content organic carbonization apparatus, first, sewage sludge is introduced into the dehydrator 10 and dehydrated until the water content of the sewage sludge becomes about 80%.
Next, the dewatered sewage sludge is sent to the drying furnace 20. In the drying furnace 20, the sludge is dried until the water content is about 30%. Drying in the drying furnace 20 is performed by bringing combustion exhaust gas introduced from the line 44 into direct contact with sludge. In addition, the combustion exhaust gas more than the amount necessary for drying is sent to the line 45 system. The dried sludge is introduced into the carbonization furnace 1 via the line 21.

上記炭化炉1では、汚泥を酸素が欠乏した雰囲気下で約300〜600℃に加熱して炭化処理を行い、熱分解ガスと固体燃料である炭化物6とを生成する。熱分解ガスはライン31を介して上記燃焼炉40に導入され、後述するような燃焼を行なう。
上記炭化炉1での加熱は、上記燃焼炉50で助燃料をライン61及び循環ライン53からの燃焼用空気で燃焼し、これにより得られる加熱ガスをライン51を通して該炭化炉1の外筒に供給し、汚泥に直接に接触しないで間接加熱により行う。
なお、ライン61からの空気は、上記空気予熱器38での排ガスとの熱交換により加熱されている。
In the carbonization furnace 1, the sludge is heated to about 300 to 600 ° C. in an oxygen-deficient atmosphere to perform carbonization, thereby generating pyrolysis gas and carbide 6 that is a solid fuel. The pyrolysis gas is introduced into the combustion furnace 40 through a line 31 and burns as described later.
In the carbonization furnace 1, auxiliary fuel is combusted in the combustion furnace 50 with combustion air from the line 61 and the circulation line 53, and the resulting heated gas is passed through the line 51 to the outer cylinder of the carbonization furnace 1. Supply by indirect heating without direct contact with sludge.
Note that the air from the line 61 is heated by heat exchange with the exhaust gas in the air preheater 38.

上記燃焼炉40においては、2段の燃焼処理がなされる。
該燃焼炉40の第1段燃焼部40aでは、空気比<1.0で熱分解ガスを助燃料と共に燃焼空気を用いて900〜1100℃で高温還元雰囲気で燃焼させることにより、熱分解ガス中のNH3を分解し、N2Oを分解し、NOxを還元している。次いでこの熱分解ガスを第2段燃焼部40bに導き、該第1段燃焼部40bにおいて、燃焼空気を吹き込み、空気比>1.0で850〜1000℃の低温酸化雰囲気で燃焼させることにより、未燃ガスを完全燃焼させている。
In the combustion furnace 40, a two-stage combustion process is performed.
In the first stage combustion section 40a of the combustion furnace 40, the pyrolysis gas is burned in a high-temperature reducing atmosphere at 900 to 1100 ° C. using combustion air together with auxiliary fuel at an air ratio <1.0. NH 3 is decomposed, N 2 O is decomposed, and NOx is reduced. Next, the pyrolysis gas is guided to the second stage combustion unit 40b, and in the first stage combustion unit 40b, combustion air is blown and burned in a low-temperature oxidizing atmosphere of 850 to 1000 ° C. with an air ratio> 1.0, Unburned gas is burned completely.

特開2005−199157号公報JP 2005-199157 A

特許文献1(特開2005−199157号公報)の発明における高含水有機物炭化処理システムにおいては、熱分解ガスを燃焼処理する燃焼炉40では、上記炭化炉1における炭化処理工程及び上記乾燥炉20における乾燥処理工程で発生するNH3によって、該燃焼炉40での燃焼時に上記NH3の酸化に由来するNOxが発生し易い状態にある。
かかるNH3含有ガスからのNOxへの転換を抑制する燃焼方法としては、化石燃料からなる助燃料を用いての高温還元燃焼による低NOx燃焼が有効であるが、この場合は助燃料を多く要して、助燃料の燃料消費率が多くなり勝ちとなり、この点に改良の余地がある。
In the high water content organic matter carbonization processing system in the invention of Patent Document 1 (Japanese Patent Application Laid-Open No. 2005-199157), in the combustion furnace 40 for combustion treatment of pyrolysis gas, the carbonization treatment process in the carbonization furnace 1 and the drying furnace 20 are used. Due to NH 3 generated in the drying process, NOx derived from the oxidation of NH 3 is easily generated during combustion in the combustion furnace 40.
As a combustion method for suppressing the conversion of NH 3 -containing gas to NOx, low-NOx combustion by high-temperature reduction combustion using auxiliary fuel made of fossil fuel is effective. In this case, a large amount of auxiliary fuel is required. As a result, the fuel consumption rate of the auxiliary fuel is increased, and there is room for improvement in this respect.

本発明はこのような実状に鑑みてなされたものであって、その目的は、炭化炉での炭化処理後の熱分解ガスの分解ガス燃焼炉での燃焼を、助燃料の使用を最低限にして燃料消費率を低く保持しつつ、NOx量の低減を伴った完全燃焼を実現した高含水有機物炭化処理システムの熱分解ガス処理装置を提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to minimize the use of auxiliary fuel for combustion in a cracked gas combustion furnace of pyrolysis gas after carbonization treatment in a carbonization furnace. An object of the present invention is to provide a pyrolysis gas treatment apparatus for a high water content organic matter carbonization treatment system that realizes complete combustion with a reduction in the amount of NOx while keeping the fuel consumption rate low.

上記従来技術の有する課題を解決するために、本発明は、高含水有機物を乾燥装置にて乾燥処理し、該乾燥処理を経た後の高含水有機物を炭化炉にて炭化処理し、該炭化処理により生成された熱分解ガスを燃焼処理する高含水有機物炭化処理システムの熱分解ガス処理方法であって、上記炭化炉で生成された熱分解ガスを分解ガス燃焼炉に導入し、該分解ガス燃焼炉において上記乾燥装置での乾燥処理後の乾燥排ガスの一部を第1次投入するとともに1次燃焼空気を供給して還元雰囲気での燃焼処理を行ない、次いでこの還元雰囲気での燃焼ガスに2次燃焼空気を供給して酸化雰囲気での燃焼処理を行ない、次いでこの酸化雰囲気での燃焼ガスに上記乾燥排ガスを第2次投入して最終的燃焼処理を行なうことを特徴とする(請求項1)。   In order to solve the above-described problems of the prior art, the present invention performs a drying process on a high water content organic substance in a drying apparatus, carbonizes the high water content organic substance after the drying process in a carbonization furnace, and performs the carbonization process. A pyrolysis gas treatment method for a high water content organic carbonization processing system for combustion treatment of pyrolysis gas generated by the above, wherein the pyrolysis gas generated in the carbonization furnace is introduced into the cracking gas combustion furnace, and the cracking gas combustion In the furnace, a part of the dry exhaust gas after the drying process in the drying apparatus is first charged and the primary combustion air is supplied to perform a combustion process in a reducing atmosphere. Next combustion air is supplied to perform combustion processing in an oxidizing atmosphere, and then the dry exhaust gas is secondarily introduced into the combustion gas in this oxidizing atmosphere to perform final combustion processing. ).

上記発明において、次のように構成するのが好ましい。
(1)上記最終的燃焼処理において燃焼ガスに上記乾燥排ガスを複数段に亘って投入し、両者を高温燃焼させる(請求項2)。
(2)上記分解ガス燃焼炉に投入される上記乾燥排ガスの10〜30%を上記第1次投入ガス量とし、上記乾燥排ガスの70〜90%を上記第2次投入ガス量とする(請求項3)。
(3)上記1次燃焼空気及び2次燃焼空気は、空気予熱器にて上記炭化炉での炭化処理後に排出される炭化処理排ガスによって予熱された空気を用い、空気量調整手段によって該1次燃焼空気と2次燃焼空気との供給空気量の割合を調整して上記分解ガス燃焼炉に供給する(請求項4)。
In the above invention, the following configuration is preferable.
(1) In the final combustion process, the dry exhaust gas is introduced into the combustion gas in a plurality of stages, and both are combusted at a high temperature (claim 2).
(2) 10-30% of the dry exhaust gas input to the cracked gas combustion furnace is the primary input gas amount, and 70-90% of the dry exhaust gas is the secondary input gas amount (claim) Item 3).
(3) The primary combustion air and the secondary combustion air are air preheated by carbonization exhaust gas discharged after carbonization in the carbonization furnace by an air preheater, and the primary combustion air and secondary combustion air are subjected to the primary amount by an air amount adjusting means. The ratio of the supply air amount of the combustion air and the secondary combustion air is adjusted and supplied to the cracked gas combustion furnace (claim 4).

