JP2011187643A - Heterojunction field-effect transistor - Google Patents

Heterojunction field-effect transistor Download PDF

Info

Publication number
JP2011187643A
JP2011187643A JP2010050712A JP2010050712A JP2011187643A JP 2011187643 A JP2011187643 A JP 2011187643A JP 2010050712 A JP2010050712 A JP 2010050712A JP 2010050712 A JP2010050712 A JP 2010050712A JP 2011187643 A JP2011187643 A JP 2011187643A
Authority
JP
Japan
Prior art keywords
layer
algan
composition gradient
hfet
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010050712A
Other languages
Japanese (ja)
Inventor
Nobuaki Teraguchi
信明 寺口
Towainamu Jon
トワイナム ジョン
Yoshihisa Fujii
敬久 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010050712A priority Critical patent/JP2011187643A/en
Publication of JP2011187643A publication Critical patent/JP2011187643A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heterojunction field-effect transistor in which a leakage current is small and a breakdown strength is high. <P>SOLUTION: The heterojunction field-effect transistor includes: an AlN buffer layer; an AlGaN composition inclined layer; a GaN channel layer; and an AlGaN barrier layer, which are successively layered on an insulating substrate. The AlGaN composition inclined layer reduces an Al density from the lower face toward the upper face, the AlGaN barrier layer has a larger Al density by 15% or more than the Al density on the upper face of the AlGaN composition inclined layer, and a pseudo p-type sheet carrier density obtained by spontaneous polarization and a piezoelectric effect in the AlGaN composition inclined layer is 3&times;10<SP>12</SP>cm<SP>-2</SP>through 4&times;10<SP>12</SP>cm<SP>-2</SP>. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は2次元電子ガスを生じるヘテロ接合型電界効果トランジスタ(HFET)に関し、特に、絶縁性基板上に形成された複数の窒化物半導体層を含むHFETのリーク電流の低減と耐圧性の向上に関するものである。   The present invention relates to a heterojunction field effect transistor (HFET) that generates a two-dimensional electron gas, and more particularly to reduction of leakage current and improvement of pressure resistance of an HFET including a plurality of nitride semiconductor layers formed on an insulating substrate. Is.

GaN、AlGaNなどの窒化物半導体においては、バンドギャップが大きく、絶縁破壊電圧が高く、電子のドリフト速度が大きく、さらにヘテロ接合による2次元電子ガスを利用することができる。例えばアンドープGaN層上にAlGaN層を積層した場合に、自発分極とピエゾ分極との両作用によってヘテロ界面に2次電子ガスが生じる。そして、このような2次電子ガスをチャネルとして利用するHFETが知られている。このように窒化物半導体を利用したHFETは、大きな電流を制御するためのパワーデバイスに好ましく適用することができる。   In nitride semiconductors such as GaN and AlGaN, the band gap is large, the dielectric breakdown voltage is high, the drift speed of electrons is large, and a two-dimensional electron gas due to a heterojunction can be used. For example, when an AlGaN layer is stacked on an undoped GaN layer, secondary electron gas is generated at the heterointerface due to both the spontaneous polarization and the piezoelectric polarization. An HFET using such a secondary electron gas as a channel is known. Thus, an HFET using a nitride semiconductor can be preferably applied to a power device for controlling a large current.

ところで、従来では、典型的な絶縁性基板であるサファイア基板上に作製したHFETにおいて、パンチスルー耐圧の向上とリーク電流の低減のためには、チャネル層の下方におけるバッファ層などの高抵抗化またはp型化が必要不可欠と考えられている(例えば、特許文献1の特開2005−85852号公報参照)。   By the way, conventionally, in an HFET manufactured on a sapphire substrate which is a typical insulating substrate, in order to improve the punch-through breakdown voltage and reduce the leakage current, the resistance of the buffer layer or the like under the channel layer is increased. It is considered that p-type conversion is indispensable (see, for example, JP 2005-85852 A).

しかし、通常では、アンドープの窒化物半導体自身は、1015〜1016cm−3のキャリア濃度を有するn型半導体になっている。特に、サファイア基板上に結晶成長した窒化物半導体層は、一般的に比較的良好な結晶性を有することから、これを高抵抗化することが容易ではない。 However, normally, the undoped nitride semiconductor itself is an n-type semiconductor having a carrier concentration of 10 15 to 10 16 cm −3 . In particular, since a nitride semiconductor layer crystal-grown on a sapphire substrate generally has relatively good crystallinity, it is not easy to increase its resistance.

他方、高抵抗の窒化物半導体層を得るためには、MgやCなどのp型不純物をドーピングすることによってn型キャリアを補償する方法や、Feなどの深いエネルギ準位を形成する不純物をドーピングすることによってキャリアをトラップする方法が用いられている(例えば、特許文献2の特開2007−184379号公報参照)。なお、窒化物半導体層のp型化のためには、典型的にはMgのドーピングが有効であることが周知である。   On the other hand, in order to obtain a high-resistance nitride semiconductor layer, a method of compensating n-type carriers by doping p-type impurities such as Mg and C, and doping impurities that form deep energy levels such as Fe Thus, a method for trapping carriers is used (for example, see Japanese Patent Application Laid-Open No. 2007-184379). It is well known that Mg doping is typically effective for making a nitride semiconductor layer p-type.

