JP2013092277A - Heat exchanger for air conditioning equipment - Google Patents

Heat exchanger for air conditioning equipment Download PDF

Info

Publication number
JP2013092277A
JP2013092277A JP2011233170A JP2011233170A JP2013092277A JP 2013092277 A JP2013092277 A JP 2013092277A JP 2011233170 A JP2011233170 A JP 2011233170A JP 2011233170 A JP2011233170 A JP 2011233170A JP 2013092277 A JP2013092277 A JP 2013092277A
Authority
JP
Japan
Prior art keywords
ground
air
pipe
arrow
guides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011233170A
Other languages
Japanese (ja)
Inventor
Hiroshi Oyoshi
弘 大吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIRUTEKKU KK
Original Assignee
BIRUTEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIRUTEKKU KK filed Critical BIRUTEKKU KK
Priority to JP2011233170A priority Critical patent/JP2013092277A/en
Publication of JP2013092277A publication Critical patent/JP2013092277A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Central Air Conditioning (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a heat exchanger for air conditioning to significantly increase heat exchange efficiency, to reduce the cost of manufacturing, and to obtain the uniform quality of products.SOLUTION: A main pipe 6 is embedded in the ground below a floor 1. A vertical partition wall 7 is integrally installed in the main pipe 6. These members are preferably formed of aluminum alloys. An air stream blown by a blower 5 in a direction of an arrow a flows in a direction of an arrow h to j and is discharged in a direction of an arrow k. During the downward flow along the arrow h and the upward flow along the arrow j, the flowing air is heat-exchanged with the ground through a pipe wall of the main pipe 6 and cooled in summer and heated in winter. Thereby, the air stream is cooled and heated in both the outward path (arrow h) and the return path (arrow j).

Description

本発明は、空調設備用の熱交換器、詳しくは、地下数メートル付近の土壌と空気流とを熱交換させて、空調設備用の冷気流及び/又は暖気流を得るための熱交換器に関するものである。   The present invention relates to a heat exchanger for an air conditioner, and more particularly, to a heat exchanger for obtaining a cold airflow and / or a warm airflow for an air conditioner by exchanging heat between soil and airflow near several meters below the ground. Is.

地下数メートルの付近では、四季や昼夜の別に拘わらず略一定の温度が保たれていることを利用し、地下に空気を流通させて、夏季は冷風を得、冬季は暖風を得る技術が公知であって、かかる技術は、地下定温利用の冷暖房空調装置に応用されている。
このように自然熱を利用した冷暖房は公害を発生させたり、資源を枯渇させたりする恐れが無い。
しかも、風力発電のように騒音を発生したり、天候の影響を受けたりせず、また、太陽光発電のように夜間休止したり、曇天で性能が低下したりしないので、自然熱を利用した冷暖房の改良発展に対する社会的な要請が大きい。
In the vicinity of several meters below the ground, a technology that obtains cool air in the summer and warm air in the winter by circulating the air underground, utilizing the fact that the temperature is kept constant regardless of the season or day and night. This technique is known and applied to a cooling / heating air-conditioning apparatus that uses a constant temperature underground.
In this way, air conditioning using natural heat has no fear of causing pollution or depleting resources.
Moreover, it does not generate noise like wind power generation, is not affected by the weather, does not sleep at night like solar power generation, and does not degrade performance due to cloudy weather, so it uses natural heat There is a great social demand for improvements in air conditioning.

図6は、地下の冷/温熱を利用した空調設備用の熱交換器の公知例を示す模式図である。従来の空調設備用の熱交換器は、一般に図6に示すように構成されている。すなわち、床1の下方の地面に設けられた縦穴に、長さ4〜5メートルの外筒2が埋設されている。この外筒2の中に内管3が同心状に配設されている。前記外筒2の下端部は閉じられていて、送り込まれた空気流と熱交換するための水が、溜め水4として溜められている。家屋内の排気がブロワ5で集められ、矢印aの方向に送出されて、矢印bの方向に内管3に入り、矢印cの方向に該内管3の中を通って下降する。下降流動した送風は溜め水4に吹き付けられて矢印dのように方向を変換し、矢印eの方向に外筒2の内壁面に沿って上昇する。そして、外筒2の中を通り抜けた送風は、矢印fの方向に床下に放出される。   FIG. 6 is a schematic diagram showing a publicly known example of a heat exchanger for an air conditioner using underground cold / heat. Conventional heat exchangers for air conditioning equipment are generally configured as shown in FIG. That is, the outer cylinder 2 having a length of 4 to 5 meters is embedded in a vertical hole provided in the ground below the floor 1. An inner tube 3 is disposed concentrically in the outer cylinder 2. The lower end portion of the outer cylinder 2 is closed, and water for exchanging heat with the air flow fed in is stored as the reservoir water 4. The exhaust in the house is collected by the blower 5, sent out in the direction of arrow a, enters the inner tube 3 in the direction of arrow b, and descends through the inner tube 3 in the direction of arrow c. The air that has flowed down is blown to the accumulated water 4 to change the direction as indicated by the arrow d, and rises along the inner wall surface of the outer cylinder 2 in the direction of the arrow e. And the ventilation which passed through the outer cylinder 2 is discharge | released under the floor in the direction of arrow f.

