JP2011190957A - Improvement of earth solar system (underground heat recovery pipe system) - Google Patents

Improvement of earth solar system (underground heat recovery pipe system) Download PDF

Info

Publication number
JP2011190957A
JP2011190957A JP2010056088A JP2010056088A JP2011190957A JP 2011190957 A JP2011190957 A JP 2011190957A JP 2010056088 A JP2010056088 A JP 2010056088A JP 2010056088 A JP2010056088 A JP 2010056088A JP 2011190957 A JP2011190957 A JP 2011190957A
Authority
JP
Japan
Prior art keywords
hot water
floor
storage tank
air
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010056088A
Other languages
Japanese (ja)
Other versions
JP5505836B2 (en
Inventor
龍夫 ▲高▼▲橋▼
Tatsuo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takahashi Kanri KK
Original Assignee
Takahashi Kanri KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahashi Kanri KK filed Critical Takahashi Kanri KK
Priority to JP2010056088A priority Critical patent/JP5505836B2/en
Publication of JP2011190957A publication Critical patent/JP2011190957A/en
Application granted granted Critical
Publication of JP5505836B2 publication Critical patent/JP5505836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of suppressing waste of artificial energies such as petroleum, gas and electricity, effectively utilizing solar heat and underground heat in the ground to control a room temperature of a house, reducing energy cost and simplifying a structure. <P>SOLUTION: The fresh outside air sucked by a total heat exchange type ventilator 4 mounted in a room of a building is distributed to an underfloor section of a first story of the building, a plurality of U-shaped underground heat recovery pipes 8, 9, 13, 15, 16, 20, 23, 26, 30, 31, 39, 41 are embedded in a foundation 45 under the floor of the first story, blowers 10, 17, 35, 42 are mounted on one end of the underground heat recovery pipes, the air sucked to the underground heat recovering pipes is heated in the underground heat recovery pipes by underground heat in winter, and cooled in the underground heat recovering pipe by the underground cold energy in summer, so that the temperature of the air in the underfloor section of the first story is conditioned, and the temperature-conditioned air is supplied inside of a ceiling of each story through an air supply duct, and further supplied indoors from a louver disposed on the ceiling. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下部に送り込むと共に、1階床下の基礎底盤に下部をU字形に形成した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められると共に、1階床下の基礎底盤に温水蓄熱槽を設置し、その温水蓄熱槽に太陽熱温水器で温められた温水を風呂で使用した後、温かい風呂の残り湯を温水蓄熱槽の中に流して溜湯させる事により1階床下内部の空気がさらに暖められ、また、夏期は地中熱により地中熱回収パイプの中で冷やされた空気が1階床下部に供給されると共に、その1階床下の空気をダクトを経由して各階の天井内部に供給し、天井内部に供給された空気が各室天井に設けたガラリより室内に供給されて、室温調整を行うための装置に関するものである。   The present invention does not install an air vent to the base of the building, and shuts off the air inside the first floor floor from the outside air so that it is in a sealed state. The fresh outside air to be supplied is sent to the lower part of the first floor of the building, and a plurality of underground heat recovery pipes with a U-shaped lower part formed on the foundation floor under the first floor, both ends of the foundation floor from the foundation floor to the lower part of the first floor It is buried in the ground so as to protrude, and a blower is attached to one end of the underground heat recovery pipe. By operating the fan, the air inside the first floor is sucked into the underground heat recovery pipe, and the underground heat recovery is performed. The air sucked into the pipe is warmed in the underground heat recovery pipe by underground heat in winter and a hot water storage tank is installed on the foundation bottom under the first floor, and the hot water storage tank is heated by a solar water heater. After using the warm water in the bath, leave the warm bath By flowing hot water into the hot water storage tank and storing the hot water, the air inside the first floor is further warmed, and in the summer, the air cooled in the underground heat recovery pipe by the underground heat is subsurface. And the air below the first floor is supplied to the interior of the ceiling of each floor via a duct, and the air supplied to the interior of the ceiling is supplied indoors from a gallery provided in the ceiling of each room. The present invention relates to an apparatus for performing adjustment.

従来の、小規模な住宅における室温調整は、夏期にはクーラーを使用し、冬期には電気、ガス、石油等のエネルギーを利用して冷暖房を行って来たが、近年では地球温暖化防止の観点から、エネルギー消費に伴うCO2排出量の削減が急務となり、エネルギー消費量の削減や、さらに自然エネルギーへの代替が早急に望まれている。   Conventional room temperature adjustment in small houses has been using air conditioners in the summer and cooling and heating using energy such as electricity, gas, and oil in the winter. From the viewpoint, it is an urgent need to reduce CO2 emissions accompanying energy consumption, and reduction of energy consumption and further replacement with natural energy are urgently desired.

これに伴い、自然エネルギーの利用手段として、現在、一般的に普及しているものは、太陽エネルギーを利用した、太陽熱温水器(熱効率50〜60%)と太陽光発電(変換効率10〜15%)があるが、いずれも、太陽エネルギーだけを利用する省エネ技術は天候に左右され易く、不安定な点から単独では利用が出来ず、他のエネルギーと兼用して利用されて来たため、なお一層の改良が求められている。   Along with this, as a means of utilizing natural energy, what is currently widely used is a solar water heater (thermal efficiency 50-60%) and solar power generation (conversion efficiency 10-15%) using solar energy. However, in both cases, energy-saving technology that uses only solar energy is easily affected by the weather and cannot be used alone because of instability, and has been used in combination with other energy. There is a need for improvements.

これに対して、地下4〜5mの地中は、年間を通じて安定した温度を保つことから、夏期は外気と比べて低温となり、冬期は外気と比べて暖温となる。そのため、従来からこのような地中熱を利用した設備は、大型の建物や公共設備等で実験的に施工されているが、その利用方法は、冬の間に自然界で出来た氷を保存しておき、その氷を夏期に地下に設けた蓄熱槽に移して冷水を作り、その冷水を各室に循環させて冷房を行うことが一般的であり、大掛かりな工事が必要となり、しかも、定期的に蓄熱層に氷を補充しなければならず、小規模な住宅用としては不向きであった。   On the other hand, the underground 4 to 5 m underground maintains a stable temperature throughout the year, so that it is cooler than the outside air in the summer and warmer than the outside in the winter. For this reason, facilities that use geothermal heat have been experimentally constructed in large buildings and public facilities, but the method of use is to preserve the ice made in nature during the winter. In general, it is common to transfer the ice to a heat storage tank in the basement in the summer to make cold water, circulate the cold water to each room and cool it. Therefore, it was necessary to replenish the heat storage layer with ice, which was not suitable for small-scale housing.

さらに、地中熱を利用したヒートポンプ方式で、家庭内の給湯と、室内の冷暖房を行う方法も行われているが、水平ループ方式(地中に深さ1〜2mの堀を堀り、そこに採熱用パイプを這わせて埋設する)では、建て坪100mの住宅の熱源を得るために400〜600mの採熱用パイプを埋設することが必要であり、又、垂直ループ方式(地中に深さ50〜100mの井戸を堀り、そこに採熱用パイプを埋設する)では2本の井戸が必要となり、一般住宅用で300〜500万円の費用を要すると共に、ヒートポンプの稼動コスト(電気代)が、深夜電力を利用した電気温水器の約75%かかるといった問題があった。 Furthermore, a heat pump system that uses geothermal heat is also used to supply hot water in the home and to cool and heat the room, but a horizontal loop system (deep a 1-2 m deep moat in the ground, In order to obtain a heat source for a house with a floor area of 100 m 2 , it is necessary to embed a 400 to 600 m heat collecting pipe, and a vertical loop system (ground) 2 holes are needed for digging 50-50m deep wells, and pipes for heat collection are buried in them, and it costs 3 to 5 million yen for general housing, and the heat pump is operated. There was a problem that the cost (electricity cost) was about 75% of that of an electric water heater using midnight power.

また、平成15年7月に建築基準法が改正され、「シックハウス対策」として、居室の24時間換気(1時間で居室体積の0.5回分を換気させる事)が義務づけられた。   In July 2003, the Building Standards Law was amended to require 24-hour ventilation of the room (to ventilate 0.5 times the volume of the room in one hour) as a “sick house measure”.

そこで、本出願人は、特許文献1に記載された、建築基準法に対応できる「アース・ソーラーシステム(二層式)」を発明し出願した。この発明によれば、貯水タンクと、貯温水タンクの2つのタンクを地中に埋設し、その双方のタンク内に、外気取入口から各室の24時間給気パイプに連通する熱交換パイプを配管し、貯水タンクを雨水又は地下水又は水道水で満たすと共に、貯温水タンクは太陽熱温水器からの温水で満たし、前記、熱交換パイプに設けた開閉バルブを操作する事により、夏期においては、冬期の冷たい外気で冷やしておいた貯水タンク内の冷水を利用して、外気を貯水タンク内の熱交換パイプを経由させ、暑い外気を冷やして各室に送り込むため、効率よく冷風運転を行うことが出来る。また、冬期においては、夏期の暑い外気で温めておいた貯水タンクの弱温水に冷たい外気を熱交換バイプを経由して暖めると共に、さらに太陽熱温水器を利用した、貯温水タンク内の温水中の熱交換パイプを経由するため、各室に温風を送り込むことが可能となる。
特願2007‐42895
Therefore, the present applicant invented and applied for an “earth / solar system (two-layer type)” described in Patent Document 1 and capable of complying with the Building Standard Law. According to the present invention, two tanks, a water storage tank and a hot water storage tank, are buried in the ground, and heat exchange pipes that communicate with the 24 hour air supply pipes of each room from the outside air intake are provided in both tanks. Plumbing and filling the storage tank with rain water, ground water or tap water, filling the storage tank with hot water from the solar water heater, and operating the opening / closing valve provided in the heat exchange pipe in the summer, in the winter Using cold water in the storage tank that has been cooled with cold outside air, the outside air is passed through the heat exchange pipe in the storage tank, and the hot outside air is cooled and sent to each room, so efficient cold wind operation can be performed I can do it. In the winter season, warm water in the water storage tank that has been warmed by hot outdoor air in the summer is warmed to the low temperature water via the heat exchange vapour. Since it passes through the heat exchange pipe, it becomes possible to send warm air into each room.
Japanese Patent Application No. 2007-42895

しかしながら、本出願人の出願した特許文献1の発明においては、貯水タンクと貯温水タンクの2つのタンクを必要としたため、配管が複雑になり、開閉バルブの数も増え、高価格になると共に、施工するための工期も長く必要であった。   However, in the invention of Patent Document 1 filed by the present applicant, two tanks, a water storage tank and a hot water storage tank, are required, so the piping becomes complicated, the number of open / close valves increases, and the price increases. A long construction period was also required.

そこで、本出願人は、特許文献2に記載された、「アース・ソーラーシステム(一層式)」を発明し出願した。この発明によれば、建物の下部の地中に、建物の基礎部と一体に構成されたコンクリート製タンクを構築し、コンクリート製タンク内に熱交換パイプを配管し、コンクリート製タンク内を雨水、又は水道水、又は地下水で満たし、全熱交換型換気扇からの供給空気をコンクリート製タンク内の熱交換パイプに導き、夏期は、全熱交換型換気扇からの供給空気を、地中熱で冷やされたコンクリート製タンク内の水と、熱交換パイプとの間で熱交換して冷やした後、給気パイプを経由して各階に給気し、冬期は、太陽熱温水器からの温水を、コンクリート製タンク内に循環させて、コンクリート製タンク内を温水状態とし、全熱交換型換気扇からの供給空気を、コンクリート製タンク内の熱交換パイプに導き、コンクリート製タンク内の温水と、熱交換パイプとの間で熱交換して暖めた後、給気パイプを経由して各階に給気した事により、各室に温風を送り込むことが可能となる。
特願2008‐134783
Therefore, the present applicant invented and applied for the “earth / solar system (single layer type)” described in Patent Document 2. According to the present invention, in the lower part of the building, a concrete tank constructed integrally with the foundation of the building is constructed, the heat exchange pipe is piped in the concrete tank, and the rain water is laid in the concrete tank. Or, it is filled with tap water or groundwater, and the supply air from the total heat exchange type exhaust fan is led to the heat exchange pipe in the concrete tank, and in the summer, the supply air from the total heat exchange type exhaust fan is cooled by the underground heat. After heat exchange between the water in the concrete tank and the heat exchange pipe, it is cooled and then supplied to each floor via the air supply pipe.In winter, the hot water from the solar water heater is made of concrete. Circulate in the tank to make the concrete tank warm, and supply air from the total heat exchange ventilator to the heat exchange pipe in the concrete tank. After warming to heat exchange with the replacement pipe, by which the air supply to each floor through the supply pipe, it is possible to feed the hot air in each room.
Japanese Patent Application No. 2008-134783

しかしながら、本出願人の出願した特許文献2の発明においても、コンクリート製タンクを必要としたため、高価格になると共に、施工するための工期も長く必要であった。   However, in the invention of Patent Document 2 filed by the present applicant, a concrete tank is required, so that the price is high and a construction period for construction is also long.