また、上記熱分解ガス処理方法を実施する装置の発明は、
高含水有機物を乾燥装置にて乾燥処理し、該乾燥処理を経た後の高含水有機物を炭化炉にて炭化処理し、該炭化処理により生成された熱分解ガスを燃焼処理する高含水有機物炭化処理システムの熱分解ガス処理装置において、上記炭化炉で生成された熱分解ガスが導入される熱分解ガス導入口と、上記乾燥装置での乾燥処理後の乾燥排ガスが導入される複数段の乾燥排ガス導入口と、燃焼用空気が導入される複数段の燃焼用空気導入口と、燃焼排ガスを送出する燃焼排ガス送出口とを有する分解ガス燃焼炉を備え、該分解ガス燃焼炉は、上記熱分解ガス導入口を最上流側に設けて該熱分解ガス導入口から上記燃焼排ガス送出口へと上記熱分解ガスが長手方向に流動可能に形成され、上記複数段の乾燥排ガス導入口の一方を上記燃焼用空気導入口よりも上流側部位に開口して熱分解ガスの還元雰囲気での燃焼処理を可能とし、他の乾燥排ガス導入口を上記燃焼用空気導入口よりも下流側に開口して、上記燃焼後の炉内ガスを上記燃焼用空気及び上記乾燥排ガスにより燃焼処理可能に構成したことを特徴とする(請求項5)。
The invention of the apparatus for carrying out the pyrolysis gas treatment method is as follows:
High moisture content organic matter carbonization treatment which dries the high moisture content organic matter with a drying device, carbonizes the moisture content organic matter after passing through the drying treatment in a carbonization furnace, and burns the pyrolysis gas generated by the carbonization treatment In the pyrolysis gas treatment device of the system, a pyrolysis gas inlet for introducing the pyrolysis gas generated in the carbonization furnace, and a multistage dry exhaust gas into which the dry exhaust gas after the drying treatment in the drying device is introduced A cracked gas combustion furnace having an inlet, a plurality of stages of combustion air inlets for introducing combustion air, and a combustion exhaust gas outlet for sending combustion exhaust gas; A gas inlet is provided on the most upstream side so that the pyrolysis gas can flow in the longitudinal direction from the pyrolysis gas inlet to the combustion exhaust gas outlet, and one of the plurality of stages of the dried exhaust gas inlet is Combustion air introduction The combustion chamber in the reducing atmosphere of the pyrolysis gas can be opened by opening the upstream side of the furnace, the other dry exhaust gas inlet is opened downstream of the combustion air inlet, and the furnace after the combustion The internal gas is configured to be combustible with the combustion air and the dry exhaust gas (Claim 5).

この発明において、好ましくは、上記分解ガス燃焼炉は、上記熱分解ガスの流動方向に沿って、上記熱分解ガス導入口及び複数段の燃焼用空気導入口のうちの1次空気導入口を最上流側に、複数段の上記乾燥排ガス導入口の一方、上記複数段の燃焼用空気導入口のうちの2次空気導入口、上記複数段の上記乾燥排ガス導入口の他方、及び上記燃焼排ガス送出口を長手方向に沿って配設した筒状体にて構成される(請求項6)。   In the present invention, preferably, the cracked gas combustion furnace has the primary air inlet among the pyrolyzed gas inlet and the plurality of stages of combustion air inlets positioned along the flow direction of the pyrolyzed gas. Upstream, one of the plurality of stages of the dried exhaust gas inlets, the secondary air inlet of the plurality of stages of combustion air inlets, the other of the plurality of stages of the dried exhaust gas inlets, and the combustion exhaust gas feed It is comprised with the cylindrical body which arrange | positioned the exit along the longitudinal direction (Claim 6).

本発明によれば、分解ガス燃焼炉を、炭化炉で生成された熱分解ガスが導入される熱分解ガス導入口と、乾燥装置での乾燥処理後の乾燥排ガスが導入される複数段の乾燥排ガス導入口と、燃焼用空気が導入される複数段の燃焼用空気導入口と、燃焼排ガスを送出する燃焼排ガス送出口とを有するように構成し(請求項5、6)、該分解ガス燃焼炉中の熱分解ガス燃焼ゾーンにおいて乾燥装置での乾燥処理後の乾燥排ガスの一部(好ましくは乾燥排ガスの10〜30%:請求項3)を燃焼用空気導入口よりも上流側部位に開口する乾燥排ガス導入口から第1次投入するとともに1次空気導入口から1次燃焼空気を空気比0.7〜0.8程度の低空気比にて供給して、還元雰囲気での燃焼処理を行なうことにより(請求項1〜4)、上記乾燥排ガス中のNH3により熱分解ガスの燃焼ゾーンで発生したNOxを還元することが可能となり、熱分解ガス燃焼時におけるNOx量を低減できる。
また、上記還元雰囲気中で、熱分解ガスよりも低温の乾燥排ガスを適量分解ガス燃焼炉内に吹き込んで、該分解ガス燃焼炉内の温度を1200℃以下に保持することにより、分解ガス燃焼炉の炉壁を保護できて、分解ガス燃焼炉の耐久性を向上できる。
According to the present invention, the cracked gas combustion furnace is divided into a pyrolysis gas inlet into which the pyrolysis gas generated in the carbonization furnace is introduced and a multi-stage drying into which the dried exhaust gas after the drying treatment in the drying apparatus is introduced. An exhaust gas inlet, a plurality of stages of combustion air inlets through which combustion air is introduced, and a combustion exhaust gas outlet for sending the combustion exhaust gas are provided (claims 5 and 6), and the cracked gas combustion is performed. A part of the dry exhaust gas (preferably 10 to 30% of the dry exhaust gas: claim 3) after the drying treatment in the drying apparatus is opened upstream of the combustion air inlet in the pyrolysis gas combustion zone in the furnace The primary combustion air is supplied from the dry exhaust gas inlet and the primary combustion air is supplied from the primary air inlet at a low air ratio of about 0.7 to 0.8 to perform combustion treatment in a reducing atmosphere. By performing (Claims 1-4), the dry waste gas NH 3 by it is possible to reduce the NOx generated in the combustion zone of the pyrolysis gas in, it is possible to reduce the NOx amount at the time of pyrolysis gas burning.
Further, in the reducing atmosphere, a suitable amount of dry exhaust gas having a temperature lower than that of the pyrolysis gas is blown into the cracking gas combustion furnace, and the temperature in the cracking gas combustion furnace is maintained at 1200 ° C. or less, whereby the cracking gas combustion furnace. This can protect the furnace wall and improve the durability of the cracked gas combustion furnace.

また、上記熱分解ガス燃焼ゾーンにおける還元雰囲気中での低NOx燃焼後の炉内ガスに、2次燃焼空気を供給して酸化雰囲気での燃焼処理を行なうことにより(請求項1)、上記還元雰囲気中での未燃ガスを完全燃焼することができる。
さらにこの酸化雰囲気での燃焼ガスに、上記還元雰囲気中での燃焼ゾーンで消費した乾燥排ガスの残りの乾燥排ガス(好ましくは乾燥排ガスの70〜90%:請求項3)を第2次投入して最終的燃焼処理を行なうことにより(請求項1)、多量の乾燥排ガス中のNH3による自己脱硝作用によって、上記熱分解ガス燃焼ゾーンの酸化雰囲気での燃焼時に生成されたNOxを還元して低NOx燃焼をなすとともに、上記乾燥排ガス及び2次燃焼空気によって脱臭及び完全燃焼を行なうことができる。
Further, by supplying secondary combustion air to the in-furnace gas after low NOx combustion in a reducing atmosphere in the pyrolysis gas combustion zone and performing a combustion treatment in an oxidizing atmosphere (claim 1), the reduction Unburned gas in the atmosphere can be completely burned.
Further, the remaining dry exhaust gas of the dry exhaust gas consumed in the combustion zone in the reducing atmosphere (preferably 70 to 90% of the dry exhaust gas: Claim 3) is secondarily introduced into the combustion gas in the oxidizing atmosphere. By performing the final combustion treatment (Claim 1), the NOx produced during combustion in the oxidizing atmosphere of the pyrolysis gas combustion zone is reduced and reduced by the self-denitration action by NH 3 in a large amount of dry exhaust gas. While performing NOx combustion, deodorization and complete combustion can be performed by the dry exhaust gas and the secondary combustion air.