図6から理解されるように、外筒2の下端付近に送り込まれた空気流は、溜め水4に衝突して塵埃が除去された後、矢印eの方向に外筒2の内壁面に沿って上昇しながら、冬季には加熱され、夏季には冷却される。地下数メートルの区域の温度はほぼ一定であり、例えば千葉気象台の観測によると、地表の月平均温度が5℃〜30℃の変動(年間)を示す地点における地下3メートル点の年間変動は16℃〜18℃であった。
このようにして生活に快適な温度に調整された空気流が矢印fの方向に放出され、床1を通って室内に供給される。なお、図6に符号2aを付して示したのは伝熱用のフィンである。
As understood from FIG. 6, the air flow sent to the vicinity of the lower end of the outer cylinder 2 collides with the accumulated water 4 to remove dust, and then follows the inner wall surface of the outer cylinder 2 in the direction of arrow e. As it rises, it is heated in winter and cooled in summer. For example, according to observations at the Chiba Meteorological Observatory, the temperature at the surface of the subsurface 3 meters at the point where the monthly average temperature of the surface shows a change (annual) of 5 ° C to 30 ° C is 16 It was -18 degreeC.
The air flow adjusted to a temperature comfortable in this way is released in the direction of the arrow f and supplied to the room through the floor 1. In FIG. 6, reference numeral 2a denotes a heat transfer fin.

その他、空調設備用の熱交換器の具体例として、特許文献1には、先端が封止され、他端が開放された外管に、両端が開放された内管を遊嵌せしめ、該外管の先端を下にして地下に埋入して、内管と外管の隙間に空気を流して地熱と熱交換させる構造の地中熱交換器であって、該外管の長さ方向に、底に広がる断面形状をもつ凹溝を複数形成し、該凹溝の中に、先端が横に広がる突起部を持つ金属の羽根の、該突起部を嵌合してなることを特徴とする地中熱交換器が開示されている。   In addition, as a specific example of a heat exchanger for an air conditioner, Patent Document 1 discloses that an outer tube whose end is sealed and whose other end is open is loosely fitted with an inner tube whose both ends are open. An underground heat exchanger having a structure in which the tip of a pipe is buried in the basement and air is passed through a gap between the inner pipe and the outer pipe to exchange heat with geothermal heat, and the length of the outer pipe is increased. A plurality of concave grooves having a cross-sectional shape extending to the bottom are formed, and the protrusions of metal blades having protrusions extending laterally are fitted into the concave grooves. A ground heat exchanger is disclosed.

また、特許文献2には、先端が封止され、他端が開放された外管に、両端が開放された内管を遊嵌せしめた二重管構造からなる地中熱交換器の、該外管の先端を下にして地下に埋入して、該外管と内管の隙間に空調空気を流して地熱と熱交換させた後、該空気を該外管の底に衝突させ、該内管の中を通ってUターンさせる機構の地中熱交換器を利用した空調機構であって、該外管の底部に水を貯めて、該外管と内管の隙間から流入した空気を該外管の底部に貯めた水の液面に衝突させて該空気中の粉塵あるいは/および揮発性有機化合物を除去することを特徴とする地中熱交換器を利用した空調機構が開示されている。   Patent Document 2 discloses an underground heat exchanger having a double tube structure in which an inner tube having both ends opened is loosely fitted to an outer tube having a sealed tip and the other end opened. The tip of the outer pipe is buried in the basement, air-conditioned air flows through the gap between the outer pipe and the inner pipe to exchange heat with geothermal heat, and then the air collides with the bottom of the outer pipe, An air-conditioning mechanism using a ground heat exchanger with a mechanism for making a U-turn through the inner pipe, storing water at the bottom of the outer pipe, and letting air flowing from the gap between the outer pipe and the inner pipe Disclosed is an air-conditioning mechanism using a ground heat exchanger, wherein dust or / and volatile organic compounds in the air are removed by colliding with the level of water stored at the bottom of the outer pipe. Yes.

特開2007−183024号公報JP 2007-183024 A 特開2007−303693号公報JP 2007-303669 A

図5に示したような公知の空調設備用の熱交換器によると、四季や天候の影響を受けることなく、しかも、極めて低廉なランニングコストで地下の冷/温熱を利用することができるので、このような空調設備用の熱交換器は、空調業界に歓迎され、全国的に施工されている。
しかしながら、本発明者は、多年の研究と経験に基づいて、前述した従来の空調設備用の熱交換器に、なお改良の余地が有ることを確認した。この点について、以下に詳述する。
According to a known heat exchanger for air conditioning equipment as shown in FIG. 5, it is possible to use underground cold / heat without being affected by the seasons and weather, and at an extremely low running cost. Such heat exchangers for air conditioning equipment are welcomed by the air conditioning industry and are installed nationwide.
However, based on many years of research and experience, the inventor has confirmed that there is still room for improvement in the above-described conventional heat exchanger for air conditioning equipment. This point will be described in detail below.

前述した空調設備用の熱交換器においては、図5に示すように、矢印bの方向に送り込まれて、矢印cの方向に内管3の中を下降流動する空気流は、土壌との間で熱交換を行わない。その理由は、該内管3が土壌に接触していないからである。
したがって、送入空気流に対して地下定温がほとんど利用されず、その結果、矢印bの方向の送入空気流の温度と、矢印dのように反転する空気流の温度との違いは、溜め水4との間の熱交換を反映したものにすぎなかった。すなわち、地下数メートルまで送り込まれてから帰ってくる往復経路の内で、上昇空気流だけが土壌との間で熱交換され、下降空気流は土壌との間で熱交換されない。このため、従来の空調設備用の熱交換器では、その熱交換効率の向上の点で限界があった。
In the heat exchanger for air conditioning equipment described above, as shown in FIG. 5, the air flow that is sent in the direction of arrow b and flows down in the inner pipe 3 in the direction of arrow c is between the soil and the soil. Do not exchange heat. The reason is that the inner pipe 3 is not in contact with the soil.
Therefore, the underground constant temperature is hardly utilized for the incoming air flow, and as a result, the difference between the temperature of the incoming air flow in the direction of arrow b and the temperature of the air flow reversed as shown by arrow d is It was only a reflection of heat exchange with water 4. That is, in the reciprocating path that is returned after being sent to several meters below the ground, only the rising air flow is heat exchanged with the soil, and the falling air flow is not heat exchanged with the soil. For this reason, the conventional heat exchanger for air conditioning equipment has a limit in terms of improving its heat exchange efficiency.