そこで、本出願人は、特許文献3に記載された、「アース・ソーラーシステム(地中熱回収パイプ方式)」を発明して出願した。この発明によれば、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下内部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められると共に、さらに、1階床下部に設けた温水蓄熱槽に太陽熱温水器で温めた温水を循環させて1階床下内部の空気を暖め、また、夏期は1階床下部に設けた温水蓄熱槽に太陽熱温水器からの温水を循環させず、地中熱により地中熱回収パイプの中で冷やされた空気が1階床下内部に供給され、その1階床下の空気をダクトを通して各階の天井内部に供給し、天井内部に供給された空気を各室天井に設けたガラリより室内に供給した事により、冬期には弱暖房された暖かい空気を各室に供給すると共に、夏期には弱冷風された涼しい空気を各室に送り込むことが可能となった。
特願2009‐158863
Therefore, the present applicant invented and filed an application of “Earth Solar System (Ground Heat Recovery Pipe System)” described in Patent Document 3. According to the present invention, there is provided a total heat exchange type ventilation fan installed in a room of a building without installing a vent hole to the outside at the foundation of the building and blocking the air inside the first floor under the outside air to be in a sealed state. Fresh outside air supplied to the inside is sent to the inside of the first floor under the building, and a plurality of underground heat recovery pipes with a U-shaped lower part formed on the foundation floor under the first floor, both ends of the floor below the foundation floor. It is buried in the ground so as to protrude into the section, a blower is attached to one end of the underground heat recovery pipe, and the air inside the first floor is sucked into the underground heat recovery pipe by operating the blower, and the underground The air sucked into the heat recovery pipe is warmed in the ground heat recovery pipe by the underground heat in the winter season, and further, the hot water warmed by the solar water heater is circulated in the hot water heat storage tank provided at the bottom of the first floor Let the air inside the first floor under the floor warm, and summer The hot water from the solar water heater is not circulated in the hot water storage tank provided at the lower part of the first floor, and the air cooled in the underground heat recovery pipe by the underground heat is supplied to the inside of the first floor, part 1 Air under the floor is supplied to the ceiling of each floor through a duct, and the air supplied to the interior of the ceiling is supplied to the room from the gallery installed in the ceiling of each room. In addition, it has become possible to send cool air, which was weakly chilled, into each room in summer.
Japanese Patent Application No. 2009-158863

しかしながら、本出願人の出願した特許文献3の発明においても、雨や曇りの日が続いた場合、太陽熱温水器のお湯の温度が上がらず、雨や曇りの日と、晴天の日の温度差が大きいといった問題が発生した。   However, even in the invention of Patent Document 3 filed by the present applicant, when the rainy or cloudy day continues, the temperature of the hot water of the solar water heater does not rise, and the temperature difference between the rainy and cloudy day and the sunny day The problem that is large occurred.

また、従来より地中熱交換機を利用した建物の空調換気システムとして知られている、特許文献4に記載したジオパワーシステムの場合は、冬期において、地中熱だけでは暖房効果(地下5mでも地中温度は約18度前後だから、外気を地中熱により暖めても、それ以下の温度にしかならない)が低く、さらに価格が高く、一般住宅に施工する場合はコストの面で問題があった。
特開2007‐303693
In addition, in the case of the geopower system described in Patent Document 4, which has been conventionally known as a building air-conditioning ventilation system that uses a geothermal heat exchanger, in the winter season, only the underground heat alone can produce a heating effect (even underground 5m) The medium temperature is around 18 degrees, so even if the outside air is warmed by underground heat, the temperature is only lower than that), and the price is high. .
JP2007-303693A

さらに、太陽エネルギーを利用するソーラーシステムとして知られている、特許文献5に記載したOMソーラーの場合、雨や曇りの日が続いた場合には暖房効果が下がるため補助暖房装置が必要になるといった問題と、さらに、夏期においては冷風運転が出来ないといった欠点があった。
特開平08‐005161
Furthermore, in the case of the OM solar described in Patent Document 5, which is known as a solar system using solar energy, an auxiliary heating device is required because the heating effect is reduced when rainy or cloudy days continue. There was a problem, and further, there was a drawback that cold wind operation was not possible in summer.
JP 08-005161

本発明は、このような、従来の欠点に鑑みて、自然との調和を図る事を目的とし、石油、ガス、電気等の人工エネルギーの浪費を抑え、太陽熱や、風呂の温かい残り湯や、地中の地中熱を有効に利用して、住宅の室温調整を行うものであり、エネルギーコストが低く、構造が簡単な冷暖房装置を提供する事を課題とする。   In view of such conventional drawbacks, the present invention aims at harmony with nature, suppresses waste of artificial energy such as oil, gas, electricity, solar heat, hot remaining hot water in the bath, An object of the present invention is to provide a cooling / heating device with a low energy cost and a simple structure that adjusts the room temperature of a house by effectively using underground heat.

本出願人の出願した特許文献1、特許文献2、特許文献3による発明では、上記のような問題が発生したため、当社では、新たに、特許文献3の発明を改良して、冬期においては、風呂の残り湯を温水蓄熱槽に流して温水蓄熱槽に温かい風呂の残り湯を溜湯をさせた装置に改良すると共に、温水蓄熱槽をコストを抑えてゴム状(塩化ビニールシート等)で安価な形状で製作した商品で新たに開発し、本発明を特許出願すると同時に、新製品の発売に踏み切る事とした。   In the invention according to Patent Document 1, Patent Document 2, and Patent Document 3 filed by the present applicant, the above-mentioned problems have occurred. Therefore, in our company, the invention of Patent Document 3 is newly improved. The remaining hot water in the bath is poured into the hot water heat storage tank, and the hot water heat storage tank is improved to a device in which the hot water remains in the hot water storage tank. In addition, the hot water heat storage tank is rubber-like (vinyl chloride sheet, etc.) and inexpensive. The product was newly developed with a new shape, and the patent application for the present invention was made at the same time as the launch of a new product.

かかる課題を解決するため、請求項1に記載の発明は、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、冬期は、地中熱により地中熱回収パイプの中で暖められて1階床下内部の空気を暖めると共に、1階床下の基礎底盤に温水蓄熱槽を設置し、その温水蓄熱槽に太陽熱温水器で温められた温水を風呂で使用した後、温かい風呂の残り湯を温水蓄熱槽の中に流して溜湯させる事により1階床下内部の空気がさらに暖められて弱温風となり、暖められた1階床下内部の空気は、各階天井内部に設けられたダクトの送風機を作動させる事により、1階床下内部からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて室内を暖めると共に、夏期においては、温水蓄熱槽に風呂の残り湯を供給せず、全熱交換型換気扇から1階床下内部に送り込まれた外気は、地中熱により地中熱回収パイプの中で冷やされて弱冷風となり、1階床下部の空気と混ぜ合わされた後、各階天井内部に設けられたダクトの送風機を作動させる事により、1階床下内部からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて室内を冷やした事を特徴とする。   In order to solve such a problem, the invention according to claim 1 does not install a vent hole to the outside of the foundation of the building, blocks the air inside the first floor under the outside air from the outside air and seals it. Fresh ground air supplied to the indoor side by a total heat exchange type exhaust fan attached to the floor is sent to the lower part of the first floor of the building, and a plurality of underground heat recovery pipes that are molded into a U-shaped lower part on the foundation floor under the first floor Are buried in the ground so that both ends protrude from the foundation floor to the lower part of the first floor, and a blower is attached to one end of the underground heat recovery pipe. By operating the blower, the air inside the first floor is underground. It is sucked into the heat recovery pipe, and in the winter, it is heated in the ground heat recovery pipe by the geothermal heat to warm the air inside the first floor floor, and a hot water heat storage tank is installed on the foundation bottom under the first floor. Hot water heated by a solar water heater in a hot water storage tank in a bath After using the hot water, the remaining hot water in the hot water storage tank is allowed to flow into the hot water storage tank, so that the air inside the 1st floor floor is further warmed and becomes a warm air, and the heated air inside the 1st floor floor is By operating the duct blower provided inside the ceiling of each floor, it is sent from the lower floor of the first floor to the interior of the ceiling of each floor via the duct, supplied to the room from the gallery provided on the ceiling, and warms the room. In summer, the remaining hot water of the bath is not supplied to the hot water storage tank, and the outside air sent from the total heat exchange type exhaust fan to the inside of the first floor is cooled by the underground heat and weakened in the underground heat recovery pipe. After being cooled and mixed with the air at the bottom of the first floor, the duct blower provided inside the ceiling of each floor is operated to send it from the bottom of the first floor to the ceiling of each floor via the duct. From the gallery established in It is supplied to the inside and is characterized in that cold room.

請求項2に記載の発明は、請求項1に記載の構成に加え、温水蓄熱槽は、ゴム状シートで構成された水枕状の形状をしており、冬期の間、温水蓄熱槽に供給される温かい風呂の残り湯は、温水蓄熱槽の上面に設けられた取入口より温水蓄熱槽の上部に取り込まれ、温水蓄熱槽の中に溜湯されて温水蓄熱槽を温めると共に、その温水蓄熱槽から溢れ出る排水の排水取込口は、温水蓄熱槽の中の底部に設けられ、排水取込口からの排水パイプ配管は、温水蓄熱槽の底部から温水蓄熱槽の上面に取付けられた風呂の残り湯の取入口と同等の高さまで温水蓄熱槽の中を配管して、温水蓄熱槽の底部の冷めた風呂の残り湯を温水蓄熱槽の外部に排出するように構成した事を特徴とする。   In addition to the structure of Claim 1, the invention described in Claim 2 has a water pillow-like shape composed of rubber-like sheets, and is supplied to the warm water heat storage tank during the winter. The hot water remaining in the hot bath is taken into the upper part of the hot water heat storage tank from the inlet provided on the upper surface of the hot water heat storage tank, and hot water is stored in the hot water heat storage tank to warm the hot water heat storage tank. The drainage outlet for draining water overflowing from the drainage pipe is provided at the bottom of the hot water storage tank, and the drain pipe piping from the drainage inlet is connected to the top of the hot water storage tank from the bottom of the hot water storage tank. The hot water storage tank is piped to the same height as the remaining hot water intake, and the remaining hot water from the cold bath at the bottom of the hot water storage tank is discharged outside the hot water storage tank. .

請求項3に記載の発明は、請求項1又は2に記載の構造に加え、太陽熱温水器で温められたお湯を、上水道と風呂給湯器の間に設置される太陽熱温水器接続ユニットに接続し、太陽熱温水器で温められたお湯の温度が低い場合は、風呂給湯器で温められて風呂にお湯が給湯されると共に、その風呂の温かい残り湯を温水蓄熱槽に流して温水蓄熱槽の中に溜湯させた事を特徴とする。   In addition to the structure described in claim 1 or 2, the invention described in claim 3 connects hot water heated by a solar water heater to a solar water heater connection unit installed between a water supply and a bath water heater. If the temperature of the hot water heated by the solar water heater is low, the hot water is heated in the bath water heater and hot water is supplied to the bath, and the hot remaining hot water in the bath is poured into the hot water heat storage tank. It is characterized by the fact that it was stored in the water.

請求項1に記載の発明によれば、冬期においては、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、地中熱により地中熱回収パイプの中で暖められて1階床下内部の空気を暖めると共に、太陽熱温水器からの温水をお風呂で利用した後、温水蓄熱槽に流して溜湯したため、雨や曇りが続いた場合においても、1階床下部の空気の温度を地中熱だけに頼らず暖かくする事が可能となり、これまで排水溝に流していた温かい風呂の残り湯のエネルギーを再利用する事が可能となり、CO2の削減と省エネに貢献する事が可能となった。また、夏期においては、温水蓄熱槽に風呂の残り湯を供給せず、全熱交換型換気扇から1階床下内部に送り込まれた外気は、地中熱により地中熱回収パイプの中で冷やされて1階床下部の空気と混ぜ合わされた後、各階天井内部に設けられたダクトの送風機を作動させる事により、1階床下内部からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて室内を冷やしたため、エネルギー消費が少なく、省エネの冷暖房装置を提供する事が可能となった。   According to the first aspect of the present invention, in the winter season, a ventilation hole is not installed on the foundation of the building, and the air inside the first floor is shut off from the outside air to be in a sealed state. The fresh heat supplied to the indoor side by the installed total heat exchange type exhaust fan is sent to the lower part of the first floor of the building, and a plurality of underground heat recovery pipes that are formed in a U-shaped lower part on the foundation floor under the first floor , Both ends are buried in the ground so that it protrudes from the base floor to the lower part of the first floor, and a blower is attached to one end of the underground heat recovery pipe. It is sucked into the recovery pipe and heated by the underground heat in the underground heat recovery pipe to warm the air inside the floor under the first floor, and after using the hot water from the solar water heater in the bath, it flows into the hot water storage tank In case of rain or cloudy weather It is possible to warm the temperature of the air in the lower floor of the first floor without relying only on underground heat, and it is possible to reuse the energy of the remaining hot water in the hot bath that has been flowing through the drainage channel so far. It became possible to contribute to reduction and energy saving. Also, in summer, the remaining hot water from the bath is not supplied to the hot water storage tank, and the outside air sent from the total heat exchange ventilator to the interior of the first floor is cooled in the underground heat recovery pipe by underground heat. After being mixed with the air at the bottom of the first floor, the duct blower provided inside the ceiling of each floor is operated to send it from the interior of the first floor to the ceiling of each floor via the duct. Since it was supplied indoors from the gallery and cooled the room, it was possible to provide an energy-saving air conditioner with low energy consumption.