したがって、本発明によれば、乾燥排ガス全量を1200℃程度の高温で燃焼させることなく、炉内ガスの最終的燃焼処理の際に950℃程度とするのに必要に応じて助燃料を用いるにとどまるので、助燃料の使用を最低限にして燃料消費率を低く保持しつつ、炭化炉での炭化処理後の熱分解ガスの分解ガス燃焼炉での燃焼を、NOx量の低減を伴った完全燃焼で以って実現できる。   Therefore, according to the present invention, the auxiliary fuel is used as needed to bring the total amount of the dry exhaust gas to about 950 ° C. in the final combustion treatment of the in-furnace gas without burning at a high temperature of about 1200 ° C. As a result, the combustion of pyrolysis gas after carbonization in the carbonization furnace in the cracked gas combustion furnace is completely accompanied by a reduction in the amount of NOx while keeping the fuel consumption rate low while minimizing the use of auxiliary fuel. This can be achieved by combustion.

以下、本発明を図示の実施の形態に基づいて詳細に説明する。
図1は本発明の実施形態に係る高含水有機物の炭化処理装置の系統図、図2は分解ガス燃焼炉の縦断面構成図である。
この実施形態では、高含水有機物、特に高含水含窒素有機物として下水汚泥をその処理対象としている。
図1に示すように、本実施形態に係る炭化処理装置は、主として、下水汚泥を脱水する脱水機10と、脱水した下水汚泥に熱風を直接接触させて乾燥する乾燥炉20と、乾燥させた下水汚泥を炭化処理する炭化炉1と、該炭化炉1で生成した熱分解ガスを主に燃焼する分解ガス燃焼炉2と、該分解ガス燃焼炉2からの高温の燃焼ガスをさらに燃焼、加熱して炭化炉1に送り込む炭化炉用燃焼装置3等により構成されている。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
FIG. 1 is a system diagram of an apparatus for carbonizing a high water content organic substance according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional configuration diagram of a cracked gas combustion furnace.
In this embodiment, sewage sludge is treated as a highly water-containing organic substance, particularly a high water-containing nitrogen-containing organic substance.
As shown in FIG. 1, the carbonization processing apparatus according to the present embodiment is mainly dried by a dehydrator 10 for dewatering sewage sludge, a drying furnace 20 for directly drying hot water against the dewatered sewage sludge, and drying. A carbonization furnace 1 for carbonizing sewage sludge, a cracking gas combustion furnace 2 for mainly burning the pyrolysis gas generated in the carbonization furnace 1, and a high-temperature combustion gas from the cracking gas combustion furnace 2 is further combusted and heated. The carbonization furnace 1 is fed to the carbonization furnace 1 and the like.

上記乾燥炉20は、熱風を直接接触させる方式が好適であるが、これに限定されず、脱水汚泥を燃焼させずに乾燥できるものであればよい。また、上記炭化炉1は、外熱式ロータリーキルン型のものが好適であるが、本発明の目的に適う限り、他の形態の炭化炉とすることもできる。   The drying furnace 20 is preferably a system in which hot air is brought into direct contact, but is not limited thereto, and may be any one that can be dried without burning dehydrated sludge. The carbonization furnace 1 is preferably an externally heated rotary kiln type. However, as long as it meets the purpose of the present invention, other forms of carbonization furnaces can be used.

上記脱水機10と乾燥炉20とはライン110で接続されており、このライン110は、圧送ポンプ(図示省略)によって汚泥を圧送できる配管などが好ましい。上記乾燥炉20と炭化炉1とはライン21で接続されており、このライン21は乾燥した汚泥を搬送できるコンベアなどが好ましい。
上記炭化炉1の内部と上記分解ガス燃焼炉2とは、該炭化炉1内で生成した熱分解ガスの配管であるライン19で接続され、このライン19には熱分解ガス中から炭化物を分離除去するサイクロン32が設けられている。
該サイクロン32の底部及び上記炭化炉1の炭化物出口には、炭化物6を排出するライン34とライン33がそれぞれ設けられている。
上記分解ガス燃焼炉2の詳細については後述する。
The dehydrator 10 and the drying furnace 20 are connected by a line 110. The line 110 is preferably a pipe that can pump sludge by a pressure pump (not shown). The drying furnace 20 and the carbonization furnace 1 are connected by a line 21, and the line 21 is preferably a conveyor that can transport dried sludge.
The inside of the carbonization furnace 1 and the cracking gas combustion furnace 2 are connected by a line 19 that is a piping for the pyrolysis gas generated in the carbonization furnace 1, and carbide is separated from the pyrolysis gas in the line 19. A cyclone 32 to be removed is provided.
A line 34 and a line 33 for discharging the carbide 6 are respectively provided at the bottom of the cyclone 32 and the carbide outlet of the carbonization furnace 1.
Details of the cracked gas combustion furnace 2 will be described later.

上記分解ガス燃焼炉2出口に接続される燃焼排ガスライン41は、炭化炉用燃焼装置3への燃焼排ガスライン4と、上記乾燥炉20への燃焼排ガスライン5と、後述する熱交換器7への燃焼排ガスライン9との、3つの加熱用燃焼排ガスラインに分岐され、該分解ガス燃焼炉2での燃焼により950℃程度(通常900〜1000℃)まで昇温された燃焼排ガスが、上記各燃焼排ガスライン4、5、9を通して炭化炉用燃焼装置3、乾燥炉20、熱交換器7に送られるようになっている。
上記炭化炉用燃焼装置3においては、上記分解ガス燃焼炉2からの950℃程度(通常900〜1000℃)の高温の燃焼排ガスが、LNG(天然ガス)又は重油等の化石燃料で構成される助燃料と、後述する空気予熱器38で予熱され空気ライン61を通して供給される燃焼用空気とによって燃焼して1100℃程度(通常1050〜1150℃)に昇温され、炭化炉1に供給される。
The combustion exhaust gas line 41 connected to the outlet of the cracked gas combustion furnace 2 is connected to the combustion exhaust gas line 4 to the combustion apparatus 3 for the carbonization furnace, the combustion exhaust gas line 5 to the drying furnace 20, and the heat exchanger 7 described later. Combustion exhaust gas branched into three heating combustion exhaust gas lines and the combustion exhaust gas line 9 and heated to about 950 ° C. (usually 900 to 1000 ° C.) by combustion in the cracked gas combustion furnace 2 The fuel is sent to the combustion apparatus 3 for the carbonization furnace, the drying furnace 20, and the heat exchanger 7 through the combustion exhaust gas lines 4, 5, and 9.
In the carbonization furnace combustion apparatus 3, high-temperature combustion exhaust gas of about 950 ° C. (usually 900 to 1000 ° C.) from the cracked gas combustion furnace 2 is composed of fossil fuel such as LNG (natural gas) or heavy oil. It is heated to about 1100 ° C. (usually 1050 to 1150 ° C.) by combustion with auxiliary fuel and combustion air preheated by an air preheater 38 described later and supplied through the air line 61, and is supplied to the carbonization furnace 1. .

18は上記炭化炉1からの炭化炉排ガスを排出するための炭化炉排ガスラインで、上記分解ガス燃焼炉2への燃焼用空気を予熱する空気予熱器38に接続されて、該炭化炉排ガスによって上記燃焼用空気を380℃程度(通常360〜400℃)に予熱し、燃焼用空気ライン38aから後述する3つの燃焼用空気ライン39、76、77に分岐して上記分解ガス燃焼炉2に送り込むようになっている。上記3つの燃焼用空気ライン39、76、77には、それぞれの燃焼用空気ライン39、76、77を開閉する流量調節弁39a、76a、77aが設置されている。
13は上記空気予熱器38に燃焼用空気を供給するためのファンである。80,82は上記分解ガス燃焼炉2内に助燃料を供給するための助燃料供給ラインである。この助燃料供給ラインは必要に応じて設ける。
また、上記空気予熱器38で燃焼用空気を予熱した後の炭化炉排ガスは、ファン14により排ガスライン81を通して排ガス処理装置8に送り込まれ、所要の浄化処理がなされた後、煙突17から大気中に排出されるようになっている。
18 is a carbonization furnace exhaust gas line for discharging the carbonization furnace exhaust gas from the carbonization furnace 1, and is connected to an air preheater 38 for preheating combustion air to the cracked gas combustion furnace 2. The combustion air is preheated to about 380 ° C. (usually 360 to 400 ° C.), branched from the combustion air line 38a into three combustion air lines 39, 76, 77 described later, and sent to the cracked gas combustion furnace 2. It is like that. The three combustion air lines 39, 76, 77 are provided with flow control valves 39a, 76a, 77a for opening and closing the respective combustion air lines 39, 76, 77.
Reference numeral 13 denotes a fan for supplying combustion air to the air preheater 38. Reference numerals 80 and 82 denote auxiliary fuel supply lines for supplying auxiliary fuel into the cracked gas combustion furnace 2. This auxiliary fuel supply line is provided as necessary.
Further, the carbonization furnace exhaust gas after the combustion air is preheated by the air preheater 38 is sent to the exhaust gas treatment device 8 through the exhaust gas line 81 by the fan 14 and subjected to a necessary purification process, and then from the chimney 17 to the atmosphere. It is supposed to be discharged.