本発明は以上に述べた事情に鑑みて為されたものであって、その目的とするところは、空気流を地中に導く管路と、空気流を地上に導く管路とを設けて空気流と土壌との間で熱交換を行わせる空調設備用の熱交換器を改良して、その熱交換効率を格段に向上させることである。   The present invention has been made in view of the circumstances described above, and the object of the present invention is to provide a pipe that guides the air flow into the ground and a pipe that guides the air flow to the ground. It is to improve the heat exchange efficiency by improving the heat exchanger for air conditioning equipment that exchanges heat between the stream and soil.

本発明者は、上記の目的を達成するために鋭意検討した結果、地下を移動する空気流に対し、地下の移動の全行程において土壌との間で熱交換を行わせること、換言すれば、地下において空気流を導く管状部材の全部を土壌と接触させることにより土壌との間で熱交換を行わせることを見い出し、かかる知見に基づいて本発明を完成するに至った。   As a result of diligent studies to achieve the above-mentioned object, the present inventor allows heat to be exchanged with soil in the entire process of underground movement, in other words, the air flow that moves underground, in other words, The present inventors have found that heat exchange is performed with soil by bringing all tubular members that guide the air flow underground into contact with the soil, and the present invention has been completed based on such knowledge.

上述した知見に基づく請求項1に係る発明の構成について、その1実施形態に対応する図2を参照して説明すると次のごとくである。なお、図面との対照を容易ならしめるため、図面の符号を付記するが、この符号は本発明の技術的範囲を図面どおりに限定するものではない。
熱交換器の本体をなす管状部材である本体管6の中に、該本体管の中心線(Z)を通る面に沿って仕切り壁7を設けることによって、空気流を地中に導く管路と、空気流を地上に導く管路とを形成し、空気流を地中に導く管路の終点(下端部)と、地上に導く管路の始点(下端部)とを連通(Es)させる。なお、辞書によれば「沿う」とは離れずに並んでいること、とされている。本発明において「中心線を通る面に沿う」とは、中心線の付近に在ることをいう。
The configuration of the invention according to claim 1 based on the knowledge described above will be described as follows with reference to FIG. 2 corresponding to the first embodiment. In addition, in order to make contrast with drawing easy, the code | symbol of drawing is attached, but this code | symbol does not limit the technical scope of this invention as drawing.
A pipe that guides an air flow into the ground by providing a partition wall 7 along a plane passing through the center line (Z) of the main pipe in the main pipe 6 that is a tubular member forming the main body of the heat exchanger. And a conduit that guides the air flow to the ground, and communicates (Es) the end point (lower end) of the conduit that guides the air flow to the ground and the start point (lower end) of the conduit that guides the air flow to the ground. . According to the dictionary, “along” is lined up without leaving. In the present invention, “along a plane passing through the center line” means being in the vicinity of the center line.

請求項2に係る発明は、図3(B)に例示されるように、空気を地中に導く流路と、空気を地上に導く流路とが、互いに独立した略等径の管状部材によって構成され、かつ、空気を地中に導く管状部材である下降流管9の下端と、空気を地上に導く管状部材である上流流管10の下端とが、管継手11によって接続連通され、若しくは図4(D)に例示されるように、水平な管状部材である水平管13によって接続連通されていることを特徴とする。
本発明において、管状部材が略等径であるとは、片方の管状部材(太い方)の中に他方の管上部材(細い方)を挿通できない寸法関係をいい、互いに独立とは挿通されていない状態をいう。
本発明における「水平な管状部材」は、測量学的に厳密な「水平」であることを要せず、「横方向の」という程の意であるが、強いていうなれば「管の両端の高低差が、管の長さの半分以下の状態である。
In the invention according to claim 2, as illustrated in FIG. 3 (B), the flow path for guiding air into the ground and the flow path for guiding air to the ground are formed by tubular members having substantially the same diameter. The lower end of the downflow pipe 9 that is configured and is a tubular member that guides air into the ground and the lower end of the upstream flow pipe 10 that is a tubular member that guides air to the ground are connected and communicated by a pipe joint 11, or As illustrated in FIG. 4D, the connection is made by a horizontal tube 13 which is a horizontal tubular member.
In the present invention, that the tubular members are substantially equal in diameter means a dimensional relationship in which the other tubular member (thinner) cannot be inserted into one tubular member (thicker), and they are inserted independently of each other. It means no state.
The “horizontal tubular member” in the present invention does not need to be strictly “horizontal” in a surveying sense, and means “lateral”, but in other words, “the height difference between both ends of the tube” Is less than half the length of the tube.

請求項3に係る発明は、図3(A)に例示されるように、空気を地中に導く管状部材(例えば12a)と、空気を地上に導く管状部材(例えば12b)との組が、複数組設けられていること、すなわち、分割管群12を備えていることを特徴とする。   As illustrated in FIG. 3A, the invention according to claim 3 includes a set of a tubular member (for example, 12a) that guides air into the ground and a tubular member (for example, 12b) that guides air to the ground. A plurality of sets are provided, that is, the dividing pipe group 12 is provided.

請求項4に係る発明は、図4(B)に例示されるように、空気流を地中に導く管路である下降流管9と、空気流を地上に導く管路である上流流管10との内の少なくとも片方が、垂直でなく傾斜していることを特徴とする。
本発明において傾斜しているとは、地球を基準として水平面に垂直でないことをいう。
As illustrated in FIG. 4B, the invention according to claim 4 is a downflow pipe 9 that is a pipe that guides an air flow into the ground, and an upstream pipe that is a pipe that guides the air flow to the ground. 10 is characterized in that at least one of them is not vertical but is inclined.
In the present invention, being inclined means not being perpendicular to the horizontal plane with respect to the earth.