請求項2に記載の発明によれば、温水蓄熱槽は、ゴム状シート(塩化ビニールシート等のシート)で構成された水枕状の形状をしており、冬期の間、温水蓄熱槽に供給される温かい風呂の残り湯は、温水蓄熱槽の上面に設けられた取入口より温水蓄熱槽の上部に取り込まれ、温水蓄熱槽の中に溜湯されて温水蓄熱槽を温めると共に、その温水蓄熱槽から溢れ出る排水の排水取込口は、温水蓄熱槽の中の底部に設けられ、排水取込口から伸びる排水パイプ配管は、温水蓄熱槽の底部から温水蓄熱槽の上面に取付けられた風呂の残り湯の取入口と同等の高さまで温水蓄熱槽の中を配管され、温水蓄熱槽の底部の冷めた残り湯を温水蓄熱槽の外部に排出するように構成されているため、温水蓄熱槽の上面に設けられた、お風呂の残り湯の取入口より取り込まれた温かい残り湯は、温水蓄熱槽の中の、冷めたお風呂の残り湯と混ぜ合わされる事により、温水蓄熱槽の中の上部が、下部に比べて温かい状態となり、温水蓄熱槽の冷めたお風呂の残り湯は温水蓄熱槽の底部に設けられた排水取込口より取り込まれて排水される。この際、温水蓄熱槽に取付けられる風呂の残り湯の取入口と、排水パイプ配管より排出される排水口の高さを、温水蓄熱槽が残り湯で満杯になった上面の位置より高く構成する事により、お湯を入れない状態では、ペチャンコのゴム状の袋が、温水蓄熱槽に風呂の残り湯を入れる事により、温水蓄熱槽を水枕状に保つ事が可能となる。さらに、排水取込口を温水蓄熱槽内部の底部に設置したため、風呂の残り湯の中に含まれる、温水蓄熱槽内部の底部に蓄積する湯あか等も、冷めた風呂の残り湯と一緒に容易に排出する事が可能となる。このように、安価なゴムシート(塩化ビニールシート等)を利用して温水蓄熱槽を製作した事により、温水蓄熱槽の大きさ(体積)を建物の延床面積に応じて簡単に変更する事が可能となったばかりでなく、温水蓄熱槽を製作するための工期を短縮し、さらに安価に製作する事も可能となった。   According to the second aspect of the present invention, the hot water heat storage tank has a water-pillar shape composed of rubber-like sheets (sheets such as vinyl chloride sheets) and is supplied to the hot water heat storage tank during the winter season. The hot water remaining in the hot bath is taken into the upper part of the hot water heat storage tank from the inlet provided on the upper surface of the hot water heat storage tank, and hot water is stored in the hot water heat storage tank to warm the hot water heat storage tank. The drainage outlet for draining water that overflows from the drainage pipe is installed at the bottom of the hot water storage tank, and the drain pipe that extends from the drainage inlet is located on the top of the hot water storage tank from the bottom of the hot water storage tank. The hot water storage tank is piped up to the same height as the intake of the remaining hot water, and the remaining hot water at the bottom of the hot water storage tank is discharged to the outside of the hot water storage tank. From the entrance of the remaining bath water on the top The hot remaining hot water is mixed with the remaining hot water of the cold bath in the hot water storage tank, so that the upper part of the hot water storage tank becomes warmer than the lower part of the hot water storage tank. The remaining hot water of the cooled bath is taken in and drained from a drainage inlet provided at the bottom of the hot water storage tank. At this time, the height of the intake of the remaining hot water of the bath attached to the hot water storage tank and the drain outlet discharged from the drain pipe piping is configured to be higher than the position of the upper surface where the hot water storage tank is filled with the remaining hot water. By the fact, in the state where hot water is not put, it becomes possible for the rubber-like bag of Pechanco to keep the hot water heat storage tank in a water pillow shape by putting the remaining hot water of the bath into the hot water heat storage tank. In addition, since the drainage intake port is installed at the bottom of the hot water storage tank, the hot water that accumulates in the bottom of the hot water storage tank, which is contained in the remaining hot water of the bath, is easy with the remaining hot water of the cold bath. Can be discharged. In this way, by making a hot water storage tank using inexpensive rubber sheets (vinyl chloride sheet, etc.), the size (volume) of the hot water storage tank can be easily changed according to the total floor area of the building. Not only became possible, but also shortened the construction period for producing the hot water heat storage tank and made it possible to produce it at a lower cost.

請求項3に記載の発明によれば、太陽熱温水器で温められたお湯を、上水道と風呂給湯器の間に設置される太陽熱温水器接続ユニットに接続し、雨や曇りの日が続いた場合、太陽熱温水器で温められたお湯の温度が低い場合は、太陽熱温水器の、ぬるい温度のお湯は風呂給湯器で温められて風呂にお湯が給湯されると共に、さらに、その風呂の温かい残り湯を温水蓄熱槽に流して温水蓄熱槽の中に溜湯させた事により、これまで排水溝に流していた温かい風呂の残り湯のエネルギーを再利用する事が可能となり、CO2の削減と省エネに貢献する事が出来るようになった。   According to the invention described in claim 3, when hot water heated by a solar water heater is connected to a solar water heater connection unit installed between a water supply and a bath water heater, and a rainy or cloudy day continues If the temperature of the hot water heated by the solar water heater is low, the hot water of the solar water heater is warmed by the bath water heater and hot water is supplied to the bath. It is possible to reuse the energy of the hot water remaining in the hot bath that has been flowing through the drainage drainage so far, saving CO2 and saving energy. I was able to contribute.

以下、この発明の実施の形態1について説明する。
[発明の実施の形態1]
Embodiment 1 of the present invention will be described below.
Embodiment 1 of the Invention

図1及至図7には、この発明の実施の形態を示す。    1 to 7 show an embodiment of the present invention.

図1は、本発明の太陽熱温水器と温水蓄熱槽と地中熱回収パイプと全熱交換型換気扇を利用した、住宅の分解解説図である。以下に、太陽熱と地中熱を利用した冷暖房システムを説明する。   FIG. 1 is an exploded explanatory view of a house using the solar water heater, the hot water heat storage tank, the underground heat recovery pipe, and the total heat exchange type exhaust fan of the present invention. Hereinafter, an air conditioning system using solar heat and underground heat will be described.

図1は、本発明のアース・ソーラーシステム改良型(地中熱回収パイプ方式)を分かり易く説明するため、アース・ソーラーシステム改良型(地中熱回収パイプ方式)を組み込んだ住宅1を分解解説図で示したものである。屋根3の上に太陽熱温水器2を設置すると共に、基礎29には建物外部と通気口を設置せず、基礎29の外側には外気の熱が1階床下内部に伝わりにくくするため基礎外断熱材6が施工されると共に、基礎底盤45の中央には温水蓄熱槽44が設置され、この温水蓄熱槽44には風呂34の残り湯を供給するための残り湯パイプ38が配管される。さらに、基礎底盤45の四隅には、下部をU字形に成形した4本の地中熱回収パイプ13、地中熱回収パイプ20、地中熱回収パイプ23、地中熱回収パイプ26が、両端を基礎底盤45より1階床下部に突き出すように地中に埋設される。   FIG. 1 is an exploded view of a house 1 incorporating an improved earth / solar system (geothermal recovery pipe method) in order to explain the improved earth / solar system (geothermal recovery pipe method) of the present invention. It is shown in the figure. In addition to installing the solar water heater 2 on the roof 3, the foundation 29 is not provided with the outside of the building and vents, and outside the foundation 29, heat from outside air is not easily transferred to the inside of the floor under the first floor. In addition to the construction of the material 6, a hot water heat storage tank 44 is installed at the center of the foundation bottom board 45, and a remaining hot water pipe 38 for supplying the remaining hot water of the bath 34 is provided in the hot water heat storage tank 44. Further, at the four corners of the foundation bottom plate 45, there are four underground heat recovery pipes 13, a ground heat recovery pipe 20, a ground heat recovery pipe 23, and a ground heat recovery pipe 26, each having a U-shaped lower portion. Is buried in the ground so as to protrude from the base bottom 45 to the lower part of the first floor.

このように構成されたアース・ソーラーシステム改良型(地中熱回収パイプ方式)は、太陽熱温水器2で温められた温水が温水パイプ40を経由して風呂34に給湯され、さらに、風呂34で利用された後の温かい残り湯は、風呂34に備え付けられた残り湯パイプ38用の浴槽に取付けられた排水栓(図示せず)を抜く事により、残り湯パイプ38を経由して温水蓄熱槽44に溜湯される。また、基礎29の外側には基礎外断熱材6が施工され、基礎29の内側の基礎底盤45には、4本の地中熱回収パイプ13、地中熱回収パイプ20、地中熱回収パイプ23、地中熱回収パイプ26が設置されると共に、居室に取付けられた全熱交換型換気扇4で熱交換された室内側供給空気(新鮮な空気)は、外気導入ダクト5を経由して矢印7方向に送られ1階床下内部に給気される。   In the earth / solar system improved type (ground heat recovery pipe method) configured in this way, hot water heated by the solar water heater 2 is supplied to the bath 34 via the hot water pipe 40, and further in the bath 34. The hot remaining hot water after being used is removed from the drain plug (not shown) attached to the bathtub for the remaining hot water pipe 38 provided in the bath 34, so that the hot water heat storage tank passes through the remaining hot water pipe 38. The hot water is stored at 44. Further, the heat insulating material 6 outside the foundation is applied to the outside of the foundation 29, and the four ground heat recovery pipes 13, the underground heat recovery pipes 20, and the underground heat recovery pipes are provided on the foundation bottom plate 45 inside the foundation 29. 23, while the underground heat recovery pipe 26 is installed, the indoor side supply air (fresh air) exchanged by the total heat exchange type ventilation fan 4 attached to the living room is indicated by an arrow through the outside air introduction duct 5 It is sent in 7 directions and is supplied to the interior under the first floor.

地中熱回収パイプ13、地中熱回収パイプ20、地中熱回収パイプ23、地中熱回収パイプ26は、2本の塩ビパイプの下部を継手で継いで、下部をU字形に構成すると共に、基礎底盤45の四隅に基礎底盤45の上部に突き出す2本の塩ビパイプの部分には、L字形のエルボ等の継手を取付け、2本の塩ビパイプに取付けたL字形のエルボ等の空気取入口と空気排出口が、互いに直角になるように構成し、一方のエルボ等の先端には送風機を取付ける。前記で説明した塩ビパイプを、地中熱回収パイプとしてU字形に成形するためには、図2の拡大図で示すように、塩ビパイプ48、塩ビパイプ49の下部をU字形の継手50で継ぐ事により、一本の地中熱回収パイプとなる。   The geothermal heat recovery pipe 13, the geothermal heat recovery pipe 20, the geothermal heat recovery pipe 23, and the geothermal heat recovery pipe 26 are configured such that the lower part of the two PVC pipes is joined by a joint and the lower part is formed in a U shape. The joints such as L-shaped elbows are attached to the parts of the two PVC pipes protruding from the top of the foundation bottom 45 at the four corners of the foundation bottom 45, and the air intake such as L-shaped elbows attached to the two PVC pipes The inlet and the air outlet are configured to be at right angles to each other, and a blower is attached to the tip of one elbow or the like. In order to form the above-described polyvinyl chloride pipe into a U shape as a ground heat recovery pipe, the lower portions of the polyvinyl chloride pipe 48 and the polyvinyl chloride pipe 49 are joined by a U-shaped joint 50 as shown in the enlarged view of FIG. As a result, it becomes a single underground heat recovery pipe.

さらに、図1と図5に示すように、送風機10、送風機17、送風機35、送風機42を作動させる事により、地中熱回収パイプ8が矢印133方向から吸い込んだ1階床下内部の空気は、図1の地中熱回収パイプ13の中を矢印12方向から矢印14方向に流れて地中熱により温度調整されて、地中熱回収パイプ9を経由して送風機10から1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印11方向に送風され、1階床下内部の空気と混ぜ合わされて温度調整が行われ、矢印130方向から再び地中熱回収パイプ15に吸い込まれ、地中熱回収パイプ20の中を矢印19方向から矢印21方向に流れて地中熱により温度調整されて、地中熱回収パイプ16を経由して送風機17から1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印18方向に送風され、1階床下内部の空気と混ぜ合わされて温度調整が行われ、矢印131方向から再び地中熱回収パイプ30に吸い込まれ、地中熱回収パイプ26の中を矢印27方向から矢印25方向に流れて地中熱により温度調整されて、地中熱回収パイプ31を経由して送風機35から1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印36方向に送風され、1階床下内部の空気と混ぜ合わされて温度調整が行われ、矢印132方向から再び地中熱回収パイプ39に吸い込まれ、地中熱回収パイプ23の中を矢印24方向から矢印22方向に流れて地中熱により温度調節されて、地中熱回収パイプ41を経由して送風機42から1階床下内部に排出される。このようにして排出された空気は矢印43方向に送風され、1階床下内部の空気と混ぜ合わされて温度調整が行われ、矢印133方向から再び地中熱回収パイプ8に吸い込まれる。このように基礎底盤45の四隅に配置された地中熱回収パイプ13、地中熱回収パイプ20、地中熱回収パイプ23、地中熱回収パイプ26の空気の吸込口(地中熱回収パイプ8、地中熱回収パイプ15、地中熱回収パイプ30、地中熱回収パイプ39)と、地中熱回収パイプの空気の排出口(地中熱回収パイプ9、地中熱回収パイプ16、地中熱回収パイプ31、地中熱回収パイプ41)が、互いに向き合うように構成する事により、1階床下内部の空気は床下内部で場所によって澱む事が無くなり、1階床下内部の空気の温度は均一の温度になるように調整される。   Furthermore, as shown in FIGS. 1 and 5, by operating the blower 10, the blower 17, the blower 35, and the blower 42, the air inside the first floor under the ground heat recovery pipe 8 sucked from the arrow 133 direction is 1 flows from the direction of arrow 12 to the direction of arrow 14 through the underground heat recovery pipe 13 in FIG. Is done. The air discharged into the first floor under the air in this way is blown in the direction of arrow 11, mixed with the air inside the first floor under the air, adjusted in temperature, and sucked into the underground heat recovery pipe 15 again from the direction of arrow 130. Then, the temperature of the underground heat recovery pipe 20 flows from the direction of the arrow 19 to the direction of the arrow 21 and is adjusted by the underground heat, and is discharged from the blower 17 to the inside of the first floor under the ground heat recovery pipe 16. The In this way, the air discharged to the inside of the first floor is blown in the direction of the arrow 18, mixed with the air inside the first floor, the temperature is adjusted, and again sucked into the underground heat recovery pipe 30 from the direction of the arrow 131. Then, the temperature of the ground heat recovery pipe 26 flows from the direction of the arrow 27 to the direction of the arrow 25 and the temperature is adjusted by the ground heat, and is discharged from the blower 35 to the inside of the first floor under the ground heat recovery pipe 31. The The air discharged into the first floor under the air in this way is blown in the direction of the arrow 36, mixed with the air inside the first floor under the air, adjusted in temperature, and sucked into the underground heat recovery pipe 39 again from the direction of the arrow 132. Then, the temperature of the ground heat recovery pipe 23 flows from the direction of the arrow 24 to the direction of the arrow 22 and is adjusted by the ground heat, and is discharged from the blower 42 to the inside of the first floor under the ground heat recovery pipe 41. The The air thus exhausted is blown in the direction of arrow 43, mixed with the air inside the first floor, adjusted for temperature, and sucked into the underground heat recovery pipe 8 again from the direction of arrow 133. As described above, the air intake ports (ground heat recovery pipes) of the ground heat recovery pipe 13, the ground heat recovery pipe 20, the ground heat recovery pipe 23, and the ground heat recovery pipe 26 arranged at the four corners of the foundation bottom 45 are described. 8, the geothermal heat recovery pipe 15, the geothermal heat recovery pipe 30, the geothermal heat recovery pipe 39), and the air outlet of the geothermal heat recovery pipe (the geothermal heat recovery pipe 9, the geothermal heat recovery pipe 16, By configuring the underground heat recovery pipe 31 and the underground heat recovery pipe 41) to face each other, the air inside the first floor does not stagnate depending on the location inside the floor, and the temperature of the air inside the first floor Is adjusted to a uniform temperature.