特開2005−85852号公報JP-A-2005-85852 特開2007−184379号公報JP 2007-184379 A 特開2009−10142号公報JP 2009-10142 A

しかしながら、HFETにおいて、チャネル層下の窒化物半導体層に一般的なp型不純物をドープすることは、電流コラプス(HFETの動作中にドレイン電流が急激に低下する現象)の原因になると考えられている。例外的に、p型不純物としてCをドーピングするによってチャネル層下の窒化物半導体層を高抵抗化する場合のみにおいて、HFETが電流コラプスに関して大きな影響を受けないと考えられている。しかし、チャネル層下の窒化物半導体層においてさらなる転位密度の低減などによって結晶性がさらに向上した場合に、その窒化物半導体層のp型化または高抵抗化が容易でなくなるという問題が生じる可能性も残る。   However, in HFET, doping a nitride semiconductor layer below a channel layer with a general p-type impurity is considered to cause current collapse (a phenomenon in which drain current rapidly decreases during operation of HFET). Yes. Exceptionally, it is considered that the HFET is not significantly affected by current collapse only when the resistance of the nitride semiconductor layer under the channel layer is increased by doping C as a p-type impurity. However, when the crystallinity is further improved in the nitride semiconductor layer under the channel layer by further reducing the dislocation density, there is a possibility that the nitride semiconductor layer may not be easily made p-type or high in resistance. Also remains.

以上のような従来技術の状況に鑑みれば、HFETにおいてリーク電流を低減してパンチスルー耐圧を向上させなおかつ電流コラプスを低減するためには、チャネル層下の窒化物半導体層における不純物ドーピングによる高抵抗化またはp型化を可能な限り回避することが望まれる。   In view of the state of the prior art as described above, in order to reduce the leakage current and improve the punch-through breakdown voltage and reduce the current collapse in the HFET, a high resistance by impurity doping in the nitride semiconductor layer under the channel layer is required. It is desirable to avoid conversion to p-type as much as possible.

そこで、本発明は、チャネル層下の窒化物半導体層を不純物ドーピングでp型化することなく、HFETのリーク電流の低減や耐電圧の向上などを可能とすることを目的としている。   Accordingly, an object of the present invention is to reduce the leakage current of the HFET and improve the withstand voltage without making the nitride semiconductor layer under the channel layer p-type by impurity doping.

本発明者が鋭意検討を重ねた結果、HFET中でチャネル層下の窒化物半導体層構造を最適化することによって、その窒化物半導体層構造が不純物ドーピングなしに擬似的にp型化することが可能になることが見出された。その擬似的なp型化の結果として、HFETにおけるリーク電流の低減による高耐圧化と電流コラプスの抑制が可能となる。   As a result of intensive studies by the present inventor, the nitride semiconductor layer structure under the channel layer in the HFET can be pseudo-typed without impurity doping by optimizing the nitride semiconductor layer structure under the channel layer. It was found to be possible. As a result of the pseudo p-type, it is possible to increase the breakdown voltage and suppress the current collapse by reducing the leakage current in the HFET.

すなわち、本発明によるヘテロ接合型電界効果トランジスタは、絶縁性基板上に順次積層されたAlNバッファ層、AlGaN組成傾斜層、GaNチャネル層、およびAlGaN障壁層を含み、AlGaN組成傾斜層はその下面から上面に向かってAl濃度が低減されており、AlGaN障壁層はAlGaN組成傾斜層の上面におけるAl濃度よりも15%以上大きなAl濃度を有しており、AlGaN組成傾斜層中において自発分極およびピエゾ効果によって得られる擬似的なp型シートキャリア濃度が3×1012cm−2以上4×1012cm−2以下であることを特徴としている。 That is, the heterojunction field effect transistor according to the present invention includes an AlN buffer layer, an AlGaN composition gradient layer, a GaN channel layer, and an AlGaN barrier layer that are sequentially stacked on an insulating substrate. The Al concentration is reduced toward the upper surface, and the AlGaN barrier layer has an Al concentration that is 15% or more larger than the Al concentration on the upper surface of the AlGaN composition gradient layer, and spontaneous polarization and piezoelectric effects are present in the AlGaN composition gradient layer. The pseudo p-type sheet carrier concentration obtained by the above is 3 × 10 12 cm −2 or more and 4 × 10 12 cm −2 or less.

なお、AlGaN障壁層上にはソース電極、ゲート電極およびドレイン電極が配置され、AlGaN組成傾斜層とソース電極とが電気的に接続されていることが好ましい。また、絶縁性基板としては、サファイア基板またはノンドープSiC基板を好ましく用いることができる。   In addition, it is preferable that a source electrode, a gate electrode, and a drain electrode are disposed on the AlGaN barrier layer, and the AlGaN composition gradient layer and the source electrode are electrically connected. As the insulating substrate, a sapphire substrate or a non-doped SiC substrate can be preferably used.

以上のように、本発明によれば、HFET中のGaNチャネル層下のAlGaN組成傾斜層が不純物のドーピングなしに擬似的にp型化され得て、HFETのリーク電流の低減による高耐圧化および電流コラプスの低減が可能となる。   As described above, according to the present invention, the AlGaN composition graded layer under the GaN channel layer in the HFET can be pseudo-p-type without doping impurities, thereby increasing the breakdown voltage and reducing the leakage current of the HFET. The current collapse can be reduced.

本発明の一実施形態によるHFETを示す模式的断面図である。It is a typical sectional view showing HFET by one embodiment of the present invention. 本発明のもう1つの実施形態によるHFETを示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing an HFET according to another embodiment of the present invention. 本発明によるHFETにおけるAlGaN組成傾斜層中の擬似的p型シートキャリア濃度とパンチスルー耐圧との関係のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the relationship between the pseudo | simulation p-type sheet carrier density | concentration in the AlGaN composition inclination layer in the HFET by this invention, and a punch through breakdown voltage.