請求項1に係る発明を適用すると、その実施形態に対応する図1並びに図2を参照すれば容易に理解できるように、本体管6を仕切り壁7で縦割り形に仕切ることによって、下降空気流(矢印h)の流路と上昇空気流の流路(矢印j)とが形成され、下降空気流(矢印h)は、本体管6の管壁を介して土壌に接触するとともに、上昇空気流(矢印j)も、本体管6の管壁を介して土壌に接触するので、下降空気流、及び上昇空気流の両方が同時に、土壌との熱交換によって加熱または冷却される。
このため、片道のみ加熱または冷却されていた従来の空調設備用の熱交換器に比して、熱交換効率が格段に上昇する。
さらに、本発明に設けられた仕切り壁7は、補強部材としての効果を発揮し、本体管6を強固ならしめる。
このため、鉄鋼部材に比して材料強度は劣るが、熱伝導性能の高いアルミニウムなどの軽合金によって本体管6を形成しても、剛性をそれほど低下させることなく、一層、熱交換効率を向上させることができる。
また、本発明の熱交換器は、熱伝導性能の良いアルミニウム合金からなる伝熱リブ(フィン)を併用すると、さらに熱交換効率を向上させることができる。
When the invention according to claim 1 is applied, as shown in FIG. 1 and FIG. 2 corresponding to the embodiment, the main pipe 6 is divided into a vertically divided shape by the partition wall 7 so that the descending air is divided. The flow path (arrow h) and the flow path (arrow j) of the rising air flow are formed, and the falling air flow (arrow h) contacts the soil through the tube wall of the main body pipe 6 and the rising air. Since the flow (arrow j) also contacts the soil through the tube wall of the main body tube 6, both the descending air flow and the ascending air flow are heated or cooled simultaneously by heat exchange with the soil.
For this reason, compared with the conventional heat exchanger for air-conditioning equipment heated or cooled only one way, heat exchange efficiency rises markedly.
Furthermore, the partition wall 7 provided in the present invention exhibits an effect as a reinforcing member, and strengthens the main body tube 6.
For this reason, although the material strength is inferior to that of steel members, even if the main body tube 6 is formed of a light alloy such as aluminum having high thermal conductivity, the heat exchange efficiency is further improved without significantly reducing the rigidity. Can be made.
Moreover, the heat exchanger of the present invention can further improve the heat exchange efficiency when heat transfer ribs (fins) made of an aluminum alloy with good heat conduction performance are used in combination.

請求項2に係る発明は、請求項1に係る発明の改良発明としての意義を有し、請求項1に係る発明における「高い熱交換効率」及び「高い剛性」という効果を損なうことなく、市販されている管材を利用することができ、製造コストの低減や製品品質の均一性を達成できる。   The invention according to claim 2 has significance as an improved invention of the invention according to claim 1, and is commercially available without impairing the effects of “high heat exchange efficiency” and “high rigidity” in the invention according to claim 1. As a result, the manufacturing cost can be reduced and the product quality can be made uniform.

請求項3に係る発明を適用すれば、設置した複数組の管状部材に対して空気流を直列に流通させることもでき、並列に流通させることもでき、直列、並列の切換え使用も可能である。
このため、空調設備用の熱交換器全体の設計的自由度が高められるという実用的効果を奏する。
If the invention which concerns on Claim 3 is applied, an air flow can also be distribute | circulated in series with respect to the set of several tubular members installed, it can also distribute | circulate in parallel, and the switching use of a series and parallel is also possible. .
For this reason, there exists a practical effect that the design freedom degree of the whole heat exchanger for air-conditioning equipment is raised.

請求項4に係る発明を適用すれば、例えば地下2〜3メートルに岩盤が在って、熱交換器の埋設深さが制限される場合も、所望の空気流路長さを得ることができる。   When the invention according to claim 4 is applied, a desired air flow path length can be obtained even when, for example, the bedrock is 2 to 3 meters below the ground and the embedment depth of the heat exchanger is limited. .

本発明に係る2例の実施形態を示し、部分的に破断して描いた模式的な斜視図である。It is the typical perspective view which showed two embodiment which concerns on this invention, and was partially broken and drawn. 本発明に係る熱交換器を設置した状態を示し、部分的に切断して描いた模式的な正面図である。It is the typical front view which showed the state which installed the heat exchanger which concerns on this invention, and was partially cut and drawn. 本発明に係る2例の実施形態を示し、(A)は中間部を切り取って描いた模式的な斜視図、(B)は部分的に破断して描いた模式的な斜視図である。2A and 2B show two exemplary embodiments according to the present invention, in which FIG. 2A is a schematic perspective view drawn by cutting out an intermediate portion, and FIG. 2B is a schematic perspective view drawn by partially breaking. 前掲の図3(B)の変形例を部分的に破断して描いた模式的な斜視図である。It is the typical perspective view which fractured | ruptured partially and depicted the modification of above-mentioned FIG.3 (B). 浅い岩盤が存在する場合に推奨される実施形態の4例を描いた模式的な垂直断面図である。FIG. 5 is a schematic vertical sectional view depicting four examples of embodiments recommended when shallow rock is present. 公知例の空調用熱交換器が設置されている状態を描いた模式的な垂直断面図に、作動を説明するための矢印を付記した図である。It is the figure which added the arrow for explaining operation | movement to the typical vertical sectional view which drew the state in which the heat exchanger for an air conditioning of a well-known example is installed.