また、1階床下の基礎底盤45の四隅に地中熱回収パイプ13、地中熱回収パイプ20、地中熱回収パイプ23、地中熱回収パイプ26を埋め込む事により、地中内部において地中熱回収パイプから発生する熱による、お互いの地中熱回収パイプ同士からの熱の干渉を少なくする事が可能となる。特に、狭い敷地に地中熱回収パイプを多数埋め込んだ場合、地中熱回収パイプ同士の地中熱の干渉により地中の温度が変化してしまい、地中熱回収のメリットが減少する。   In addition, the underground heat recovery pipe 13, the underground heat recovery pipe 20, the underground heat recovery pipe 23, and the underground heat recovery pipe 26 are embedded in the four corners of the foundation floor 45 under the first floor, so that the underground It becomes possible to reduce the interference of heat from each other's underground heat recovery pipes due to heat generated from the heat recovery pipes. In particular, when a large number of underground heat recovery pipes are embedded in a narrow site, the underground temperature changes due to the underground heat interference between the underground heat recovery pipes, and the merit of the underground heat recovery is reduced.

このように、それぞれの地中熱回収パイプ13、地中熱回収パイプ20、地中熱回収パイプ23、地中熱回収パイプ26に各々1台の送風機を取付けて地中熱を回収した事により、地中熱を効率良く回収する事が可能となった。さらに、それぞれの地中熱回収パイプ13、地中熱回収パイプ20、地中熱回収パイプ23、地中熱回収パイプ26に独立して送風機を取付けた事により、1階床下内部の空気の温度が、夏(冬)の初期等に冷え(暖か)すぎる場合には、4本の地中熱回収パイプの内の数本のみ可動させ、他の地中熱回収パイプの動作を停止する事により、1階床下内部の温度を調節する事が可能となる。   As described above, the ground heat recovery pipe 13, the ground heat recovery pipe 20, the ground heat recovery pipe 23, and the ground heat recovery pipe 26 are each attached with one blower to recover the ground heat. It became possible to recover the geothermal heat efficiently. Furthermore, the temperature of the air inside the floor under the first floor is obtained by independently attaching a blower to each of the underground heat recovery pipe 13, the underground heat recovery pipe 20, the underground heat recovery pipe 23, and the underground heat recovery pipe 26. However, if it is too cold (warm) in the early days of summer (winter), move only a few of the four geothermal heat recovery pipes and stop the operation of the other geothermal heat recovery pipes. It is possible to adjust the temperature inside the first floor floor.

本発明において、地中熱回収パイプ13、地中熱回収パイプ20、地中熱回収パイプ23、地中熱回収パイプ26には塩ビパイプを使用し、地中に埋め込む深さは約5メートルである。その理由は、関東地区の地中4〜5メートルの地中温度は、年間を通して約17℃〜19℃と温度変化が少ないためです。ちなみに、東京都足立区の、当社ショールーム(地下室付)では、毎日、地中1メートル、3メートル、5メートルの地中温度を測定しているが、その測定結果によると地中5メートルの地中温度は、5月〜6月の間で最低温度の17.1℃となり、11月〜12月の間で最高温度の19.3℃となる。外気の最低気温(2月頃)に対して地中5メートルの最低温度が5月〜6月となるのは、地表面の温度が地中に浸透するのに時間がかかるためです。夏期の場合も同様です。   In the present invention, a PVC pipe is used for the underground heat recovery pipe 13, the underground heat recovery pipe 20, the underground heat recovery pipe 23, and the underground heat recovery pipe 26, and the depth embedded in the underground is about 5 meters. is there. The reason is that the underground temperature of 4-5 meters underground in the Kanto district is about 17 ° C-19 ° C throughout the year with little change in temperature. By the way, our showroom (with basement) in Adachi-ku, Tokyo measures the underground temperature of 1 meter, 3 meters, and 5 meters every day. According to the measurement results, it is 5 meters underground. The middle temperature is the lowest temperature of 17.1 ° C between May and June and the highest temperature of 19.3 ° C between November and December. The reason why the minimum temperature of 5 meters underground is from May to June with respect to the lowest outside air temperature (around February) is because it takes time for the surface temperature to penetrate into the ground. The same is true for summer.

さらに、地中熱回収パイプを地中に埋設する際は、小型重機(建柱車等)にオーガーを取付け、オーガーで地中に穴を掘り、その穴に地中熱回収パイプを埋め込むため、工期も短縮出来て安価に施工する事が可能となる。   Furthermore, when the underground heat recovery pipe is buried in the ground, an auger is attached to a small heavy machine (building pillar, etc.), a hole is dug in the ground with the auger, and the underground heat recovery pipe is embedded in the hole. The construction period can be shortened and construction can be performed at low cost.

なお、一般の住宅の1階床下の基礎部、特に布基礎においては、1階床下部の湿気を防ぐために通気が良い構造となっているが、本発明においては、1階床下部を外気温度調整槽として利用するため、外気が1階床下部に直接流入しないように1階床下部が密封状態に構成されるように施工される。   In addition, in the foundation part under the first floor of a general house, in particular, the cloth foundation has a structure in which ventilation is good in order to prevent moisture in the lower part of the first floor, but in the present invention, the lower part of the first floor is outside air temperature. In order to use as an adjustment tank, it is constructed so that the lower part of the first floor is configured in a sealed state so that outside air does not directly flow into the lower part of the first floor.

以上のような構成において、図2により夏期における各室の冷風運転について説明する。   With the configuration as described above, the cold air operation of each room in summer will be described with reference to FIG.

最初に、全熱交換型換気扇54、全熱交換型換気扇55から室内側に供給される空気を1階床下96に給気する方法について説明する。1階室内Aの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇55に吸い込まれて室外に排気される。その際、全熱交換型換気扇55が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇55の内部で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト56を経由して1階床下96に導かれる。同様にして、2階室内Bの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇54に吸い込まれて室外に排気される。その際、全熱交換型換気扇54が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇54の中で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト57を経由して1階床下96に導かれる。   First, a method for supplying air supplied to the indoor side from the total heat exchange type ventilation fan 54 and the total heat exchange type ventilation fan 55 to the lower floor 96 will be described. The room-side discharged air (contaminated room air) in the first floor room A is sucked into the total heat exchange type ventilation fan 55 and exhausted outside the room. At that time, the indoor air exhausted by the total heat exchanging ventilation fan 55 (indoor discharge air) and the outside air supplied to the room (outdoor intake air) are heat-exchanged inside the total heat exchanging fan 55. At the same time, all of the sucked outdoor outside intake air (fresh air) is guided to the first floor under floor 96 via the outside air introduction duct 56. Similarly, the indoor side discharge air (contaminated room air) in the second floor room B is sucked into the total heat exchange type ventilation fan 54 and exhausted to the outside. At that time, the indoor air exhausted by the total heat exchange type ventilation fan 54 (indoor discharge air) and the outside air supplied to the room (outdoor intake air) are heat-exchanged in the total heat exchange type ventilation fan 54. At the same time, all of the sucked outdoor outside intake air (fresh air) is guided to the first floor under floor 96 via the outside air introduction duct 57.

このようにして、全熱交換型換気扇54、全熱交換型換気扇55を使用する事により、夏期における涼しい室内の空気を、外の暑い外気と入れ替える(換気する)際に、涼しい室内の空気の温度の上昇を最小限に抑える事が可能となる。   In this way, by using the total heat exchange type ventilation fan 54 and the total heat exchange type ventilation fan 55, when the cool indoor air in the summer is replaced (ventilated) with the hot outdoor air, the cool indoor air It is possible to minimize the temperature rise.

つづいて、このようにして1階床下96に導入された全熱交換型換気扇54、全熱交換型換気扇55からの外気(室外側吸込空気)が、どのようにして1階床下96で熱交換されて弱冷風になるかを説明する。外気導入ダクト56、外気導入ダクト57から導入された、全熱交換型換気扇54、全熱交換型換気扇55からの外気は、1階床下96の空気と混ざり合い、地中熱回収パイプ64に取付けられた送風機61を作動させる事により、1階床下96の空気は、矢印60方向から地中熱回収パイプ64に吸い込まれ、地中熱回収パイプ64の中で地中熱により冷やされて弱冷風となり、送風機61より矢印62方向に示すように1階床下96に排気される。同様に、地中熱回収パイプ68に取付けられた送風機66を作動させる事により、1階床下96の空気は、矢印65方向から地中熱回収パイプ68に吸い込まれ、地中熱回収パイプ68の中で地中熱により冷やされて弱冷風となり、送風機66より矢印67方向に示すように1階床下96に排気される。同様に、地中熱回収パイプ69に取付けられた送風機71を作動させる事により、1階床下96の空気は、矢印70方向から地中熱回収パイプ69に吸い込まれ、地中熱回収パイプ69の中で地中熱により冷やされて弱冷風となり、送風機71より矢印72方向に示すように1階床下96に排気される。同様に、地中熱回収パイプ74に取付けられた送風機75を作動させる事により、1階床下96の空気は、矢印73方向から地中熱回収パイプ74に吸い込まれ、地中熱回収パイプ74の中で地中熱により冷やされて弱冷風となり、送風機75より矢印76方向に示すように1階床下96に排気される。   Subsequently, how the outside air (outside air sucked in) from the total heat exchange type ventilation fan 54 and the total heat exchange type ventilation fan 55 introduced into the first floor under floor 96 in this way exchanges heat in the first floor under floor 96. Explain how the wind will be weak. The outside air introduced from the outside air introduction duct 56 and the outside air introduction duct 57 from the total heat exchange type ventilation fan 54 and the total heat exchange type ventilation fan 55 is mixed with the air under the first floor 96 and attached to the underground heat recovery pipe 64. By operating the blower 61, the air under the first floor 96 is sucked into the underground heat recovery pipe 64 from the direction of the arrow 60, and is cooled by the underground heat in the underground heat recovery pipe 64, so that the slightly cold air Then, the air is exhausted from the blower 61 to the lower first floor 96 as shown in the direction of the arrow 62. Similarly, by operating the blower 66 attached to the underground heat recovery pipe 68, the air under the first floor 96 is sucked into the underground heat recovery pipe 68 from the direction of the arrow 65, and the ground heat recovery pipe 68 It is cooled by underground heat and becomes weak cold air, and is exhausted from the blower 66 to the lower first floor 96 as indicated by an arrow 67 direction. Similarly, by operating the blower 71 attached to the underground heat recovery pipe 69, the air in the first floor lower floor 96 is sucked into the underground heat recovery pipe 69 from the direction of the arrow 70, and the underground heat recovery pipe 69 It is cooled by underground heat and becomes weak cold air, and is exhausted from the blower 71 to the lower first floor 96 as indicated by the arrow 72 direction. Similarly, by operating the blower 75 attached to the underground heat recovery pipe 74, the air under the first floor 96 is sucked into the underground heat recovery pipe 74 from the direction of the arrow 73, and the ground heat recovery pipe 74 It is cooled by underground heat and becomes weak cold air, and is exhausted from the blower 75 to the lower first floor 96 as indicated by the arrow 76 direction.