上述のように、本発明によるヘテロ型電界効果トランジスタは、絶縁性基板上に順次積層されたAlNバッファ層、AlGaN組成傾斜層、GaNチャネル層、およびAlGaN障壁層を含み、AlGaN組成傾斜層はその下面から上面に向かってAl濃度が低減されており、AlGaN障壁層はAlGaN組成傾斜層の上面におけるAl濃度よりも15%以上大きなAl濃度を有しており、AlGaN組成傾斜層中において自発分極およびピエゾ効果によって得られる擬似的なp型シートキャリア濃度が3×1012cm−2以上4×1012cm−2以下であることを特徴としている。 As described above, the hetero-type field effect transistor according to the present invention includes an AlN buffer layer, an AlGaN composition gradient layer, a GaN channel layer, and an AlGaN barrier layer, which are sequentially stacked on an insulating substrate. The Al concentration is reduced from the lower surface to the upper surface, and the AlGaN barrier layer has an Al concentration that is 15% or more higher than the Al concentration on the upper surface of the AlGaN composition gradient layer. The pseudo p-type sheet carrier concentration obtained by the piezo effect is 3 × 10 12 cm −2 or more and 4 × 10 12 cm −2 or less.

絶縁性の基板材料としては、サファイアやアンドープSiCなどのように可動キャリアを含まない基板が望ましい。すなわち、基板中の可動キャリアの存在は、その上の窒化物半導体層中の電界を補償するように作用するので、HFETの高耐圧化のためには望ましくない。   As an insulating substrate material, a substrate that does not include a movable carrier, such as sapphire or undoped SiC, is desirable. That is, the presence of the movable carrier in the substrate acts to compensate for the electric field in the nitride semiconductor layer thereon, which is not desirable for increasing the breakdown voltage of the HFET.

AlGaN組成傾斜層は、AlGaN障壁層上に配置されたソース電極、ゲート電極およびドレイン電極のうちのソース電極に電気的に接続されていることが好ましい。すなわち、擬似的p型層であるAlGaN組成傾斜層がソース電極に接続されていない場合、HFETの動作がオフからオンに切り替わった時にその擬似的p型層中の過剰なホールが抜けにくく、チャネル層中の実効的2次元電子ガス濃度がns−ps(n型シートキャリア濃度−p型シートキャリア濃度)となってオン抵抗の増大を招く。したがって、擬似的p型層中のpsの値は、HFETの耐電圧を維持し得る限りにおいて、可能な限り小さな値とすることが好ましい。   The AlGaN composition gradient layer is preferably electrically connected to the source electrode of the source electrode, gate electrode, and drain electrode disposed on the AlGaN barrier layer. That is, when the AlGaN composition gradient layer which is a pseudo p-type layer is not connected to the source electrode, when the operation of the HFET is switched from OFF to ON, excessive holes in the pseudo p-type layer are difficult to escape, The effective two-dimensional electron gas concentration in the layer becomes ns-ps (n-type sheet carrier concentration-p-type sheet carrier concentration), leading to an increase in on-resistance. Therefore, the value of ps in the pseudo p-type layer is preferably as small as possible as long as the withstand voltage of the HFET can be maintained.

図3は、AlGaN組成傾斜層中の擬似的p型シートキャリア濃度とHFETのパンチスルー耐圧(ドレインリーク電流密度が1μA/mmになる電圧と定義)との関係を求めたシミュレーション結果を示すグラフである。すなわち、このグラフの横軸はAlGaN組成傾斜層中の擬似的p型シートキャリア濃度(×1012cm−2)を表し、縦軸はパンチスルー耐圧(V)を表している。 FIG. 3 is a graph showing simulation results for determining the relationship between the pseudo p-type sheet carrier concentration in the AlGaN composition gradient layer and the punch-through breakdown voltage (defined as a voltage at which the drain leakage current density becomes 1 μA / mm) of the HFET. is there. That is, the horizontal axis of this graph represents the pseudo p-type sheet carrier concentration (× 10 12 cm −2 ) in the AlGaN composition gradient layer, and the vertical axis represents the punch-through breakdown voltage (V).

図3のシミュレーション結果から分かるように、HFETのパンチスルー耐圧は擬似的なp型シートキャリア濃度(ps)の増加と共に増大し、ps=3×1012cm−2のシートキャリア濃度の場合に540Vの耐圧が得られ、ps=4×1012cm−2のシートキャリア濃度の場合に1200Vの耐圧が得られると計算される。 As can be seen from the simulation results in FIG. 3, the punch-through breakdown voltage of the HFET increases with an increase in the pseudo p-type sheet carrier concentration (ps), and is 540 V when the sheet carrier concentration is ps = 3 × 10 12 cm −2. It is calculated that a withstand voltage of 1200 V is obtained when the sheet carrier concentration is ps = 4 × 10 12 cm −2 .

上述のAlGaN組成傾斜層中の擬似的p型シートキャリア濃度(ps)を得るためには、その組成傾斜層の下面側と上面側とにおけるIII族元素中のAl原子組成比の差をΔx(下面側でAl原子組成比が大きい)としたときに、経験的に
ps=2.6×1013Δx〜4.8×1013Δx
で求めることが可能であり、
(1)ps=3×1012cm−2にする場合には、0.06≦Δx≦0.12
(2)ps=4×1012cm−2にする場合には、0.08≦Δx≦0.15
の範囲にΔxを設定すればよいと考えられる。
In order to obtain the pseudo p-type sheet carrier concentration (ps) in the AlGaN composition gradient layer, the difference in Al atom composition ratio in the group III element between the lower surface side and the upper surface side of the composition gradient layer is expressed by Δx ( when the Al atomic composition ratio is large) in the lower surface side, empirically ps = 2.6 × 10 13 Δx~4.8 × 10 13 Δx
Can be obtained at
(1) When ps = 3 × 10 12 cm −2 , 0.06 ≦ Δx ≦ 0.12
(2) When ps = 4 × 10 12 cm −2 , 0.08 ≦ Δx ≦ 0.15
It is considered that Δx should be set in the range of.