図1(A)は本発明に係る熱交換器の1実施形態である。この実施形態においては、例えば、アルミニウム合金製の本体管6の中に、縦割り形の仕切り壁7が一体成形されている。
これによって、本体管6の内部空間は二つに仕切られるが、本体管6の下端部Esには仕切り壁7が省略されていて、仕切られた二つの空間は下端部で互いに連通している。
この図1(A)の実施形態の部材を設置した状態を図2に示した。
図2に示すように、ブロワ5から送出された空気流(矢印a)は、矢印gの方向に本体管6の片方の空間に導かれて、矢印hの方向に下降流動し、本体管6の下端部Esで矢印iの方向に折り返して、矢印jの方向に他方の空間を上昇流動し、矢印kの方向に本体管6から放出される。
この間、矢印hの下降流動中も、矢印jの上昇流動中も、空気流は常に本体管6の管壁を介して土壌との間で熱交換されるので、夏季は冷却され、冬季は加熱されて生活適温になる。
本発明を実施する場合、本体管の下端部に水を溜めるという公知技術(図6参照)を適用することも可能であるが、必ずしも溜めるには及ばない。
FIG. 1A shows an embodiment of a heat exchanger according to the present invention. In this embodiment, for example, a vertically divided partition wall 7 is integrally formed in a main body tube 6 made of aluminum alloy.
Thereby, the internal space of the main body pipe 6 is divided into two, but the partition wall 7 is omitted from the lower end portion Es of the main body pipe 6, and the two divided spaces communicate with each other at the lower end portion. .
FIG. 2 shows a state where the members of the embodiment of FIG. 1 (A) are installed.
As shown in FIG. 2, the air flow (arrow a) sent from the blower 5 is guided to one space of the main body pipe 6 in the direction of the arrow g, flows downward in the direction of the arrow h, and flows into the main body pipe 6. Folds in the direction of the arrow i at the lower end Es, flows upward in the direction of the arrow j, and is discharged from the main body pipe 6 in the direction of the arrow k.
During this time, the air flow is always exchanged with the soil through the wall of the main pipe 6 during the downward flow indicated by the arrow h and during the upward flow indicated by the arrow j, so that it is cooled in the summer and heated in the winter. Being the optimal temperature for life.
When practicing the present invention, it is possible to apply a known technique (see FIG. 6) in which water is stored at the lower end portion of the main body pipe, but this is not always necessary.

図1(B)は、図1(A)に示した実施形態の変形例である。この実施形態では、本体管6の中を縦割り形に仕切るという基本は、前述したものと同様であるが、仕切り壁が十字形に形成されている点に特徴がある。
図1(A)の部材を用いて構成された図2の実施形態においては、矢印h−i−jのようにU字形の流路が形成されていたが、図1(B)の実施形態では2組のU字形流路が形成されている。
本実施形態を実施する場合、2組のU字形流路を直列に接続して空気を流すこともでき、並列にして空気を流すこともできる。
FIG. 1B is a modification of the embodiment shown in FIG. In this embodiment, the basics of partitioning the inside of the main body pipe 6 into the vertically divided shape are the same as those described above, but are characterized in that the partition wall is formed in a cross shape.
In the embodiment of FIG. 2 configured using the members of FIG. 1A, a U-shaped flow path is formed as indicated by an arrow hij, but the embodiment of FIG. Then, two sets of U-shaped flow paths are formed.
When carrying out this embodiment, two sets of U-shaped flow paths can be connected in series to flow air, or air can be flowed in parallel.

図3(A)は前掲の図1(A)の変形例である。図1(A)の実施形態では1本の本体管6を仕切り壁7で区切って空気の下降流路と上昇流路とを形成したが、図3(A)の実施形態では互いに独立した2本の管を平行に列設して下降流管9と上昇流管10とを構成し、それぞれの管の下端同志を管継手11によって接続連通した。
本例では、市販されているアルミニウム合金製の管材(JIS規格品)を加工して下降流管9及び上昇流管10を作成した。
本例によると、大量生産されたアルミニウム管材を用いるので製造コストが低廉であり、かつ、規格品を用いるので品質の均一性が保証される。
しかもアルミニウム合金に特有の良好な熱伝導性により、高い熱交換効率が得られる。
FIG. 3A is a modification of FIG. In the embodiment of FIG. 1A, one main body pipe 6 is divided by a partition wall 7 to form an air descending flow path and an ascending flow path. However, in the embodiment of FIG. The downflow pipe 9 and the upflow pipe 10 were configured by arranging two pipes in parallel, and the lower ends of the respective pipes were connected and communicated by a pipe joint 11.
In this example, a commercially available aluminum alloy pipe (JIS standard product) was processed to create the downflow pipe 9 and the upflow pipe 10.
According to this example, since the mass-produced aluminum pipe material is used, the manufacturing cost is low, and since the standard product is used, the uniformity of quality is guaranteed.
Moreover, high heat exchange efficiency can be obtained due to the good thermal conductivity unique to the aluminum alloy.

図3(B)に示した実施形態は、前掲の図1(B)に示した実施形態の変形例である。
双方の図面を対比して理解されるように図1(B)の十字仕切壁8を、本体管6と一緒に切り分ける形に4分割すると、図3(B)の分割管12a〜分割管12dが形成される。
分割管12aの下端と分割管12dの下端とは、管継手として機能する曲管18によって接続されている。同様に、分割管12bの下端と分割管12cの下端とは、管継手として機能する曲管20によって接続されている。
更に、分割管12aの上端と分割管12bの上端とは、管継手として機能する曲管19によって接続されている。
ブロワ5から吐出された空気流を矢印mのごとく分割管12dに導く。該分割管12dを下降流動し終えた空気流を曲管18に流入せしめて矢印nのようにUターンさせ、分割管12aに導く。
分割管12a内を上昇流動した空気流は曲管19によって再びUターンせしめられて、分割管12b内を下降流動し、矢印qのように三度目のUターンをして分割管12cに流入し、上昇流動して矢印rのように放出される。
The embodiment shown in FIG. 3B is a modification of the embodiment shown in FIG.
As can be understood by comparing the two drawings, the cross partition wall 8 of FIG. 1 (B) is divided into four parts that are cut together with the main body pipe 6, so that the divided pipes 12a to 12d of FIG. Is formed.
The lower end of the split pipe 12a and the lower end of the split pipe 12d are connected by a curved pipe 18 that functions as a pipe joint. Similarly, the lower end of the split pipe 12b and the lower end of the split pipe 12c are connected by a curved pipe 20 that functions as a pipe joint.
Furthermore, the upper end of the split pipe 12a and the upper end of the split pipe 12b are connected by a curved pipe 19 that functions as a pipe joint.
The air flow discharged from the blower 5 is guided to the dividing pipe 12d as indicated by an arrow m. The air flow that has finished flowing downward in the dividing pipe 12d is caused to flow into the curved pipe 18 to make a U-turn as indicated by an arrow n, and is guided to the dividing pipe 12a.
The air flow that has flowed upward in the dividing pipe 12a is made to make a U-turn again by the curved pipe 19, flows downward in the dividing pipe 12b, and flows into the dividing pipe 12c with a third U-turn as indicated by the arrow q. Then, it flows upward and is released as indicated by an arrow r.