このようにして、1階床下96の中で弱冷風となった外気は、1階床を冷やす事により1階室内Aを冷やすと共に、弱冷風となった1階床下96の空気は、給気ダクト88に取付けられた送風機104を作動させる事により、給気ダクト88を経由して1階天井裏100に給気され、ガラリ98、ガラリ102より1階室内Aに給気されて1階室内Aを冷やす。同様に、給気ダクト105に取付けられた送風機112を作動させる事により、1階床下96の中で弱冷風となった外気は、給気ダクト105を経由して2階天井裏107に給気され、ガラリ109、ガラリ110より2階室内Bに給気されて2階室内Bを冷やす。   In this way, the outside air that has become weak air in the first floor under floor 96 cools the first floor room A by cooling the first floor, and the air in the first floor under floor 96 that has become weak air is supplied as air. By operating the blower 104 attached to the duct 88, air is supplied to the first floor ceiling 100 via the air supply duct 88, and is supplied to the first floor room A from the gallery 98 and the gallery 102, thereby being supplied to the first floor room. Cool A. Similarly, by operating the air blower 112 attached to the air supply duct 105, the outside air that has become weak air in the first floor under floor 96 is supplied to the second floor ceiling 107 through the air supply duct 105. Then, the second floor room B is supplied from the gallery 109 and the gallery 110 to cool the second floor room B.

なお、夏期においては、1階床下96に設置した温水蓄熱槽94には風呂92の残り湯を供給せず、夏期においては温水蓄熱槽94を利用しない。   In the summer, the remaining hot water of the bath 92 is not supplied to the hot water heat storage tank 94 installed under the first floor floor 96, and the hot water heat storage tank 94 is not used in the summer.

つづいて、図3で示す、冬期における各室の弱温風運転について説明する。   Subsequently, the operation of the warm air in each room in the winter shown in FIG. 3 will be described.

最初に、全熱交換型換気扇54、全熱交換型換気扇55から室内側に供給される空気を1階床下96に給気する方法について説明する。1階室内Aの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇55に吸い込まれて室外に排気される。その際、全熱交換型換気扇55が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇55の中で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト56を経由して1階床下96に導かれる。同様にして、2階室内Bの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇54に吸い込まれて室外に排気される。その際、全熱交換型換気扇54が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇54の中で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト57を経由して1階床下96に導かれる。   First, a method for supplying air supplied to the indoor side from the total heat exchange type ventilation fan 54 and the total heat exchange type ventilation fan 55 to the lower floor 96 will be described. The room-side discharged air (contaminated room air) in the first floor room A is sucked into the total heat exchange type ventilation fan 55 and exhausted outside the room. At that time, the indoor air exhausted by the total heat exchange type ventilation fan 55 (indoor discharge air) and the outside air supplied to the room (outdoor intake air) are heat-exchanged in the total heat exchange type ventilation fan 55. At the same time, all of the sucked outdoor outside intake air (fresh air) is guided to the first floor under floor 96 via the outside air introduction duct 56. Similarly, the indoor side discharge air (contaminated room air) in the second floor room B is sucked into the total heat exchange type ventilation fan 54 and exhausted to the outside. At that time, the indoor air exhausted by the total heat exchange type ventilation fan 54 (indoor discharge air) and the outside air supplied to the room (outdoor intake air) are heat-exchanged in the total heat exchange type ventilation fan 54. At the same time, all of the sucked outdoor outside intake air (fresh air) is guided to the first floor under floor 96 via the outside air introduction duct 57.

このようにして、全熱交換型換気扇54、全熱交換型換気扇55を使用する事により、冬期における室内の暖かい空気を、外の冷たい外気と入れ替える(換気する)際に、室内の暖かい空気の温度が下がるのを最小限に抑える事が可能となる。ちなみに、三菱電機株式会社のホームページでは、ロスナイ(全熱交換型換気扇)の熱交換機能を、「外気温度0℃、室内温度20℃、温度交換効率75%の場合」、室内温度20℃の空気をロスナイ(全熱交換型換気扇)で換気した場合、外気(0℃)の空気の温度は熱交換機の働きで15℃となって室内に給気(新鮮空気)されると説明している。   In this way, by using the total heat exchange type ventilation fan 54 and the total heat exchange type ventilation fan 55, when the indoor warm air in the winter is replaced (ventilated) with the cold outdoor air, It is possible to minimize the temperature drop. By the way, on the Mitsubishi Electric Corporation homepage, the heat exchange function of LOSSNAY (total heat exchange type exhaust fan) is “when the outside air temperature is 0 ° C., the room temperature is 20 ° C., and the temperature exchange efficiency is 75%”. When the air is ventilated with LOSSNAY (total heat exchange type exhaust fan), the temperature of the air of the outside air (0 ° C.) becomes 15 ° C. due to the action of the heat exchanger and is supplied to the room (fresh air).

つづいて、このようにして1階床下96に導入された全熱交換型換気扇54、全熱交換型換気扇55からの外気(室外側吸込空気)が、どのようにして1階床下96で熱交換されて弱温風になるかを説明する。外気導入ダクト56、外気導入ダクト57から導入された全熱交換型換気扇54、全熱交換型換気扇55からの外気は、1階床下96の空気と混ざり合い、地中熱回収パイプ64に取付けられた送風機61を作動させる事により、1階床下96の空気は、矢印60方向から地中熱回収パイプ64に吸い込まれ、地中熱回収パイプ64の中で地中熱により暖められて弱温風となり、送風機61より矢印62方向に示すように1階床下96に排気される。同様に、地中熱回収パイプ68に取付けられた送風機66を作動させる事により、1階床下96の空気は、矢印65方向から地中熱回収パイプ68に吸い込まれ、地中熱回収パイプ68の中で地中熱により暖められて弱温風となり、送風機66より矢印67方向に示すように1階床下96に排気される。同様に、地中熱回収パイプ69に取付けられた送風機71を作動させる事により、1階床下96の空気は、矢印70方向から地中熱回収パイプ69に吸い込まれ、地中熱回収パイプ69の中で地中熱により暖められて弱温風となり、送風機71より矢印72方向に示すように1階床下96に排気される。同様に、地中熱回収パイプ74に取付けられた送風機75を作動させる事により、1階床下96の空気は、矢印73方向から地中熱回収パイプ74に吸い込まれ、地中熱回収パイプ74の中で地中熱により暖められて弱温風となり、送風機75より矢印76方向に示すように1階床下96に排気される。   Subsequently, how the outside air (outside air sucked in) from the total heat exchange type ventilation fan 54 and the total heat exchange type ventilation fan 55 introduced into the first floor under floor 96 in this way exchanges heat in the first floor under floor 96. Explain how the wind becomes weak. The outside air introduced from the outside air introduction duct 56, the total heat exchange type ventilation fan 54 and the total heat exchange type ventilation fan 55 introduced from the outside air introduction duct 57 is mixed with the air under the first floor 96 and attached to the underground heat recovery pipe 64. By operating the blower 61, the air under the first floor 96 is sucked into the underground heat recovery pipe 64 from the direction of the arrow 60, and is warmed by the underground heat in the underground heat recovery pipe 64, so that the warm air Then, the air is exhausted from the blower 61 to the lower first floor 96 as shown in the direction of the arrow 62. Similarly, by operating the blower 66 attached to the underground heat recovery pipe 68, the air under the first floor 96 is sucked into the underground heat recovery pipe 68 from the direction of the arrow 65, and the ground heat recovery pipe 68 Inside, it is warmed by underground heat to become weakly warm air, and is exhausted from the blower 66 to the lower first floor 96 as indicated by the arrow 67 direction. Similarly, by operating the blower 71 attached to the underground heat recovery pipe 69, the air in the first floor lower floor 96 is sucked into the underground heat recovery pipe 69 from the direction of the arrow 70, and the underground heat recovery pipe 69 Inside, it is warmed by underground heat to become weakly warm air, and is exhausted from the blower 71 to the lower first floor 96 as indicated by the arrow 72 direction. Similarly, by operating the blower 75 attached to the underground heat recovery pipe 74, the air under the first floor 96 is sucked into the underground heat recovery pipe 74 from the direction of the arrow 73, and the ground heat recovery pipe 74 Inside, it is warmed by underground heat to become weakly warm air, and is exhausted from the blower 75 to the lower first floor 96 as indicated by the arrow 76 direction.

さらに、冬期では太陽熱温水器115で温められた温水を風呂92で使用した後、風呂92で利用された後の温かい残り湯は、風呂92に備え付けられた残り湯パイプ93用の排水栓(図示せず)を抜く事により、残り湯パイプ93を経由して温水蓄熱槽94に流され溜湯される。このようにして温水蓄熱槽94に溜湯された温かい風呂92の残り湯は1階床下96の空気を暖める。なお、温水蓄熱槽94から溢れ出る、温水蓄熱槽94の底部の冷めた風呂の残り湯は排水パイプ77を経由して矢印119方向に流れ排水溝78に排水される。   Further, in the winter season, after the hot water heated by the solar water heater 115 is used in the bath 92, the hot remaining hot water after being used in the bath 92 is a drain plug for the remaining hot water pipe 93 provided in the bath 92 (see FIG. (Not shown), the hot water is stored in the hot water storage tank 94 via the remaining hot water pipe 93. The remaining hot water in the warm bath 92 stored in the hot water heat storage tank 94 in this manner warms the air under the first floor 96. In addition, the remaining hot water in the bath that has overflowed from the hot water heat storage tank 94 and is cooled at the bottom of the hot water heat storage tank 94 flows through the drain pipe 77 in the direction of arrow 119 and is drained into the drain groove 78.

このようにして、太陽熱温水器115で温められた温水を、風呂92で使用した後に風呂92で利用された後の温かい残り湯を、1階床下96の基礎底盤に設置した温水蓄熱槽94に流して溜湯させる事により、地中熱回収パイプ64、地中熱回収パイプ68、地中熱回収パイプ69、地中熱回収パイプ74の中で地中熱により暖められた1階床下96の空気は、さらに温水蓄熱槽94により暖められる事となる。   In this way, the hot water heated by the solar water heater 115 is used in the bath 92 and then used in the bath 92, and the hot remaining hot water after being used in the bath 92 is placed in the hot water heat storage tank 94 installed on the foundation bottom of the first floor floor 96. The underground heat recovery pipe 64, the geothermal heat recovery pipe 68, the geothermal heat recovery pipe 69, and the geothermal heat recovery pipe 74 are heated by the geothermal heat, thereby allowing the ground heat recovery pipe 64, the geothermal heat recovery pipe 68, The air is further warmed by the hot water heat storage tank 94.

このようにして、1階床下96で弱温風となった外気は、1階床を暖める事により1階室内Aを暖めると共に、弱温風となった1階床下96の空気は、給気ダクト88に取付けられた送風機104を作動させる事により、給気ダクト88を経由して1階天井裏100に給気され、ガラリ98、ガラリ102より1階室内Aに給気されて1階室内を暖める。同様に、給気ダクト105に取付けられた送風機112を作動させる事により、給気ダクト105を経由して2階天井裏107に給気され、ガラリ109、ガラリ110より2階室内Bに給気されて2階室内Bを暖める。   In this way, the outside air that has become low-temperature air in the first floor under 96 warms the first-floor room A by heating the first floor, and the air in the first-floor under 96 that has become low-temperature air is supplied as air. By operating the blower 104 attached to the duct 88, air is supplied to the first floor ceiling 100 via the air supply duct 88, and is supplied to the first floor room A from the gallery 98 and the gallery 102, thereby being supplied to the first floor room. Warm up. Similarly, by operating the air blower 112 attached to the air supply duct 105, the air is supplied to the second floor ceiling 107 through the air supply duct 105, and is supplied to the second floor room B from the gallery 109 and the gallery 110. The room B on the second floor is warmed.

このように、冬期においては、太陽熱温水器115で温められた温水を風呂92で使用した後、風呂92で利用された後の温かい残り湯を、1階床下96の基礎底盤に設置した温水蓄熱槽94に流して溜湯させる事により、曇りや雨の日が続いた場合でも、風呂92で利用された後の温かい残り湯を温水蓄熱槽94に流して溜湯させる事により、地中熱回収パイプ64、地中熱回収パイプ68、地中熱回収パイプ69、地中熱回収パイプ74の中で地中熱により暖められた1階床下96の空気を、さらに暖め、弱温風として1階室内A、2階室内Bに給気する事が可能となる。   In this way, in the winter season, hot water heated by the solar water heater 115 is used in the bath 92, and the hot remaining hot water after being used in the bath 92 is installed in the base floor of the first floor floor 96 under the hot water heat storage. Even if it is cloudy or rainy, the hot water remaining after being used in the bath 92 is poured into the hot water storage tank 94 to store hot water. The air under the first floor 96 warmed by the underground heat in the recovery pipe 64, the underground heat recovery pipe 68, the underground heat recovery pipe 69, and the underground heat recovery pipe 74 is further heated to 1 as a warm air. It is possible to supply air to the floor room A and the second floor room B.

図4は、本発明における住宅52を、次世代省エネタイプの断熱で構成した状態を示す。屋根の断熱に関しては、屋根断熱材121(一般的には、厚さ160mmの発泡ウレタン)を屋根内側に施工する。外壁の断熱に関しては、外壁断熱材122(一般的には、厚さ75mmの発泡ウレタン)を外壁内側に施工する。窓のサッシに関しては、各社から発売されている断熱等級4(次世代省エネタイプ)の断熱サッシ123を使用する。基礎の断熱に関しては、基礎外断熱材124(一般的には、厚さ50mmの発泡スチロール板)を基礎コンクリートの外側に施工する。但し、ここに書かれた断熱材の種類と材質に関しては、例えば、発泡スチロール板であっても、密度の違いにより断熱効果に変化が生じるため、同一メーカーであっても、密度により厚さが変わる場合があり得る。なお、次世代省エネタイプの住宅においては、1階床下、1階天井裏、2階天井裏に断熱材を施工しているが、本発明においては、住宅の各々室内同士の温度を出来るだけ均一に保つため、1階床下126や1階天井裏125、2階天井裏127には断熱材を施工しない。   FIG. 4 shows a state in which the house 52 in the present invention is configured by next-generation energy-saving heat insulation. Regarding the heat insulation of the roof, the roof heat insulating material 121 (generally, urethane foam having a thickness of 160 mm) is applied to the inside of the roof. Regarding the heat insulation of the outer wall, the outer wall heat insulating material 122 (generally, urethane foam having a thickness of 75 mm) is applied to the inside of the outer wall. As for the window sash, a heat insulation sash 123 of heat insulation grade 4 (next generation energy saving type) sold by each company is used. With respect to the heat insulation of the foundation, an outside foundation heat insulating material 124 (generally, a foamed polystyrene board having a thickness of 50 mm) is applied to the outside of the foundation concrete. However, regarding the type and material of the heat insulating material written here, for example, even if it is a polystyrene plate, the heat insulating effect changes due to the difference in density, so even the same manufacturer changes the thickness depending on the density There may be cases. In the next-generation energy-saving type housing, heat insulating material is installed under the first floor, under the first floor, and under the second floor. In the present invention, the temperature in each room of the house is as uniform as possible. Therefore, no heat insulating material is applied to the first floor under floor 126, the first floor ceiling 125, and the second floor ceiling 127.