なお、AlGaN組成傾斜層中で所定の擬似的p型シートキャリア濃度(ps)を得ることに関して、その組成傾斜層の厚さにおいて特定の制限が生じることはない。   Note that there is no specific limitation on the thickness of the composition gradient layer with respect to obtaining a predetermined pseudo p-type sheet carrier concentration (ps) in the AlGaN composition gradient layer.

ところで、本発明におけるAlGaN組成傾斜層に類似したグレーデッドAlGaN層が、特許文献3の特開2009‐10142号公報においても開示されている。しかし、特許文献3におけるグレーデッドAlGaN層は、AlN層とGaN層との間の格子不整合による歪みを抑制するために設けられており、格子歪みの抑制に適したAl組成範囲を教示しているだけである。また、引用文献3においては、本発明によるAlGaN組成傾斜層中におけるような擬似的p型シートキャリア濃度について全く何らの教示も示唆も存在していない。   Incidentally, a graded AlGaN layer similar to the AlGaN composition gradient layer in the present invention is also disclosed in Japanese Patent Application Laid-Open No. 2009-10142. However, the graded AlGaN layer in Patent Document 3 is provided to suppress strain due to lattice mismatch between the AlN layer and the GaN layer, and teaches an Al composition range suitable for suppressing lattice strain. There is only. Also, in the cited document 3, there is no teaching or suggestion about the pseudo p-type sheet carrier concentration as in the AlGaN composition gradient layer according to the present invention.

すなわち、本発明では、AlGaN組成傾斜層中のAl濃度を変化させることによって擬似的p型シートキャリア濃度を所定の範囲内に限定して設定することによってパンチスルー耐圧を向上させており、特許文献3の発明が利用する格子歪み抑制の原理と異なる電子的原理によって発明の効果を得ている。また、特許文献3の場合には基板の如何に拘らずにAlN層とGaN層との間の格子歪みがグレーデッドAlGaN層によって抑制される効果が得られるが、本発明におけるAlGaN組成傾斜層では絶縁性基板が用いられた場合のみに効果が発揮され、導電性のSiCやSi基板を用いる場合にはその効果が発揮されない。   That is, in the present invention, the punch-through breakdown voltage is improved by setting the pseudo p-type sheet carrier concentration within a predetermined range by changing the Al concentration in the AlGaN composition gradient layer. The effect of the invention is obtained by an electronic principle different from the principle of suppressing lattice distortion used by the invention of No. 3. In addition, in the case of Patent Document 3, the lattice strain between the AlN layer and the GaN layer can be suppressed by the graded AlGaN layer regardless of the substrate, but in the AlGaN composition gradient layer in the present invention, The effect is exhibited only when an insulating substrate is used, and the effect is not exhibited when a conductive SiC or Si substrate is used.

また、本発明によるより好ましい態様のHFETにおいては、AlGaN組成傾斜層がソース電極に電気的に接続されている。これは、以下の理由による。すなわち、HFETを動作させる場合、オン/オフ動作時に正孔の流出/流入をスムーズに行なうためには、AlGaN組成傾斜層とソース電極とを電気的に接続することによって電気的なパスを設けることが望まれる。また、AlGaN組成傾斜層とソース電極とが電気的に接続されていない場合、HFETの動作条件によっては新たなコラプスの原因となる可能性がある。この観点からも、AlGaN組成傾斜層とソース電極とが電気的に接続されていることが好ましい。さらに、擬似的p型層がソース電極に接続されている場合、チャネル近傍から過剰なホールを迅速に抜き取ることができるので、HFETのオン抵抗の増大を生じることがない。   In the HFET of a more preferred embodiment according to the present invention, the AlGaN composition gradient layer is electrically connected to the source electrode. This is due to the following reason. That is, when the HFET is operated, an electrical path is provided by electrically connecting the AlGaN composition gradient layer and the source electrode in order to smoothly flow out / inject holes during the on / off operation. Is desired. In addition, when the AlGaN composition gradient layer and the source electrode are not electrically connected, there is a possibility of causing a new collapse depending on the operating conditions of the HFET. Also from this viewpoint, it is preferable that the AlGaN composition gradient layer and the source electrode are electrically connected. Further, when the pseudo p-type layer is connected to the source electrode, excess holes can be quickly extracted from the vicinity of the channel, so that the on-resistance of the HFET does not increase.

他方、AlGaN組成傾斜層中のΔxを増大させて擬似的p型シートキャリア濃度(ps)を増大させれば、その結果として容量成分の増加によるスイッチング速度の低下とアバランシェ耐圧の低下を招くので、AlGaN組成傾斜層がソース電極と接続されている場合でもpsを高めるほど好ましいと言うわけではない。   On the other hand, increasing Δx in the AlGaN composition gradient layer to increase the pseudo p-type sheet carrier concentration (ps) results in a decrease in switching speed and a decrease in avalanche breakdown voltage due to an increase in capacitance component. Even when the AlGaN composition gradient layer is connected to the source electrode, it is not preferable to increase the ps.

(実施形態1)
図1は、本発明の実施形態1によるHFETを模式的断面図で図解している。なお、本願の図面においては、長さ、厚さ、幅などの寸法関係は図面の明瞭化のために適宜に変更されており、実際の寸法関係を表してはいない。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view illustrating an HFET according to Embodiment 1 of the present invention. In the drawings of the present application, dimensional relationships such as length, thickness, and width are appropriately changed for clarity of the drawings, and do not represent actual dimensional relationships.