11は、上記乾燥炉20で汚泥を乾燥させ200℃程度(通常180〜220℃)まで降温された後のガス(熱風)を、該ガスを加熱する熱交換器7に送給する乾燥炉排ガスライン、12は該乾燥炉排ガスライン11に設けられた循環用のファンである。
上記熱交換器7には、上記分解ガス燃焼炉2出口の燃焼排ガスライン41から分岐した燃焼排ガスライン9を通して、950℃程度(通常900〜1000℃)の高温ガスが導入されて、上記乾燥炉20から乾燥炉排ガスライン11を通して供給された乾燥炉排ガスを530℃程度(通常510〜550℃)まで加熱し、乾燥炉排ガスライン71及び乾燥炉排ガスライン71から分岐された3つの乾燥炉排ガスライン73、74、75を通して上記分解ガス燃焼炉2に還流するようになっている。
上記熱交換器7出口の乾燥炉排ガスライン71から、上記3つの乾燥炉排ガスライン73、74、75への乾燥炉排ガス流量の分配割合は、該3つの乾燥炉排ガスライン73、74、75に設置した流量調節弁により行なっている。
11 is a drying furnace exhaust gas for supplying the gas (hot air) after drying sludge in the drying furnace 20 to a temperature of about 200 ° C. (usually 180 to 220 ° C.) to the heat exchanger 7 for heating the gas. A line 12 is a circulation fan provided in the drying furnace exhaust gas line 11.
A high-temperature gas of about 950 ° C. (usually 900 to 1000 ° C.) is introduced into the heat exchanger 7 through a combustion exhaust gas line 9 branched from the combustion exhaust gas line 41 at the outlet of the cracked gas combustion furnace 2, and the drying furnace Three drying furnace exhaust gas lines branched from the drying furnace exhaust gas line 71 and the drying furnace exhaust gas line 71 by heating the drying furnace exhaust gas supplied from 20 through the drying furnace exhaust gas line 11 to about 530 ° C. (usually 510 to 550 ° C.). The gas is returned to the cracked gas combustion furnace 2 through 73, 74, and 75.
The distribution ratio of the drying furnace exhaust gas flow rate from the drying furnace exhaust gas line 71 at the outlet of the heat exchanger 7 to the three drying furnace exhaust gas lines 73, 74, 75 is distributed to the three drying furnace exhaust gas lines 73, 74, 75. This is done by the installed flow control valve.

15は上記熱交換器7で上記燃焼炉2に還流されるガス(上記降温ガス)を加熱した
高温の排ガスの排熱を用いて、白煙防止用の高温空気を製造する熱交換器で、ファン16から供給される空気を加熱する。該熱交換器15により冷却された後の上記排ガスは、上記空気予熱器38を経た排ガスと合流されて上記排ガス処理装置8に供給されるようになっている。
15 is a heat exchanger for producing high-temperature air for preventing white smoke using the exhaust heat of the high-temperature exhaust gas obtained by heating the gas (the temperature-decreasing gas) that is recirculated to the combustion furnace 2 by the heat exchanger 7. The air supplied from the fan 16 is heated. The exhaust gas after being cooled by the heat exchanger 15 is combined with the exhaust gas that has passed through the air preheater 38 and supplied to the exhaust gas treatment device 8.

上記分解ガス燃焼炉2の縦断面構成図を示す図2において、該分解ガス燃焼炉2の最上部には上記熱分解ガスライン19に接続される熱分解ガス入口201が設けられ、上記炭化炉1からの熱分解ガスが熱分解ガスライン19を通して分解ガス燃焼炉2の炉内2dに導入されるようになっている。
また、上記分解ガス燃焼炉2のケース210の上側部には、燃焼用空気ライン38aから分岐された燃焼用1次空気ライン39に接続される1次空気入口202が設けられ、上記空気予熱器38出口の燃焼用空気ライン38aから分岐された1次空気ライン(燃焼用空気ライン)39を通して1次空気が供給されるようになっている。
In FIG. 2 which shows the longitudinal cross-sectional block diagram of the said cracked gas combustion furnace 2, the pyrolysis gas inlet 201 connected to the said pyrolysis gas line 19 is provided in the uppermost part of this cracked gas combustion furnace 2, and the said carbonization furnace 1 is introduced into the furnace 2 d of the cracked gas combustion furnace 2 through the pyrolysis gas line 19.
A primary air inlet 202 connected to the combustion primary air line 39 branched from the combustion air line 38a is provided on the upper portion of the case 210 of the cracked gas combustion furnace 2, and the air preheater is provided. Primary air is supplied through a primary air line (combustion air line) 39 branched from the combustion air line 38a at the 38 outlet.

そして、該分解ガス燃焼炉2の円筒状のケース210の側部には、熱分解ガスの流動方向つまり上記熱分解ガス入口201から下方向に、乾燥排ガス上部導入口203、2つの2次空気導入口(3つ以上でもよい)204及び205、2つの乾燥排ガス下部導入口(1つでも3つ以上でもよい)206及び207、燃焼排ガス送出口208がそれぞれ設けられている。
上記乾燥排ガス上部導入口203には、上記熱交換器7で530℃程度(通常510〜550℃)まで加熱された乾燥炉排ガスが、上記乾燥炉排ガスライン71及び該乾燥炉排ガスライン71から分岐された乾燥炉排ガスライン73を通して供給されている。また、上記2つの乾燥排ガス下部導入口206及び207には、乾燥炉排ガスが、上記乾燥炉排ガスライン71から分岐された乾燥炉排ガスライン74及び75をそれぞれ通して供給されている。
さらに、上記2つの2次空気導入口204及び205には、空気予熱器38出口の燃焼用空気ライン38aから分岐された2次空気ライン(燃焼用空気ライン)76及び77を通して2次空気がそれぞれ供給されるようになっている。
Further, on the side portion of the cylindrical case 210 of the cracked gas combustion furnace 2, the dry exhaust gas upper inlet 203 and the two secondary airs flow downward from the pyrolysis gas inlet 201 in the flow direction of the pyrolysis gas. Inlet ports (may be three or more) 204 and 205, two dry exhaust gas lower inlet ports (may be one or more than three) 206 and 207, and combustion exhaust gas outlet 208 are provided.
The drying furnace exhaust gas heated to about 530 ° C. (usually 510 to 550 ° C.) by the heat exchanger 7 branches from the drying furnace exhaust gas line 71 and the drying furnace exhaust gas line 71 to the dry exhaust gas upper inlet 203. Is supplied through the dried furnace exhaust gas line 73. Further, the drying furnace exhaust gas is supplied to the two dry exhaust gas lower inlets 206 and 207 through the drying furnace exhaust gas lines 74 and 75 branched from the drying furnace exhaust gas line 71, respectively.
Further, secondary air is supplied to the two secondary air inlets 204 and 205 through secondary air lines (combustion air lines) 76 and 77 branched from the combustion air line 38a at the outlet of the air preheater 38, respectively. It comes to be supplied.

また、上記燃焼排ガス送出口208は上記燃焼排ガスライン41に接続され、該分解ガス燃焼炉2内での燃焼により950℃程度(通常900〜1000℃)まで昇温された燃焼排ガスが、該燃焼排ガスライン41に送り込まれるようになっている。
また、上記分解ガス燃焼炉2のケース210の、上記乾燥炉排ガスライン73の近傍、及び上記2つの乾燥排ガス下部導入口206及び207の近傍には、助燃料ライン80,82に接続される助燃料導入口(図示省略)が必要に応じて設置され、助燃料ライン80,82を通した助燃料を上記分解ガス燃焼炉2の上部又は下部の燃焼域に投入可能となっている。
The combustion exhaust gas outlet 208 is connected to the combustion exhaust gas line 41, and the combustion exhaust gas heated to about 950 ° C. (usually 900 to 1000 ° C.) by combustion in the cracked gas combustion furnace 2 is combusted. It is sent into the exhaust gas line 41.
Further, in the case 210 of the cracked gas combustion furnace 2, the auxiliary fuel lines 80 and 82 are connected in the vicinity of the drying furnace exhaust gas line 73 and in the vicinity of the two dry exhaust gas lower inlets 206 and 207. A fuel inlet (not shown) is installed as necessary, and auxiliary fuel that has passed through auxiliary fuel lines 80 and 82 can be introduced into the upper or lower combustion zone of the cracked gas combustion furnace 2.