本発明における住宅52の断熱性能に関しては、最大限の省エネ効果を得るためにも、図4で説明した次世代省エネタイプの断熱を必ず施工する必要がある。   Regarding the heat insulation performance of the house 52 in the present invention, the next-generation energy-saving type heat insulation described with reference to FIG.

図6は、温水蓄熱槽152の正面図、平面図、A‐A断面図、B‐B断面図である。温水蓄熱槽152は、長方形に切断された2枚のゴム状(塩化ビニールシート等)のシートの端部を溶着して水枕状に構成される。温水蓄熱槽152の上部に使用する上面ゴムシート139には取入口134、排水口135のための穴(図示せず)を開け、さらに、ゴム状シートを四角形状に切断(約20cm×約25cmの大きさに切断)して中央部には風呂の残り湯の取入口の穴(図示せず)を開けて溶着部137を作成し、溶着部137には塩ビ管で製作した取入口134を塩ビ溶接すると共に、同様に、ゴム状シートを四角形状に切断(約20cm×約25cmの大きさに切断)して中央部に排水口のための穴(図示せず)を開けて溶着部138を作成し、溶着部138に塩ビ管で製作した排水口135を塩ビ溶接し、上面ゴムシート139に開けられた穴位置(図示せず)に合わせて、溶着部137、溶着部138を溶着して取付ける。なお、現在では、砂漠等に人造湖を造る際に、砂漠等に大きな穴を掘り、その穴の底面にゴムシート(塩化ビニールシート等)を敷き詰め、そのゴムシート同士を溶着して一枚の大きな防水シートに加工して、水を貯める事も行われており、本発明のような温水蓄熱槽をゴムシートで作製した場合においても、長期の耐久性が保たれる。   FIG. 6 is a front view, a plan view, an AA cross-sectional view, and a BB cross-sectional view of the hot water heat storage tank 152. The hot water heat storage tank 152 is configured in a water pillow shape by welding the ends of two rubber-like sheets (vinyl chloride sheet or the like) cut into a rectangle. The upper surface rubber sheet 139 used in the upper part of the hot water heat storage tank 152 is provided with holes (not shown) for the intake port 134 and the drain port 135, and the rubber sheet is cut into a square shape (about 20 cm × about 25 cm). In the center, a hole (not shown) for the remaining hot water in the bath is opened to create a welded portion 137, and the welded portion 137 has an inlet 134 made of a PVC pipe. Similarly, the rubber sheet is cut into a square shape (about 20 cm × about 25 cm in size), and a hole (not shown) for a drain outlet is formed in the center to weld the portion 138. The drainage port 135 made of a PVC pipe is welded to the welded portion 138 by vinyl chloride welding, and the welded portion 137 and the welded portion 138 are welded in accordance with a hole position (not shown) formed in the upper rubber sheet 139. And install. Currently, when building an artificial lake in the desert, etc., a large hole is dug in the desert, and a rubber sheet (vinyl chloride sheet, etc.) is laid on the bottom of the hole, and the rubber sheets are welded together to form a large sheet. Processing into a waterproof sheet to store water is also performed, and long-term durability is maintained even when a hot water heat storage tank like the present invention is made of a rubber sheet.

このようにして取付けた、取入口134から温水蓄熱槽内部151へ風呂の残り湯が流れ込む際には、B‐B断面図で示すように、風呂の残り湯は取入口134から、溶着部137の直ぐ下に取付けられた固定部147をへて矢印146方向で示すように温水蓄熱槽内部151に流れ込み、温水蓄熱槽内部151の上側に温かい風呂の残り湯が溜湯される。このように温水蓄熱槽内部151に残り湯が供給された場合、温水蓄熱槽内部151の上部が温かく保たれ、温水蓄熱槽内部151の下部は、上部に比べて湯温度が低い状態となる。   When the remaining hot water of the bath flows into the hot water storage tank interior 151 from the inlet 134 attached in this way, the remaining hot water of the bath flows from the inlet 134 to the welded portion 137 as shown in the BB cross-sectional view. As shown by the direction of the arrow 146 through the fixing portion 147 attached immediately below the hot water storage tank 151, the hot water remaining in the hot bath is stored on the upper side of the hot water storage tank 151. When the remaining hot water is supplied to the hot water heat storage tank interior 151 in this way, the upper part of the hot water heat storage tank interior 151 is kept warm, and the lower part of the hot water heat storage tank internal 151 is in a state where the hot water temperature is lower than the upper part.

また、温水蓄熱槽内部151から排水される冷めた風呂の残り湯は、A‐A断面図で示すように、温水蓄熱槽内部151の下部の排水取込口149から矢印148方向に吸い込まれ、排水パイプ配管151を経由して排水口135から排水される。なお、風呂の残り湯を流入する温水蓄熱槽152に取付ける取入口134の入口の高さと、冷えた風呂の残り湯が温水蓄熱槽152から排出される排水口135の出口の高さは、温水蓄熱槽152がゴム状のシートで製作されるため、温水蓄熱槽152に風呂の残り湯が流入される事により、温水蓄熱槽152が水枕状に膨らむため、温水蓄熱槽152に風呂の残り湯が満タン状態になるまで流入された状態で、温水蓄熱槽152の上面ゴムシート139の最上部より上部(上面ゴムシート139の上部より、約10〜約20cm位高くなるのが良い)になるように構成されなければならない。   Moreover, the remaining hot water of the cooled bath drained from the hot water storage tank interior 151 is sucked in the direction of the arrow 148 from the drain intake port 149 at the lower part of the hot water storage tank interior 151, as shown in the AA sectional view. The water is drained from the drain port 135 via the drain pipe pipe 151. In addition, the height of the inlet 134 of the inlet 134 attached to the hot water heat storage tank 152 into which the remaining hot water of the bath flows, and the height of the outlet 135 of the drain outlet from which the remaining hot water of the bath is discharged from the hot water heat storage tank 152 are Since the heat storage tank 152 is made of a rubber-like sheet, when the remaining hot water in the bath flows into the hot water heat storage tank 152, the hot water heat storage tank 152 swells in the shape of a water pillow. In the state where it is introduced until it reaches a full tank state, it is above the uppermost part of the upper surface rubber sheet 139 of the hot water heat storage tank 152 (may be about 10 to about 20 cm higher than the upper part of the upper surface rubber sheet 139). Must be configured as follows.

このように温水蓄熱槽152を構成する事により、毎日、温かい風呂の残り湯が温水蓄熱槽152に供給され、雨や曇り日が続いた場合でも、1階床下部の空気を暖める事が可能となる。さらに、排水取込口149を温水蓄熱槽内部151の底部に設置したため、風呂の残り湯の中に含まれる、温水蓄熱槽内部151の底部に蓄積する湯あか等を、冷めた風呂の残り湯と一緒に容易に排出する事が可能となる。   By configuring the hot water heat storage tank 152 in this way, the hot water remaining in the hot bath is supplied to the hot water heat storage tank 152 every day, and even if rain or cloudy days continue, it is possible to warm the air in the lower floor of the first floor It becomes. Furthermore, since the drainage inlet 149 is installed at the bottom of the hot water storage tank interior 151, the hot water accumulated in the bottom of the hot water storage tank interior 151 contained in the remaining hot water of the bath is replaced with the remaining hot water of the cooled bath. It can be easily discharged together.

図7は、図6で説明した温水蓄熱槽が、どのような状態で1階床下に設置されるか示す。温水蓄熱槽158は、1階床下の基礎164の上面に設置されると共に、その温水蓄熱槽158に対して、風呂154に設置されている温水蓄熱槽用の排水栓(図示せず)を抜く事により、風呂154の残り湯が残り湯パイプ155を経由して矢印157方向に送られ温水蓄熱槽158に溜湯されると共に、温水蓄熱槽158から溢れ出た、冷めた風呂の残り湯は排水パイプ161を経由して矢印163方向から排水溝162に排水される。   FIG. 7 shows how the hot water storage tank described in FIG. 6 is installed under the first floor. The hot water heat storage tank 158 is installed on the upper surface of the foundation 164 under the first floor, and a drain plug (not shown) for the hot water heat storage tank installed in the bath 154 is pulled out of the hot water heat storage tank 158. As a result, the remaining hot water of the bath 154 is sent in the direction of the arrow 157 via the remaining hot water pipe 155 and stored in the hot water heat storage tank 158, and the remaining hot water of the cooled bath overflowing from the hot water heat storage tank 158 is The water is drained from the direction of the arrow 163 to the drain groove 162 via the drain pipe 161.

以下、この発明の実施の形態2について説明する。
[発明の実施の形態2]
The second embodiment of the present invention will be described below.
[Embodiment 2 of the Invention]

図8は、太陽熱温水器166に太陽熱温水器接続ユニット172を接続した場合の断面図である。給水管178より矢印176方向から矢印169方向に送られた水は、太陽熱温水器166の中で温められる。太陽熱温水器166の中で温められた温水は、温水パイプ171を矢印167方向から矢印170方向に送られて、太陽熱温水器接続ユニット172の中で給水管178から供給される水と混ぜ合わされて温度調整され、さらに風呂給湯器174の中で温度調整がなされて風呂に給湯される。   FIG. 8 is a cross-sectional view when the solar water heater connection unit 172 is connected to the solar water heater 166. The water sent from the water supply pipe 178 to the arrow 169 direction from the arrow 176 direction is warmed in the solar water heater 166. The hot water heated in the solar water heater 166 is sent from the direction of the arrow 167 to the direction of the arrow 170 through the hot water pipe 171 and mixed with the water supplied from the water supply pipe 178 in the solar water heater connection unit 172. The temperature is adjusted, and the temperature is adjusted in the bath water heater 174 to supply hot water to the bath.

太陽熱温水器接続ユニット172を使用するメリットは、雨や曇りの日が続いた場合、太陽熱温水器166の温度が風呂のお湯の適温まで達しない場合、太陽熱温水器166の温水は風呂給湯器174で加熱されて風呂に供給する事が可能となる。これらの太陽熱温水器接続ユニット172は、株式会社ノーリツ、リンナイ株式会社、株式会社長府製作所等の会社より発売されている。その他の、全熱交換型換気扇や、1階床下に設置する温水蓄熱槽の構造、地中熱回収パイプ、給気ダクトの構造に関しては、実施の形態1で説明した内容と同一である。   The merit of using the solar water heater connection unit 172 is that, when a rainy or cloudy day continues, when the temperature of the solar water heater 166 does not reach the appropriate temperature of the hot water of the bath, the hot water of the solar water heater 166 is the bath water heater 174. It can be heated and supplied to the bath. These solar water heater connection units 172 are sold by companies such as Noritz Corporation, Rinnai Corporation, and Chofu Seisakusho Co., Ltd. Other details of the structure of the total heat exchange type exhaust fan, the hot water heat storage tank installed under the first floor, the underground heat recovery pipe, and the air supply duct are the same as those described in the first embodiment.

以上、実施の形態に基づいて、本発明に係るアース・ソーラーシステム改良型(地中熱回収パイプ方式)について詳細に説明してきたが、本発明は、以上の実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において各種の改変をなしても、本発明の技術的範囲に属するのはもちろんである。   As mentioned above, based on the embodiment, the earth / solar system improved type (ground heat recovery pipe system) according to the present invention has been described in detail. However, the present invention is not limited to the above embodiment. Of course, various modifications within the scope of the invention do not fall within the technical scope of the present invention.

図1、図5において、太陽熱温水器2からの温水を貯留するための温水蓄熱槽44(図1においては温水蓄熱槽44と表記、図5においては温水蓄熱槽94と表記)の形状は立方体で描かれているが、この形状に限らず残り湯パイプ38と排水パイプ37との間を、長い塩ビパイプや、簡単に曲げて施工する事が可能なリブパイプ等を接続して温水蓄熱槽を構成する事も可能である。このような材質を使用して温水蓄熱槽を構成する事により、1階床下の基礎が複雑になる場合においても、簡単に温水蓄熱槽を構築する事が出来る。また、温水蓄熱槽の材質に関しても、この発明の実施の形態では、安価に作製するためゴム状としているが、長期の耐久性を考えた場合にはFRP製の温熱蓄熱槽や、さらに、ステンレス等の金属で温熱蓄熱槽を構成する事ももちろん可能である。   1 and 5, the shape of the hot water heat storage tank 44 (represented as the hot water heat storage tank 44 in FIG. 1 and the hot water heat storage tank 94 in FIG. 5) for storing the hot water from the solar water heater 2 is a cube. However, the hot water heat storage tank is not limited to this shape by connecting a long PVC pipe or a rib pipe that can be easily bent between the remaining hot water pipe 38 and the drain pipe 37. It is also possible to configure. By constructing the hot water heat storage tank using such a material, even when the foundation under the first floor is complicated, the hot water heat storage tank can be easily constructed. In addition, regarding the material of the hot water storage tank, in the embodiment of the present invention, it is rubber-like in order to produce it at a low cost. However, in consideration of long-term durability, the thermal storage tank made of FRP, and further, stainless steel Of course, it is also possible to construct a thermal storage tank with such a metal.