図1のHFETは、以下のようにして作製することができる。まず、MOCVD(有機金属気相堆積)装置の反応室内にサファイア基板1を導入し、基板温度1150℃にて流量3slmのアンモニアを用いて、基板1の表面窒化を行なう。   The HFET of FIG. 1 can be manufactured as follows. First, the sapphire substrate 1 is introduced into a reaction chamber of an MOCVD (metal organic vapor deposition) apparatus, and surface nitriding of the substrate 1 is performed using ammonia at a substrate temperature of 1150 ° C. and a flow rate of 3 slm.

次に、基板温度を550℃に下げて、流量54.2sccmのトリメチルアルミニウム(TMA)と流量3slmのアンモニアを反応室内に導入し、13.3kPaの圧力下で厚さ30nmのAlNバッファ層2を成長させる。   Next, the substrate temperature is lowered to 550 ° C., trimethylaluminum (TMA) with a flow rate of 54.2 sccm and ammonia with a flow rate of 3 slm are introduced into the reaction chamber, and an AlN buffer layer 2 with a thickness of 30 nm is formed under a pressure of 13.3 kPa. Grow.

引き続いて、基板温度を1150℃に昇温した後、反応室内圧力13.3kPaとアンモニア流量12.5slmを設定し、堆積時間20分の間にトリメチルガリウム(TMG)流量を57.9sccmから103.3sccmに変化させるとともに、TMA流量を60.2sccmから22.7sccmに変化させることによって、AlGaN組成傾斜層3を成長させる。このとき、成長する厚さ2μmのAlGaN組成傾斜層3の下面から上面までの間で、III族元素中のAl原子組成比が0.2から0.05まで変化させられる。   Subsequently, after raising the substrate temperature to 1150 ° C., a reaction chamber pressure of 13.3 kPa and an ammonia flow rate of 12.5 slm were set, and a trimethyl gallium (TMG) flow rate was changed from 57.9 sccm to 103. 3 during a deposition time of 20 minutes. The AlGaN composition gradient layer 3 is grown by changing the flow rate to 3 sccm and changing the TMA flow rate from 60.2 sccm to 22.7 sccm. At this time, the Al atom composition ratio in the group III element is changed from 0.2 to 0.05 between the lower surface and the upper surface of the AlGaN composition gradient layer 3 having a thickness of 2 μm.

さらに、基板温度1100℃と反応室内圧力100kPaの条件のもとで、流量13.0sccmのTMGと流量12.5slmのアンモニアを反応室内に導入し、AlGaN組成傾斜層3上に厚さ40nmのGaNチャネル層4を成長させる。   Further, TMG with a flow rate of 13.0 sccm and ammonia with a flow rate of 12.5 slm were introduced into the reaction chamber under the conditions of a substrate temperature of 1100 ° C. and a reaction chamber pressure of 100 kPa, and a 40 nm thick GaN film was formed on the AlGaN composition gradient layer 3. The channel layer 4 is grown.

最後に、基板温度1100℃と反応室内圧力100kPaの条件のもとで、流量9.1sccmのTMG、流量16.5sccmのTMA、および流量12.5slmのアンモニアを反応室内に導入し、厚さ20nmのAl0.3Ga0.7N障壁層5を成長させる。 Finally, TMG with a flow rate of 9.1 sccm, TMA with a flow rate of 16.5 sccm, and ammonia with a flow rate of 12.5 slm were introduced into the reaction chamber under the conditions of a substrate temperature of 1100 ° C. and a pressure in the reaction chamber of 100 kPa, and a thickness of 20 nm. The Al 0.3 Ga 0.7 N barrier layer 5 is grown.

以上のようにして作製された窒化物半導体積層構造を含むウエハのAlGaN障壁層5上において、例えばHf/Al/Hf/Auの積層を真空蒸着またはスパッタリングなどで形成し、その後に800℃で1minのアニールを施すことによって、ソース電極6とドレイン電極7が形成される。このとき、Hf/Al/Hf/Auのそれぞれの厚さは、例えば13nm/85nm/13nm/60nmであり得る。同様に、AlGaN障壁層5上において、例えばWN/W/Auを真空蒸着またはスパッタリングなどで積層して、ゲート電極8が形成される。このとき、WN/W/Auのそれぞれの厚さは、例えば60nm/10nm/100nmであり得る。   On the AlGaN barrier layer 5 of the wafer including the nitride semiconductor multilayer structure manufactured as described above, a stack of, for example, Hf / Al / Hf / Au is formed by vacuum deposition or sputtering, and then at 800 ° C. for 1 min. By performing this annealing, the source electrode 6 and the drain electrode 7 are formed. At this time, each thickness of Hf / Al / Hf / Au may be, for example, 13 nm / 85 nm / 13 nm / 60 nm. Similarly, on the AlGaN barrier layer 5, for example, WN / W / Au is laminated by vacuum deposition or sputtering to form the gate electrode 8. At this time, each thickness of WN / W / Au may be, for example, 60 nm / 10 nm / 100 nm.

以上のようにして作製されたHFETにおいては、サファイア基板上に順次積層されたAlNバッファ層、厚さ2μmのGaNチャネル層、および厚さ20nmのAl0.25Ga0.75N障壁層を含む従来のHFETに比べて、リーク電流の低減、耐電圧の向上、および電流コラプスの低減の効果を得ることができる。 The HFET fabricated as described above includes an AlN buffer layer, a 2 μm thick GaN channel layer, and a 20 nm thick Al 0.25 Ga 0.75 N barrier layer sequentially stacked on a sapphire substrate. Compared with a conventional HFET, the effects of reducing leakage current, improving withstand voltage, and reducing current collapse can be obtained.