次に、この実施形態に係る高含水有機物の炭化処理装置を用いて、汚泥を炭化処理する方法及び熱分解ガスの処理方法について説明する。
先ず、脱水機10に下水汚泥を導入し、下水汚泥の水分が約80%になる位まで脱水する。次いで、脱水した下水汚泥を乾燥炉20に送る。乾燥炉20では、汚泥の水分が約30%位になるまで乾燥する。
該乾燥炉20での乾燥は、上記分解ガス燃焼炉2からのライン41から分岐されたライン5を通して導入される燃焼排ガスを、汚泥に直接接触させることにより行う。この場合、上記分解ガス燃焼炉2からの燃焼排ガスの温度は上記のように950℃程度(通常900〜1000℃)の高温であるので、該燃焼排ガスを、該乾燥炉20の燃焼排ガス出入口と上記ライン5とを接続した循環ライン50を上記ファン12によって循環させながら、該乾燥炉20において低温の上記下水汚泥と熱交換させることによって830℃程度(通常810〜850℃)まで降温させて該乾燥炉20に作用させる。
Next, a method for carbonizing sludge and a method for treating pyrolysis gas using the high water content organic carbonization apparatus according to this embodiment will be described.
First, sewage sludge is introduced into the dehydrator 10 and dehydrated until the water content of the sewage sludge is about 80%. Next, the dewatered sewage sludge is sent to the drying furnace 20. In the drying furnace 20, the sludge is dried until the water content is about 30%.
Drying in the drying furnace 20 is performed by bringing the flue gas introduced through the line 5 branched from the line 41 from the cracked gas combustion furnace 2 into direct contact with sludge. In this case, since the temperature of the combustion exhaust gas from the cracked gas combustion furnace 2 is as high as about 950 ° C. (usually 900 to 1000 ° C.) as described above, the combustion exhaust gas is connected to the combustion exhaust gas inlet / outlet of the drying furnace 20. While circulating the circulation line 50 connected to the line 5 with the fan 12, the temperature is lowered to about 830 ° C. (usually 810 to 850 ° C.) by exchanging heat with the low-temperature sewage sludge in the drying furnace 20. It acts on the drying furnace 20.

ここで、上記分解ガス燃焼炉2からの燃焼排ガスの温度は、上記炭化炉用燃焼装置3に作用させるため950℃程度(通常900〜1000℃)の高温に保持する必要があるが、この高温の燃焼排ガスをそのまま乾燥炉20に作用させると、該乾燥炉20の耐久性が低下するため、燃焼排ガスを、乾燥炉20の燃焼排ガス出入口と上記ライン5とを接続した循環ライン50を上記ファン12によって循環させながら830℃程度(通常810〜850℃)まで降温させて該乾燥炉20に作用させている。
上記乾燥炉20で乾燥させた下水汚泥は、ライン21を通して炭化炉1に導入される。
炭化炉1では、下水汚泥を酸素が欠乏した雰囲気下で約300〜600℃に加熱して炭化処理を行い、熱分解ガスと固体燃料である炭化物6とを生成する。該炭化物6はライン33を通して排出される。
この炭化炉1における加熱は、上記炭化炉用燃焼装置3で1100℃程度(通常1050〜1150℃)に昇温した燃焼排ガスを該炭化炉1の外筒に供給することにより、該燃焼排ガスを下水汚泥に直接接触しない間接加熱によって行う。
Here, the temperature of the combustion exhaust gas from the cracked gas combustion furnace 2 needs to be maintained at a high temperature of about 950 ° C. (usually 900 to 1000 ° C.) in order to act on the combustion apparatus 3 for carbonization furnace. If the combustion exhaust gas is directly applied to the drying furnace 20, the durability of the drying furnace 20 decreases, and therefore the combustion exhaust gas is connected to the circulation line 50 connecting the combustion exhaust gas inlet / outlet of the drying furnace 20 and the line 5 with the fan. 12, the temperature is lowered to about 830 ° C. (usually 810 to 850 ° C.) while being circulated by 12, and is allowed to act on the drying furnace 20.
The sewage sludge dried in the drying furnace 20 is introduced into the carbonization furnace 1 through the line 21.
In the carbonization furnace 1, sewage sludge is heated to about 300 to 600 ° C. in an oxygen-deficient atmosphere to perform carbonization to generate pyrolysis gas and carbide 6 that is a solid fuel. The carbide 6 is discharged through the line 33.
The heating in the carbonization furnace 1 is performed by supplying the combustion exhaust gas heated to about 1100 ° C. (usually 1050 to 1150 ° C.) to the outer cylinder of the carbonization furnace 1 by the combustion apparatus 3 for the carbonization furnace. It is performed by indirect heating without direct contact with sewage sludge.

該炭化炉1で下水汚泥の炭化処理を行ない700℃程度(通常680〜720℃)に降温された炭化炉排ガスは、ライン18を通って空気予熱器38に導入される。該空気予熱器38においては、ファン13により供給された燃焼用空気を炭化炉排ガスによって380℃程度(通常360〜400℃)に予熱して上記分解ガス燃焼炉2に送り込む。
この場合、上記空気予熱器38からの燃焼用空気は、該空気予熱器38出口の燃焼用空気ライン38aから上記3つの燃焼用空気ライン39、76、77に分岐されて上記分解ガス燃焼炉2の1次空気導入口202、2つの2次空気導入口204及び205に導入されるが、上記1次空気導入口202、2つの2次空気導入口204及び205への燃焼用空気量の供給量は、上記燃焼用空気ライン39、76、77にそれぞれ設けられた流量調節弁39a、76a、77aの開度を変化させることにより行なう。
上記空気予熱器38での燃焼用空気の予熱によって300℃程度(通常280〜320℃)まで降温された炭化炉排ガスは、ファン14により排ガス処理装置8に送り込まれ、所要の浄化処理がなされた後、煙突17から大気中に排出される。
一方、上記炭化炉1で生成された熱分解ガスは、ライン19を通して上記サイクロン32に送り込まれ、該サイクロン32にて炭化物6を分離除去した後、上記分解ガス燃焼炉2に導入される。該サイクロン32にて分離された炭化物36はライン34を通して排出される。
The carbonization furnace exhaust gas that has been subjected to carbonization treatment of sewage sludge in the carbonization furnace 1 and cooled to about 700 ° C. (usually 680 to 720 ° C.) is introduced into the air preheater 38 through the line 18. In the air preheater 38, the combustion air supplied by the fan 13 is preheated to about 380 ° C. (usually 360 to 400 ° C.) by the carbonization furnace exhaust gas and sent to the cracked gas combustion furnace 2.
In this case, the combustion air from the air preheater 38 is branched from the combustion air line 38a at the outlet of the air preheater 38 to the three combustion air lines 39, 76, 77, and the cracked gas combustion furnace 2 The primary air inlet 202 and the two secondary air inlets 204 and 205 are introduced into the primary air inlet 202 and the two secondary air inlets 204 and 205. The amount is determined by changing the opening degree of the flow control valves 39a, 76a, 77a provided in the combustion air lines 39, 76, 77, respectively.
The carbonization furnace exhaust gas cooled to about 300 ° C. (usually 280 to 320 ° C.) by the preheating of the combustion air in the air preheater 38 was sent to the exhaust gas treatment device 8 by the fan 14 and required purification treatment was performed. Then, it is discharged from the chimney 17 into the atmosphere.
On the other hand, the pyrolysis gas generated in the carbonization furnace 1 is sent to the cyclone 32 through the line 19, and the carbide 6 is separated and removed by the cyclone 32 and then introduced into the cracking gas combustion furnace 2. The carbide 36 separated in the cyclone 32 is discharged through a line 34.