図3(B)に示した実施形態においては、空気流が4本の分割管12a〜分割管12d
を順次に流通した。すなわち4本の分割管が直列に接続されていた。
前記と同様な4本の分割管12a〜分割管12dを主要な構成部材として、図4のような実施形態を構成することもできる。
図4に示すように、ブロワ5から矢印aの方向に吐出された空気流を、分岐管17によって矢印g1,矢印g2のように分流させる。
分流した矢印g1の空気流を分割管12aに流入させて矢印h1の方向に下降流動させ、曲管16により矢印i1の方向に1回だけUターンさせた後、分割管12bに導いて矢印j1の方向に上昇流動させ、矢印k1の方向に放出させる。
一方、前記分岐管17で分流した矢印g2の空気流は、分割管12dに流入させて下降流動させる。
図示を省略したが、分割管12dの下端部と分割管12cの下端部とは、前記曲管16と同様の部材によって接続されている。
分割管12dを流通した空気流は(上記の図示しない曲管によって)矢印i2のように1回だけUターンせしめられ、分割管12cに流入して上昇流動し、矢印k2のように放出される。
図3(B)の実施形態においても、図4の実施形態においても、4本の分割管12a〜12dのそれぞれが地中に埋設されて、その外周が土壌に接触しているので、上昇空気流と下降空気流との両方が土壌と熱交換される。このため、高い熱交換効率が得られる。
図3(B)の実施形態のように2組のUターン流路を直列に接続するか、図4の実施形態のように2組のUターン流路を並列に接続するかについては、空調の対象である家屋の状態やブロワの性能を考慮して選択することが望ましい。
In the embodiment shown in FIG. 3B, the air flow is divided into four divided pipes 12a to 12d.
Were circulated sequentially. That is, four dividing pipes were connected in series.
The embodiment shown in FIG. 4 can also be configured by using four divided pipes 12a to 12d similar to the above as main constituent members.
As shown in FIG. 4, the air flow discharged from the blower 5 in the direction of arrow “a” is divided by the branch pipe 17 as indicated by arrows g <b> 1 and g <b> 2.
The diverted air flow indicated by the arrow g1 flows into the dividing pipe 12a and flows downward in the direction of the arrow h1, and after the curved pipe 16 makes a U-turn once in the direction of the arrow i1, it is guided to the dividing pipe 12b and is indicated by the arrow j1. In the direction of and discharged in the direction of arrow k1.
On the other hand, the air flow indicated by the arrow g2 divided by the branch pipe 17 flows into the dividing pipe 12d and flows downward.
Although not shown, the lower end portion of the dividing tube 12d and the lower end portion of the dividing tube 12c are connected by the same member as the curved tube 16.
The air flow flowing through the dividing pipe 12d is made to make a U-turn only once as indicated by the arrow i2 (by the curved pipe (not shown)), flows upward into the dividing pipe 12c, and is discharged as indicated by the arrow k2. .
In both the embodiment of FIG. 3B and the embodiment of FIG. 4, each of the four split pipes 12a to 12d is buried in the ground, and its outer periphery is in contact with the soil. Both the stream and the descending air stream are heat exchanged with the soil. For this reason, high heat exchange efficiency is obtained.
Whether two sets of U-turn flow paths are connected in series as in the embodiment of FIG. 3B or whether two sets of U-turn flow paths are connected in parallel as in the embodiment of FIG. It is desirable to select in consideration of the condition of the house that is the target of the performance and the performance of the blower.

本発明を実施する場合、通常の環境条件においては地下4〜5メートルの深さに埋設することが望ましい。しかしながら、地層の状態によっては4〜5メートルの埋設深さを得ることができない。例えば、地下3メートル付近に岩盤が存在するような場合である。
岩盤などによって埋設深さを制約される場合に好適な実施形態を図5に示す。
図5(A)に示すように、岩盤Rが浅い箇所に在る場合、複数本の下降流管9と複数本の上昇流管10とを埋設する。これらの下降流管9及び上昇流管10は、図3(A)におけると類似の構成部材であって、その長さ寸法は岩盤の深さに応じて適宜に設定する。
これらの下降流管9及び上昇流管10を順次に接続して、図5(A)のごとくW字状の流路を形成する。
これにより、熱交換器の埋設深さに比して複数倍の流路長さが形成され、所望の熱交換効率が得られる。
When practicing the present invention, it is desirable to embed at a depth of 4 to 5 meters underground under normal environmental conditions. However, depending on the state of the formation, a buried depth of 4 to 5 meters cannot be obtained. For example, it is a case where there is a bedrock near 3 meters underground.
FIG. 5 shows a preferred embodiment when the embedding depth is restricted by bedrock or the like.
As shown in FIG. 5A, when the bedrock R is in a shallow location, a plurality of downflow pipes 9 and a plurality of upflow pipes 10 are embedded. These downflow pipes 9 and upflow pipes 10 are structural members similar to those shown in FIG. 3A, and the lengths thereof are appropriately set according to the depth of the rock.
The downflow pipe 9 and the upflow pipe 10 are sequentially connected to form a W-shaped flow path as shown in FIG.
Thereby, the flow path length of multiple times is formed compared with the embedding depth of a heat exchanger, and desired heat exchange efficiency is obtained.