なお、本実施例1では厚さ2μmのAlGaN組成傾斜層中のAl組成比が0.2〜0.05の範囲で変化させられたが、上述の式(1)で与えられるキャリア濃度を1×1016cm−3〜3×1016cm−3の範囲内で変化させ得る条件を満たす限りにおいて、Al組成比を任意の変化範囲に設定することができる。 In Example 1, the Al composition ratio in the AlGaN composition gradient layer having a thickness of 2 μm was changed in the range of 0.2 to 0.05. However, the carrier concentration given by the above-described formula (1) is 1 As long as the conditions that can be changed within the range of × 10 16 cm −3 to 3 × 10 16 cm −3 are satisfied, the Al composition ratio can be set to an arbitrary change range.

ただし、自発分極とピエゾ分極との両作用によってGaNチャネル層4内における最低限必要な2次元電子ガス濃度を得るためには、AlGaN障壁層5のAl組成比はAlGaN組成傾斜層の上面側のAl組成比よりも15%以上大きくする必要がある。   However, in order to obtain the minimum required two-dimensional electron gas concentration in the GaN channel layer 4 by the action of both spontaneous polarization and piezoelectric polarization, the Al composition ratio of the AlGaN barrier layer 5 is set on the upper surface side of the AlGaN composition gradient layer. It is necessary to make it 15% or more larger than the Al composition ratio.

(実施形態2)
図2は、本発明の実施形態2によるHFETを模式的断面図で図解している。実施形態2によるHFETの作製においては、実施形態1の場合と同様にして、サファイア基板1上にAlNバッファ層2、AlGaN組成傾斜層3、GaNチャネル層4、およびAlGaN障壁層5が順次積層される。
(Embodiment 2)
FIG. 2 illustrates an HFET according to Embodiment 2 of the present invention in a schematic cross-sectional view. In the fabrication of the HFET according to the second embodiment, the AlN buffer layer 2, the AlGaN composition gradient layer 3, the GaN channel layer 4, and the AlGaN barrier layer 5 are sequentially stacked on the sapphire substrate 1 in the same manner as in the first embodiment. The

しかしその後に、本実施形態2においては、AlGaN障壁層5とGaNチャネル層4の一部を塩素ガスによるエッチングで除去し、AlGaN組成傾斜層3の一部が露出される。   However, after that, in Embodiment 2, a part of the AlGaN barrier layer 5 and the GaN channel layer 4 are removed by etching with chlorine gas, and a part of the AlGaN composition gradient layer 3 is exposed.

そして、本実施形態2においても実施形態1の場合と同様にしてAlGaN障壁層5上にソース電極6、ドレイン電極7およびゲート電極8が形成されるが、本実施形態2ではさらにAlGaN組成傾斜層3の露出部上にp型用オーミック電極9が付加的に形成される。   In the second embodiment, the source electrode 6, the drain electrode 7 and the gate electrode 8 are formed on the AlGaN barrier layer 5 in the same manner as in the first embodiment. In the second embodiment, an AlGaN composition gradient layer is further formed. A p-type ohmic electrode 9 is additionally formed on the exposed portion 3.

このp型用オーミック電極9は、例えばPd/Auを真空蒸着またはスパッタリングなどで積層し、その後に550℃で10minのアニールを施すことによって形成することができる。このとき、Pd/Auのそれぞれの厚さは、例えば10nm/100nmであり得る。そして、このように形成されたp型用オーミック電極9は、ソース電極6と電気的に接続される。   The p-type ohmic electrode 9 can be formed by, for example, laminating Pd / Au by vacuum deposition or sputtering, and then annealing at 550 ° C. for 10 minutes. At this time, each thickness of Pd / Au may be 10 nm / 100 nm, for example. The p-type ohmic electrode 9 formed in this way is electrically connected to the source electrode 6.

本実施形態2によるHFETにおいては、実施形態1のHFETに比べて、リーク電流の低減に関しては大きな違いがないが、高電圧動作時または高速動作時における電流コラプスの低減に関してより改善が得られる。   In the HFET according to the second embodiment, there is no significant difference in reducing the leakage current as compared with the HFET in the first embodiment, but an improvement can be obtained in terms of reducing current collapse during high-voltage operation or high-speed operation.

以上のように、本発明によれば、チャネル層下の窒化物半導体層を不純物ドーピングでp型化することなく、HFETのリーク電流の低減や耐電圧の向上などを可能にすることができる。   As described above, according to the present invention, it is possible to reduce the leakage current and improve the withstand voltage of the HFET without making the nitride semiconductor layer under the channel layer p-type by impurity doping.

1 サファイア基板、2 AlNバッファ層、3 AlGaN組成傾斜層、4 GaNチャネル層、5 AlGaN障壁層、6 ソース電極、7 ドレイン電極、8 ゲート電極、9 p型用電極。   1 Sapphire substrate, 2 AlN buffer layer, 3 AlGaN composition gradient layer, 4 GaN channel layer, 5 AlGaN barrier layer, 6 source electrode, 7 drain electrode, 8 gate electrode, 9 p-type electrode.

Claims (3)