次に、図2に基づき、本発明の要旨である分解ガス燃焼炉2の動作について説明する。
上記分解ガス燃焼炉2の最上部に設けられた熱分解ガス入口201から炉内2dに導入
された上記炭化炉1からの熱分解ガスは、該炉内2dを下方に向けて流動する。また、上記分解ガス燃焼炉2の上側部の1次空気入口202からは上記空気予熱器38で予熱された1次空気(燃焼用空気)が導入される。
さらに、上記熱分解ガス入口201から上記乾燥排ガス上部導入口203を経て上記上側の2次空気導入口204までの領域Z1は還元域で、該還元域Z1に1次空気入口202から供給される1次空気は、空気比0.7〜0.8で滞留時間が1.5秒以上の条件で供給される。また、該還元域Z1に上記乾燥排ガス上部導入口203から投入される空気比0.1程度(通常0.05〜0.15)の乾燥機排ガスは、上記乾燥機20での乾燥処理後の乾燥機排ガスの10〜30%の流量で、吹込み流速30m/s程度(通常15〜45m/s)で上記還元域Z1内に吹き込まれる。
Next, based on FIG. 2, the operation | movement of the cracked gas combustion furnace 2 which is the summary of this invention is demonstrated.
The pyrolysis gas from the carbonization furnace 1 introduced into the furnace 2d from the pyrolysis gas inlet 201 provided at the uppermost part of the cracking gas combustion furnace 2 flows in the furnace 2d downward. Further, primary air (combustion air) preheated by the air preheater 38 is introduced from the primary air inlet 202 on the upper side of the cracked gas combustion furnace 2.
Further, a region Z1 from the pyrolysis gas inlet 201 through the dry exhaust gas upper inlet 203 to the upper secondary air inlet 204 is a reduction zone, and is supplied from the primary air inlet 202 to the reduction zone Z1. The primary air is supplied under the condition that the air ratio is 0.7 to 0.8 and the residence time is 1.5 seconds or more. In addition, the dryer exhaust gas having an air ratio of about 0.1 (usually 0.05 to 0.15) that is introduced into the reduction zone Z1 from the dry exhaust gas upper inlet 203 is subjected to the drying treatment in the dryer 20. It is blown into the reduction zone Z1 at a flow rate of 10 to 30% of the exhaust gas from the dryer at a blowing flow rate of about 30 m / s (usually 15 to 45 m / s).

したがって、上記還元域Z1においては、上記のような熱分解ガス中への低空気比0.7〜0.8の1次空気の供給及び乾燥機排ガスの供給によって、還元雰囲気での燃焼処理を行なうことにより、上記乾燥機排ガス中のNH3により熱分解ガスの燃焼ゾーンで発生したNOxを還元することが可能となり、熱分解ガス燃焼時におけるNOx量を低減できる。
また、上記還元域Z1に、熱分解ガスよりも低温の乾燥機排ガスを適量分解ガス燃焼炉2内に吹き込んで、該分解ガス燃焼炉2内の温度を1200℃以下に保持することにより、分解ガス燃焼炉の炉壁を保護できて、該分解ガス燃焼炉2の耐久性を向上できる。
Therefore, in the reduction zone Z1, combustion treatment in a reducing atmosphere is performed by supplying primary air having a low air ratio of 0.7 to 0.8 into the pyrolysis gas and supplying exhaust gas from the dryer. By doing so, it becomes possible to reduce NOx generated in the combustion zone of the pyrolysis gas by NH 3 in the exhaust gas of the dryer, and the amount of NOx at the time of pyrolysis gas combustion can be reduced.
In addition, a suitable amount of dryer exhaust gas having a temperature lower than that of the pyrolysis gas is blown into the reduction zone Z1 into the decomposition gas combustion furnace 2 to maintain the temperature in the decomposition gas combustion furnace 2 at 1200 ° C. or less, thereby The furnace wall of the gas combustion furnace can be protected, and the durability of the cracked gas combustion furnace 2 can be improved.

次に、酸化域Z2においては、上記還元域Z1における還元雰囲気での燃焼処理後の熱分解ガスに、2次空気導入口204から空気比λ=0.25〜0.35の2次空気(投入酸素量λ=1.05〜1.15)を供給し、上記還元域Z1での未燃分を1200℃程度(通常1150〜1250℃)で以って燃焼する。
このように、上記還元域Z1における還元雰囲気中での低NOx燃焼後の炉内ガス(熱分解ガス)に、酸化域Z2において2次空気を供給して酸化雰囲気での燃焼処理を行なうことにより、上記還元雰囲気中での未燃ガスを完全燃焼することができる。
Next, in the oxidation zone Z2, secondary air (air ratio λ = 0.25 to 0.35) is supplied from the secondary air inlet 204 to the pyrolysis gas after the combustion treatment in the reducing atmosphere in the reduction zone Z1. The amount of input oxygen λ = 1.05 to 1.15) is supplied, and the unburned portion in the reduction zone Z1 is burned at about 1200 ° C. (usually 1150 to 1250 ° C.).
In this way, by supplying secondary air in the oxidation zone Z2 to the in-furnace gas (pyrolysis gas) after low NOx combustion in the reduction atmosphere in the reduction zone Z1, combustion processing in the oxidation atmosphere is performed. The unburned gas in the reducing atmosphere can be completely burned.

次に、乾燥機排ガス燃焼ゾーンYにおいては、上記酸化域Z2での燃焼処理後の炉内ガス(熱分解ガス)に上記2次空気導入口205から空気比λ=0.35程度(通常0.3〜0.4)の2次空気を吹き込み流速30m/s程度(通常25〜35m/s)で投入し、乾燥機排ガスによる自己脱硝に必要な酸素濃度(3〜4%以上)を確保する。
その後に、上記乾燥排ガス下部導入口206及び207から、乾燥機排ガスが、上記乾燥機20での乾燥処理後の乾燥機排ガスの70〜90%の流量で、流速30m/s程度(通常25〜35m/s)で上記乾燥機排ガス燃焼ゾーンYに吹き込まれる。ここでの燃焼温度は、950℃以上、滞留時間は2秒以上が好適である。
以上の処理により、上記燃焼排ガス送出口208出口の燃焼排ガスの温度を950℃程度(通常900〜1000℃)に保持する。
上記燃焼排ガスの温度を950℃程度(通常900〜1000℃)に保持できない場合は、助燃料ライン80,82を通した助燃料を上記熱分解ガス燃焼ゾーンZあるいは、乾燥機排ガス燃焼ゾーンYに投入することによって、脱臭及び完全燃焼を行なうことができる。
Next, in the exhaust gas combustion zone Y of the dryer, the air ratio from the secondary air inlet 205 to the in-furnace gas (pyrolysis gas) after the combustion treatment in the oxidation zone Z2 is about 0.35 (usually 0). .3 to 0.4) secondary air is blown in and introduced at a flow rate of about 30 m / s (usually 25 to 35 m / s) to ensure the oxygen concentration (3 to 4% or more) necessary for self-denitration by dryer exhaust gas. To do.
Thereafter, from the dried exhaust gas lower inlets 206 and 207, the dryer exhaust gas flows at a flow rate of 70 to 90% of the dryer exhaust gas after the drying treatment in the dryer 20, and a flow rate of about 30 m / s (usually 25 to 25 m / s). 35 m / s) and blown into the dryer exhaust gas combustion zone Y. The combustion temperature here is preferably 950 ° C. or more, and the residence time is preferably 2 seconds or more.
By the above processing, the temperature of the combustion exhaust gas at the outlet of the combustion exhaust gas outlet 208 is maintained at about 950 ° C. (usually 900 to 1000 ° C.).
When the temperature of the combustion exhaust gas cannot be maintained at about 950 ° C. (usually 900 to 1000 ° C.), the auxiliary fuel passing through the auxiliary fuel lines 80 and 82 is supplied to the pyrolysis gas combustion zone Z or the dryer exhaust gas combustion zone Y. By introducing it, deodorization and complete combustion can be performed.

したがって、上記乾燥機排ガス燃焼ゾーンYにおいて、熱分解ガス燃焼ゾーンZの上記酸化域Z2からの燃焼ガスに、上記還元域Z1での燃焼で消費した乾燥排ガスの残りの乾燥機排ガス(乾燥排ガスの70〜90%)を第2次投入して、最終的燃焼処理を行なうことにより、多量の乾燥排ガス中のNH3による自己脱硝作用によって、熱分解ガス燃焼ゾーンZの酸化雰囲気での燃焼時に生成されたNOxを還元して、低NOx燃焼をなすことが可能となる。 Accordingly, in the exhaust gas combustion zone Y of the dryer, the remaining exhaust gas of the dry exhaust gas (dry exhaust gas of the dry exhaust gas consumed by the combustion in the reduction zone Z1 is converted into the combustion gas from the oxidation zone Z2 of the pyrolysis gas combustion zone Z. 70 to 90%) is added secondarily and the final combustion treatment is performed, so that self-denitration by NH 3 in a large amount of dry exhaust gas is generated during combustion in the oxidizing atmosphere of the pyrolysis gas combustion zone Z The reduced NOx can be reduced to achieve low NOx combustion.

したがって、本発明の上記実施形態によれば、乾燥排ガス及び2次燃焼空気を用いての炉内ガスの最終的燃焼処理の際に必要に応じて助燃料を用いるにとどまるので、助燃料の使用を最低限にして燃料消費率を低く保持しつつ、炭化炉1での炭化処理後の熱分解ガスの分解ガス燃焼炉2での燃焼を、NOx量の低減を伴った完全燃焼を実現できる。   Therefore, according to the above-described embodiment of the present invention, the auxiliary fuel is used only when necessary in the final combustion treatment of the in-furnace gas using the dry exhaust gas and the secondary combustion air. The combustion of the pyrolysis gas after the carbonization treatment in the carbonization furnace 1 in the cracked gas combustion furnace 2 can be achieved with a reduction in the amount of NOx while keeping the fuel consumption rate low.