図1において、温水蓄熱槽44は基礎底盤45の上部に設置されているが、温水蓄熱槽44を設置する際には、基礎底盤45を欠き込んで、その中に温水蓄熱槽44を埋め込んだり、または、温水蓄熱槽44を設置する基礎底盤45の場所に囲いを設けて、その中に温水蓄熱槽44を設置する事も、もちろん可能である。さらに、温水蓄熱槽44は1個で描かれているが、1階床下の基礎が複雑に構成された場合においては、複数個の温水蓄熱槽を連結して対応することも可能である。さらに、近頃では二世帯住宅も数多く新築されているため、風呂の個数に応じて温水蓄熱槽の大きさを設計する事も大切である。   In FIG. 1, the hot water heat storage tank 44 is installed on the upper part of the foundation bottom board 45, but when installing the hot water heat storage tank 44, the foundation bottom board 45 is cut out and the hot water heat storage tank 44 is embedded in the base water board 44. Alternatively, it is of course possible to provide an enclosure at the base bottom plate 45 where the hot water heat storage tank 44 is installed, and to install the hot water heat storage tank 44 therein. Furthermore, although the hot water heat storage tank 44 is drawn with one piece, when the foundation under the first floor is configured in a complicated manner, it is possible to connect a plurality of hot water heat storage tanks. In addition, since many new homes have been newly built recently, it is important to design the size of the hot water storage tank according to the number of baths.

図1、図5において、地中熱回収パイプ13、20、23、26は基礎底盤45の四隅に配置されているが、これは、互いの地中熱回収パイプが地中の熱を回収(放出)する際、地中熱回収パイプで熱回収(熱放出)した際に地中に与えた熱の影響が、互いの地中熱回収パイプに対して干渉するのを少なく抑えるためである。   1 and 5, the underground heat recovery pipes 13, 20, 23, and 26 are arranged at the four corners of the foundation bottom 45, and this is because each other's underground heat recovery pipe recovers the underground heat ( This is because the influence of the heat applied to the ground when the heat is recovered (heat released) by the underground heat recovery pipe is less likely to interfere with each other's underground heat recovery pipe.

図1及至図5においては、地中熱回収パイプは4本設置されているが、当然の事ながら住宅の規模(床面積)の大小に応じて地中熱回収パイプの本数は増減する。また、地中熱回収パイプの材質は、地下の水位の高低に応じて地中の熱容量が変化するため、熱伝導率の高いアルミやステンレス等の材料を使用する事も、もちろん可能である。   1 to 5, four geothermal heat recovery pipes are installed, but the number of geothermal heat recovery pipes increases or decreases depending on the size of the house (floor area). In addition, since the underground heat capacity changes depending on the underground water level, it is of course possible to use materials such as aluminum and stainless steel with high thermal conductivity.

本発明においては、地中熱回収パイプは塩ビパイプを使用し、地中に埋め込む深さは、約5mである。と表示しているが、地中の地下水位の高低により、当然ながら地中に埋め込む塩ビパイプの深さを変える事はもちろん必要である。   In the present invention, a PVC pipe is used as the underground heat recovery pipe, and the depth embedded in the underground is about 5 m. Of course, it is of course necessary to change the depth of the PVC pipe embedded in the ground, depending on the groundwater level in the ground.

図1及至図3において、図1においては太陽熱温水器2と表記、図2と図3においては太陽熱温水器115と表記された太陽熱温水器は、太陽光の集熱板と貯湯槽が一体となった形式のもので説明したが、この形式に限らず、太陽光の集熱板と貯湯槽が分離され、太陽光の集熱板が屋根に設置されると共に、貯湯槽が地表面に固定されたタイプの太陽熱温水器を使用する事も可能である。   1 to 3, the solar water heater denoted as solar water heater 2 in FIG. 1 and the solar water heater 115 in FIGS. 2 and 3 is formed by integrating a solar heat collecting plate and a hot water tank. Although it was explained in the form of becoming, it is not limited to this form, the solar heat collecting plate and the hot water tank are separated, the solar heat collecting plate is installed on the roof, and the hot water tank is fixed to the ground surface It is also possible to use a solar water heater of the type specified.

図2及至図3において、外気導入ダクト56、57、給気ダクト88、105の配管スペースは、壁内、床内、天井内、又は専用配管スペースにこだわらず、最適な位置に配管される事は、当然である。   2 to 3, the piping space for the outside air introduction ducts 56 and 57 and the air supply ducts 88 and 105 is not limited to the interior of the wall, floor, ceiling, or dedicated piping space. Is natural.

この発明の実施の形態については、一般的な住宅に関して説明してきたが、建築する住宅の種類に関しては、鉄骨住宅、RCコンクリート住宅等にも応用出来ることは、当然である。   Although the embodiment of the present invention has been described with respect to a general house, it is natural that the type of house to be constructed can be applied to a steel frame house, an RC concrete house, and the like.

この発明の実施の形態1に係る、アース・ソーラーシステム改良型(地中熱回収パイプ方式)の分解図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded view of a ground / solar system improved type (ground heat recovery pipe system) according to Embodiment 1 of the present invention. 同実施の形態に係る、夏期における住宅断面図の全熱交換型換気扇と地中熱回収パイプを利用したアース・ソーラーシステム改良型(地中熱回収パイプ方式)の弱冷風システム図である。It is an earth-solar system improvement type (ground heat recovery pipe system) weak cold wind system figure using a total heat exchange type ventilation fan of a sectional view of a house in summer and a ground heat recovery pipe according to the embodiment. 同実施の形態に係る、冬期における住宅断面図の全熱交換型換気扇と地中熱回収パイプと太陽熱温水器を利用したアース・ソーラーシステム改良型(地中熱回収パイプ方式)の弱温風システム図である。A low-temperature air system with improved ground / solar system (ground heat recovery pipe system) using a total heat exchange type ventilation fan, underground heat recovery pipe and solar water heater in a sectional view of a house in winter, according to the same embodiment FIG. 同実施の形態に係る、住宅に、屋根断熱材、外壁断熱材、断熱樹脂サッシ、基礎外断熱材を施工した状態の断面図である。It is sectional drawing of the state which constructed the roof heat insulating material, the outer wall heat insulating material, the heat insulation resin sash, and the foundation outer heat insulating material to the house based on the embodiment. 同実施の形態に係る、基礎底盤における温水蓄熱槽と地中熱回収パイプと送風機と空気の流れを表す基礎底盤平面図である。It is a foundation bottom board top view showing the flow of the warm water thermal storage tank in the foundation bottom board, a geothermal heat recovery pipe, a blower, and air based on the embodiment. 同実施の形態に係る、温水蓄熱槽の正面図、平面図、断面図である。It is a front view, a top view, and a sectional view of a hot water heat storage tank according to the embodiment. 同実施の形態に係る、風呂と温水蓄熱槽と、その風呂と温水蓄熱槽とを配管している配管図である。It is a piping figure which has piped the bath and warm water thermal storage tank and the bath and warm water thermal storage tank concerning the embodiment. この発明の実施の形態2に係る、太陽熱温水器に太陽熱温水器接続ユニットを接続した場合の断面図である。It is sectional drawing at the time of connecting a solar water heater connection unit to the solar water heater based on Embodiment 2 of this invention.

A 1階室内
B 2階室内
1 住宅
2 太陽熱温水器
3 屋根
4 全熱交換型換気扇
5 外気導入ダクト
6 基礎外断熱材
7 矢印
8 地中熱回収パイプ
9 地中熱回収パイプ
10 送風機
11 矢印
12 矢印
13 地中熱回収パイプ
14 矢印
15 地中熱回収パイプ
16 地中熱回収パイプ
17 送風機
18 矢印
19 矢印
20 地中熱回収パイプ
21 矢印
22 矢印
23 地中熱回収パイプ
24 矢印
25 矢印
26 地中熱回収パイプ
27 矢印
28 排水溝
29 基礎
30 地中熱回収パイプ
31 地中熱回収パイプ
32 排水溝
33 排水パイプ
34 風呂
35 送風機
36 矢印
37 排水パイプ
38 残り湯パイプ
39 地中熱回収パイプ
40 温水パイプ
41 地中熱回収パイプ
42 送風機
43 矢印
44 温水蓄熱槽
45 基礎底盤
48 塩ビパイプ
49 塩ビパイプ
50 継手
51 太陽
52 住宅
53 屋根
54 全熱交換型換気扇
55 全熱交換型換気扇
56 外気導入ダクト
57 外気導入ダクト
58 矢印
59 基礎
60 矢印
61 送風機
62 矢印
63 水位
64 地中熱回収パイプ
65 矢印
66 送風機
67 矢印
68 地中熱回収パイプ
69 地中熱回収パイプ
70 矢印
71 送風機
72 矢印
73 矢印
74 地中熱回収パイプ
75 送風機
76 矢印
77 排水パイプ
78 排水溝
79 給水管
80 矢印
81 開閉バルブ
82 矢印
83 温水パイプ
84 給水パイプ
85 矢印
86 矢印
87 排水パイプ
88 給気ダクト
89 水栓
90 蛇口
91 矢印
92 風呂
93 残り湯パイプ
94 温水蓄熱槽
95 矢印
96 1階床下
97 矢印
98 ガラリ
99 矢印
100 1階天井裏
101 矢印
102 ガラリ
103 矢印
104 送風機
105 給気ダクト
106 矢印
107 2階天井裏
108 矢印
109 ガラリ
110 ガラリ
111 矢印
112 送風機
113 矢印
114 矢印
115 太陽熱温水器
116 矢印
117 矢印
118 矢印
119 矢印
121 屋根断熱材
122 外壁断熱材
123 断熱サッシ
124 基礎外断熱材
125 1階天井裏
126 1階床下
127 2階天井裏
130 矢印
131 矢印
132 矢印
133 矢印
134 取入口
135 排水口
136 溶着部
137 溶着部
138 溶着部
139 上面ゴムシート
140 下面ゴムシート
141 矢印
142 矢印
143 矢印
144 矢印
145 矢印
146 矢印
147 固定部
148 矢印
149 排水取込口
150 固定部
151 排水パイプ配管
152 温水蓄熱槽
153 蛇口
154 風呂
155 残り湯パイプ
156 排水パイプ
157 矢印
158 温水蓄熱槽
159 矢印
160 矢印
161 排水パイプ
162 排水溝
163 矢印
164 基礎
165 温水パイプ
166 太陽熱温水器
167 矢印
168 矢印
169 矢印
170 矢印
171 温水パイプ
172 太陽熱温水器接続ユニット
174 風呂給湯器
175 給水パイプ
176 矢印
177 開閉バルブ
178 給水管
179 水栓
180 蛇口
181 矢印
A 1st floor room B 2nd floor room 1 House 2 Solar water heater 3 Roof 4 Total heat exchange type ventilation fan 5 Outside air introduction duct 6 Thermal insulation outside the foundation 7 Arrow 8 Ground heat recovery pipe 9 Ground heat recovery pipe 10 Blower 11 Arrow 12 Arrow 13 Geothermal recovery pipe 14 Arrow 15 Geothermal recovery pipe 16 Geothermal recovery pipe 17 Blower 18 Arrow 19 Arrow 20 Geothermal recovery pipe 21 Arrow 22 Arrow 23 Geothermal recovery pipe 24 Arrow 25 Arrow 26 Underground Heat recovery pipe 27 Arrow 28 Drainage groove 29 Foundation 30 Geothermal recovery pipe 31 Ground heat recovery pipe 32 Drainage groove 33 Drainage pipe 34 Bath 35 Blower 36 Arrow 37 Drainage pipe 38 Remaining hot water pipe 39 Geothermal heat recovery pipe 40 Hot water pipe 41 Geothermal recovery pipe 42 Blower 43 Arrow 44 Hot water heat storage tank 45 Base bottom 48 PVC 50 49 PVC pipe 50 Joint 51 Sun 52 House 53 Roof 54 Total heat exchange type ventilation fan 55 Total heat exchange type ventilation fan 56 Outside air introduction duct 57 Outside air introduction duct 58 Arrow 59 Foundation 60 Arrow 61 Blower 62 Arrow 63 Water level 64 Ground heat recovery pipe 65 arrow 66 blower 67 arrow 68 geothermal recovery pipe 69 geothermal recovery pipe 70 arrow 71 blower 72 arrow 73 arrow 74 geothermal recovery pipe 75 blower 76 arrow 77 drain pipe 78 drain groove 79 water supply pipe 80 arrow 81 open / close valve 82 arrow 83 hot water pipe 84 water supply pipe 85 arrow 86 arrow 87 drain pipe 88 air supply duct 89 faucet 90 faucet 91 arrow 92 bath 93 remaining hot water pipe 94 hot water heat storage tank 95 arrow 96 first floor under floor 97 arrow 98 gallery 99 arrow 100 1 Floor ceiling 10 1 arrow 102 gallery 103 arrow 104 blower 105 air supply duct 106 arrow 107 second floor ceiling 108 arrow 109 gallery 110 gallery 111 arrow 112 blower 113 arrow 114 arrow 115 solar water heater 116 arrow 117 arrow 118 arrow 122 119 arrow 122 Outer wall heat insulating material 123 Heat insulating sash 124 Base outer heat insulating material 125 First floor ceiling 126 126 First floor under 127 127 Second floor ceiling 130 130 Arrow 131 Arrow 132 Arrow 133 Arrow 134 Inlet 135 Drain port 136 Welding part 137 Welding part 138 Welding part 139 Upper surface Rubber sheet 140 Bottom rubber sheet 141 Arrow 142 Arrow 143 Arrow 144 Arrow 145 Arrow 146 Arrow 147 Fixing part 148 Arrow 149 Drain intake 150 Fixing part 151 Drain pipe piping 15 Hot water heat storage tank 153 Faucet 154 Bath 155 Remaining hot water pipe 156 Drain pipe 157 Arrow 158 Hot water heat storage tank 159 Arrow 160 Arrow 161 Drain pipe 162 Drain groove 163 Arrow 164 Foundation 165 Hot water pipe 166 Solar hot water arrow 16 167 Arrow 16 Hot water pipe 172 Solar water heater connection unit 174 Bath water heater 175 Water pipe 176 Arrow 177 Open / close valve 178 Water pipe 179 Water faucet 180 Faucet 181 Arrow