絶縁性基板上に順次積層されたAlNバッファ層、AlGaN組成傾斜層、GaNチャネル層、およびAlGaN障壁層を含み、
前記AlGaN組成傾斜層はその下面から上面に向かってAl濃度が低減されており、
前記AlGaN障壁層は前記AlGaN組成傾斜層の上面におけるAl濃度よりも15%以上大きなAl濃度を有しており、
前記AlGaN組成傾斜層中において自発分極およびピエゾ効果によって得られる擬似的なp型シートキャリア濃度が3x1012cm−2以上4x1012cm−2以下であることを特徴とするヘテロ接合型電界効果トランジスタ。
Including an AlN buffer layer, an AlGaN composition gradient layer, a GaN channel layer, and an AlGaN barrier layer sequentially stacked on an insulating substrate;
The AlGaN composition gradient layer has an Al concentration reduced from its lower surface to its upper surface,
The AlGaN barrier layer has an Al concentration of 15% or more larger than the Al concentration on the upper surface of the AlGaN composition gradient layer;
The AlGaN heterojunction field effect transistor, wherein the pseudo p-type sheet carrier concentration obtained by the spontaneous polarization and piezoelectric effect in the composition gradient layer is 4x10 12 cm -2 or less 3x10 12 cm -2 or more.
前記AlGaN障壁層上にはソース電極、ゲート電極およびドレイン電極が配置されており、前記AlGaN組成傾斜層と前記ソース電極とが電気的に接続されていることを特徴とする請求項1記載のヘテロ接合型電界効果トランジスタ。   The heterojunction according to claim 1, wherein a source electrode, a gate electrode, and a drain electrode are disposed on the AlGaN barrier layer, and the AlGaN composition gradient layer and the source electrode are electrically connected. Junction field effect transistor. 前記絶縁性基板がサファイア基板またはノンドープSiC基板であることを特徴とする請求項1または2に記載のヘテロ接合型電界効果トランジスタ。   The heterojunction field effect transistor according to claim 1 or 2, wherein the insulating substrate is a sapphire substrate or a non-doped SiC substrate.
JP2010050712A 2010-03-08 2010-03-08 Heterojunction field-effect transistor Pending JP2011187643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010050712A JP2011187643A (en) 2010-03-08 2010-03-08 Heterojunction field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050712A JP2011187643A (en) 2010-03-08 2010-03-08 Heterojunction field-effect transistor

Publications (1)

Publication Number Publication Date
JP2011187643A true JP2011187643A (en) 2011-09-22

Family

ID=44793595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010050712A Pending JP2011187643A (en) 2010-03-08 2010-03-08 Heterojunction field-effect transistor

Country Status (1)