図1に返って、上記分解ガス燃焼炉2で生成された950℃程度(通常900〜1000℃)の燃焼排ガスは、該分解ガス燃焼炉2出口の燃焼排ガスライン41から3つの加熱用燃焼排ガスライン4、5、9に分岐して、各燃焼排ガスライン4、5、9を通して炭化炉用燃焼装置3、乾燥炉20、熱交換器7にそれぞれ送られる。   Returning to FIG. 1, the combustion exhaust gas at about 950 ° C. (usually 900 to 1000 ° C.) generated in the cracked gas combustion furnace 2 is supplied from the combustion exhaust gas line 41 at the outlet of the cracked gas combustion furnace 2 into three combustion exhaust gases for heating. Branches to lines 4, 5 and 9, and is sent to the combustion apparatus for carbonization furnace 3, the drying furnace 20 and the heat exchanger 7 through the combustion exhaust gas lines 4, 5 and 9, respectively.

分解ガス燃焼炉を試作し、乾燥排ガスを投入した場合と、乾燥排ガスを投入しない場合とについて比較を行った。燃焼温度を約900℃とした場合、出口におけるNOx濃度は、乾燥排ガスを投入しない場合225ppmであったものが、乾燥排ガスを投入した場合には、87ppmに低減し、NO転換率は13.2%から7.2%に低減した。なお、NOx濃度は、12%換算値である。 A cracked gas combustion furnace was prototyped, and a comparison was made between when dry exhaust gas was introduced and when dry exhaust gas was not introduced. When the combustion temperature was about 900 ° C., the NO x concentration at the outlet was 225 ppm when no dry exhaust gas was introduced, but when dry exhaust gas was introduced, it was reduced to 87 ppm and the NO conversion rate was 13. Reduced from 2% to 7.2%. The NO x concentration is a 12% conversion value.

本発明の実施形態に係る高含水有機物の炭化処理装置を説明する系統図である。It is a systematic diagram explaining the carbonization processing apparatus of the high water content organic substance which concerns on embodiment of this invention. 図1の実施形態で採用する分解ガス燃焼炉の位置実施の形態を説明する縦断面構成図である。It is a longitudinal cross-sectional block diagram explaining position embodiment of the cracked gas combustion furnace employ | adopted by embodiment of FIG. 従来の高含水有機物の炭化処理装置を説明する、図1対応する系統図である。It is a systematic diagram corresponding to FIG. 1 explaining the conventional carbonization processing apparatus of a high water content organic substance.

符号の説明Explanation of symbols

1 炭化炉
2 分解ガス燃焼炉
2d 炉内
201 熱分解ガス入口
202 1次空気入口
203 乾燥排ガス上部導入口
204 2次空気導入口
205 2次空気導入口
206 乾燥排ガス下部導入口
207 乾燥排ガス下部導入口
208 燃焼排ガス送出口
210 ケース
3 炭化炉用燃焼装置
6 炭化物
7 熱交換器
10 脱水機
20 乾燥炉
38 空気予熱器
DESCRIPTION OF SYMBOLS 1 Carbonization furnace 2 Cracking gas combustion furnace 2d Furnace 201 Pyrolysis gas inlet 202 Primary air inlet 203 Dry exhaust gas upper inlet 204 Secondary air inlet 205 Secondary air inlet 206 Dry exhaust lower inlet 207 Dry exhaust lower part introduction Port 208 Combustion exhaust gas outlet 210 Case 3 Combustion device for carbonization furnace 6 Carbide 7 Heat exchanger 10 Dehydrator 20 Drying furnace 38 Air preheater

Claims (6)

高含水有機物を乾燥装置にて乾燥処理し、該乾燥処理を経た後の高含水有機物を炭化炉にて炭化処理し、該炭化処理により生成された熱分解ガスを燃焼処理する高含水有機物炭化処理システムの熱分解ガス処理方法であって、上記炭化炉で生成された熱分解ガスを分解ガス燃焼炉に導入し、該分解ガス燃焼炉において上記乾燥装置での乾燥処理後の乾燥排ガスの一部を第1次投入するとともに1次燃焼空気を供給して還元雰囲気での燃焼処理を行ない、次いでこの還元雰囲気での燃焼ガスに2次燃焼空気を供給して酸化雰囲気での燃焼処理を行ない、次いでこの酸化雰囲気での燃焼ガスに上記乾燥排ガスを第2次投入して最終的燃焼処理を行なうことを特徴とする高含水有機物炭化処理システムの熱分解ガス処理方法。   High moisture content organic matter carbonization treatment which dries the high moisture content organic matter with a drying device, carbonizes the moisture content organic matter after passing through the drying treatment in a carbonization furnace, and burns the pyrolysis gas generated by the carbonization treatment A pyrolysis gas treatment method for a system, wherein pyrolysis gas generated in the carbonization furnace is introduced into a cracking gas combustion furnace, and a part of the dry exhaust gas after the drying treatment in the drying apparatus in the cracking gas combustion furnace Is supplied to the combustion gas in the reducing atmosphere by supplying the primary combustion air, and then the secondary combustion air is supplied to the combustion gas in the reducing atmosphere to perform the combustion processing in the oxidizing atmosphere. Next, the dry exhaust gas is secondarily introduced into the combustion gas in the oxidizing atmosphere and the final combustion treatment is performed. A pyrolytic gas treatment method for a high water content organic matter carbonization treatment system. 上記最終的燃焼処理において燃焼ガスに上記乾燥排ガスを複数段に亘って投入し、両者を高温燃焼させることを特徴とする請求項1に記載の高含水有機物炭化処理システムの熱分解ガス処理方法。   2. The pyrolysis gas treatment method for a highly hydrous organic carbonization treatment system according to claim 1, wherein the dry exhaust gas is introduced into the combustion gas in a plurality of stages in the final combustion treatment and both are combusted at a high temperature. 上記分解ガス燃焼炉に投入される上記乾燥排ガスの10〜30%を上記第1次投入ガス量とし、上記乾燥排ガスの70〜90%を上記第2次投入ガス量としたことを特徴とする請求項1に記載の高含水有機物炭化処理システムの熱分解ガス処理方法。   10 to 30% of the dry exhaust gas input to the cracked gas combustion furnace is the primary input gas amount, and 70 to 90% of the dry exhaust gas is the secondary input gas amount. The pyrolysis gas processing method of the high water content organic substance carbonization processing system of Claim 1. 上記1次燃焼空気及び2次燃焼空気は、空気予熱器にて上記炭化炉での炭化処理後に排出される炭化処理排ガスによって予熱された空気を用い、空気量調整手段によって該1次燃焼空気と2次燃焼空気との供給空気量の割合を調整して上記分解ガス燃焼炉に供給することを特徴とする請求項1に記載の高含水有機物炭化処理システムの熱分解ガス処理方法。   As the primary combustion air and the secondary combustion air, air preheated by carbonization exhaust gas discharged after carbonization in the carbonization furnace by an air preheater is used, and the primary combustion air and the primary combustion air are mixed with the primary combustion air by an air amount adjusting means. 2. The pyrolysis gas treatment method for a high water content organic carbonization system according to claim 1, wherein the ratio of the supply air amount to the secondary combustion air is adjusted and supplied to the cracking gas combustion furnace. 高含水有機物を乾燥装置にて乾燥処理し、該乾燥処理を経た後の高含水有機物を炭化炉にて炭化処理し、該炭化処理により生成された熱分解ガスを燃焼処理する高含水有機物炭化処理システムの熱分解ガス処理装置において、上記炭化炉で生成された熱分解ガスが導入される熱分解ガス導入口と、上記乾燥装置での乾燥処理後の乾燥排ガスが導入される複数段の乾燥排ガス導入口と、燃焼用空気が導入される複数段の燃焼用空気導入口と、燃焼排ガスを送出する燃焼排ガス送出口とを有する分解ガス燃焼炉を備え、該分解ガス燃焼炉は、上記熱分解ガス導入口を最上流側に設けて該熱分解ガス導入口から上記燃焼排ガス送出口へと上記熱分解ガスが長手方向に流動可能に形成され、上記複数段の乾燥排ガス導入口の一方を上記燃焼用空気導入口よりも上流側部位に開口して熱分解ガスの還元雰囲気での燃焼処理を可能とし、他の乾燥排ガス導入口を上記燃焼用空気導入口よりも下流側に開口して、上記還元雰囲気での燃焼後の炉内ガスを上記燃焼用空気及び上記乾燥排ガスにより燃焼処理可能に構成したことを特徴とする高含水有機物炭化処理システムの熱分解ガス処理装置。   High moisture content organic matter carbonization treatment which dries the high moisture content organic matter with a drying device, carbonizes the moisture content organic matter after passing through the drying treatment in a carbonization furnace, and burns the pyrolysis gas generated by the carbonization treatment In the pyrolysis gas treatment device of the system, a pyrolysis gas inlet for introducing the pyrolysis gas generated in the carbonization furnace, and a multistage dry exhaust gas into which the dry exhaust gas after the drying treatment in the drying device is introduced A cracked gas combustion furnace having an inlet, a plurality of stages of combustion air inlets for introducing combustion air, and a combustion exhaust gas outlet for sending combustion exhaust gas; A gas inlet is provided on the most upstream side so that the pyrolysis gas can flow in the longitudinal direction from the pyrolysis gas inlet to the combustion exhaust gas outlet, and one of the plurality of stages of the dried exhaust gas inlet is Combustion air introduction It is possible to perform combustion treatment in the reducing atmosphere of the pyrolysis gas by opening the upstream side of the other, and opening the other dry exhaust gas inlet to the downstream side of the combustion air inlet, A pyrolysis gas treatment apparatus for a high water content organic carbonization treatment system, characterized in that combustion gas in the furnace can be combusted with the combustion air and the dry exhaust gas. 上記分解ガス燃焼炉は、上記熱分解ガスの流動方向に沿って、上記熱分解ガス導入口及び複数段の燃焼用空気導入口のうちの1次空気導入口を最上流側に、複数段の上記乾燥排ガス導入口の一方、上記複数段の燃焼用空気導入口のうちの2次空気導入口、上記複数段の上記乾燥排ガス導入口の他方、及び上記燃焼排ガス送出口を長手方向に沿って配設した筒状体にて構成されたことを特徴とする請求項5に記載の高含水有機物炭化処理システムの熱分解ガス処理装置。   The cracked gas combustion furnace has a plurality of stages of primary air inlets of the pyrolyzed gas inlet and the plurality of stages of combustion air inlets on the most upstream side along the flow direction of the pyrolyzed gas. One of the dry exhaust gas inlets, the secondary air inlet of the plurality of stages of combustion air inlets, the other of the multiple stages of the dry exhaust gas inlets, and the combustion exhaust gas outlet along the longitudinal direction. The pyrolysis gas treatment apparatus for a high water content organic matter carbonization processing system according to claim 5, wherein the pyrolysis gas treatment device is constituted by a cylindrical body disposed.
JP2006048273A 2006-02-24 2006-02-24 Pyrolysis gas treatment method and apparatus for high water content organic carbonization system Active JP4394654B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006048273A JP4394654B2 (en) 2006-02-24 2006-02-24 Pyrolysis gas treatment method and apparatus for high water content organic carbonization system
TW96126399A TW200905139A (en) 2006-02-24 2007-07-19 Pyrolysis gas treating method and its device for highly hydrous organic matter carbonizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006048273A JP4394654B2 (en) 2006-02-24 2006-02-24 Pyrolysis gas treatment method and apparatus for high water content organic carbonization system