Claims (3)

建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、冬期は、地中熱により地中熱回収パイプの中で暖められて1階床下内部の空気を暖めると共に、1階床下の基礎底盤に温水蓄熱槽を設置し、その温水蓄熱槽に太陽熱温水器で温められた温水を風呂で使用した後、温かい風呂の残り湯を温水蓄熱槽の中に流して溜湯させる事により1階床下内部の空気がさらに暖められて弱温風となり、暖められた1階床下内部の空気は、各階天井内部に設けられたダクトの送風機を作動させる事により、1階床下内部からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて室内を暖めると共に、夏期においては、温水蓄熱槽に風呂の残り湯を供給せず、全熱交換型換気扇から1階床下内部に送り込まれた外気は、地中熱により地中熱回収パイプの中で冷やされて弱冷風となり、1階床下部の空気と混ぜ合わされた後、各階天井内部に設けられたダクトの送風機を作動させる事により、1階床下内部からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて室内を冷やした事を特徴とするアース・ソーラーシステム改良型(地中熱回収パイプ方式)。   Fresh air supplied to the indoor side by a total heat exchange type ventilation fan installed in the room of the building without blocking the outside vent on the base of the building and shutting off the air inside the first floor floor from the outside air The outside air is sent to the lower floor of the first floor of the building, and a plurality of underground heat recovery pipes with a U-shaped lower part formed on the foundation floor under the first floor are grounded so that both ends protrude from the foundation floor to the lower floor of the first floor. It is buried inside, and a blower is attached to one end of the underground heat recovery pipe. By operating the blower, the air inside the first floor is sucked into the underground heat recovery pipe. Heated in the heat recovery pipe to warm the air inside the floor under the first floor, and installed a hot water heat storage tank on the foundation floor under the first floor, and used the hot water heated by the solar water heater in the hot water heat storage tank After that, flow the remaining hot water from the hot bath into the hot water storage tank. When the hot water is stored, the air inside the floor under the first floor is further warmed and becomes weakly warm air. The air inside the floor under the first floor is heated by operating a blower of a duct provided inside the ceiling of each floor. It is sent from the lower floor to the ceiling of each floor via a duct, supplied to the room from the galleries provided on the ceiling to warm the room, and in the summer, the remaining hot water of the bath is not supplied to the hot water storage tank, The outside air sent from the total heat exchange type exhaust fan to the inside of the first floor is cooled in the underground heat recovery pipe by the underground heat and becomes weak cold air. By operating the blower of the duct provided inside, it is sent to the ceiling of each floor from the inside of the first floor via the duct, and is supplied to the room from the gallery provided on the ceiling to cool the room And earth Solar system improved (underground heat recovery pipe system). 温水蓄熱槽は、ゴム状シートで構成された水枕状の形状をしており、冬期の間、温水蓄熱槽に供給される温かい風呂の残り湯は、温水蓄熱槽の上面に設けられた取入口より温水蓄熱槽の上部に取り込まれ、温水蓄熱槽の中に溜湯されて温水蓄熱槽を温めると共に、その温水蓄熱槽から溢れ出る排水の排水取込口は、温水蓄熱槽の中の底部に設けられ、排水取込口からの排水パイプ配管は、温水蓄熱槽の底部から温水蓄熱槽の上面に取付けられた風呂の残り湯の取入口と同等の高さまで温水蓄熱槽の中を配管して、温水蓄熱槽の底部の冷めた風呂の残り湯を温水蓄熱槽の外部に排出するように構成した事を特徴とする請求項1に記載のアース・ソーラーシステム改良型(地中熱回収パイプ方式)。   The hot water heat storage tank has a water pillow-like shape composed of rubber-like sheets, and the hot water remaining in the hot water heat storage tank is supplied to the upper surface of the hot water heat storage tank during the winter. The water is taken into the upper part of the hot water heat storage tank, hot water is stored in the hot water heat storage tank and the hot water heat storage tank is warmed, and the drainage outlet for the waste water overflowing from the hot water heat storage tank is located at the bottom of the hot water heat storage tank. The drain pipe piping from the drain intake port is routed in the hot water storage tank from the bottom of the hot water storage tank to the same height as the intake of the remaining hot water of the bath attached to the upper surface of the hot water storage tank. The ground solar system improved type (Ground heat recovery pipe system) according to claim 1, wherein the remaining hot water of the cold bath at the bottom of the hot water storage tank is discharged to the outside of the hot water storage tank ). 太陽熱温水器で温められたお湯を、上水道と風呂給湯器の間に設置される太陽熱温水器接続ユニットに接続し、太陽熱温水器で温められたお湯の温度が低い場合は、風呂給湯器で温められて風呂にお湯が給湯されると共に、その風呂の温かい残り湯を温水蓄熱槽に流して温水蓄熱槽の中に溜湯させた事を特徴とする請求項1又は2に記載のアース・ソーラーシステム改良型(地中熱回収パイプ方式)。   Connect the hot water heated by the solar water heater to the solar water heater connection unit installed between the water supply and the bath water heater. If the temperature of the hot water heated by the solar water heater is low, warm it with the bath water heater. 3. The earth solar according to claim 1, wherein hot water is supplied to the bath, and the hot remaining hot water of the bath is poured into the hot water heat storage tank and stored in the hot water heat storage tank. Improved system (Ground heat recovery pipe method).
JP2010056088A 2010-03-12 2010-03-12 Improved earth / solar system (Ground heat recovery pipe method) Active JP5505836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056088A JP5505836B2 (en) 2010-03-12 2010-03-12 Improved earth / solar system (Ground heat recovery pipe method)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056088A JP5505836B2 (en) 2010-03-12 2010-03-12 Improved earth / solar system (Ground heat recovery pipe method)

Publications (2)

Publication Number Publication Date
JP2011190957A true JP2011190957A (en) 2011-09-29
JP5505836B2 JP5505836B2 (en) 2014-05-28

Family

ID=44796081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056088A Active JP5505836B2 (en) 2010-03-12 2010-03-12 Improved earth / solar system (Ground heat recovery pipe method)

Country Status (1)

Country Link
JP (1) JP5505836B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092277A (en) * 2011-10-24 2013-05-16 Birutekku Kk Heat exchanger for air conditioning equipment
CN103499155A (en) * 2013-10-10 2014-01-08 胡明建 Design method of totally-closed earth energy exchanging bed system
CN103629865A (en) * 2013-12-16 2014-03-12 王怡岷 Solar energy-based terrestrial heat temperature compensation system and construction method thereof
JP2014129992A (en) * 2012-12-27 2014-07-10 Takahashi Kanri:Kk Earth-solar system
JP2014129991A (en) * 2012-12-27 2014-07-10 Takahashi Kanri:Kk Earth-solar system
JP2014129993A (en) * 2012-12-27 2014-07-10 Takahashi Kanri:Kk Earth-solar system
RU2538520C1 (en) * 2013-07-15 2015-01-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования"Северо-Восточный федеральный университет имени М.К. Аммосова" Natural conditioner
GB2518742A (en) * 2013-07-31 2015-04-01 Sasie Ltd Energy system
JP2015158124A (en) * 2014-01-24 2015-09-03 みやび建設株式会社 Heat transfer equipment, building structure and method of forming building structure
KR101831508B1 (en) * 2016-01-19 2018-02-22 코마텍에너지 주식회사 Heating systems using waste heat
CN109039274A (en) * 2018-07-17 2018-12-18 韩丽汀 A kind of open air sentry box photovoltaic system
CN115288283A (en) * 2022-01-24 2022-11-04 衢州学院 Assembled building structure for villa with heat preservation effect
CN116086043A (en) * 2022-12-23 2023-05-09 重庆交通大学 High geothermal energy utilization system with heat supplementing function in alpine region

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765586A (en) * 1980-10-07 1982-04-21 Misawa Homes Co Ltd Heat storage tank
JPH0579707A (en) * 1991-09-20 1993-03-30 O M Kenkyusho:Kk Solar system house and handling box used for it
JPH08285328A (en) * 1995-04-14 1996-11-01 Hideharu Aizawa Building with good air-circulation
JP2002115342A (en) * 2000-10-06 2002-04-19 Sekisui House Ltd Floor structure of dwelling house
JP2005201463A (en) * 2004-01-13 2005-07-28 Takikawa Mokuzai Kk Air-conditioning system for building utilizing geothermy
JP2007057215A (en) * 2005-08-24 2007-03-08 Sigma Kk Device for using geothermal heat

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765586A (en) * 1980-10-07 1982-04-21 Misawa Homes Co Ltd Heat storage tank
JPH0579707A (en) * 1991-09-20 1993-03-30 O M Kenkyusho:Kk Solar system house and handling box used for it
JPH08285328A (en) * 1995-04-14 1996-11-01 Hideharu Aizawa Building with good air-circulation
JP2002115342A (en) * 2000-10-06 2002-04-19 Sekisui House Ltd Floor structure of dwelling house
JP2005201463A (en) * 2004-01-13 2005-07-28 Takikawa Mokuzai Kk Air-conditioning system for building utilizing geothermy
JP2007057215A (en) * 2005-08-24 2007-03-08 Sigma Kk Device for using geothermal heat

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092277A (en) * 2011-10-24 2013-05-16 Birutekku Kk Heat exchanger for air conditioning equipment
JP2014129991A (en) * 2012-12-27 2014-07-10 Takahashi Kanri:Kk Earth-solar system
JP2014129993A (en) * 2012-12-27 2014-07-10 Takahashi Kanri:Kk Earth-solar system
JP2014129992A (en) * 2012-12-27 2014-07-10 Takahashi Kanri:Kk Earth-solar system
RU2538520C1 (en) * 2013-07-15 2015-01-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования"Северо-Восточный федеральный университет имени М.К. Аммосова" Natural conditioner
GB2518742A (en) * 2013-07-31 2015-04-01 Sasie Ltd Energy system
CN103499155A (en) * 2013-10-10 2014-01-08 胡明建 Design method of totally-closed earth energy exchanging bed system
CN103629865A (en) * 2013-12-16 2014-03-12 王怡岷 Solar energy-based terrestrial heat temperature compensation system and construction method thereof
CN103629865B (en) * 2013-12-16 2015-10-28 王怡岷 A kind of terrestrial heat temperature compensation system construction method based on solar energy
JP2015158124A (en) * 2014-01-24 2015-09-03 みやび建設株式会社 Heat transfer equipment, building structure and method of forming building structure
KR101831508B1 (en) * 2016-01-19 2018-02-22 코마텍에너지 주식회사 Heating systems using waste heat
CN109039274A (en) * 2018-07-17 2018-12-18 韩丽汀 A kind of open air sentry box photovoltaic system
CN115288283A (en) * 2022-01-24 2022-11-04 衢州学院 Assembled building structure for villa with heat preservation effect
CN115288283B (en) * 2022-01-24 2023-08-22 衢州学院 Building structure with heat preservation effect for assembled villa
CN116086043A (en) * 2022-12-23 2023-05-09 重庆交通大学 High geothermal energy utilization system with heat supplementing function in alpine region

Also Published As

Publication number Publication date
JP5505836B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5505836B2 (en) Improved earth / solar system (Ground heat recovery pipe method)
JP5742009B2 (en) Earth / Solar / Zero Energy Housing
JP2009264721A (en) Earth solar system (single layer type)
JP5067730B2 (en) Earth / Solar system
US20100025008A1 (en) Geothermal Heating, Ventilating and Cooling System
JP2006266575A (en) House using geothermal heat
JP6249387B1 (en) Floor air conditioning system
JP6135905B2 (en) Earth / Solar system
JP2005061786A (en) Indoor temperature adjusting structure using geotherm
JP5505837B2 (en) Earth / Solar system (basement compatible)
JP2011102676A (en) Air conditioning system using underground water heat
JP5351210B2 (en) Thermal storage air conditioning system
KR101625947B1 (en) Total heat exchange ventilating system using heat storage in midnight
JP2010203657A (en) House ventilation system
JP6135906B2 (en) Earth / Solar system
JP6249221B2 (en) Air-conditioning equipment using geothermal heat
JP5344343B2 (en) Earth solar system (Ground heat recovery pipe method)
JP6135907B2 (en) Earth / Solar system
JP5833064B2 (en) Thermal storage air conditioning system
JP6948711B2 (en) Exhaust hot water heat regeneration device and exhaust hot water heat regeneration system using it
JP2009085553A (en) Geothermal system for building
KR101656731B1 (en) Total heat exchange ventilating system using geothermal
JP2015137782A (en) indoor air reflux system
JP2012132666A (en) Heat utilizing structure of building
JPH081312B2 (en) building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R150 Certificate of patent or registration of utility model

Ref document number: 5505836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250