地下の比較的に浅い箇所に岩盤が存在するため、埋設深さが不足気味である場合、図5(B)の実施形態が好適である。
図3(A)におけると類似の下降流管9及び上昇流管10を、図5(B)のごとく傾斜させて埋設する。
これにより、熱交換器の埋設深さに比して数割増しの流路長さが形成され、所望の熱交換効率が得られる。
同様の原理により、図5(C)のように2本の傾斜管14をV字形に埋設しても良い。これによっても、熱交換器の埋設深さに比して数割増しの流路長さが形成され、所望の熱交換効率が得られる。
Since the bedrock exists in a relatively shallow part of the basement, the embodiment shown in FIG. 5B is suitable when the embedding depth is insufficient.
The downflow pipe 9 and the upflow pipe 10 similar to those in FIG. 3 (A) are embedded so as to be inclined as shown in FIG. 5 (B).
As a result, a flow path length that is a few percent higher than the embedding depth of the heat exchanger is formed, and a desired heat exchange efficiency is obtained.
Based on the same principle, two inclined pipes 14 may be embedded in a V shape as shown in FIG. This also forms a channel length that is a few percent higher than the embedment depth of the heat exchanger, and a desired heat exchange efficiency can be obtained.

岩盤が浅い箇所に存在し、かつ地下水レベルが岩盤よりも上方である場合、図5(D)の実施形態が推奨される。
図3(A)におけると類似の下降流管9及び上昇流管10を、岩盤Rよりも上方の区域に埋設するとともに、下降流管9の下端と上昇流管10の下端とを水平管13によって接続連通させる。
管状部材の中を通る空気流が管壁を介して外側の物質と熱交換するとき、外側の物質が通常の含水率を有する一般土砂である場合よりも、外側の物質が砂礫を取り巻く水である場合は、熱的な接触が濃厚である(伝熱抵抗が小さい)。
これにより、熱交換器の埋設深さに比して格段に高い熱交換効率が得られる。
If the bedrock is in a shallow location and the groundwater level is above the bedrock, the embodiment of FIG. 5 (D) is recommended.
The downflow pipe 9 and the upflow pipe 10 similar to those in FIG. 3A are embedded in a region above the bedrock R, and the lower end of the downflow pipe 9 and the lower end of the upflow pipe 10 are connected to the horizontal pipe 13. The connection is communicated by.
When the air flow through the tubular member exchanges heat with the outer material through the tube wall, the outer material is more water in the surrounding gravel than when the outer material is general earth and sand with normal moisture content. In some cases, the thermal contact is dense (low heat transfer resistance).
Thereby, heat exchange efficiency remarkably high compared with the embedding depth of a heat exchanger is obtained.

1…床
2…外筒
2a…伝熱フィン
3…内管
4…溜め水
5…ブロワ
6…本体管
7…仕切り壁
8…十字仕切り壁
9…下降流管
10…上昇流管
11…管継手
12…管群
12a〜12d…分割管
13…水平管
14…傾斜管
Es…外筒の下端部
R…岩盤
S…一般土砂
W…地下水面
DESCRIPTION OF SYMBOLS 1 ... Floor 2 ... Outer cylinder 2a ... Heat transfer fin 3 ... Inner pipe 4 ... Reserved water 5 ... Blower 6 ... Main body pipe 7 ... Partition wall 8 ... Cross partition wall 9 ... Downflow pipe 10 ... Upflow pipe 11 ... Pipe joint DESCRIPTION OF SYMBOLS 12 ... Pipe group 12a-12d ... Divided pipe 13 ... Horizontal pipe 14 ... Inclined pipe Es ... Lower end part of outer cylinder R ... Rock bed S ... General earth and sand W ... Groundwater surface

Claims (4)

空気流を地中に導く管路と、地中に導かれた空気流を地上に導く管路とを有していて、空気流と土壌との間で熱交換を行わせる空調設備用の熱交換器において、
熱交換器の本体をなす管状部材である本体管の中に、該本体管の中心線を通る面に沿って仕切り壁を設けることによって、空気流を地中に導く管路と空気流を地上に導く管路とが形成され、
かつ、空気流を地中に導く管路の終点と、地上に導く管路の始点とが連通されていることを特徴とする、空調設備用の熱交換器。
Heat for air conditioning equipment that has a conduit that guides the air flow to the ground and a conduit that guides the air flow guided to the ground to the ground, and allows heat exchange between the air flow and the soil. In the exchanger
By providing a partition wall along the surface passing through the center line of the main body tube in the main body tube, which is a tubular member that forms the main body of the heat exchanger, the pipe line that guides the air flow into the ground and the air flow are grounded And a conduit leading to
A heat exchanger for an air conditioner, characterized in that an end point of a pipe that guides the air flow into the ground and a start point of the pipe that guides the air flow to the ground are communicated.
空気流を地中に導く管路と、地中に導かれた空気流を地上に導く管路とを有していて、空気流と土壌との間で熱交換を行わせる空調設備用の熱交換器において、
空気を地中に導く流路と、空気を地上に導く流路とが、互いに独立した略等径の管状部材によって構成され、
かつ、空気を地中に導く管状部材の下端と、空気を地上に導く管状部材の下端とが、管継手により、若しくは水平な管状部材によって接続連通されていることを特徴とする、空調設備用の熱交換器。
Heat for air conditioning equipment that has a conduit that guides the air flow to the ground and a conduit that guides the air flow guided to the ground to the ground, and allows heat exchange between the air flow and the soil. In the exchanger
The flow path for guiding the air to the ground and the flow path for guiding the air to the ground are constituted by tubular members having substantially the same diameter independent from each other.
In addition, the lower end of the tubular member that guides air to the ground and the lower end of the tubular member that guides air to the ground are connected and connected by a pipe joint or a horizontal tubular member. Heat exchanger.
空気を地中に導く管状部材と、空気を地上に導く管状部材との組が、複数組設けられていることを特徴とする、請求項1又は2に記載した空調設備用の熱交換器。   The heat exchanger for an air conditioner according to claim 1 or 2, wherein a plurality of sets of a tubular member that guides air to the ground and a tubular member that guides air to the ground are provided. 空気流を地中に導く管路と、空気流を地上に導く管路との内の少なくとも片方が、鉛直でなく傾斜していることを特徴とする、請求項1又は2に記載した空調設備用の熱交換器。