Publications (2)

Publication Number Publication Date
JP2007225223A true JP2007225223A (en) 2007-09-06
JP4394654B2 JP4394654B2 (en) 2010-01-06

Family

ID=38547200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006048273A Active JP4394654B2 (en) 2006-02-24 2006-02-24 Pyrolysis gas treatment method and apparatus for high water content organic carbonization system

Country Status (2)

Country Link
JP (1) JP4394654B2 (en)
TW (1) TW200905139A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139043A (en) * 2007-12-10 2009-06-25 Metawater Co Ltd Sludge incineration equipment and sludge incineration method using it
JP2009243714A (en) * 2008-03-28 2009-10-22 Mhi Environment Engineering Co Ltd Pyrolysis gas treatment method and device in sludge carbonizing treatment equipment
CN102192511A (en) * 2010-03-12 2011-09-21 株式会社东芝 Waste treating system
JP2012031335A (en) * 2010-08-02 2012-02-16 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Carbonization apparatus of biomass, and method for producing carbonized material
JP2012031356A (en) * 2010-08-03 2012-02-16 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Plant and method for producing carbonized material
CN106118697A (en) * 2016-08-12 2016-11-16 田东昊润新材料科技有限公司 The brown coal continuous way coker of heat energy recycling
CN110160054A (en) * 2019-03-15 2019-08-23 浙江三联环保科技股份有限公司 A kind of sludge cleaning burning heat-exchange method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210030331A1 (en) * 2019-08-02 2021-02-04 Bionime Corporation Implantable micro-biosensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139043A (en) * 2007-12-10 2009-06-25 Metawater Co Ltd Sludge incineration equipment and sludge incineration method using it
JP2009243714A (en) * 2008-03-28 2009-10-22 Mhi Environment Engineering Co Ltd Pyrolysis gas treatment method and device in sludge carbonizing treatment equipment
CN102192511A (en) * 2010-03-12 2011-09-21 株式会社东芝 Waste treating system
JP2011190969A (en) * 2010-03-12 2011-09-29 Toshiba Corp System for waste disposal
KR101292233B1 (en) * 2010-03-12 2013-08-01 가부시끼가이샤 도시바 Waste treating system
CN102192511B (en) * 2010-03-12 2013-11-06 株式会社东芝 Waste treating system
JP2012031335A (en) * 2010-08-02 2012-02-16 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Carbonization apparatus of biomass, and method for producing carbonized material
JP2012031356A (en) * 2010-08-03 2012-02-16 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Plant and method for producing carbonized material
CN106118697A (en) * 2016-08-12 2016-11-16 田东昊润新材料科技有限公司 The brown coal continuous way coker of heat energy recycling
CN110160054A (en) * 2019-03-15 2019-08-23 浙江三联环保科技股份有限公司 A kind of sludge cleaning burning heat-exchange method
CN110160054B (en) * 2019-03-15 2020-06-16 浙江三联环保科技股份有限公司 Heat exchange method for clean incineration of sludge

Also Published As

Publication number Publication date
JP4394654B2 (en) 2010-01-06
TWI332563B (en) 2010-11-01
TW200905139A (en) 2009-02-01

Similar Documents

Publication Publication Date Title
JP4394654B2 (en) Pyrolysis gas treatment method and apparatus for high water content organic carbonization system
JP2008114173A (en) Method and apparatus for treating high-water content organic waste
JP5143169B2 (en) Waste treatment system
EA022689B1 (en) Device and method for drying and torrefying at least one carbon-containing substance stream in a multiple-hearth furnace
JP5634158B2 (en) Biomass carbonization apparatus and method for producing carbide
JP4318697B2 (en) Method and apparatus for carbonizing high water content organic matter
JP4958855B2 (en) Organic waste disposal methods
CN101373070B (en) Heat decomposition gas processing method and apparatus of carbonization processing system containing water
JP5148809B2 (en) Method and apparatus for converting sludge into fuel
JP5297066B2 (en) Pyrolysis gas treatment method and apparatus in sludge carbonization equipment
JP3806428B2 (en) Method and apparatus for carbonizing sludge and power generation method
JP4855644B2 (en) Organic waste disposal methods
US6588349B1 (en) System for the drying of damp biomass based fuel
JP5142351B2 (en) Cement baking apparatus and method for drying high water content organic waste
JP2005200522A (en) Method and system for carbonizing treatment of highly hydrous organic material and method for preventing white smoke
JP4771885B2 (en) Cement baking apparatus and method for drying water-containing organic waste
JP2004358371A (en) Processing method and processing system of watery organic waste
JP4440519B2 (en) Method and plant for producing flammable gas from gas obtained from heat conversion of solid feed
JP2004330092A (en) Drying carbonizing processing method and drying carbonizing processing apparatus for moisture-containing waste treatment object
KR20210145007A (en) Drying and exhaust gas treatment system for graphitic coal using superheated steam
JP5040174B2 (en) Method and apparatus for producing mixed fuel of dry sludge and waste carbide
JP2007314625A (en) Manufacturing method of mixed fuel of sludge with carbonized product of waste, and apparatus
WO2000073703A1 (en) Method and apparatus for burning materials with low combustibility
JP5631099B2 (en) Carbide manufacturing plant and carbide manufacturing method
CN114370759B (en) Low-energy-consumption system and process for preparing ceramsite by utilizing solid waste

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091015

R150 Certificate of patent or registration of utility model

Ref document number: 4394654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250