Country Link
JP (1) JP2011187643A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033575A (en) * 2010-07-28 2012-02-16 Sumitomo Electric Ind Ltd Semiconductor device
WO2014057906A1 (en) * 2012-10-11 2014-04-17 ローム株式会社 Nitride semiconductor device and fabrication method therefor
WO2017077805A1 (en) * 2015-11-02 2017-05-11 日本碍子株式会社 Epitaxial substrate for semiconductor elements, semiconductor element, and production method for epitaxial substrates for semiconductor elements
WO2017077806A1 (en) * 2015-11-02 2017-05-11 日本碍子株式会社 Epitaxial substrate for semiconductor elements, semiconductor element, and production method for epitaxial substrates for semiconductor elements
CN106910802A (en) * 2017-03-21 2017-06-30 广东工业大学 A kind of epitaxial structure for realizing short wavelength UV LED
JP2021097063A (en) * 2019-12-13 2021-06-24 株式会社東芝 Semiconductor device
CN113594231A (en) * 2021-08-04 2021-11-02 西安电子科技大学 Homoepitaxy GaN HEMT based on polarization doped AlGaN leakage isolation layer and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077666A1 (en) * 2005-12-28 2007-07-12 Nec Corporation Field effect transistor, and multilayered epitaxial film for use in preparation of field effect transistor
JP2008258419A (en) * 2007-04-05 2008-10-23 Toshiba Corp Nitride semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077666A1 (en) * 2005-12-28 2007-07-12 Nec Corporation Field effect transistor, and multilayered epitaxial film for use in preparation of field effect transistor
JP2008258419A (en) * 2007-04-05 2008-10-23 Toshiba Corp Nitride semiconductor device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033575A (en) * 2010-07-28 2012-02-16 Sumitomo Electric Ind Ltd Semiconductor device
US10256335B2 (en) 2012-10-11 2019-04-09 Rohm Co., Ltd. Nitride semiconductor device and fabrication method therefor
WO2014057906A1 (en) * 2012-10-11 2014-04-17 ローム株式会社 Nitride semiconductor device and fabrication method therefor
JPWO2014057906A1 (en) * 2012-10-11 2016-09-05 ローム株式会社 Nitride semiconductor device and manufacturing method thereof
US11777024B2 (en) 2012-10-11 2023-10-03 Rohm Co., Ltd. Nitride semiconductor device and fabrication method therefor
US10991818B2 (en) 2012-10-11 2021-04-27 Rohm Co., Ltd. Nitride semiconductor device and fabrication method therefor
US10686064B2 (en) 2012-10-11 2020-06-16 Rohm Co., Ltd. Nitride semiconductor device and fabrication method therefor
US9837521B2 (en) 2012-10-11 2017-12-05 Rohm Co., Ltd. Nitride semiconductor device and fabrication method therefor
US10418239B2 (en) 2015-11-02 2019-09-17 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor elements, semiconductor element, and manufacturing method for epitaxial substrates for semiconductor elements
US10580646B2 (en) 2015-11-02 2020-03-03 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor elements, semiconductor element, and manufacturing method for epitaxial substrates for semiconductor elements
KR20180075526A (en) * 2015-11-02 2018-07-04 엔지케이 인슐레이터 엘티디 Title: EPITACLE SUBSTRATE FOR SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE
KR20180075525A (en) * 2015-11-02 2018-07-04 엔지케이 인슐레이터 엘티디 Title: EPITACLE SUBSTRATE FOR SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE
CN108352327A (en) * 2015-11-02 2018-07-31 日本碍子株式会社 The manufacturing method of epitaxial substrate for semiconductor device, semiconductor element and epitaxial substrate for semiconductor device
JPWO2017077806A1 (en) * 2015-11-02 2018-08-16 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, and manufacturing method of epitaxial substrate for semiconductor element
JPWO2017077989A1 (en) * 2015-11-02 2018-08-16 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, and manufacturing method of epitaxial substrate for semiconductor element
JPWO2017077805A1 (en) * 2015-11-02 2018-08-23 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, and manufacturing method of epitaxial substrate for semiconductor element
KR20180075524A (en) * 2015-11-02 2018-07-04 엔지케이 인슐레이터 엘티디 Title: EPITACLE SUBSTRATE FOR SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE
US10410859B2 (en) 2015-11-02 2019-09-10 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor elements, semiconductor element, and manufacturing method for epitaxial substrates for semiconductor elements
CN108140561A (en) * 2015-11-02 2018-06-08 日本碍子株式会社 The manufacturing method of epitaxial substrate for semiconductor device, semiconductor element and epitaxial substrate for semiconductor device
KR102519899B1 (en) 2015-11-02 2023-04-07 엔지케이 인슐레이터 엘티디 Epitaxial substrate for semiconductor device, semiconductor device, and method for manufacturing epitaxial substrate for semiconductor device
US10629688B2 (en) 2015-11-02 2020-04-21 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor elements, semiconductor element, and manufacturing method for epitaxial substrates for semiconductor elements
KR20180075527A (en) * 2015-11-02 2018-07-04 엔지케이 인슐레이터 엘티디 Title: EPITACLE SUBSTRATE FOR SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE
US10770552B2 (en) 2015-11-02 2020-09-08 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor elements, semiconductor element, and manufacturing method for epitaxial substrates for semiconductor elements
TWI710656B (en) * 2015-11-02 2020-11-21 日商日本碍子股份有限公司 Epitaxy substrate for semiconductor element, semiconductor element and method for manufacturing epitaxial substrate for semiconductor element
WO2017077806A1 (en) * 2015-11-02 2017-05-11 日本碍子株式会社 Epitaxial substrate for semiconductor elements, semiconductor element, and production method for epitaxial substrates for semiconductor elements
WO2017077805A1 (en) * 2015-11-02 2017-05-11 日本碍子株式会社 Epitaxial substrate for semiconductor elements, semiconductor element, and production method for epitaxial substrates for semiconductor elements
CN108352327B (en) * 2015-11-02 2021-07-30 日本碍子株式会社 Epitaxial substrate for semiconductor element, and method for manufacturing epitaxial substrate for semiconductor element
KR102547562B1 (en) 2015-11-02 2023-06-23 엔지케이 인슐레이터 엘티디 Epitaxial substrate for semiconductor device, semiconductor device, and method for manufacturing epitaxial substrate for semiconductor device
CN108140561B (en) * 2015-11-02 2022-04-12 日本碍子株式会社 Epitaxial substrate for semiconductor element, and method for manufacturing epitaxial substrate for semiconductor element
KR102491830B1 (en) * 2015-11-02 2023-01-25 엔지케이 인슐레이터 엘티디 Epitaxial substrate for semiconductor device, semiconductor device, and method for manufacturing epitaxial substrate for semiconductor device
KR102519304B1 (en) 2015-11-02 2023-04-06 엔지케이 인슐레이터 엘티디 Epitaxial substrate for semiconductor device, semiconductor device, and method for manufacturing epitaxial substrate for semiconductor device
CN106910802A (en) * 2017-03-21 2017-06-30 广东工业大学 A kind of epitaxial structure for realizing short wavelength UV LED
CN106910802B (en) * 2017-03-21 2023-12-29 广东工业大学 Epitaxial structure for realizing short-wavelength ultraviolet LED
JP7258735B2 (en) 2019-12-13 2023-04-17 株式会社東芝 semiconductor equipment
JP2021097063A (en) * 2019-12-13 2021-06-24 株式会社東芝 Semiconductor device
CN113594231A (en) * 2021-08-04 2021-11-02 西安电子科技大学 Homoepitaxy GaN HEMT based on polarization doped AlGaN leakage isolation layer and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6251071B2 (en) Semiconductor device
US11417520B2 (en) Semiconductor structure having sets of III-V compound layers and method of forming
EP3311414B1 (en) Doped barrier layers in epitaxial group iii nitrides
JP5495257B2 (en) Group III nitride field effect transistor and method of manufacturing the same
US8330187B2 (en) GaN-based field effect transistor
WO2010109566A1 (en) Semiconductor device and method for manufacturing same
JP2009231395A (en) Semiconductor device and method for manufacturing semiconductor device
WO2009081584A1 (en) Semiconductor device
JP2015115582A (en) Semiconductor device
JP2011044647A (en) Group-iii nitride-based field-effect transistor and method of manufacturing the same
JP2011187643A (en) Heterojunction field-effect transistor
JP2009032713A (en) NITRIDE SEMICONDUCTOR TRANSISTOR IN WHICH GaN IS MADE AS CHANNEL LAYER, AND ITS MANUFACTURING METHOD
WO2017002317A1 (en) Semiconductor device substrate, semiconductor device, and method for manufacturing semiconductor device
JP2013004750A (en) Compound semiconductor device and manufacturing method therefor
JP6883007B2 (en) Nitride semiconductor device
CN111406306A (en) Method for manufacturing semiconductor device, and semiconductor device
JP2011171440A (en) Group iii nitride-based hetero field-effect transistor
JP2016100450A (en) Heterojunction field effect transistor and manufacturing method of the same
JP6084254B2 (en) Compound semiconductor substrate
JP2006190988A (en) Semiconductor device
JP6541879B2 (en) Heterojunction field effect transistor and method of manufacturing the same
JP6650867B2 (en) Method for manufacturing heterojunction field effect transistor
JP5169515B2 (en) Compound semiconductor device
JP2015008244A (en) Heterojunction field-effect transistor, and method of manufacturing the same
JP2015103665A (en) Nitride semiconductor epitaxial wafer and nitride semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120223

Free format text: JAPANESE INTERMEDIATE CODE: A621

A02 Decision of refusal

Effective date: 20140318

Free format text: JAPANESE INTERMEDIATE CODE: A02