The air conditioning equipment according to claim 1 or 2, wherein at least one of a conduit that guides the air flow to the ground and a conduit that guides the air flow to the ground is inclined rather than vertical. Heat exchanger.



JP2011233170A 2011-10-24 2011-10-24 Heat exchanger for air conditioning equipment Pending JP2013092277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011233170A JP2013092277A (en) 2011-10-24 2011-10-24 Heat exchanger for air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233170A JP2013092277A (en) 2011-10-24 2011-10-24 Heat exchanger for air conditioning equipment

Publications (1)

Publication Number Publication Date
JP2013092277A true JP2013092277A (en) 2013-05-16

Family

ID=48615545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011233170A Pending JP2013092277A (en) 2011-10-24 2011-10-24 Heat exchanger for air conditioning equipment

Country Status (1)

Country Link
JP (1) JP2013092277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802005A (en) * 2017-03-23 2017-06-06 中国建筑股份有限公司 A kind of perpendicularly buried pipe underground tunnel air and phase-changing energy-storing coupled system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111258A (en) * 1976-05-10 1978-09-05 Exxon Production Research Company Split air convection pile
US4279291A (en) * 1979-06-25 1981-07-21 Ladek Corporation Subterranean heating and cooling system
JPH11182943A (en) * 1997-12-22 1999-07-06 Kubota Corp Underground heat exchanger
JP2005351514A (en) * 2004-06-09 2005-12-22 Kakudai Kenchiku Sekkei Kenkyusho:Kk House ventilation system utilizing geothermal source
JP2007303693A (en) * 2006-05-09 2007-11-22 Geo Power System:Kk Air conditioning mechanism utilizing underground heat exchanger
JP2011190957A (en) * 2010-03-12 2011-09-29 Takahashi Kanri:Kk Improvement of earth solar system (underground heat recovery pipe system)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111258A (en) * 1976-05-10 1978-09-05 Exxon Production Research Company Split air convection pile
US4279291A (en) * 1979-06-25 1981-07-21 Ladek Corporation Subterranean heating and cooling system
JPH11182943A (en) * 1997-12-22 1999-07-06 Kubota Corp Underground heat exchanger
JP2005351514A (en) * 2004-06-09 2005-12-22 Kakudai Kenchiku Sekkei Kenkyusho:Kk House ventilation system utilizing geothermal source
JP2007303693A (en) * 2006-05-09 2007-11-22 Geo Power System:Kk Air conditioning mechanism utilizing underground heat exchanger
JP2011190957A (en) * 2010-03-12 2011-09-29 Takahashi Kanri:Kk Improvement of earth solar system (underground heat recovery pipe system)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802005A (en) * 2017-03-23 2017-06-06 中国建筑股份有限公司 A kind of perpendicularly buried pipe underground tunnel air and phase-changing energy-storing coupled system
CN106802005B (en) * 2017-03-23 2023-08-15 中国建筑股份有限公司 Vertical buried pipeline ventilation and phase-change energy storage coupling system

Similar Documents

Publication Publication Date Title
JP4642579B2 (en) Geothermal heat collection system
KR101368362B1 (en) Cooling and heating system using ground source
CN101163938A (en) Heat exchanger and applications thereof
CN102297486B (en) Method and device for passively extracting superficial zone geothermal energy to regulate temperature of machine room
CN106482265A (en) A kind of ground energy pipe laying constant temperature system of efficient energy-saving and emission-reducing
Yan et al. Utilization of ground heat exchangers: a review
CN101929764A (en) Solar energy-air-geothermal energy three-heat-source heat pump air conditioning unit
JP2013092277A (en) Heat exchanger for air conditioning equipment
US20100251710A1 (en) System for utilizing renewable geothermal energy
CN203657541U (en) Environment-friendly cooling tower capable of deep condensing and demisting
JP2006084093A (en) Heat pump type air conditioner
CN207214308U (en) A kind of building enclosure based on soil source heat exchange
KR101199531B1 (en) Cooling and heating system using geothermal energy
JP3142735U (en) Heat pump type air conditioner
CN106679016A (en) Efficient, energy-saving and emission-reducing ground source constant-temperature device
CN102337916A (en) Ventilation system for tunnel engineering
CN106472170A (en) A kind of ground source green house of vegetables of four seasons constant temperature
JP6236254B2 (en) Geothermal heat exchanger and air conditioning system using the same
CN207132534U (en) Energy-storage type airduct
CN106500223A (en) A kind of surface water ground source constant temperature system of efficient energy-saving and emission-reducing
JP2006038256A (en) Underground heat exchanger
KR101314334B1 (en) Heat exchanger for high performance ground source heat pump
CN106482267A (en) A kind of Di Yuan greenhouse of four seasons constant temperature
JP6434342B2 (en) Geothermal heat utilization system for base-isolated structures
KR102118986B1 (en) Soil Heat Exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151002